工程力学-(材料力学)-7-梁的弯曲强度问题
工程力学---材料力学第七章-梁弯曲时位移计算与刚度设计经典例题及详解
P
B C
l 2 l 2
A
x
P 解:AC段:M ( x ) x 2 y P EIy x 2 A P 2 EIy x C x 4 l 2 P 3 EIy x Cx D 12
P
B C
l 2
x
由边界条件: x 0时,y 0
l 由对称条件: x 时,y 0 2
梁的转角方程和挠曲线方程分别为:
最大转角和最大挠度分别为:
11qa max A 1 x1 0 6 EI 19qa 4 ymax y2 x2 2 a 8EI
3
例5:图示变截面梁悬臂梁,试用积分法
求A端的挠度 P
I
2I
l
fA 解: AC段 0 x l
B
P 3 2 EIy x C2 x D2 6
由边界条件: x l时,y=0, =0
得:
C2
1 1 Pl 2 , D2 Pl 3 2 3
l x 时,yC左 =yC右 , C左 = C右 由连续条件: 2
5 3 2 C1 Pl , D1 Pl 3 16 16
由连续条件: x1 x2 a时, y1 y2 , y1 y2
由边界条件: x1 0时, y1 0
0 x 2 a 时 , y 由对称条件: 2 2
得 D1 0
C1 C2 得 D1 D2
11 3 得 C2 qa 6
qa 1 (11a 2 3 x12 ) 0 x1 a 6 EI q 2 [3ax2 2 ( x2 a)3 11a 3 a x2 2a 6 EI qa y1 (11a 2 x1 x13 ) 0 x1 a 6 EI q y2 [4ax23 ( x2 a) 4 44a 3 x2 ] a x2 2a 24 EI
工程力学---材料力学(第七章- 梁弯曲时位移计算与刚度设计)经典例题及详解
得: D 0
Pl 2 得: C 16
AC段梁的转角方程和挠曲线方程分别为:
P 2 2 (4 x l ) 16 EI Px y (4 x 2 3 l 2 ) 48 EI
y
P
B
A
x
l 2
C
l 2
x
最大转角和最大挠度分别为:
max A B
ymax y
q 7qa 8k 384 EI
3
q/2
B C
q/2
A B C
顺时针
q/2
例16:图示梁B处为弹性支座,弹簧刚 度
EI k 求C端挠度fC。 2a 3
q
A
EI k
B
C
2a
a
解:(1)梁不变形,仅弹簧变形引起的C点挠度为 4 3 qa 3qa B处反力=qa fC 1 2 k EI
q
B
x
l
由边界条件: x 0时,y 0
x l时,y 0
得:
ql 3 C , D0 24
梁的转角方程和挠曲线方程分别为:
y
q 2 3 3 (6lx 4 x l ) 24 EI
q
x
A qx y (2lx 2 x 3 l 3 ) 24 EI
ql 3 24 EI
A a a
q
B C
a
qa 12 EI
顺时针
3 3
P=qa
A B
P=qa
m=qɑ²/2
qa qa C B 6 EI 4 EI
4
顺时针
B
q
C
qa 5qa fC B a 8EI 24 EI
材料力学 弯曲应力与强度条件
150 50
A
l 2
B
l 2
96 .4 C 50
200
z
M max
FL 16kNm 4
y
max max
200 50 96.4 153.6mm 96.4mm
max
My max IZ My max IZ
24.09MPa 15.12MPa
max
例题
长为2.5m的工字钢外伸梁,如图示,其外伸部分为0.5m,梁上 承受均布荷载,q=30kN/m,试选择工字钢型号。已知工字钢抗弯 强度[σ]=215MPa。
q 30 kN m
A
0.5m
解:1、求支反力,画梁的弯矩图,确 定危险截面 FA 46.9KN , FB 28.1KN
E
y
X
A
0:
y
A
N dA E
A
dA
E
A
ydA 0
S Z ydA yc A 0(中性轴通过截面形心)
M
A
Z
0:
M Z ydA M
A
M yE dA
y
E
y 2 dA 令: y 2 dA I Z A
C截面
c
B
B截面
∴铸铁梁工作安全。如果T截面倒
例题
A
y 铸铁制作的悬臂梁,尺寸及受力如图示,图中F=20kN。梁 的截面为T字形,形心坐标yc=96.4mm。已知材料的拉伸许用应 150 力和压缩许用应力分别为[σ]+=40MPa, [σ]-=100MPa。试 校核梁的强度是否安全。 F 50 96 .4
工程力学下题库
工程力学题库一、填空题(每空1分,共57分)(难度A)第八章轴向拉伸和压缩1. "强度"是构件在外力作用下____________ 的能力。
2. 通常,各种工程材料的许用切应力[T不大于其____________ 切应力。
3. 在材料力学中,对可变形固体的性质所作的基本假设是假设、___________________ 设和 ______________ 假设。
4. 衡量材料强度的两个重要指标是_______________ 和_____________________ 。
5. 由于铸铁等脆性材料的很低,因此,不宜作为承拉零件的材料。
6. 在圆轴的台肩或切槽等部位,常增设_____________________ 结构,以减小应力集中。
7. 消除或改善是提高构件疲劳强度的主要措施。
第九章剪切与扭转1. 应用扭转强度条件,可以解决_______________________ 、 _____________________ 和_____________ _____ —等三类强度计算问题。
2. 在计算梁的内力时,当梁的长度大于横截面尺寸____________ 倍以上时,可将剪力略去不计。
3. 若两构件在弹性范围内切应变相同,则切变模量G值较大者的切应力较______________ 。
4. 衡量梁弯曲变形的基本参数是___________________ 和________________________ 。
5. 圆轴扭转变形时的大小是___________________________________ 用来度量的。
6. 受剪切构件的剪切面总是___________ 于外力作用线。
7. 提高圆轴扭转强度的主要措施:______________________ 和__________________ 。
8. 如图所示拉杆头为正方形,杆体是直径为d圆柱形。
1. 作用在梁上的载荷通常可以简化为以下三种类型:___________ 、2. 按照支座对梁的约束情况,通常将支座简化为三种形式:______3. 根据梁的支承情况,一般可把梁简化为以下三种基本形式:____4. ___________________________ 对梁的变形有两种假设:、______________________________________ 。
工程力学(材料力学)8 弯曲变形与静不定梁
B
ql4 RBl3 0
8EI 3EI
q 约束反力为
B
RB
3 8
ql
RB
用变形比较法求解静不定梁的一般步骤:
(1)选择基本静定系,确定多余约束及反力。 (2)比较基本静定系与静不定梁在多余处的变形、确定 变形协调条件。 (3)计算各自的变形,利用叠加法列出补充方程。 (4)由平衡方程和补充方程求出多余反力,其后内力、 强度、刚度的计算与静定梁完全相同。
教学重点
• 梁弯曲变形的基本概念; • 挠曲线的近似微分方程; • 积分法和叠加法计算梁的变形; • 梁的刚度条件。
教学难点
• 挠曲线近似微分方程的推导过程; • 积分法和叠加法计算梁的变形; • 变形比较法求解静不定梁。
第一节 弯曲变形的基本概念
齿轮传动轴的弯曲变形
轧钢机(或压延机)的弯曲变形
例13-4 用叠加法求图示梁的 yC、A、B ,EI=常量。
M
P
解 运用叠加法
A
C
l/2
l/2
A
=
q
5ql4 Pl3 ml2
B
yC
384EI
48EI
16EI
A
ql3 24EI
Pl 2
16EI
ml 3EI
B
B
ql3 24EI
Pl2 16EI
ml 3EI
M
+
q
A
+
BA
B
二、梁的刚度条件
y max y,
A
max
A ql3
B
24EI
RA
q
A
θB
l
B θB RB
在梁跨中点 l /2 处有 最大挠度值
工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第8章 弯曲刚度
课
后 答
案
网
解:由挠度表查得:
FP al 180° × 3 EI π Wal 180° = ⋅ 3 EI π 20000 × 1 × 2 × 64 180° = ⋅ 3 × 200 × 109 × π d 4 π ≤ 0 .5 ° d ≥ 0.1117 m,取 d = 112mm。
θB =
ww w
6 ( 246 + 48) ×10 × 200 ×10 × π × 32 × 10−12
2
co
m
8—3 具有中间铰的梁受力如图所示。试画出挠度曲线的大致形状,并说明需要分几段 建立微分方程,积分常数有几个,确定积分常数的条件是什么?(不要求详细解答)
习题 8-3 图
后 答
案
网
习题 8-4 图
课
习题 8-4a 解图
解: (a)题 1.
wA = wA1 + wA 2
wA1 =
⎛l⎞ q⎜ ⎟ ⎝2⎠
87图示承受集中力的细长简支梁在弯矩最大截面上沿加载方向开一小孔若不考虑应力集中影响时关于小孔对梁强度和刚度的影响有如下论述试判断哪一种是正确的
eBook
工程力学
(静力学与材料力学)
习题详细解答
(第 8 章) 范钦珊 唐静静
课
后 答
案
网
2006-12-18
ww w
1
.k hd
aw .
co
m
(教师用书)
−3 9 4
(
.k hd
解:由挠度表查得 F ba 2 wC = P l − a 2 − b2 6lEI
(
)
习题 8-9 图
8
aw .
)
工程力学中的悬臂梁受力和弯曲变形问题的分析与计算方法总结
工程力学中的悬臂梁受力和弯曲变形问题的分析与计算方法总结悬臂梁是工程力学中常见的结构,其受力和弯曲变形问题一直是研究的焦点。
本文将对悬臂梁受力和弯曲变形问题的分析与计算方法进行总结。
一、悬臂梁的受力分析在工程实践中,悬臂梁常常承受着外部力的作用,因此对其受力进行准确的分析至关重要。
悬臂梁的受力分析主要包括弯矩和剪力的计算。
1. 弯矩的计算悬臂梁在受力时会产生弯矩,弯矩的计算可以通过弯矩方程进行。
弯矩方程是基于力的平衡原理和材料的本构关系推导出来的,通过对悬臂梁上各点的力平衡和材料的应力-应变关系进行分析,可以得到弯矩的表达式。
2. 剪力的计算悬臂梁在受力时还会产生剪力,剪力的计算同样可以通过力的平衡原理和材料的本构关系进行推导。
剪力方程可以通过对悬臂梁上各点的力平衡和材料的剪切应力-剪切应变关系进行分析得到。
二、悬臂梁的弯曲变形分析除了受力分析外,悬臂梁的弯曲变形也是需要考虑的重要问题。
弯曲变形是指悬臂梁在受力作用下产生的弯曲形变,主要表现为悬臂梁的中性面发生偏移和悬臂梁上各点的位移。
1. 弯曲形变的计算弯曲形变的计算可以通过弯曲方程进行。
弯曲方程是基于力的平衡原理和材料的本构关系推导出来的,通过对悬臂梁上各点的力平衡和材料的应力-应变关系进行分析,可以得到弯曲形变的表达式。
2. 中性面的偏移和位移的计算中性面的偏移和位移是悬臂梁弯曲变形的重要表现形式。
中性面的偏移可以通过弯曲方程和几何关系进行计算,位移可以通过位移方程进行计算。
通过这些计算,可以得到悬臂梁上各点的位移和中性面的偏移情况。
三、悬臂梁的计算方法总结为了更准确地分析和计算悬臂梁的受力和弯曲变形问题,工程力学中提出了一系列计算方法。
常见的计算方法包括静力学方法、力学性能方法和有限元方法等。
1. 静力学方法静力学方法是最常用的计算方法之一,它基于力的平衡原理和材料的本构关系进行分析和计算。
通过对悬臂梁上各点的力平衡和材料的应力-应变关系进行分析,可以得到悬臂梁的受力和弯曲变形情况。
工程力学材料力学-知识点-及典型例题
作出图中AB杆的受力图。
A处固定铰支座B处可动铰支座作出图中AB、AC杆及整体的受力图。
B、C光滑面约束A处铰链约束DE柔性约束作图示物系中各物体及整体的受力图。
AB杆:二力杆E处固定端C处铰链约束(1)运动效应:力使物体的机械运动状态发生变化的效应。
(2)变形效应:力使物体的形状发生和尺寸改变的效应。
3、力的三要素:力的大小、方向、作用点。
4、力的表示方法:(1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!)(2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。
5、约束的概念:对物体的运动起限制作用的装置。
6、约束力(约束反力):约束作用于被约束物体上的力。
约束力的方向总是与约束所能限制的运动方向相反。
约束力的作用点,在约束与被约束物体的接处7、主动力:使物体产生运动或运动趋势的力。
作用于被约束物体上的除约束力以外的其它力。
8、柔性约束:如绳索、链条、胶带等。
(1)约束的特点:只能限制物体原柔索伸长方向的运动。
(2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。
()9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。
(1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。
被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。
(2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。
()10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。
约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。
()11、固定铰支座(1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。
(2)约束反力的特点:固定铰支座的约束反力同中间铰的一样,也是方向未定的一个力;用一对正交的力来表示,指向假定。
()12、可动铰支座(1)约束的构造特点把固定铰支座的底部安放若干滚子,并与支撑连接则构成活动铰链支座约束,又称锟轴支座。
工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 .
eBook工程力学(静力学与材料力学)习题详细解答(教师用书)(第7章)范钦珊唐静静2006-12-18第7章弯曲强度7-1 直径为d的圆截面梁,两端在对称面内承受力偶矩为M的力偶作用,如图所示。
若已知变形后中性层的曲率半径为ρ;材料的弹性模量为E。
根据d、ρ、E可以求得梁所承受的力偶矩M。
现在有4种答案,请判断哪一种是正确的。
习题7-1图(A) M=Eπd 64ρ64ρ (B) M=Eπd4Eπd3(C) M=32ρ32ρ (D) M=Eπd34 正确答案是。
7-2 关于平面弯曲正应力公式的应用条件,有以下4种答案,请判断哪一种是正确的。
(A) 细长梁、弹性范围内加载;(B) 弹性范围内加载、载荷加在对称面或主轴平面内;(C) 细长梁、弹性范围内加载、载荷加在对称面或主轴平面内;(D) 细长梁、载荷加在对称面或主轴平面内。
正确答案是 C _。
7-3 长度相同、承受同样的均布载荷q作用的梁,有图中所示的4种支承方式,如果从梁的强度考虑,请判断哪一种支承方式最合理。
l 5习题7-3图正确答案是7-4 悬臂梁受力及截面尺寸如图所示。
图中的尺寸单位为mm。
求:梁的1-1截面上A、 2B两点的正应力。
习题7-4图解:1. 计算梁的1-1截面上的弯矩:M=−⎜1×10N×1m+600N/m×1m×2. 确定梁的1-1截面上A、B两点的正应力:A点:⎛⎝31m⎞=−1300N⋅m 2⎟⎠⎛150×10−3m⎞−20×10−3m⎟1300N⋅m×⎜2My⎝⎠×106Pa=2.54MPa(拉应力)σA=z=3Iz100×10-3m×150×10-3m()12B点:⎛0.150m⎞1300N⋅m×⎜−0.04m⎟My⎝2⎠=1.62×106Pa=1.62MPa(压应力)σB=z=3Iz0.1m×0.15m127-5 简支梁如图所示。
2017-2018第一学期《工程力学ⅱ(材料)》问题答疑材料
一、主题讨论部分:1.可变性固体的性质和基本的假设条件。
变形固体的组织构造及其物理性质是十分复杂的,为了抽象成理想的模型,通常对变形固体作出下列基本假设:(1)连续性假设:假设物体内部充满了物质,没有任何空隙。
而实际的物体内当然存在着空隙,而且随着外力或其它外部条件的变化,这些空隙的大小会发生变化。
但从宏观方面研究,只要这些空隙的大小比物体的尺寸小得多,就可不考虑空隙的存在,而认为物体是连续的。
(2)均匀性假设:假设物体内各处的力学性质是完全相同的。
实际上,工程材料的力学性质都有一定程度的非均匀性。
例如金属材料由晶粒组成,各晶粒的性质不尽相同,晶粒与晶粒交界处的性质与晶粒本身的性质也不同;又如混凝土材料由水泥、砂和碎石组成,它们的性质也各不相同。
但由于这些组成物质的大小和物体尺寸相比很小,而且是随机排列的,因此,从宏观上看,可以将物体的性质看作各组成部分性质的统计平均量,而认为物体的性质是均匀的。
(3)各向同性假设:假设材料在各个方向的力学性质均相同。
金属材料由晶粒组成,单个晶粒的性质有方向性,但由于晶粒交错排列,从统计观点看,金属材料的力学性质可认为是各个方向相同的。
例如铸钢、铸铁、铸铜等均可认为是各向同性材料。
同样,像玻璃、塑料、混凝土等非金属材料也可认为是各向同性材料。
但是,有些材料在不同方向具有不同的力学性质,如经过辗压的钢材、纤维整齐的木材以及冷扭的钢丝等,这些材料是各向异性材料。
在材料力学中主要研究各向同性的材料。
特别注意:小变形假设不属于可变形固体的三个基本假设之一,小变形假设是可变形固体三个假设的应用条件,即在小变形条件下,可变形固体才满足连续性、均匀性和各向同性假设的基本内容。
2.杆件变形的基本形式。
根据几何形状的不同,构件可分为杆、板和壳、块体三类。
材料力学主要研究杆(或称杆件)。
杆在各种形式的外力作用下,其变形形式是多种多样的。
但不外乎是某一种基本变形或几种基本变形的组合。
工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第7章 弯曲强度
[ ]
[]
0.5 x 0.4125
M(kN.m)
7
习题 7-10 图
解:画弯矩图如图所示: 对于梁:
M max = 0.5q M 0.5q σ max = max ≤ [σ ] , ≤ [σ ] W W [σ ]W = 160 ×106 × 49 ×10−6 = 15.68 ×103 N/m=15.68kN/m q≤ 0.5 0.5
A
B
W
a + Δa
W + ΔW
B
A
a图
b图
整理后得
Δa =
ΔW (l − a ) (W + ΔW )
此即为相邻跳水者跳水时,可动点 B的调节距离 Δa 与他们体重间的关系。 7- 14 利用弯曲内力的知识,说明为何将标准双杠的尺寸设计成 a=l/4。
9
习题 7-14 图
解:双杠使用时,可视为外伸梁。 其使用时受力点应考虑两种引起最大弯矩的情况。如图a、b所示。
[ ]+
[σ ]- =120 MPa。试校核梁的强度是否安全。
6
30 x 10 M(kN.m) C 截面
+ = σ max - σ max
40
习题 7-9 图
30 ×103 N ⋅ m × 96.4 ×10−3 m = 28.35 × 106 Pa=28.35 MPa 1.02 ×108 ×10−12 m 4 30 ×103 N ⋅ m ×153.6 ×10−3 m = = 45.17 ×106 Pa=45.17 MPa 1.02 ×108 × 10−12 m 4 40 ×103 N ⋅ m ×153.6 ×10−3 m = 60.24 ×106 Pa=60.24 MPa> [σ ] 8 −12 4 1.02 ×10 × 10 m 40 ×103 N ⋅ m × 96.4 × 10−3 m = = 37.8 × 106 Pa=37.8 MPa 8 −12 4 1.02 × 10 × 10 m
工程力学第8章梁的弯曲应力与强度计算
弯曲应力的大小与外力矩、截面尺寸 和材料性质等因素有关。
弯曲应力的产生原因
当梁受到外力矩作用时,梁的横截面上的内力分布不均匀, 产生弯曲应力。
弯曲应力的产生与梁的弯曲变形有关,是梁在受到外力矩作 用时,抵抗弯曲变形的能力的表现。
弯曲应力的分类
正弯曲应力
当梁受到外力矩作用时,在横截面上产生的正应 力称为正弯曲应力。
剪切弯曲应力
当梁受到外力矩作用时,在横截面上产生的剪切 应力称为剪切弯曲应力。
扭曲弯曲应力
当梁受到外力矩作用时,在横截面上产生的扭曲 应力称为扭曲弯曲应力。
03
梁的弯曲应力计算
纯弯曲梁的正应力计算
01
公式:$sigma = frac{M}{I}$
方向的力,梁的宽度是截面的几何尺寸。
弯曲正应力和剪切应力的关系源自公式$sigma + tau = frac{M}{I} + frac{V}{b}$
描述
该公式表示弯曲正应力与剪切应力之间的关系,两者共同作用在梁上,决定了梁的强度和刚度。
04
梁的强度计算
强度计算的依据
梁的弯曲应力
01
梁在弯曲时,其内部的应力分布情况是决定其强度的关键因素。
机械零件
在机械零件设计中,如起 重机的吊臂、汽车的车身 等,梁的强度计算是保证 其正常工作的基础。
05
梁的弯曲应力与强度的关系
弯曲应力对强度的影响
弯曲应力是梁在受到垂直于轴线的力时产生的应力,它会 导致梁发生弯曲变形。弯曲应力的大小和分布与梁的跨度 、截面形状和材料等因素有关。
弯曲应力对梁的强度有显著影响。当弯曲应力过大时,梁 可能会发生断裂或过度变形,导致其承载能力下降。因此 ,在进行梁的设计和强度计算时,必须考虑弯曲应力的影 响。
工程力学A(1)材料力学概念题
第一章是非判断题1-1材料力学是研究构件承载能力的一门学科。
( )1-2材料力学的任务是尽可能使构件安全地工作。
( )1-3材料力学主要研究弹性范围内的小变形情况。
( )1-4因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
( )1-5外力就是构件所承受的载荷。
( )1-6材料力学研究的内力是构件各部分间的相互作用力。
( )1-7用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。
( )1-8压强是构件表面的正应力。
( )1-9应力是横截面上的平均内力。
( )1-10材料力学只研究因构件变形引起的位移。
( )1-11线应变是构件中单位长度的变形量。
( )1-12构件内一点处各方向线应变均相等。
( )1-13切应变是变形后构件中任意两根微线段夹角角度的变化量。
( )1-14材料力学只限于研究等截面直杆。
( )1-15杆件的基本变形只是拉(压)、剪、扭和弯四种,如果还有另一种变形,必定是这四种变形的某种组合。
( )答案:1-1 √1-2 ×1-3 √1-4 ×1-5 ×1-6 ×1-7 √1-8 ×1-9 ×1-10 √1-11 ×1-12 ×1-13 ×1-14 ×1-15 √第二章1 是非判断题2-1使杆件产生轴向拉压变形的外力必须是一对沿杆轴线的集中力。
( )2-2拉杆伸长后,横向会缩短,这是因为杆有横向应力存在。
( )2-3虎克定律适用于弹性变形范围内。
( )2-4材料的延伸率与试件的尺寸有关。
( )2-5 只有超静定结构才可能有装配应力和温度应力。
( )2填空题2-6承受轴向拉压的杆件,只有在( )长度范围内变形才是均匀的。
2-7根据强度条σ≤[σ]可以进行( )三个方面的强度计算。
2-8低碳钢材料由于冷作硬化,会使( )提高,而使( )降低。
2-9铸铁试件的压缩破坏和( )应力有关。
《工程力学》单选题题库(二)及答案(共3套)
《工程力学》题库单选题(二)及答案1、拉伸过程中杆件表面出现滑移线,是因为()。
A、 45度方向切应力最大B、 30度方向切应力最大C、横截面正应力最大D、纵向截面切应力最大正确答案: A2、弯曲变形内力有剪力和弯矩,F作用处剪力图不变,弯矩图发生()。
A、突变B、转折C、不变正确答案: B3、以上四步是轴类零件未知力的求解步骤,其中拆画平面受力图这步坚持()原则。
A、相互平行的力放在一个平面受力图中B、矩放在一个平面受力图中C、只要是同一作用面的力和矩就放在同一个平面受力图中正确答案: C4、图中跷跷板受力发生()变形。
A、旋转B、扭转C、弯曲D、拉伸正确答案: C5、如图所示,猎人非法猎猴,用两根轻绳将猴子悬于空中,猴子处于静止状态,以下说法正确的是()。
A、猴子受到三个力作用B、绳拉猴子的力和猴子拉绳的力相互平衡C、地球对猴子有引力,猴子对地球没有引力D、人将绳子拉得越紧,猴子受到的合力越大正确答案: A6、下列曲柄滑块机构中,先画()的受力图。
A、 AO杆B、 AB杆C、滑块正确答案: B7、物体作匀速运动时合力()。
A、不一定为零B、一定为零C、一定不为零D、不确定正确答案: A8、图中哪个力对O点的力矩为正?()A、B、正确答案: A9、梁发生平面弯曲时,其横截面绕()旋转。
A、梁的轴线B、中性轴C、截面的对称轴D、截面的上(或下)边缘正确答案: B10、剪切变形受力特点是构件受到的两个力,大小相等,方向相反,作用线()。
A、平行B、垂直C、平行,而且相距很近。
正确答案: C11、图中A点受到的力系是()。
A、空间汇交力系B、空间平行力系C、空间任意力系正确答案: A12、()弯曲变形内力有剪力和弯矩,上图简支梁中3-3截面弯矩和()截面相同。
A、 1-1B、 2-2C、 3-3D、 4-4正确答案: B13、光滑墙角处于平衡状态的小球受到()个光滑面约束。
A、 1B、 2正确答案: A14、车刀车削工件时车刀发生(())。
工程力学中的弯曲应力和弯曲变形问题的探究与解决方案
工程力学中的弯曲应力和弯曲变形问题的探究与解决方案引言:工程力学是研究物体受力和变形规律的学科,其中弯曲应力和弯曲变形问题是工程力学中的重要内容。
本文将探讨弯曲应力和弯曲变形问题的原因、计算方法以及解决方案,旨在帮助读者更好地理解和应对这一问题。
一、弯曲应力的原因在工程实践中,当梁、梁柱等结构承受外力作用时,由于结构的几何形状和材料的力学性质不同,会导致结构发生弯曲变形。
弯曲应力的产生主要有以下几个原因:1. 外力作用:外力作用是导致结构弯曲的主要原因之一。
例如,悬臂梁受到集中力的作用,会导致梁的一侧拉伸,另一侧压缩,从而产生弯曲应力。
2. 结构几何形状:结构的几何形状对弯曲应力有直接影响。
例如,梁的截面形状不均匀或不对称,会导致弯曲应力的分布不均匀,从而引起结构的弯曲变形。
3. 材料力学性质:材料的力学性质也是导致弯曲应力的重要因素。
不同材料的弹性模量、屈服强度等参数不同,会导致结构在受力时产生不同的弯曲应力。
二、弯曲应力的计算方法为了准确计算弯曲应力,工程力学中提出了一系列的计算方法。
其中最常用的方法是梁的弯曲方程和梁的截面应力分析。
1. 梁的弯曲方程:梁的弯曲方程是描述梁在弯曲过程中受力和变形的重要方程。
根据梁的几何形状和受力情况,可以得到梁的弯曲方程,并通过求解该方程,计算出梁在不同位置的弯曲应力。
2. 梁的截面应力分析:梁的截面应力分析是通过分析梁截面上的应力分布情况,计算出梁在不同位置的弯曲应力。
该方法根据梁的几何形状和材料的力学性质,采用静力学平衡和弹性力学理论,计算出梁截面上的应力分布,并进一步得到梁的弯曲应力。
三、弯曲变形问题的解决方案针对弯曲变形问题,工程力学提出了一系列的解决方案,包括结构改进、材料选择和加固措施等。
1. 结构改进:对于存在弯曲变形问题的结构,可以通过改进结构的几何形状,增加结构的刚度,从而减小结构的弯曲变形。
例如,在梁的设计中,可以增加梁的截面尺寸或改变梁的截面形状,以增加梁的抗弯刚度。
第八章弯曲强度问题
qL2 2 1 a 8 3qL2
3a4 96 2
a3
例 梁由两根材料相同的梁牢固粘合而成,其横 3a/2 1 2a 截面如图。若截面上承受的总弯矩为M ,求上下
2 a 两部份各自承担的弯矩之比。
a
M1
M I
I1
M1
ydA
A1
A1
M I
y 2dA
M I
A1
y 2dA
同理
M2
M I
I2
M1 I1 M2 I2
4m 15kN
y1 = 45 y2 = 90
2m 35kN
Iz = 8.84106 mm4
在 D 截面
t max
M D y1 Iz
101.8 MPa
c max
M D y2 Iz
203.6 MPa
在 B 截面
M 11.25kNm CD
AB
Ex
t max
M B y2 Iz
114.5 MPa
最大拉应力在 B 截面下边缘,
M
y
kM y
根据量纲分析,因子 k 应具有什么
量纲?
z
因子 k 应反映构件的什么性质?
结论 根据定性分析,正应力公式可能具有 M y I 的形式。
1. 推导思路
几何关系 ( 平截面假定 )
正应变与中性层曲率间的关系
物理关系 ( Hooke 定律 )
正应力与中性层曲率间的关系
力学关系 ( 横截面上轴力、弯矩与正应力的关系 )
工程力学
第八章 弯曲强度问题
背景材料
横梁横截面上的应力如
何计算?行车移动时,这种
F
应力如何变化?
汽车在轮轴上的支 承为什么设计为叠板弹 簧的形式?这种结构有 什么优点?
工程力学--材料力学(北京科大、东北大学版)第4版习题答案
第一章参考答案1-1:解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa ∴σmax=35.3Mpa1-3:解:下端螺孔截面:σ1=19020.065*0.045P S =15.4Mpa上端单螺孔截面:σ2=2PS =8.72MPa上端双螺孔截面:σ3= 3PS =9.15Mpa∴σmax =15.4Mpa1-4:解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:解:F=6PS1=h*t=40*4.5=180mm2S2=(H-d)*t=(65-30)*4.5=157.5mm2∴σmax=2FS =38.1MPa1-6:解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△ l CD =CD LEA σ=0△ L DB =DB LEA σ=-0.01mm(2) ∴AB l ∆=-0.02mm1-7:解:31.8127AC AC CB CB P MPa S P MPa S σσ==== AC AC AC L NL EA EA σε===1.59*104, CB CB CB L NL EA EA σε===6.36*1041-8:解:Nll EAl l ε∆=∆= ∴NEA ε=62.54*10N EA N ε∴==1-9:解:208,0.317E GPa ν==1-10:解:[][]max 59.5MPa σσ=<1-11:解:(1)当45oα=,[]11.2σσ=>强度不够 (2)当60oα=,[]9.17σσ=< 强度够 1-12:解:[]360,200200200*1013.3100*150*10Y p kNS P kNS MPa A σσ-==∴=====<∑1-13:解:[]max 200213MPa MPa σ=<1-14:解: 1.78, 1.26d cm d cm ==拉杆链环1-15 解:BC F ==70.7 kN70.70.505140F S FS σσ=∴=== 查表得: 45*45*31-16解:(1)[]2401601.5ss n σσ===MPa[][]24P SP dσσπ≤∴≤24.4D mm∴=(2)2119.51602P P MPa MPa S d σπ===≤⎛⎫ ⎪⎝⎭1-17 解:(1) 2*250*6154402D F P A N π⎛⎫=== ⎪⎝⎭78.4AC F MPa S σ== 300 3.8378.4s n σσ∴===[][]''''60*3.14*15*1542390F S F S Nσσ===='61544014.521542390F n F ===≈1-18 解:P=119kN1-19 解:::3:4:535()44AB BC AB BC S P S S P S P =∴==拉,[][][]112841123484AB AB S A kN S P kN P kN σ=====同理所以最大载荷 84kN1-20 解: P=33.3 kN1-21 解:71,,12123A B C P F F P F P ===1-22 解:10MAX MPa σ=-1-23 解:A B X R R R =∴==∑t r l l ∆=∆ t A B l l tα∆= 21211111223533131.3cd R AC DB CD AC CD CD AF CD MAX Rl Rl l l l l EA EA Rl Rl Rl l EA EA EA EA t EA t R l S MPa A ααασ∆=∆+∆+∆=+=+=∴====第二章习题2-1 一螺栓连接如图所示,已知P=200 kN , =2 cm ,螺栓材料的许用切应力[τ]=80Mpa ,试求螺栓的直径。
《工程力学ⅱ(材料)》问题答疑材料
一、主题讨论部分:1.可变性固体的性质和基本的假设条件。
变形固体的组织构造及其物理性质是十分复杂的,为了抽象成理想的模型,通常对变形固体作出下列基本假设:(1)连续性假设:假设物体内部充满了物质,没有任何空隙。
而实际的物体内当然存在着空隙,而且随着外力或其它外部条件的变化,这些空隙的大小会发生变化。
但从宏观方面研究,只要这些空隙的大小比物体的尺寸小得多,就可不考虑空隙的存在,而认为物体是连续的。
(2)均匀性假设:假设物体内各处的力学性质是完全相同的。
实际上,工程材料的力学性质都有一定程度的非均匀性。
例如金属材料由晶粒组成,各晶粒的性质不尽相同,晶粒与晶粒交界处的性质与晶粒本身的性质也不同;又如混凝土材料由水泥、砂和碎石组成,它们的性质也各不相同。
但由于这些组成物质的大小和物体尺寸相比很小,而且是随机排列的,因此,从宏观上看,可以将物体的性质看作各组成部分性质的统计平均量,而认为物体的性质是均匀的。
(3)各向同性假设:假设材料在各个方向的力学性质均相同。
金属材料由晶粒组成,单个晶粒的性质有方向性,但由于晶粒交错排列,从统计观点看,金属材料的力学性质可认为是各个方向相同的。
例如铸钢、铸铁、铸铜等均可认为是各向同性材料。
同样,像玻璃、塑料、混凝土等非金属材料也可认为是各向同性材料。
但是,有些材料在不同方向具有不同的力学性质,如经过辗压的钢材、纤维整齐的木材以及冷扭的钢丝等,这些材料是各向异性材料。
在材料力学中主要研究各向同性的材料。
注意:可变形固体的基本假设有三个,其中并不包括小变形假设。
2.杆件变形的基本形式。
根据几何形状的不同,构件可分为杆、板和壳、块体三类。
材料力学主要研究杆(或称杆件)。
杆在各种形式的外力作用下,其变形形式是多种多样的。
但不外乎是某一种基本变形或几种基本变形的组合。
杆的基本变形可分为:(1)轴向拉伸或压缩:直杆受到与轴线重合的外力作用时,杆的变形主要是轴线方向的伸长或缩短。
这种变形称为轴向拉伸或压缩,如图(a)、(b)所示。
工程力学考试题及答案
工程力学考试题及答案一、单项选择题(每题2分,共20分)1. 以下哪项是工程力学中研究的主要对象?A. 材料B. 结构C. 力D. 以上都是答案:D2. 静力学中,平衡状态是指物体所受的合力为:A. 非零B. 零C. 任意值D. 不可确定答案:B3. 材料力学中,弹性模量是描述材料的哪种性质?A. 强度B. 硬度C. 弹性D. 塑性答案:C4. 根据牛顿第三定律,作用力和反作用力的大小关系是:A. 相等B. 不相等C. 相反D. 无法确定答案:A5. 在梁的弯曲问题中,梁的弯曲刚度与以下哪项无关?A. 梁的截面形状B. 梁的长度C. 梁的材料D. 梁的截面尺寸答案:B6. 应力集中是指在材料的哪些部位应力会显著增大?A. 光滑表面B. 无缺陷区域C. 几何突变处D. 均匀受力区域答案:C7. 动载荷是指:A. 静止不动的载荷B. 随时间变化的载荷C. 随空间变化的载荷D. 均匀分布的载荷答案:B8. 能量守恒定律在工程力学中的应用主要体现在:A. 热力学B. 动力学C. 静力学D. 流体力学答案:B9. 以下哪种材料可以认为是理想弹性体?A. 橡胶B. 钢铁C. 玻璃D. 木材答案:B10. 塑性变形是指材料在外力作用下发生变形后,去掉外力后:A. 不能恢复原状B. 完全恢复原状C. 部分恢复原状D. 无法确定答案:A二、填空题(每空1分,共20分)1. 物体在受到三个力的作用下,若这三个力的合力为零,则物体处于______状态。
答案:平衡2. 材料力学中,梁的挠度是指梁在受力后与______之间的最大垂直距离。
答案:原始直线3. 材料在拉伸过程中,其应力与应变的关系曲线称为______曲线。
答案:应力-应变4. 根据胡克定律,弹簧的变形量与施加在其上的力成正比,其比例系数称为______。
答案:弹簧常数5. 在材料力学中,材料的屈服强度是指材料在______状态下的最大应力。
答案:塑性变形6. 动载荷引起的振动通常需要考虑______效应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程中的弯曲构件
工程中可以看作梁的杆件是很多的:
火车轮轴支撑在铁轨上, 铁轨对车轮的约束,可以看作 铰链支座,因此,火车轮轴可 以简化为两端外伸梁。由于轴 自身重量与车厢以及车厢内装 载的人货物的重量相比要小得 多,可以忽略不计,因此,火 车轮轴将发生弯曲变形。
第7章 梁的强度计算
与应力分析相关的截面 图形几何性质
I z y 2 dA
A
与应力分析相关的截面 图形几何性质
研究杆件的应力与变形,研究失效问题以及 强度、刚度、稳定问题,都要涉及到与截面图形 的几何形状和尺寸有关的量。这些量统称为几何 量,包括:形心、静矩、惯性矩、惯性半径、极 惯性矩、惯性积、主轴等。
与应力分析相关的截面 图形几何性质
与应力分析相关的截面 图形几何性质
静矩、形心及其相互关系
静矩与坐标轴有关,同一平面图形对于不同的 坐标轴有不同的静矩。对某些坐标轴静矩为正;对另 外一些坐标轴静矩则可能为负;对于通过形心的坐标 轴,图形对其静矩等于零。
如果已经计算出静矩,就可以确定形心的位置; 反之,如果已知形心在某一坐标系中的位置,则可计 算图形对于这一坐标系中坐标轴的静矩。
与应力分析相关的截面 图形几何性质
静矩、形心及其相互关系
静矩与形心坐标之间的关系
S y zdA
A
S y AzC
S z ydA
A
S z AyC
A
S yC z A
ydA A
zC
Sy A
zdA
A
A
已知静矩可以确定图形的形心坐标
已知图形的形心坐标可以确定静矩
静矩、形心及其相互关系 惯性矩、极惯性矩、惯性积、惯性半径 惯性矩与惯性积的移轴定理 惯性矩与惯性积的转轴定理
主轴与形心主轴、主惯性矩与形心主惯性矩
与应力分析相关的截面 图形几何性质
静矩、形心及其相互关系
与应力分析相关的截面 图形几何性质
静矩、形心及其相互关系
第7章 梁的强度计算
要知道横截面上哪一点最先发生失效,必须知道横截 面上的应力是怎样分布的。第5章中已经分析了梁承受弯曲 时横截面上将有剪力和弯矩两个内力分量。 与这两个内力分量相对应,横截面上将有连续分布的 剪应力和正应力。第6章中所介绍的是应用平衡原理与平衡 方法,确定梁的横截面上的剪力和弯矩。但是,剪力和弯 矩只是横截面上分布剪应力与正应力的简化结果。怎样确 定梁的横截面上的应力分布?
返回
与应力分析相关的截面 图形几何性质
讨论拉伸和压缩杆件横截面上应力时,根据 拉伸和压缩时均匀变形的特点,推知杆件横截面 上的正应力均匀分布,从而得到正应力表达式
FN A
其中A为杆件的横截面面积。
当杆件横截面上,除了轴力以外还存在弯矩 时,其上之应力不再是均匀分布的,这时得到的 应力表达式,仍然与横截面上的内力分量以及横 截面的几何量有关。但是,这时的几何量将不再 是横截面的面积,而是其他的形式。
y
z
S y zdA
A
பைடு நூலகம்
dA O
y
图形对于 y 轴的静矩 z
S z ydA
A
图形对于 z 轴的静矩
与应力分析相关的截面 图形几何性质
静矩、形心及其相互关系
y
z
y
zC
dA
y
C
z
yC
O
O A
z
分力之矩之和
合力之矩
S y AzC
S y zdA
A
S z ydA
A
S z AyC
工程中可以看作梁的杆件是很多的:
桥式吊车的大 梁可以简化为两端饺 支的简支梁。在起吊 重量(集中力FP)及大梁 自身重量(均布载荷q) 的作用下,大梁将发生 弯曲。
工程中的弯曲构件
工程中可以看作梁的杆件是很多的:
石油、化工设备中各种直立式反应塔,底部与地面固 定成一体,因此,可以简化为一端固定的悬臂梁。在风力载 荷作用下,反应塔将发生弯曲变形。
与应力分析相关的截面 图形几何性质
静矩、形心及其相互关系
实际计算中,对于简单的、规则的图形,其 形心位置可以直接判断,例如:矩形、正方形、圆形、 正三角形等的形心位置是显而易见的。对于组合图形, 则先将其分解为若干个简单图形(可以直接确定形心 位置的图形);然后分别计算它们对于给定坐标轴的 静矩,并求其代数和。
与应力分析相关的截面 图形几何性质
静矩、形心及其相互关系
对于组合图形
S z A1 y C1 A2 y C 2 An y Cn Ai y Ci i 1 n S y A1 z C1 A2 z C 2 An z Cn Ai z Ci i 1
工程力学
第二篇 材料力学
工程力学
第二篇 材料力学
第7章 梁的强度计算
第7章 梁的强度计算
杆件承受垂直于其轴线的外力或位于其轴线所在平面 内的力偶作用时,其轴线将弯曲成曲线。这种受力与变形 形式称为弯曲。主要承受弯曲的杆件称为梁。 根据内力分析的结果,梁弯曲时,将在弯矩最大的横 截面处发生失效。这种最容易发生失效的截面称为“危险 截面”。但是,危险截面的哪一点最先发生失效?怎样才 能保证梁不发生失效?这些就是本章所要讨论的问题。
第7章 梁的强度计算
工程中的弯曲构件 与应力分析相关的截面图形几何性质 平面弯曲时梁横截面上的正应力 平面弯曲正应力公式应用举例 梁的强度计算 斜弯曲 弯矩与轴力同时作用时横截面上的 正应力 结论与讨论
返回总目录
第7章 梁的强度计算
工程中的弯曲构件
返回
工程中的弯曲构件
与应力分析相关的截面 图形几何性质
不同的分布内力系,组成不同的内力分量时,将产生不同 的几何量。这些几何量不仅与截面的大小有关,而且与截面 的几何形状有关。
x const.
FN
A
x dA FN
x
FN A
x Cy
Mz
A
x
dAy M z
x
Mz CI z
第7章 梁的强度计算
应力是不可见的,而变形却是可见的,而且应力与应 变存在一定的关系。因此,为了确定应力分布,必须分析 和研究梁的变形,必须研究材料应力与应变之间的关系, 即必须涉及变形协调与应力-应变关系两个重要方面。二 者与平衡原理一起组成分析弹性杆件应力分布的基本方法 。 绝大多数细长梁的失效,主要与正应力有关,剪应力 的影响是次要的。本章将主要确定梁横截面上正应力以及 与正应力有关的强度问题。