浅谈盈亏问题解题思路

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

辅导孩子做奥数题目的时候,经常发现孩子对老师讲解过的基本典型的几类奥数题基本会做,可遇到复杂一点的题就抓耳挠腮,束手无策了。经过多次试探、沟通,我发现孩子对老师讲过的诸如盈亏问题、鸡兔同笼等几类基本典型问题都能够熟练应用公式解答,但其实并没有完全吃透基本典型题目的解题思路的精髓,特别是对基本典型问题的前置基础要求条件几乎没有概念,这也就导致孩子不知道何种情况不能直接套用公式,或者也知道不能直接套用公式,但却无从下手的情况。

个人觉得引导孩子真正理解基本典型问题的解题思路,分析和掌握基本典型问题的前置基础要求,并在此基础上引导孩子判断一道题是否满足前置基础要求,在不满足前置基础要求的情况下,如何有针对性的进行转化,才能做到有的放矢。

下面就以盈亏问题为例,和大家探讨一下:

基本典型问题:老师把一包饼干分给小朋友,如果每人分5块,将剩余14块;每人分7块,又缺少4块。那么,小朋友共有多少人?一共有多少块饼干?

这是盈亏问题的基本典型例题。

引导孩子思考:每个小朋友分5块后,老师手上还有14块。根据题中“每人分7块,又缺少4块”,也就是说,再补给老师4块饼干,每个人就可以分得7块了。那好,再补给老师4块,老师手上则有前面剩余的14块和后补的4块,一共有14+4=18块饼干。把这18块饼干也都分给小朋友,每个小朋友就正好有7块饼干了。现在每个小朋友都已经有了上次分的5块饼干,再分得7-5=2块饼干,每人就有7块饼干了。也就是说老师手上的18块饼干正好可以再给每个小朋友2块饼干。这样就容易理解,小朋友一共有18÷2=9个小朋友。得出小朋友的人数,当然就很容易求得原来的饼干数量了。

通过这种理解方式,相信孩子能够很容易掌握盈亏基本典型问题的思考方法,而不是简单的记忆那些解题公式了。当然,盈盈、亏亏问题都能按此理解和解答,在此就不赘述了。

盈亏基本典型问题解题思路的关键是两次分配的份额差异与盈亏差异的相互关系。两次分配的盈亏差正是因为两次平均分配的份额差所导致的,而两次

分配的份数又不发生变化,因此盈亏差就是份额差与份数的乘积。这是盈亏问题解题思路的本质。(孩子如果一时难以完全理解这个本质,也不要强求)在此基础上,我们再来分析一下基本典型盈亏问题的前置基础要求:

1.先后两次对同一物品(饼干)进行不同的平均分配;

2.前后两次分配饼干过程中小朋友的人数是固定不变的,也就是分配的份

数不变;饼干的原有数量,也就是在两次分配中基数固定不变;

3.两次分配中每人分得的饼干数量,以及两次分配中老师手上剩余或缺少

的饼干数量可以变化,也就是每份的数量和每次分配的盈亏数额可以变

化,我们也正是根据这两个数额的变化情况求得最后的份数和分配基数

的。

这些前置基础要求是我们能否应用上述解题思路来解答这类题型的基础条件,如果不满足这些基础条件,就不能直接使用基本典型题的解答思路来解答。从另一角度来说,遇到不满足上述前置基础要求的类似题目,就要设法将其转换到满足前置基础要求后,才能再应用基本典型题的解答思路来解答。老师和课本上都说,要善于将复杂的盈亏问题转化为基本典型的盈亏问题,可是具体怎么转化,孩子还是无从下手。现在,我们分析了上述前置基础要求,至少我们可以明确,就是要把不符合上述前置基础要求的条件转化为符合前置基础要求的条件。

在条件转换的过程中,要抓住前置条件中固定的要求和可以变化的条件之间的关系,具体到盈亏问题中,由于每份的数量和每次分配的盈亏数量是可以变化的,我们一般也就考虑将需要固定的条件进行固定,并根据有关题目条件将此变化转换为可以变化的盈亏数值的变化。

例题1:一群小朋友分橘子,如果其中两人每人分4个,其余每人分2个,则多出4个;如果其中一人分6个,其余每人分4个,则又缺12个。问一共有多少小朋友?多少橘子?

分析:本题中橘子和小朋友的数量在两次分配中都没有变化,但是两次分配都不是平均分配,这就不满足前面分析的前置基础要求,当然也不能直接应用盈亏基本典型问题的解题思路直接解答。因此,我们的解题思路就是要先将不平均分配

的条件转化为平均分配的条件,以满足相应的前置基础要求。

第一次分配中“两个人分4个,其余每人分2个,则多出4个”,我们让这两个分得4个的小朋友每人还两个给老师(虽然这题中没提及老师,我们还是假设一个老师来分,这样更好描述,孩子也更好理解),让这两个与众不同的小朋友和其他小朋友一样。这样就成了每人分2个的平均分配了。这样一来,老师手上就会又多出2×2=4个,加上原分配中多出的4个,那么,第一次分配就变成了“每人分2个,则多出8个”。

同样,第二次分配中“其中一人分6个,其余每人分4个,则又缺12个”,让这一个分6个的小朋友还2个给老师,这样老师由原来缺12个就变成了缺10个。那么,第二次分配就变成了“每人分4个,则缺10个”。

通过上述过程我们可以看出,通过可以变化的盈亏数量的转换,将不符合的前置基础要求的条件转化为符合前置基础要求的条件,这就是解决类似问题的总体思路。经过这样的转换,题目已经成为满足前提条件的基本典型盈亏题目了。具体解答就不详述了。

例题2:钢笔和圆珠笔每支相差1元2角,小明带的钱买5支钢笔差1元5角,买8支圆珠笔多6角。问小明带了多少钱?

分析:这题显然不满足前置基础要求中“对同一物品进行两次分配”的要求,所以我们要努力将其转换为对同一物品的分配。抓住“钢笔和圆珠笔每支相差1元2角”的条件,将“买5支钢笔”转换为“买5支圆珠笔”就会多1.2×5=6元,这样“买5支钢笔差1元5角”的条件就转化为“买5支圆珠笔多4元5角”。题目于是变成了“买5支圆珠笔多4元5角,买8支圆珠笔多6角”。这又是符合前置基础要求的基本典型题型了。当然,也可以将圆珠笔转换为钢笔来做。

例题3:一个富翁向一些乞丐施舍一批钱财,一开始准备给每个乞丐100元,结果剩下350元。于是他决定每人再多给20元。这时从其他地方又赶来5名乞丐,如果他们每人拿到的钱和其他乞丐一样多,富翁还需要再增加550元。富翁原打算施舍多少钱?

分析:这个题目中,两次分配的乞丐数量发生了变化,也就不能够满足基本典型

相关文档
最新文档