7.6 压缩映射原理及应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2) 压缩映射原理提供了映射不动点的求法—迭代法:
x0X, 令xn=Txn-1, 则
xn=Tnx0 (n=1,2,…),
x=lim xn (n).
3)压缩映射原理给出了近似解的误差估计公式:
(x, xn)
lim
k
(
xnk
,
xn
)
1
n
(Tx 0 , x0 )
事实上,由定理证明过程知
k, (xnk ,
证 存在性 设X完备,T: XX是压缩映射, ① 任取初始点x0X,构造迭代序列{xn}X:
xn+1=Txn (n=0,1,2,…) ② 证明{xn}是基本列, 因而是收敛列。T是压缩映射 , 0<1, 使得
(xn+1,xn)=(Txn,Txn-1)(xn,xn-1)2(xn-1,xn-2) …n(x1,x0)=n(Tx0,x0) (n=1,2,…)
证 R是完备距离空间,函数f(x)是R到R的一个映射,
x1,x2R, 由拉格朗日中值定理, 有 (f(x1), f(x2))=f(x1)-f(x2)=f’()x1-x2(x1,x2) f: RR是压缩映射
f(x)在R上有唯一的不动点x,对于迭代xn+1=Txn,有
x
lim
n
xn
第10页
例4.2 设f(x)在闭区间[x0-h,x0+h]上可导, 且f’(x)<1, 又f(x0)x0(1-)h, 则f(x)在[x0-h,x0+h]上有唯一的不动点x, 且x可由迭代 xn+1=Txn (n=1,2,…) (x0[x0-h,x0+h])迭代求得.
第1页
第6节 压缩映射原理及其应用
• 压缩映射及其不动点的概念 • 压缩映射原理 • 压缩映射原理应用举例—求映射的不动点
第2页
基本思想:
代数方程 微分方程 积分方程
x=Tx x0 , xn+1=Txn
~x T~x
注:1)把“方程的求解”问题化归为“求映射的不动点”问 题 ,并用逐次逼近(即迭代)法求不动点(既近似解)的方 法是计算数学,分析和代数中常用的一种重要方法。例如,牛 顿求代数方程根时采用的切线法。
证 (结合推论4.1及例4.1即得证。)
R是完备距离空间,函数f(x)是R到R的一个映射,
x1,x2[x0-h, x0+h], 由拉格朗日中值定理, 有 (f(x1), f(x2))=f(x1)-f(x2)=f’()x1-x2(x1,x2) f: RR是压缩映射 又(f(x0), x0)=f(x0)-x0(1-)h f(x)在[x0-h, x0+h]上有唯一的不动点x (推论4.2), 且对于迭代xn+1=Txn,有
② 证明极限点x就是T的不动点。
T是压缩映射T是连续映射
xn+1=Txn , xnx, T连续x=Tx (n) x是T的不动点
唯一性 设x,y都是T的不动点x=Tx,y=Ty (x,y)=(Tx,Ty)(x,y)(x,y)=0 (0<<1)
第5页
第6页
注 1) 压缩映射原理给出了映射的不动点存在的条件;
2)映射的不动点:使x=Tx的x称为T:XX的不动点.
第3页
一、压缩映射及压缩映射原理
1.压缩映射及其不动点的定义 定义6.1 (压缩映射) 设X是距离空间,T:XX是X上的自映 射,如果存在0<<1,对x,yX,都有 (Tx,Ty)(x,y), 则称T是X上的一个压缩映射。
定理1 压缩映射是连续映射 事实上,{xn}X, xnxX, T:XX是压缩映射 (Txn, Tx)(xn,x)0 (n)T是连续映射
T是S(x0,r)上的压缩映射, 且(Tx0, x0)(1)r (0<1) (x1, x0)=(Tx0,x0)(1-)rr (x2,x0)=(Tx1,x0) (Tx1,Tx0)+(Tx0,x0)
(x1,x0)+(1-)r+r(1-)r=r (xn,x0)r (n=1,2,…) (数学归纳法) xnS(x0,r) (n=1,2,…) 唯一xS(x0,r),使得x=Tx. (在S(x0,r)上应用定理4.1)
(xn+k,xn)(xn+k,xn+k-1)+(xn+k-1,xn+k-2)+…+(xn+1,xn) (n+k-1+n+k-2+…+n)(Tx0,x0) (kN)
(xnk , xn )
n (1 k ) 1
(Tx 0 , x0 )
n 1
(Tx 0 , x0 )
(xn+k,xn)0 (n) (0<<1) {xn}是基本列{xn}收敛 (X完备) xX, 使xnx (n)
第9页
3.压缩映射原理应用
应用压缩映射原理及其推论解决实际问题的步骤:
1) 说明X是完备距离空间; 2) 有实际问题定义映射T:XX,使x=Tx; 3) 证明所定义映射T是X上的压缩映射; 3) 有压缩映射原理说明不动点的存在唯一性。
例4.1 设f(x)在R可导, 且f’(x)<1, 则f(x)在R上有唯一的不动点 x,且x可由迭代xn+1=Txn (n=1,2,…) (x0R)迭代求得.
证 x , y X , n0 N , [0,1), (T n0 x , T n0 y ) ( x , y ) T是n0X上的压缩映射
唯一 x X , 使 T n0 x x T n0 (Tx ) T x n0 1 T (T n0 x) Tx
x与Tx都是T 的n0 不动点 x=Tx (不动点的唯一性)
xn )
n (1 1
k)
(Tx0 ,
x0 )
n 1
来自百度文库
(Tx0 ,
x0 )
令k, 有极限保号性记即得证
第7页
推论4.1 设X是完备的距离空间,T:XX. 如果T在闭球S(x0, r)上是压缩映射,并且
(Tx0, x0)(1)r (0<1) 则T在闭球S(x0, r) 中存在唯一的不动点。
分析 只要在闭球内构造一个迭代序列{xn}即可。 证 取初始点x0S(x0, r),作迭代xn=Tn x0 (n=0,1,2,…)
第8页
推论4.2 设X是完备距离空间,T:XX,如果存在常数 (0<1)及正整数n0 ,使对任何x, yX,都有
(T n0 x , T ) n0 ( x , y ) 则T存在唯一不动点x,即x=Tx. (其中定义:T2x=T(Tx), T3x=T(T2x),…,Tnx=T(Tn-1x),…)
定义4.1 (映射的不动点) 设X距离空间,T:XX是X上的自映射, 如果存在xX,使得x=Tx,则称x是映射T的一个不动点。
第4页
2. 压缩映射原理(Banach不动点原理,波兰,1922)
定理4.1 (压缩映射原理) 设X 是完备的距离空间,映射T: XX是压缩映射,则T在X中存在唯一的不动点x, 即x=Tx。
相关文档
最新文档