高二上物理原子核知识点总结
原子核结构与性质知识点总结
原子核结构与性质知识点总结一、原子核的发现说起原子核,得先聊聊它是怎么被发现的。
在 19 世纪末,科学家们通过对阴极射线和天然放射性现象的研究,逐渐揭开了原子结构的神秘面纱。
1897 年,汤姆逊发现了电子,这让人们意识到原子不是不可分割的实心球体。
随后,卢瑟福在 1911 年进行了著名的α粒子散射实验。
他用α粒子(氦核)去轰击金箔,发现大部分α粒子能直接穿过金箔,但有少数α粒子发生了较大角度的偏转,甚至有的被反弹回来。
这个实验让卢瑟福得出结论:原子内部存在一个很小但质量很大的带正电的核,这就是原子核。
二、原子核的组成原子核由质子和中子组成。
质子带一个单位的正电荷,中子不带电。
质子数决定了元素的种类,我们把质子数相同的原子归为同一类元素。
而质子数和中子数之和称为质量数。
比如氢原子,它的原子核通常只有一个质子,没有中子。
而质量数为1 的氢原子称为氕;质量数为2 的氢原子,有一个质子和一个中子,称为氘;质量数为 3 的氢原子,有一个质子和两个中子,称为氚。
质子和中子的质量差不多,都约是电子质量的 1836 倍。
所以原子的质量主要集中在原子核上。
三、原子核的大小原子核的半径非常小,只有约 10⁻¹⁵米到 10⁻¹⁴米的量级。
如果把原子比作一个足球场,那么原子核就像场中央的一只蚂蚁。
尽管原子核很小,但它却集中了原子的绝大部分质量。
四、原子核的电荷原子核带正电荷,其电荷量等于质子数乘以元电荷。
元电荷的数值约为 160×10⁻¹⁹库仑。
五、原子核的稳定性原子核的稳定性取决于多种因素。
一般来说,质子数和中子数比例适当的原子核比较稳定。
当质子数过多或过少时,原子核往往不稳定,会发生衰变。
原子核的稳定性还与核子之间的相互作用有关。
核子之间存在强相互作用和弱相互作用。
强相互作用是把核子紧紧束缚在原子核内的力,它作用距离很短,但强度很大。
弱相互作用则在某些衰变过程中起作用。
六、原子核的衰变不稳定的原子核会自发地发生衰变,转变为另一种原子核。
原子核物理学知识点总结
原子核物理学知识点总结一、原子核结构1. 原子核的构成原子核是由质子和中子组成的,质子带正电荷,中子不带电荷。
质子和中子统称为核子,它们是由夸克组成的基本粒子。
在原子核中,质子和中子以一定方式排列组合在一起,形成不同的核素。
2. 核素的表示核素是指具有相同质子数Z但中子数N不同的同位素。
核素用(Z,N)表示,其中Z为质子数,N为中子数。
例如,氢的核素包括质子数为1的氢-1、氢-2、氢-3等。
3. 核力原子核的稳定性和性质与核力密切相关。
核力是一种强相互作用力,它表现为对保持核子在原子核内相互靠近的吸引力。
核力的作用范围仅限于核子之间的短距离,因此核力是一种短程力。
核力使得原子核具有较大的结合能,使得相对论效应可以忽略而用非相对论性Schrödinger方程描述原子核结构和性质。
4. 核子排布原子核中的质子和中子排布不是随机的,而是服从一定的规律性。
据以谷间核子模型,核子排布成层状结构。
核子遵循封闭壳层规律,即壳层填充遵循类似电子壳层填充的方式。
这种壳层结构决定了原子核的稳定性和衰变模式。
二、核稳定性和核衰变1. 核稳定性原子核的稳定性与核子的排布和核力的作用密切相关。
一般来说,具有特定数目的质子和中子的核素更加稳定。
这些核素对应于壳层填充的情况,可以通过满足塞贝格定律来预测核素的稳定性。
2. 核衰变核衰变是指原子核放射出射线或粒子而转变成其他核素的过程。
常见的核衰变方式包括α衰变、β衰变、γ衰变等。
核衰变是由原子核内部的不稳定性导致的,通过放射性衰变测定技术来测量放射性核素的活度。
核衰变可以用一级衰变方程来描述放射性物质的衰变过程。
三、核反应1. 核裂变核裂变是指重核物质被中子轰击后裂变成两个或多个亚稳核并释放出中子和能量的过程。
核裂变是一种放射性过程,通过核裂变反应可以产生大量热能,被广泛应用于核能发电和核武器等领域。
2. 核聚变核聚变是指轻核物质在高温高压条件下融合成重核物质的过程。
原子核结构与性质知识点总结
原子核结构与性质知识点总结原子核,这个微小却又极其重要的物质核心,承载着物质世界的基础性质和规律。
让我们一同深入探索原子核的结构与性质,揭开其神秘的面纱。
一、原子核的组成原子核由质子和中子组成。
质子带一个单位的正电荷,而中子呈电中性。
质子数决定了元素的种类,被称为原子序数。
质子和中子的质量相近,约为 167×10⁻²⁷千克。
将质子和中子的质量相加,得到的近似值称为原子的质量数。
质量数等于质子数与中子数之和。
例如,氢原子的原子核只有一个质子,没有中子,其质量数为 1;而碳原子常见的有碳-12 和碳-14 两种同位素,碳-12 的原子核中有 6 个质子和 6 个中子,质量数为 12,碳-14 则有 6 个质子和 8 个中子,质量数为 14。
二、原子核的大小和密度原子核的半径非常小,约为 10⁻¹⁵米到 10⁻¹⁴米的量级。
尽管原子核体积很小,但它却集中了原子几乎全部的质量。
原子核的密度极大,约为 10¹⁷千克/立方米。
这意味着原子核内的物质紧密堆积,其密度远远超过我们日常生活中所接触到的任何物质。
打个比方,如果把原子核比作一颗绿豆,那么整个原子就像一个足球场,可见原子核在原子中所占的体积是极小的。
三、原子核的稳定性原子核的稳定性取决于质子数和中子数的比例以及两者的数量。
一般来说,质子数和中子数相等或接近时,原子核比较稳定。
但对于轻元素,质子数与中子数之比约为 1:1 时稳定;而对于重元素,中子数相对较多时原子核更稳定。
当原子核内的质子数或中子数过多或过少时,原子核就会变得不稳定,可能会发生放射性衰变,释放出粒子或射线,以达到更稳定的状态。
四、原子核的结合能原子核的结合能是指将原子核中的质子和中子完全分开所需要的能量,或者是将分散的质子和中子结合成原子核所释放出的能量。
结合能的大小反映了原子核的稳定性。
结合能越大,原子核越稳定。
例如,铁元素的原子核具有较大的结合能,因此在原子核的形成和变化过程中,趋向于生成更接近铁元素的原子核。
高中物理原子与原子核知识点总结.doc
高中物理原子与原子核知识点总结【说明】氢原子跃迁①轨道量子化rn=n2r1(n=1,2.3…)r1=0.53×10-10m能量量子化:E1=-13.6eV②En,Ep,r,nEk,v吸收光子时增大减小放出光子时减小增大③氢原子跃迁时应明确:一个氢原子直接跃迁向高能级跃迁,吸收光子一般光子某一频率光子一群氢原子各种可能跃迁向低能级跃迁放出光子可见光子一系列频率光子④氢原子吸收光子时——要么全部吸收光子能量,要么不吸收光子1光子能量大于电子跃迁到无穷远处(电离)需要的能量时,该光子可被吸收。
(即:光子和原于作用而使原子电离)2光子能量小于电子跃迁到无穷远处(电离)需要的能量时,则只有能量等于两个能级差的光子才能被吸收。
(受跃迁条件限:只适用于光于和原于作用使原于在各定态之间跃迁的情况)。
⑤氢原子吸收外来电子能量时——可以部分吸收外来碰撞电子的能量(实物粒子作用而使原子激发)。
因此,能量大于某两个能级差的电子均可被氢原子吸收,从而使氢原子跃迁。
E51=13.06E41=12.75E31=12.09E21=10.2;(有规律可依)E52=2.86E42=2.55E32=1.89;E53=0.97E43=0.66;E54=0.31⑶玻尔理论的局限性。
由于引进了量子理论(轨道量子化和能量量子化),玻尔理论成功地解释了氢光谱的规律。
但由于它保留了过多的经典物理理论(牛顿第二定律、向心力、库仑力等),所以在解释其他原子的光谱上都遇到很大的困难。
氢原子在n能级的动能、势能,总能量的关系是:EP=-2EK,E=EK+EP=-EK。
(类似于卫星模型)由高能级到低能级时,动能增加,势能降低,且势能的降低量是动能增加量的2倍,故总能量(负值)降低。
量子数1.天然放射现象的发现,使人们认识到原子核也有复杂结构。
核变化从贝克勒耳发现天然放射现象开始衰变(用电磁场研究):2.各种放射线的性质比较种类本质质量(u)电荷(e)速度(c)电离性贯穿性α射线氦核4+代。
物理学中的原子核物理知识点
物理学中的原子核物理知识点原子核物理是物理学的一个重要分支,研究原子核的性质、组成和相互作用等问题。
在这篇文章中,我们将介绍一些关于原子核物理的知识点,以帮助读者更好地了解这一领域。
一、原子核的组成原子核是由质子和中子组成的。
质子带正电,中子不带电。
质子和中子都属于强子,即它们受到强相互作用力的影响。
二、原子核的相对质量和电荷原子核的相对质量是以质子为单位的,质子的相对质量为1。
中子的相对质量也约等于1。
原子核的电荷由其中的质子数量决定。
三、原子核的稳定性和放射性原子核的稳定性取决于核内质子和中子的比例以及核内相互作用力的平衡情况。
若核内质子和中子的比例不合适,或者核内相互作用力失去平衡,核就会失去稳定性,变得放射性,释放出射线。
四、原子核的衰变原子核衰变是指不稳定的原子核通过放射性衰变过程,转变成其他核的过程。
常见的核衰变包括α衰变、β衰变和γ衰变。
α衰变是指原子核放出一个α粒子(一个氦原子核)、β衰变是指原子核放出一个β粒子(一个电子或正电子)、γ衰变是指原子核放出γ射线而不改变核内的质子或中子数量。
五、核裂变和核聚变核裂变是指重核(如铀、钚等)被中子轰击后分裂成两个或更多的轻核,释放出巨大的能量。
核聚变是指轻核(如氘、三氚等)在高温高压条件下融合成重核,同样释放出巨大的能量。
核裂变和核聚变是核能利用和核武器的基础原理。
六、核反应和核能核反应是指原子核之间的相互作用,包括核裂变、核聚变和其他核变化过程。
核反应释放出的能量被称为核能,是一种非常强大的能量。
七、核力和库仑力原子核内的质子相互之间存在着排斥力,即库仑力。
而质子和中子之间存在着吸引力,即核力。
核力是一种强相互作用力,仅仅作用于极短的距离,而库仑力则作用于任意距离。
核力使得原子核中的质子和中子能够相互结合,保持原子核的稳定性。
八、原子核模型目前,原子核的模型主要有液滴模型和壳模型。
液滴模型将原子核看作是一个液滴,用来解释原子核的形状和核的振荡现象。
高中原子物理知识点归纳
高中原子物理知识点归纳
1.原子结构
-原子是由带正电的原子核和围绕核运动的电子组成的。
-原子核由质子和中子构成,质子带有正电荷,中子则是中性的。
-电子分布在不同的能级上,每个能级对应一定的能量。
-能级结构可以用波尔模型或者量子力学的薛定谔方程来描述,能级之间的跃迁伴随着能量的变化,这对应着原子光谱的现象。
-核内的质子和中子可以通过核反应(如裂变、聚变)释放或吸收能量。
2.原子核的特性
-原子核的质量远大于电子,集中在原子的中心部位。
-原子核大小与原子整体相比很小,但密度极高。
-卢瑟福通过α粒子散射实验证实了原子的核式结构模型,即大部分空间是空的,电子在核外空间运动。
3.原子序数与核电荷数
-原子序数等于原子核内质子的数量,决定了元素的化学性质。
-原子的核电荷数等于质子数,也等于核外电子总数(在中性原子中)。
4.放射性衰变
-放射性元素自发发生核转变,释放出α粒子、β粒子(电子或正电子)或γ射线等形式的能量。
-放射性衰变遵循一定的半衰期规律。
5.核能与核反应
-核能来源于核子重组过程中释放的能量,如核裂变(如铀-235的链式反应)和核聚变(如氢弹中的氘氚反应)。
6.量子数与电子排布
-电子在原子轨道中的排布遵循泡利不相容原理、洪特规则等,形成了元素周期表中的电子构型。
7.原子光谱
-当电子在不同能级之间跃迁时,会发射或吸收特定波长的光,形成原子的发射光谱和吸收光谱。
高中物理原子物理知识点总结
高中物理原子物理知识点总结一、原子的组成原子是物质的基本单位,由原子核和电子组成。
原子核位于原子的中心,由质子和中子组成,质子带正电荷,中子不带电荷;电子绕着原子核运动,带负电荷。
二、原子的结构1. 核原子核的直径约为10^-15米,质子和中子都存在于核中。
质子的质量大约是中子的1.6726219 × 10^-27 千克,它们的电量相等,大小为1.60217662 × 10^-19 库仑。
2. 电子壳层电子围绕在原子核外部的轨道上,称为电子壳层。
电子壳层的数量决定了原子的大小。
第一层能容纳最多2个电子,第二层最多容纳8个电子,第三层最多容纳18个电子。
三、原子的质量数和原子序数原子的质量数是指原子核中质子和中子的总数。
原子的质量数通常用字母A表示。
原子的原子序数是指原子核中质子的个数,也称为元素的序数。
原子的原子序数通常用字母Z表示。
四、同位素同位素是指化学元素原子中,质子数相同,中子数不同的原子。
同位素具有相同的化学性质,但物理性质可能有所不同。
五、原子的电离原子的电离是指从一个原子中剥离出一个或多个电子形成带电离子的过程。
当原子失去电子后变为带正电荷的离子,称为正离子;当原子获得电子后变为带负电荷的离子,称为负离子。
六、电子能级和电子排布规则电子能级是指电子在原子中的能量状态。
电子按照一定的能级顺序依次填充到不同的能级中。
根据泡利不相容原理和伯利斯规则,电子排布规则如下:1. 每个能级最多只能容纳一定数量的电子;2. 电子填充时要先填满较低的能级;3. 每个能级的轨道填充电子时,按照上层轨道的能级对轨道进行排布。
七、原子的能级跃迁原子的能级跃迁是指电子在不同能级之间跃迁的过程。
根据能级跃迁所产生的能量差异,原子可以发射光线,这种现象称为光谱。
八、原子核的衰变和辐射原子核可以通过放射性衰变进行变化,衰变过程伴随着放射性辐射的释放。
常见的原子核衰变方式包括α衰变、β衰变和γ衰变。
原子物理原子核的结构知识点总结
原子物理原子核的结构知识点总结原子物理是研究原子和原子核结构的科学,而原子核作为原子的核心部分,其结构及性质对于了解物质的本质和原子核反应具有重要意义。
本文将对原子核的结构知识进行总结,包括原子核的组成、质量数与原子序数、同位素和同位素符号、核子、核力、核衰变等内容。
1. 原子核的组成原子核是由质子和中子组成的。
质子带有正电荷,质量相对较大,中子不带电荷,质量与质子相似。
质子和中子统称为核子,它们以紧密排列的方式组成原子核。
2. 质量数与原子序数原子核的质量数是指原子核中质子和中子的总数,用字母A表示。
原子核的原子序数是指原子核中质子的个数,用字母Z表示。
质量数和原子序数可以唯一确定一个原子核的性质。
3. 同位素和同位素符号同位素是指原子核中质子数相同、中子数不同的核,它们具有相同的原子序数,但质量数不同。
同位素符号表示了一个特定的同位素,符号的左上角为质量数A,左下角为原子序数Z,符号中间为元素的化学符号。
4. 核子核子是组成原子核的基本粒子,包括质子和中子。
质子带有正电荷,其电荷量为基本电荷e,质子数决定了原子核的化学性质。
中子不带电荷,作为质子的“中性伴侣”,其主要作用是增加原子核的质量,稳定原子核的结构。
5. 核力核力是维持原子核的结构稳定的力。
核力是一种非常强大的力,仅作用于极短的距离,其作用范围约为10^-15米。
核力的作用是吸引核子之间的相互作用力,克服了质子之间的电磁排斥力,使得原子核能够保持稳定。
6. 核衰变核衰变是指原子核不稳定的情况下发生的放射性衰变现象。
核衰变可以分为α衰变、β衰变和γ衰变。
α衰变是原子核释放出一个α粒子,变为一个新的原子核。
β衰变分为β+衰变和β-衰变,其中β+衰变是质子转化为中子,同时放射出一个正电子和一个中微子;β-衰变是中子转化为质子,同时放射出一个电子和一个反中微子。
γ衰变是原子核释放出γ射线,不改变原子核的种类和质量。
总结:原子物理原子核的结构是一个复杂而重要的领域。
(完整版)原子核物理知识点归纳详解
原子核物理重点知识点第一章 原子核的基本性质1、对核素、同位素、同位素丰度、同量异位素、同质异能素、镜像核等概念的理解。
(P2)核素:核内具有一定质子数和中子数以及特定能态的一种原子核或原子。
(P2)同位素:具有相同质子数、不同质量数的核素所对应的原子。
(P2)同位素丰度:某元素中各同位素天然含量的原子数百分比。
(P83)同质异能素:原子核的激发态寿命相当短暂,但一些激发态寿命较长,一般把寿命长于0.1s 激发态的核素称为同质异能素。
(P75)镜像核:质量数、核自旋、宇称均相等,而质子数和中子数互为相反的两个核。
2、影响原子核稳定性的因素有哪些。
(P3~5)核内质子数和中子数之间的比例;质子数和中子数的奇偶性。
3、关于原子核半径的计算及单核子体积。
(P6)R =r 0A 1/3 fm r 0=1.20 fm 电荷半径:R =(1.20±0.30)A 1/3 fm 核力半径:R =(1.40±0.10)A 1/3 fm 通常 核力半径>电荷半径单核子体积:A r R V 3033434ππ==4、核力的特点。
(P14)1.核力是短程强相互作用力;2.核力与核子电荷数无关;3.核力具有饱和性;4.核力在极短程内具有排斥芯;5.核力还与自旋有关。
5、关于原子核结合能、比结合能物理意义的理解。
(P8)结合能:),()1,0()()1,1(),(),(2A Z Z Z A Z c A Z m A ZB ∆-∆-+∆=∆= 表明核子结合成原子核时会释放的能量。
比结合能(平均结合能):A A Z B A Z /),(),(=ε原子核拆散成自由核子时外界对每个核子所做的最小平均功,或者核子结合成原子核时平均每一个核子所释放的能量。
6、关于库仑势垒的理解和计算。
(P17)1.r>R ,核力为0,仅库仑斥力,入射粒子对于靶核势能V (r ),r →∞,V (r ) →0,粒子靠近靶核,r →R ,V (r )上升,靠近靶核边缘V (r )max ,势能曲线呈双曲线形,在靶核外围隆起,称为库仑势垒。
高中物理【原子结构和原子核】知识点、规律总结
两类核衰变在磁场中的径迹 [素养必备]
静止核在磁场中自发衰变,其轨迹为两相切圆,α 衰变时两圆外切,β 衰变时两圆 内切,根据动量守恒 m1v1=m2v2 和 r=mqBv知,半径小的为新核,半径大的为 α 粒子或 β 粒子,其特点对比如下表:
α 衰变
AZX→AZ--24Y+42He
β 衰变
AZX→Z+A1Y+0-1e
特征
3.氢原子光谱的实验规律:巴耳末系是氢光谱在可见光区的谱线,其波长公式1λ= R212-n12(n=3,4,5,…,R 是里德伯常量,R=1.10×107 m-1).
4.光谱分析:利用每种原子都有自己的_特__征__谱__线___可以用来鉴别物质和确定物质 的组成成分,且灵敏度很高.在发现和鉴别化学元素上有着重大的意义.
(2)原子的核式结构模型:在原子中心有一个很小的核,原子全部的_正__电__荷___和几乎 全部__质__量__都集中在核里,带负电的电子在核外空间绕核旋转.
二、氢原子光谱 1.光谱:用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强 度分布的记录,即光谱. 2.光谱分类
连续
吸收
师生互动
1.α 衰变、β 衰变的比较
衰变类型
α 衰变
β 衰变
衰变方程
AZX→AZ--24Y+42He
AZX→Z+A1Y+-01e
2 个质子和 2 个中子结合成一个整体射 1 个中子转化为 1 个质子和 1 个电子
衰变实质 出
衰变规律
211H+210n→42Βιβλιοθήκη e10n→11H+-01e
电荷数守恒、质量数守恒、动量守恒
五、核力和核能 1.核力 原子核内部,_核__子__间___所特有的相互作用力. 2.核能 (1)核子在结合成原子核时出现质量亏损 Δm,其对应的能量 ΔE=__Δ__m_c_2___. (2)原子核分解成核子时要吸收一定的能量,相应的质量增加 Δm,吸收的能量为 ΔE =__Δ_m__c_2___.
高中物理原子物理知识点总结
高中物理原子物理知识点总结高中物理中的原子物理部分是一个充满神秘和奇妙的领域,它帮助我们深入理解物质的微观结构和原子世界的运行规律。
以下是对高中物理原子物理知识点的详细总结。
一、原子的结构1、汤姆孙的枣糕模型汤姆孙认为原子是一个球体,正电荷均匀分布在整个球体内,电子像枣糕里的枣子一样镶嵌在其中。
但这个模型无法解释α粒子散射实验的结果。
2、卢瑟福的核式结构模型通过α粒子散射实验,卢瑟福提出了原子的核式结构模型。
原子的中心有一个很小的原子核,它集中了几乎全部的原子质量和正电荷,电子在核外绕核高速旋转。
原子核的大小:原子核的半径约为 10⁻¹⁵~ 10⁻¹⁴ m,原子的半径约为 10⁻¹⁰ m。
3、玻尔的原子模型玻尔在卢瑟福模型的基础上,引入了量子化的概念。
他认为电子绕核运动的轨道是量子化的,电子在这些特定的轨道上运动时,不辐射能量,处于稳定状态。
只有当电子从一个轨道跃迁到另一个轨道时,才会辐射或吸收能量。
二、氢原子光谱1、连续光谱由炽热的固体、液体和高压气体发出的光形成连续分布的光谱。
2、线状光谱(原子光谱)稀薄气体发光产生的光谱是一些不连续的亮线,每条亮线对应一种频率的光,称为线状光谱。
氢原子光谱是线状光谱,其谱线的频率符合巴尔末公式:\(\frac{1}{\lambda}=R(\frac{1}{2^{2}}\frac{1}{n^{2}})\)(n = 3,4,5,…),其中 R 是里德伯常量。
三、原子核的组成1、质子质子带正电,电荷量与一个电子所带电荷量相等,其质量约为167×10⁻²⁷ kg。
2、中子中子不带电,质量与质子的质量非常接近,约为 167×10⁻²⁷ kg。
3、核子质子和中子统称为核子。
4、原子核的电荷数等于质子数,等于核外电子数。
5、原子核的质量数等于质子数与中子数之和。
四、天然放射现象1、天然放射现象某些元素自发地放出射线的现象叫做天然放射现象。
高中物理原子核知识点
高中物理原子核知识点一:原子核的组成1、1919年卢瑟福用α粒子轰击氮原子核发现质子即氢原子核。
2、卢瑟福预想到原子内存在质量跟质子相等的不带电的中性粒子,即中子。
查德威克经过研究,证明:用天α射线轰击铍时,会产生一种看不见的贯穿能力很强(10-20厘米的铅板)的不带电粒子,用其轰击石蜡时,竟能从石蜡中打出质子,此贯穿能力极强的射线即为设想中的中子。
3、质子和中子统称核子,原子核的电荷数等于其质子数,原子核的质量数等于其质子数与中子数的和。
具有相同质子数的原子属于同一种元素;具有相同的质子数和不同的中子数的原子互称同位素。
高中物理原子核知识点二:放射性元素的衰变1、天然放射现象(1)人类认识原子核有复杂结构和它的变化规律,是从天然放射现象开始的。
(2)1896年贝克勒耳发现放射性,在他的建议下,玛丽·居里和皮埃尔·居里经过研究发现了新元素钋和镭。
(3)用磁场来研究放射线的性质(图见3-5第74页):①α射线带正电,偏转较小,α粒子就是氦原子核,贯穿本领很小,电离作用很强,使底片感光作用很强;②β射线带负电,偏转较大,是高速电子流,贯穿本领很强(几毫米的铝板),电离作用较弱;③γ射线中电中性的,无偏转,是波长极短的电磁波,贯穿本领最强(几厘米的铅板),电离作用很小。
2、原子核由于放出某种粒子而转变为新核的变化叫做原子核的衰变。
在衰变中电荷数和质量数都是守恒的(注意:质量并不守恒。
)。
γ射线是伴随α射线或β射线产生的,没有单独的γ衰变(γ衰变:原子核处于较高能级,辐射光子后跃迁到低能级。
)。
2、半衰期:放射性元素的原子核有半数发生衰变需要的时间。
放射性元素衰变的快慢是由核内部本身的因素决定,与原子所处的物理状态或化学状态无关,它是对大量原子的统计规律。
N= , m= 。
高中物理原子核知识点三:放射性的应用与防护1、放射性同位素的应用:a、利用它的射线(贯穿本领、电离作用、物理和化学效应);b、做示踪原子。
高二物理选修3-5原子核知识点总结
高二物理选修3-5原子核知识点总结原子核是每年高二物理期中考试都要出现的考点,学生需要认真掌握并学会运用相关知识点。
下面店铺给大家带来高二物理选修3-5原子核知识点,希望对你有帮助。
高二物理原子核知识点一、原子核的组成1、天然放射现象⑴天然放射现象的发现:1896年法国物理学,贝克勒耳发现铀或铀矿石能放射出某种人眼看不见的射线。
这种射线可穿透黑纸而使照相底片感光。
放射性:物质能发射出上述射线的性质称放射性。
放射性元素:具有放射性的元素称放射性元素。
天然放射现象:某种元素自发地放射射线的现象,叫天然放射现象。
这表明原子核存在精细结构,是可以再分的。
⑵放射线的成份和性质:用电场和磁场来研究放射性元素射出的射线,在电场中轨迹,如下图射线种类射线组成性质电离作用贯穿能力射线氦核组成的粒子流很强很弱射线高速电子流较强较强射线高频光子很弱很强2、原子核的组成原子核的组成:原子核是由质子和中子组成,质子和中子统称为核子。
在原子核中有:质子数等于电荷数、核子数等于质量数、中子数等于质量数减电荷数。
二、原子核的衰变;半衰期⑴衰变:原子核由于放出某种粒子而转变成新核的变化称为衰变在原子核的衰变过程中,电荷数和质量数守恒。
⑵半衰期:放射性元素的原子核的半数发生衰变所需要的时间,称该元素的半衰期。
放射性元素衰变的快慢是由核内部自身因素决定的,跟原子所处的化学状态和外部条件没有关系。
三、放射性的应用与防护;放射性同位素放射性同位素:有些同位素具有放射性,叫做放射性同位素。
同位素:具有相同的质子和不同中子数的原子互称同位素,放射性同位素:具有放射性的同位素叫放射性同位素。
正电子的发现:用粒子轰击铝时,发生核反应。
与天然的放射性物质相比,人造放射性同位素:①放射强度容易控制②可以制成各种需要的形状③半衰期更短④放射性废料容易处理放射性同位素的应用:①利用它的射线A.由于γ射线贯穿本领强,可以用来γ射线检查金属内部有没有砂眼或裂纹,所用的设备叫γ射线探伤仪。
高中物理知识点总结原子和原子核
高中物理知识点总结原子和原子核原子和原子核1.粒子散射试验结果a)大多数的粒子不发生偏转;(b)少数粒子发生了较大角度的偏转;(c)极少数粒子出现大角度的偏转(甚至反弹回来)2.原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构)3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:h=E初-E末{能级跃迁}4.原子核的组成:质子和中子(统称为核子), {A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数〔见第三册P63〕}5.天然放射现象:射线(粒子是氦原子核)、射线(高速运动的电子流)、射线(波长极短的电磁波)、衰变与衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。
射线是伴随射线和射线产生的〔见第三册P64〕6.爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度}7.核能的计算E=mc2{当m的单位用kg时,E的单位为J;当m用原子质量单位u时,算出的E单位为uc2;1uc2=931.5MeV}〔见第三册P72〕。
注:(1)常见的核反应方程(重核裂变、轻核聚变等核反应方程)要求掌握;(2)熟记常见粒子的质量数和电荷数;(3)质量数和电荷数守恒,依据实验事实,是正确书写核反应方程的关键;(4)其它相关内容:氢原子的能级结构〔见第三册P49〕/氢原子的电子云〔见第三册 P53〕/放射性同位数及其应用、放射性污染和防护〔见第三册P69〕/重核裂变、链式反应、链式反应的条件、核反应堆〔见第三册P73〕/轻核聚变、可控热核反应〔见第三册P77〕/人类对物质结构的认识。
考生们只要加油努力,就一定会有一片蓝天在等着大家。
以上就是的编辑为大家准备的高中物理知识点总结:原子和原子核。
高二物理原子和原子核知识点总结
高二物理原子和原子核知识点总结一、原子结构知识点:1、电子的发现和汤姆生的原子模型:(1)电子的发现:1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而发现了电子。
电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。
(2)汤姆生的原子模型:1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。
2、α粒子散射实验和原子核结构模型(1)α粒子散射实验:1909年,卢瑟福及助手盖革手吗斯顿完成①装置:②现象:a. 绝大多数α粒子穿过金箔后,仍沿原来方向运动,不发生偏转。
b. 有少数α粒子发生较大角度的偏转c. 有极少数α粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。
(2)原子的核式结构模型:由于α粒子的质量是电子质量的七千多倍,所以电子不会使α粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对α粒子的运动产生明显的影响。
如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的α粒了所受正电荷的作用力在各方向平衡,α粒了运动将不发生明显改变。
散射实验现象证明,原子中正电荷不是均匀分布在原子中的。
1911年,卢瑟福通过对α粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。
原子核半径小于10-14m,原子轨道半径约10-10m。
3、玻尔的原子模型(1)原子核式结构模型与经典电磁理论的矛盾(两方面)a. 电子绕核作圆周运动是加速运动,按照经典理论,加速运动的电荷,要不断地向周围发射电磁波,电子的能量就要不断减少,最后电子要落到原子核上,这与原子通常是稳定的事实相矛盾。
b. 电子绕核旋转时辐射电磁波的频率应等于电子绕核旋转的频率,随着旋转轨道的连续变小,电子辐射的电磁波的频率也应是连续变化,因此按照这种推理原子光谱应是连续光谱,这种原子光谱是线状光谱事实相矛盾。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二上物理原子核知识点总结
导读:高二物理原子核知识点
一、原子的核式结构:
1、α粒子的散射实验:
(1)绝大多数α粒子穿过金箔后几乎沿原方向前进;
(2)少数α粒子穿过金箔后发生了较大偏转;
(3)极少数α粒子击中金箔后几乎沿原方向反回;
二、原子的核式结构模型:
原子中心有个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核内,带负电的电子绕核做高速的圆周运动;
1、原子核又可分为质子和中子;(原子核的全部正电荷都集中在质子内)质子的质量约等于中子的质量;
2、质子数等于原子的核电荷数(Z);质子数加中子数等于质量数
(A)
三、波尔理论:
1、原子处于一系列不连续的能量状态中,每个状态原子的能量都是确定的,这些能量值叫做能级;
2、原子从一能级向另一能级跃迁时要吸收或放出光子;
(1)从高能级向低能级跃迁放出光子;
(2)从低能级向高能级跃迁要吸收光子;
(3)吸收或放出光子的能量等于两个能级的能量差;hγ=E2-E1;
四、天然放射现象衰变
1、α射线:高速的氦核流,符号:42He;
2、β射线:高速的电子流,符号:0-1e;
3、γ射线:高速的光子流;符号:γ
4、衰变:原子核向外放出α射线、β射线后生成新的原子核,这种现象叫衰变;(衰变前后原子的核电荷数和质量数守恒)
(1)α衰变:放出α射线的衰变:ZX=Z-2Y+2He;
(2)β衰变:放出β射线的'衰变:AZX=AZ+1Y+0-1e;
五、核反应、核能、裂变、聚变:
1、所有核反应前后都遵守:核电荷数、质量数分别守恒;
(1)卢瑟福发现质子:147N+42He→178 O+11H;
(2)查德威克发现中子:94Be+42He→126C+10n;
2、核反应放出的能量较核能;
(1)核能与质量间的关系:E=mc2
(2)爱因斯坦的质能亏损方程:△E=△mc2;
3、重核的裂变:质量较大和分裂成两个质量较小的核的反应;(原子弹、核反应堆)
4、轻核的聚变:两个质量较小的核变成质量较大的核的反应;(氢弹)
高二物理选修3-5知识点
1.黑体
能全部吸收各种波长的电磁波而不发生反射的物体称为绝对黑体,简称黑体.不透明的材料制成带小孔空腔,可近似地看作黑体,研究黑体辐射的规律是了解一般物体热辐射性质的基础。
2.黑体辐射的实验规律
黑体热辐射的强度与波长的关系:随着温度的升高,一方面,各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。
黑体辐射规律如图所示。
3.普朗克的能量量子化假说
辐射黑体分子、原子的振动可看做谐振子,这些谐振子可以发射和吸收辐射能,但是这些谐振子只能处于某些分立的状态,在这些状态中,谐振子的能量并不像经典物理学所允许的可具有任意值,相应的能量是某一最小能量ε(称为能量子)的整数倍,即ε、1ε、2ε、3ε、……nε,n为正整数,称为量子数。
对于频率为v的谐振子的最小能量为ε=hν。
这个最小能量值叫做能量子。
4.光电效应
a.光电效应
⑴光电效应在光(包括不可见光)的照射下,从物体发射出电子的现象称为光电效应。
所发射的电子叫光电子;光电子定向移动所形成的电流叫光电流。
⑵光电效应的实验规律:装置:如图。
①当一定频率的光照射到金属表面时,真空管内几乎立刻出现光电子,很快形成光电流。
即光电效应是瞬时的,驰豫时间不超过10-9秒。
②当光源频率和外加电压固定时,饱和光电流与入射光强度成正比。
“饱和光电流”指的是光电流的最大值(亦称饱和值),因为光电流未达到最大值之前,其值大小不仅与入射光的强度有关,还有光电管两极间的电压有关,只有在光电流达到最大以后,才和入射光的强度成正比。
③当入射光频率v一定时,光电子定向运动形成的光电流随着正向电压的减小而减小,当正向电压为零时,仍有光电流,只有当电压为某个反向电压值时,其电流才为零,这个反向电压称为遏制电压。
这说明光电子动能有一限度,,v光电子最大初速度,实验表明,最大初动能与入射光强无关,随入射光频率的增大而增大。
④任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能发生光电效应,低于极限频率的光不能发生光电效应。
大于极限频率的光照射金属时,形成光电流的强度(反映单位时间发射出的光电子数的多少),与入射光强度成正比;低于极限频率的光照射金属时,无论光强多大,照射时间多长,都不会产生光电效应。
遏止电压与入射光频率之间具有线性关系(如图所示)
b.逸出功
人们知道,金属中原子外层电子的价电子会脱离原子做无规则的热运动,但在温度不高时,电子并不能大量逸出金属表面,这表明金属表面层内存在一种力,阻碍电子的逃逸。
电子若能从金属中挣脱出来,必须克服这种阻碍做功。
使电子脱离某种金属所做功的最小值,叫做这种金属的逸出功。
几种金属的逸出功和极限频率如下表所示。
c.波动说在光电效应上遇到的困难
波动说认为:光的能量即光的强度是由光波的振幅决定的与光的频率无关。
所以波动说对解释光电效应实验规律中的能量与频率的说法都遇到了困难。
d.光子说
⑴量子论:1900年德国物理学家普朗克提出:电磁波的发射和吸收是不连续的,而是一份一份的,每一份电磁波的能量ε=hν.
⑵光子论:爱因斯坦的光量子假设。
内容:光不仅在发射和吸收时以能量为hv的微粒形式出现,而且光本身就是由一个个不可分割的能量子组成的,也就是说,频率为v的光是由大量能量为E=hv的能量子组成的粒子流,这些能量子后来被称为光子。
爱因斯坦的光电效应方程:在光电效应中金属中的电子吸收了光子的能量,一部分消耗在电子的逸出功W0,另一部分变为光电子逸出后的动能Ek,即:hv=Ek+W0或Ek=hv-W0.
爱因斯坦对光电效应的解释:
光强大,光子数多,释放的光电子也多,所以光电流也大。
电子只要吸收一个光子就可以从金属表面逸出,所以不需要时间的累积。
从光电效应方程中,当初动能为零时,可得极限频率:。
从爱因斯坦的光电效应方程hv=Ek+W0,可以看出光电子初动能和照射光的频率成线性关系,如图所示
图中图线与横轴的交点为金属的极限频率;
图中的斜率在数值上等于普朗克常量k=h;
图线与纵轴上的截距在数值上等于金属的逸出功:W0=hv0.
e.光强
所谓“光强”,是指单位时间内入射到金属表面单位面积上的光子的总能量,若单位时间射到金属表面上单位面积的光子数为n,每个光子的能量为hv,则光强为nhv。
【高二上物理原子核知识点总结】
1.高二上物理知识点总结
2.高二上生物知识点总结
3.大学物理知识点的总结
4.高中物理知识点总结
5.初中物理电学知识点总结
6.初中物理知识点总结
7.高二上学期知识点总结
8.高二上册数学知识点总结
上文是关于高二上物理原子核知识点总结,感谢您的阅读,希望对您有帮助,谢谢。