挖掘机液压系统恒功率控制曲线图

合集下载

力士乐挖机LUVD液压系统

力士乐挖机LUVD液压系统

液压挖掘机有两种油路: 开中心直通回油六通阀系统和闭中心负载敏感压力补偿系统, 我国国产液压挖掘机大多采用”开中心”系统, 而国外著名的挖掘机厂家基本上都采用”闭中心”系统。

闭中心具有明显的优点, 但价格较贵。

国内厂家对开中心系统比较熟悉, 而对闭中心系统不太了解,因此有必要来介绍一下闭中心系统, 本文重点分析力士乐闭中心负载敏感压力补偿(LUDV> 挖掘机油路。

LUDV 意为与负载无关的分配阀。

LUDV系统力士乐挖掘机液压系统可以看作由以下4 部分组成:①多路阀液压系统(主油路> 。

②液压泵控制液压系统(包括与发动机综合控制> 。

③各液压作用元件液压子系统, 包括动臂、斗杆、铲斗、回转和行走液压系统, 还包括附属装置液压系统。

④多路阀操纵和控制液压系统。

LUDV系统是力士乐等公司在改进负荷传感技术的基础上发展起来的,它是不受负载影响的流量分配系统,它将常开式压力补偿改为常闭式,泵所提供的流量与负载所需相匹配,避免了不必要的空流和节流损失。

即使泵的流量小于系统复合动作所需的流量,各动作的相对速度也不会发生变化,从而保证动作的协调性,避免动作冲击。

1 多路阀液压系统多路阀液压系统是液压挖掘机的主油路, 它确定了液压泵如何向各液压作用元件的供油方式, 决定了液压挖掘机的工作特性。

力士乐采用的闭中位负载敏感压力补偿多路阀液压系统的工作原理见图1 (因换向阀不影响原理分析, 故未画出> 。

图1 挖掘机力士乐主油路简图挖掘机力士乐主油路由工装油路和回转油路二个负载敏感压力补偿系统组成。

1.1 工装油路工作装置和行走油路(除回转外> 简称工装油路,用阀后补偿分流比负载敏感压力补偿(LUDV>系统, 具有抗饱和功能。

在每个操纵阀阀杆节流口后, 设压力补偿阀, 然后通过方向阀向各液压作用元件供油。

LUDV 多路阀原理符号见图2 。

图2 力士乐多路阀原理符号图LUDV 每个阀块主要由操纵阀和压力补偿阀组成, 其原理符号如图2a 所示。

柳工挖掘机的液压系统及控制 ppt课件

柳工挖掘机的液压系统及控制 ppt课件

液压泵的基本性能参数
流量Q(单位L/min,升/分钟) 单位时间内输出液压油的体积。 Q=q×n(不考虑单位转换系数,下同) 其中n是泵的转速,单位rpm,转/分钟
泵的功率N(单位Kw,千瓦) N=P×Q
液压马达的基本性能参数
排量q(单位ml/r,毫升/转) 液压马达每转一周所排出液体的体积。排量不可变的叫定量马达, 排量可变的叫变量马达。
主控阀杆
泵1
合流阀杆 泵2
挖掘机的液压系统
驱动
控制油
操纵
柴油机
先导泵
先导阀
司机
驱动
工作油
工作泵
控制油 工作油
主控阀
马达
实现 工作装置工作
工作油 油缸
实现 旋转、行走
液压泵的基本性能参数
压力P(单位Mpa,兆帕) 泵的输出压力由负载决定。负载↑压力↑,负载↓压力↓。安 全阀限制最高压力。
排量q (单位ml/r,毫升/转) 泵每转一周所排出的液压油的体积。排量不可变的泵叫定 量泵;排量可变的泵叫变量泵。
液压泵与液压 马达原理上是 可逆的,但结 构略有不同。
液压泵——轴向柱塞泵
液压控制阀
流量控制阀 压力控制阀 方向控制阀
流量控制阀
主要控制流过管路的流量,通过对流量的控制 还可以对回路的压力产生一定影响。注意 节流会产生损失。
节流阀(阻尼孔)
节流阀
P前
P
△P=P前-P后
使液压油通过小孔、缝隙、窄槽等结构元素后流 量减小并产生压力降△P(阻尼) 。注意流动的 液压油才具有上述性质。如果液压油是静止状态 ,则根据连通器原理,前后的压力是相等的。
液压伺服控制系统的应用示例
阀杆控制方式:手控、液控、电控或者它们的组合

挖掘机液压系统分析ppt课件

挖掘机液压系统分析ppt课件
挖掘机液压原理图分析(RB阀)
1
▍液压符号
一、油路的种类
(1)粗实线:表示主油路,为使驱动装置运转提供的 工作油路,由于流量相对较大,所以用实线表示。
(2)虚线:控制管路和控制油道、先导油路。 (3)双点划线:部件组成,它一般是封闭的。
二、油路的连接状态
(1)圆点与交叉:表示相互连接的油路; (2)交叉与小圆弧:表示相互错开的油路; (3)末尾打叉:表示油路被堵死。
5
▍先导——行走双速功能
问题1:行走电磁阀和泵比例电
磁阀控制方式相同吗?
图1:双速阀芯切换前
图2:双速阀芯切换后
按下速度切换 开关
控制器接收信号
DC3电磁阀线圈 得电
电磁阀换位
先导油引入二速 阀芯控制油口
阀芯换位,斜盘角 度变小,速度增大
6
▍先导——自动怠速功能
先导泵输出油液从P1口 进入主控阀PG口,分别 通过行走和工作装置阀 芯,回路为自动怠速油 路,压力开关通断信号 传到控制器,控制发动 机转速。
二、行走和其他动作一起进行时跑偏 确认及维修;1、调换d1和d2节流阀看故障是否消 除,消除则是节流阀堵塞,则清洗节流阀。 2、直线行走阀芯卡滞,则清洗阀芯。
15
▍动臂提升
XAb1
此处双泵合流
P2
XAb2
P1
16
▍动臂提升
Psp
XAb1 XAb2
回转优先功能:
1、当回转与斗杆、备用同时动 作时,Psp油口先导油作用在回 转优先阀左端,推动阀芯向右移
行走阀芯剖视图 12
▍先导——直线行走功能(直线行走模式)
行走阀芯剖视图
1、直线行走阀处于直线
PTa
行走模式时,阀芯切断pg

三一挖掘机液压系统。

三一挖掘机液压系统。

采用 K<1 压力补偿阀结构,△P 与自身负载压力有关,如图七所示,随着自身负载压 力的提高,压差△P 减少,使得流量自动减少,这样当遇到惯性负荷时,不会因负载压力突 然增高,产生压力补偿阀过度调整,使进入回转马达的流量超过目标流量。避免了产生来 回振摆的现象。 采用了这种与自身负载压力相关的压力补偿阀,遇到惯性负荷也能平稳控制,挖掘机 回转就不需要采用单独油泵供油。 五.液压系统其他功能阀(见图一) 1.安全阀 A:控制系统油压。 2.中位卸载阀 B:从符号原理图上可知,该阀是二位二通阀。 中位卸载阀力平衡方程式为: P•A=(P0+PLmax)A+F P=P0+PLmax+F/A 式中: F— 弹簧力 A— 阀液压作用面积 当油泵压力 P>P0+PLmax+F/A 时,油泵就通过此阀溢流。当所有操纵阀杆都在中位时, PLmax =0(即回油),即此时油泵卸载压力为 P0+F/A。 由于有弹簧力 F/A 的作用,因此 P-PLmax=PLS>P0,油泵调节阀处于右位(见图三) 。先 导操纵压力油进入泵的变量机构,使变量泵的流量变到最小。 该液压系统,当所有操纵阀都不工作时,泵处于最小排量和很低油压下运转。 3.切断阀 C: 从符号原理图上可知,该阀为压力阀。 其力平衡方程式为:PLmax+P0=F/A 式中: F— 弹簧力 A— 阀液压作用面积 当最高负载压力 PLmax 超过设定值时,此阀打开排油。由于液压油流动,产生压差,使 P-PLmax 增大,油泵流量调节阀起作用,油泵流量减至最小。 4.等差减压阀 D(见图一) 应该说明系统中等差减压阀 D 输入油压不是主油泵压力油 P, 而是先导油泵压力油 Pp, 因此系统补偿压差 PLS 不是由液压系统主油泵产生,而是由先导油泵产生。

液压挖掘机ppt课件

液压挖掘机ppt课件

液压系统原理图
主泵: K3V112DT柱塞式串联变量双泵.
• 最大排量112ml/r,该泵按总功率恒定进行变量、总功 率按4段进行控制、高压切断、中位负流量控制
主泵原理图
• 主操作阀采用川崎KMX15R/B450,最大 流量270L/min,能实现动臂提升合流、 斗杆大小腔合流、斗杆再生回路、行走 直线、动臂提升优先、回转优先、斗杆 闭锁等功能。
位闭心
挖掘机作业过程
• 挖掘机一个作业循环包括以下动作: 1. 挖掘 通过回转铲斗、回转斗杆以及它们的复合动作,实现铲斗
的破土、装土。 2. 满斗回转 铲斗装满土后,动臂提升、同时进行平台回转到卸土
位置; 3. 卸土 平台回转到位后制动,由斗杆调节卸土半径,铲斗翻转卸
土 4. 回位 铲斗卸土,转台反转,动臂、斗杆配合,回到挖掘位置
1。回转平台:由回转平台、液压传动装置、伺服 操纵装置、动力装置、司机室、空调系统、电器系 统等组成。
2。工作装置由动臂、斗杆、铲斗、联杆、摇杆、 油缸等组成。
3。行走装置由车架、支重轮、托链轮、导向轮、
张紧装置、履带、行走机构、回转接头等组成。
液压系统的组成
挖掘机液压系统的基本概念: 液压系统的组成:动力元件、控制元件、执行元件、辅件 定量系统、变量系统 开式系统、闭式系统 恒功率系统 双泵双回路系统、总功率调节、分功率调节、中位、中位开心、中
先导系统液压原理图
先导系统
先导泵
先导泵
电磁阀组
伺服手先导阀采用川崎TH40K1269~70
目前川崎系统采用的是双泵双回路恒功率控制液压系统,带四种功 率控制模式、中位负流量控制,两液压主泵按全功率变量。 小松林德系统采用的是负荷传感系统
全功率变量是指两泵功率之和保持恒定,这主要是当 执行单泵动作时,此泵可吸收另一不工作的液压泵功率, 充分发挥柴油机功率。

液压挖掘机全功率控制

液压挖掘机全功率控制

驱动, 进行复合动作, 要求各泵的总吸收转矩和 发动机转矩相匹配, 既能充分利用发动机功率, 又能避免发动机过载熄火, 一般工作在发动机 额定转矩处。为此, 一般挖掘机都采用压力感应 控制, 变量泵的流量是通过泵的出口压力来进 行自动控制的, 液压泵出口压力增高时, 泵倾斜 盘转角减小, 泵排量自动减小, 其变量特性往往 是一条由若干直线段组成的曲线, 逼近恒功率 双曲线, 泵吸收转矩保持不变——恒转矩特性。
37
© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
系统发动机和液压泵的匹配采取超马力设定, 即液压泵最大吸收功率超过发动机最大额定功 率, 因为有转速感应控制, 发动机不会过载。一 般还将液压泵最大负荷阻力矩 (电液比例减压 阀电流最小时) 设定低于发动机最大力矩, 以保 证电液比例减压阀失效时, 发动机也不会熄火。 其匹配情况如图11所示, 图11 (a) 为泵 p —Q 特 性上, 液压泵与发动机功率匹配情况; 图10 (b ) 为发动机转矩曲线上, 发动机与泵转矩的匹配 情况。
足。为此需要采用变量泵, 就像无级变速的变速 箱一样, 根据力和速度需要自动改变流量 (速 比) , 充分发挥发动机的功率。变量泵是通过改 变液压泵每转排量来进行流量控制的。目前液
定比减压阀由大滑阀3、转换活塞2、作用柱 塞4和5、大小弹簧1和6等组成。
定和减压阀由双台阶活塞7、小滑阀8和调 整弹簧9等组成。
图4 液压泵 p —Q 特性
(1) 泵控制特性 (即 p —Q 特性) 一般还是
由液压和弹簧作用来实现的, 不能得到理想的
恒功率曲线, 而是用折线来近似等功率双曲线,

挖掘机液压系统分析

挖掘机液压系统分析

动臂缸油路: 动臂提升时,两联同时换向、上位工作,实现双泵合流 动臂下落时,单独回油,平衡回路
平衡阀
合流导阀
铲斗缸油路: 通过合流导阀,实现大腔合流
四、负载敏感液压系统
具体系统:FR65型液压挖掘机液压系统 。 • 单个负载敏感泵:A10VO轴向柱塞泵(恒定驱动力矩) • 负载敏感多路阀(LUDV)
斗杆油缸
boom
arm
铲斗油缸
大臂油缸
bucket
动作特点: 复合动作:铲斗缸与斗杆杠同时动作;动臂缸与回转马达同时动作 优先动作:回转优先、铲斗优先 双泵合流(实现快速运动):斗杆、动臂缸上行、铲斗缸外伸
两泵分别向各自的多 路阀供油
单向节流阀调节动 臂等下落速度,防 止超速下落
行走马达可 双速调节
要求铲斗缸与斗杆杠同时动作;动臂缸与回转马达同时动作; 一个泵供铲斗缸、动臂缸和左行走马达;另一个泵供斗杆杠、回转马达和 右行走马达。 双泵合流:动臂或斗杆单独动作
(二)变量和功率调节方式
液压挖掘机常采用恒功率变量泵、负载敏感变量泵等。
(三)回路组合和合流方式
1. 串联油路 多路阀内第一联阀的回油为第二联阀的进油,依次直到最后一联。 可以实现多个执行机构的复合动作;系统压力高。
全液压挖掘机液压系统分析
冀宏 兰州理工大学
2013年8月
主要内容
• 液压系统特点 • 双泵双回路定量泵系统 • 双泵双回路全功率调节变量泵系统 • 负载敏感系统 • 负流量系统 • 正流量系统 • 节流控制系统
一 、液压系统特点
(一)液压系统的类型 • 多采用开式系统。
有些回转机构专用一个液压泵单独供油与回转液压马达组成闭式回路。 • 挖掘机液压系统常按液压泵和回路的数量、变量和功率调节方式来分类。 • 双泵双回路:

演示文稿挖掘机的液压系统及控制

演示文稿挖掘机的液压系统及控制
目的:动臂油缸大腔进油。 结果:在重力作用下,换向瞬间 大腔的油流回油箱,造成油缸 先缩回后伸出。
“点头”现象的解决方案
1.采用三位六通
换向阀;
2.在进油道设置
单向阀。
5
注:
1.管路5和12都是
进油道;
2.管路是回油。
12 10
二通插装阀
方 向 控 制 回 路
液压蓄能器
液压油 膜片
原理:气体被压 缩后储存能量。
1. 主回路:泵——马达——泵 2. 补油回路:油箱——泵——主回路
开式和闭式液压系统
• 请记住: • 闭式液压系统只能用于泵——马达。或者
液压系统的基本组成
• 动力元件:将机械能转换为液体压力能。 • 执行元件:将液体压力能转换为机械能。
例如油缸、油马达等。 • 控制元件:各种阀。大致有压力控制阀、
流量控制阀、方向控制阀等。 • 辅助元件:油箱、过滤器、管路、接头、
密封、冷却器、蓄能器等等。
液压回路的构成
液压执行机构 (将压力转换为动力)
液压泵与液压 马达原理上是 可逆的,但结 构略有不同。
液压泵—轴向柱塞泵
伺服柱塞 斜盘
駆動軸 斜盘支撑台
缸体 配油盘
柱塞
滑靴
液压泵的基本性能参数
• 压力P(单位Mpa,兆帕) 泵的输出压力由负载决定。负载↑压力↑,负载↓压力↓。 安全阀限制最高压力。
• 排量q (单位ml/r,毫升/转) 泵每转一周所排出的液压油的体积。 排量不可变的泵叫定量泵;排量可变的泵 叫变量泵。
重物
面积小
充满油
力=压力×面积 速度=流量÷面积 功率=速度×力
液压系统原理图常用线型和符号
1. 粗实线:主管路和主油道。 2. 虚线:控制管路和控制油道。 3. 双点划线:部件组成,它一般是

日立挖掘机ZX200-270液压图

日立挖掘机ZX200-270液压图

SL SH 1 SK BV
伸出
左 T T5 P P2 2F SN SA SG SL SN D L 12 2 4 J I 左行走 12 右后退 PH 3 A4 T4 B7 P A7 13 备用 B 备用 7 铲斗挖掘 14 备用
连通阀
左后退
B C SP SM SK
2 3
2 3 DT SI
右 回转 右行走 1 4 斗杆收回
右后退 右前进
T3
4
350bar~370bar
K TR 10 9 9 左前进 B8 A8
11
P1
T P DF PI
右行走 10 左后退
左前进
11 右前进
B1 A1 DK
左行走
T3 T1 T2
A1 A2 A3 A5 SY DY PI1
8 铲斗卸料
铲斗
400bar 380bar
B2 A2 动臂2 2 动臂下降 动臂1 1 动臂提升 铲斗油缸
行走速度 T1
A9
DC DH
T2
5.0bar
ZAXIS200/210LC/230/240LC/270 液压系统图
DE DS PD 电磁阀组
PD2
HP1
PD1
HP1
PA 6BG1-TC 140PS @1900rpm HP 150PS @2100rpm
1.5bar
DT DB PA
DG SM DF DS DC DP
3.0bar 1.0bar
PE PF
泵流量 泵扭矩
PG PC PDSB SFra bibliotek PC1 PC2
TA TA
WCLA-395-ZX
N
14 SM
M
13

不二越挖掘机液压系统

不二越挖掘机液压系统

不二越(NACHI)液压挖掘机液压系统一.分流比阀前补偿负载敏感压力补偿多路阀组该阀组有九个阀杆(左右行走,回转,动臂,斗杆,铲斗,推土板和后备),另有四个控制阀(安全阀A,卸载阀B,切断阀C和压差减压阀D)。

在每个阀前设压力补偿阀,各阀通路情况和工作原理如图二(a),(b),(c)所示,该阀为三位十二通阀,有二个进油P口,三个回油T口,三个LS(压力补偿口),二个执行器(A、B)口,二个先导油压(Pi)控制油口(进出口),如图二(a)所示。

为了清楚地了解油口连通情况,图二(b)画出了一个阀位(中位),来表示油路连接情况。

如果把相同的油口合并,并取掉先导控制油口,则该阀实际上是带补偿油口的三位四通阀,如图二(c)所示。

压力补偿阀左端受阀杆进口压力P m作用,右端受补偿压力P LS和该阀杆的负载压力(阀杆出口压力)P L作用,从压力补偿阀阀杆力平衡可得:P m=P L+P LS阀杆进出口的压差△P为:△P=P m-P L=P LS各压力补偿阀右端都受P LS作用,因此各阀杆的进出口的压差都相等。

经各压力补偿阀的压差为:△P=P-P m=P-P L-P LS因同时动作的各阀的负载压力P L是不同的,因此同时动作时,各压力补偿阀的压降不二.压差减压阀两次压力反馈负载敏感系统(见图三)该负载敏感阀采用阀前补偿,采用一个等差减压阀,该减压阀是二位三通阀(图一中D),有三条通路:P油泵压力油,补偿压力油P LS和回油路,其一端受油泵压力P作用,另一端受最高负载压力P Lmax和减压阀输出压力P LS作用。

从减压阀力平衡可知,该减压阀输出的油压为:P LS=P-P Lmax压差减压阀输出油泵压力和最高负载压力之差P LS,作用在各压力补偿阀的左端和油泵流量调节阀的左端。

从油泵流量调节阀力平衡可知:P LS=F S/A式中:F S:流量调节阀弹簧力A:流量调节阀受压面积当P LS>F S/A流量调节阀在右位,油泵压力油进入变量油缸使油泵流量减小当P LS<F S/A流量调节阀在左位,变量油缸回油,在弹簧力作用下,使油泵流量增加流量调节阀控制补偿压力P LS的大小。

挖掘机液压系统图

挖掘机液压系统图

挖掘机液压系统图一.液压挖掘机液压系统的基本类型液压挖掘机液压系统大致上有定量系统、变量系统和定量、变量复合系统等三种类型。

1.定量系统在液压挖掘机采用的定量系统中,其流量不变,即流量不随外载荷而变化,通常依靠节流来调节速度。

根据定量系统中油泵和回路的数量及组合形式,分为单泵单回路定量系统、双泵单回路定量系统、双泵双回路定量系统及多泵多回路定量系统等。

2.变量系统在液压挖掘机采用的变量系统中,是通过容积变量来实现无级调速的,其调速方式有三种:变量泵-定量马达调速、定量泵-变量马达调速和变量泵-变量马达调速。

单斗液压挖掘机的变量系统多采用变量泵-定量马达的组合方式实现无极变量,且都是双泵双回路。

根据两个回路的变量有无关连,分为功率变量系统和全功率变量系统两种。

其中的分功率变量系统的每个油泵各有一个功率调节机构,油泵的流量变化只受自身所在回路压力变化的影响,与另一回路的压力变化无关,即两个回路的油泵各自独立地进行恒功率调节变量,两个油泵各自拥有一半发动机输出功率;全功率变量系统中的两个油泵由一个总功率调节机构进行平衡调节,使两个油泵的摆角始终相同。

同步变量、流量相等。

决定流量变化的是系统的总压力,两个油泵的功率在变量范围内是不相同的。

其调节机构有机械联动式和液压联动式两种形式。

二.YW-100型单斗液压挖掘机液压系统国产YW-100型履带式单斗液压挖掘机的工作装置、行走机构、回转装置等均采用液压驱动,其液压系统如图1所示。

该挖掘机液压系统采用双泵双向回路定量系统,由两个独立的回路组成。

所用的油泵1为双联泵,分为A、B两泵。

八联多路换向阀分为两组,每组中的四联换向阀组为串联油路。

油泵A输的压力进入第一组多路换向阀,驱动回转马达、铲斗油缸、辅助油缸,并经中央回转接头驱动右行走马达7。

该组执行元件不工作时油泵A输出的压力油经第一组多路换向阀中的合流阀进入第二组多路换向阀,以加快动臂或斗杆的工作速度。

油泵B输出的压力油进入第二组多路换向阀,驱动动臂油缸、斗杆油缸,并经中央回转接头驱动左行走马达8和推土板油缸6。

典型液压传动系统实例分析

典型液压传动系统实例分析

典型液压传动系统实例分析(总32页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第四章典型液压传动系统实例分析第一节液压系统的型式及其评价一、液压系统的型式通常可以把液压系统分成以下几种不同的型式。

1.按油液循环方式的不同分按油液循环方式的不同,可将液压系统分为开式系统和闭式系统。

(1)开式系统如图所示,开式系统是指液压泵1从油箱5吸油,通过换向阀2给液压缸3(或液压马达)供油以驱动工作机构,液压缸3(或液压马达)的回油再经换向阀回油箱。

在泵出口处装溢流阀4。

这种系统结构较为简单。

由于系统工作完的油液回油箱,因此可以发挥油箱的散热、沉淀杂质的作用。

但因油液常与空气接触,使空气易于渗入系统,导致工作机构运动的图开式系统不平稳及其它不良后果。

为了保证工作机构运动的平稳性,在系统的回油路上可设置背压阀,这将引起附加的能量损失,使油温升高。

70在开式系统中,采用的液压泵为定量泵或单向变量泵,考虑到泵的自吸能力和避免产生吸空现象,对自吸能力差的液压泵,通常将其工作转速限制在额定转速的75%以内,或增设一个辅助泵进行灌注。

工作机构的换向则借助于换向阀。

换向阀换向时,除了产生液压冲击外,运动部件的惯性能将转变为热能,而使液压油的温度升高。

但由于开式系统结构简单,因此仍为大多数工程机械所采用。

(2)闭式系统如图所示。

在闭式系统中,液压泵的进油管直接与执行元件的回油管相联,工作液体在系统的管路中进行封闭循环。

闭式直系统结构较为紧凑,和空气接触机会较少,空气不易渗入系统,故传动的平稳性好。

工作机构的变速和换向靠调节泵或马达的变量机构实现,避免了在开式系统换向过程中所出现的液压冲击和能量损失。

但闭式系统较开式系统复杂,由于闭式系统工作完的油液不回油箱,油液的散热和过滤的条件较开式系统差。

为了补偿系统中的泄漏,通常需要一个小容量的补油泵进行补油和散热,因此这种系统实际上是一个半闭式系统。

挖掘机控制系统讲解

挖掘机控制系统讲解

挖掘机控制系统讲解1.中心开式负荷传感系统原理图1表明中心开式负荷传感液压系统(OLSS)的原理。

图2是主泵工作的特性曲线,泵在一定转速下,工作点无论在哪条曲线上,它的纵、横坐标分别是压力和流量,两者的乘积就是功率。

图1中所表示的操纵阀是大为简化了的多路阀示意图,它由先导或机械手柄、踏板控制其开度。

阀芯在中位时,其中心油路是开放的,主泵回油从此通过,故称之为“中心开式”。

手柄、踏板开度增大时,阀芯A口、B口开度也按比例增大,工作油量增多,使阀中心开度减小、回油量减小;反之,回油量则增大。

射流传感器(以下称射流阀)装于多路阀回油路的末端,主阀开度越小,则回油量越大,射流阀的进、出油压差就越大,其输出压差(Pd-Pb)也越大;反之,此压差就越小。

在主泵上还装有负流量控制阀(NC阀),当Pd-Pb压差增大时,它的开度就减小,使控制泵油压Pi减小、主泵输出功率减小;反之,输出功率增大。

该系统在发动机带动主泵空运转时,全部液压油通过主阀中心及射流阀回油箱,此时射流阀进、出油压差最大,输出压差Pd-Pb也最大,NC阀开度最小,控制泵的油压受到最强的节流,输出油压Pi最小,主泵伺服缸驱使主泵输出最小流量。

当人为操作控制手柄、踏板满负荷工作时,情况与以上相反,主阀回油量最小,主泵输出最大功率(见图2)。

当中度负荷工作时,控制主阀开度不大,主泵输出功率介于上述两种情况之间,按与其开度相适应的特性曲线工作(主阀开度大小决定工作的那条曲线),以节省能量。

图3中的(a)、(b)、(c)分别是在空负荷、轻负荷和强阻力作业时该系统的节能效果图。

传统的恒功率控制只在最外特性曲线上工作,所消耗的功率由0abc四边形面积决定;中心开式负荷传感系统也可在最外特性曲线上工作,但当在空负荷、轻负荷和强阻力作业时,消耗功率由0123四边形面积决定,两者的面积差(图中影线部分)就是后者较前者所节省的能量。

2.负流量控制系统原理图4表示负流量控制系统原理。

液压挖掘机LUDV控制系统分析

液压挖掘机LUDV控制系统分析
Ab ta t T e e c v tr h v d tr n t e u r me t o o l x o k o d t n , e p cal f r mi i e c v tr s v r l wo k sr c : h x a ao a e e e mi ae r q ie n s f r e mp e w r c n i o s i s e il y o n — x a ao , e e a r
3 结论
为 了更 好地 适应 企业信 息化 的要 求 , 特别是 更好 地 为企 业 提供 急需 的应 用 服务 ,根 据 A P的服务 过 程分 S 析, 以实 现应 用 服 务 为 核心 , 构建 AS P应 用 服务 平 台 , 为机 械制造 企业 和用户 搭建 一个 提供 应用 服务 的平 台 , 对 中小型企 业来 说 , 有重 大 的实际意 义和应 用价 值 。 具
华 大 学 出 版社 、 普林 格 出版 社 .0 1 施 20.

【】 苗 剑 , 飞 , 豫 川 . 用 服 务 平 台 的 系 统构 成 及 功 能 应 用 lJ 2 刘 宋 应 J .
液 压 气 动 与 密 封 ,0 1年 第 l 21 2期
机 进行 复合 动 作 的操 控性 能 和节 能效 果有 了很 大 的提
T K r, J K egr L Wiccs E po n A P s . en . ri e, . j l ok, xlr g S a l i
s u c n sr tg : t e rt a p rp cie , p o o i o s or o r ig t e y h o e i l e s e t s r p s in f a c v t
泵排 量进 行 控制 ,使 泵输 出的 压力 比最 高负 载 压力 高 出一个 固定值 [ 2 1 样, 。这 所有 的操 纵 阀 阀 口的压差 就 可
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档