解决液压系统同步的有效方法

合集下载

正确消除液压同步马达的同步误差

正确消除液压同步马达的同步误差

裙板 的同步控制实例 , 谈谈正确消除液压同步马达 的同步误差。 关键词 : 液压系统 ; 同步马达; 误差 消除 中图分类号 :H17 T 3 文献标识码 : B 文章编号 :17 —9 4 (0 80 - 0 10 3 6 2 8 0 20 )6- 5 - 0 . - 0
l 使用液压同步马达 的同步 问题
(中冶赛迪工程技术股份有 限公 司 重庆 4 0 1 ) 003
摘要: 同步马达在液压系统 中用于同步控制 , 其控制精度要 比其它调速 阀高得多。但在实际使用中 , 同步马达也存在

定的同步误差 , 如果不能正确使用 , 就不能更好地发挥其高精度的同步效果 。下面针对加热炉装 钢机 和冷床制动
4 消除 同步误差的措施
( ) 择加 工精 度较 高 的液 压 同 步 马达 和液 压 1选 执行 机构 。液 压同步 马达和液 压执行 机构 的加工 精
度决定了液压系统的同步精度。一般来说 , 齿轮式 同步马达的同步精度 比柱塞式要低一些 , 齿轮式同 步马 达控 制精度 一般 在± %~ 2 柱 塞式 同步 马达 l ± %, 精度 可 以达N - . ± . +5 o %~ 1 %。选择 同步马 达的类 型 5 和合 适 的生产 厂 家是 至关 重要 的 , 口的液压 同步 进 马达 比国产 的精 度要 高 。元件精 度 保 证 了 , 系统 的 同步精 度才 能有 保 障。液 压 同步 马达 的排 量 一样 , 液压 执行 机构 的截 面 积一 样 , 同步 精度 也 就大 大 提 高 了。 () 2 消除液 压 同步 马达 的 累计 误差 。液压 同步 马达 的加 工精 度虽 然较 高 , 但不 可 能完 全一 样 。每 个 马达 的排 量也 不 可能 一 样 , 量 小 的 , 是 跑 得 排 总 快, 大一 点 的 , 是慢 一点 。另外 , 总 还有 其 它原 因产 生的同步误差 , 如上所述 的负载不均匀 、 液压管路 J 侮设计不 一样 , 等 , 些 误差综 合 在一 起 , 成 了 等 这 形 同步控 制的 累计 误差 。 由 图 1 以看 出 , 液 压 同步 马达 内部 的每一 可 在 流油 路上 , 均有 一个 溢 流 阀 2和一个 单 向阀 3组成 的 阀组 , 个 阀组 就是 消除 位置 不 同步误 差 所 设置 这 的。一个液 压 同步 马达~ 般要控 制几个 液压执 行机 构, 由于有 同步误差的存在 , 中必有一个 液压缸 其 到达 首 先终 点 , 时位 置检 测 元 件 发 出信 号 , 知 这 通 系统液压控制阀停止动作 , 其余的液压缸也停止运 行而不能到达终点 ,这样就不能满足工艺要求 , 如 果 要让 所有 的 液压缸 都 到达 终点 , 么 先到 终 点液 那

基于PLC的液压同步系统的程序设计方法

基于PLC的液压同步系统的程序设计方法

基于PLC的液压同步系统的程序设计方法在液压系统中,经常要求系统能控制处理多个执行机构同步运行的问题。

下面以笔者为国内某热电厂所设计的由一台PLC和四个电液比例阀组成的系统为例,说明同步系统的组成及程序设计方法。

一、系统组成系统由PLC、电流比例阀、齿轮双齿条油缸及转动执行机构等部分组成。

由PLC控制四个电液比例阀分别驱动四个齿轮双齿条油缸,带动四个执行机构转动。

控制要求规定:四个执行机构转动时,其转动速度应同步,最终的转动位置角度应相同。

系统的PLC选用Koyo SZ-4型产品,其各种模块安装在机架内的不同槽位上,I/O点的地址定义号由该模块所在的槽位决定,八槽机架所安装的模块类型及其地址定义号如图1所示。

图1系统的开关量输入模块选用8ND1型和16ND1型24VDC模块,它们的地址号为1010 ~1077,共56点。

主要用来连接按钮输入信号和接收绝对式旋转编码器发生的编码信号。

开关量输出模块选用8TR1型24VDC模块,它的地址号为~010~Q017,主要用来连接各种指示灯。

模拟量输出模块的型号为2DA2,该D/A模块提供2路-10V~—+10V的输出电压。

Z-CTIF为高速计数模块,该模块用于接收增量式旋转编码器发来的高速脉冲。

比例阀选用的是4WRZ16型先导式电液比例换向阀,其电源形式为直流24V,电磁铁名义电流为800mA。

由PLC输出的-10V~+10V电压控制功率放大器输出-800mA~+800m A电流,输出电流的大小决定了电液比例阀阀口的开度。

系统选用Koyo TRD-NA360PW绝对式旋转编码器作为执行机构转动角度检测反馈元件。

当电液比例阀驱动齿轮双齿条油缸带动执行机构低速转动时,绝对式旋转编码器可将执行机构的转动位置角度实时反馈给PLC。

系统选用的增量式旋转编码器用于发出执行机构转动方向和转动角度大小的指令。

二、程序设计方法1、旋转编码器数据采集的编程方法图2为绝对式旋转编码器和增量式旋转编码器数据采集的部分程序。

彻底处理液压系统四缸同步的有效方法[精华]

彻底处理液压系统四缸同步的有效方法[精华]

解决机械设计中四只油缸工作同步的有效方法
在机械行业液压系统设计中,长期以来,一套液压站油路控制四只相同油缸工作中的同步,是一项比较难以解决的难题。

本人在公司机械产品设计中,设计了一套液压站及油管布线图,在联接液压站阀块与机械上油缸的管路系统上新增采用了同步阀,终于解决了这一难题。

现提供液压站油路控制四只相同油缸工作中的同步,与大家交流,供参考。

1.在油管路上,设计增加了3只同步阀(见下图)。

同步阀规格的选用,视油管孔径及油管接头规格,可上网查找相应的同步阀。

2.在机械产品的油管路设计上,要用相同规格的无缝钢管,即使用油管内径相同的油管。

3.从液压站阀块出油口接头至同步阀1后,从同步阀1两出油口至同步阀2和同步阀3的进油口油管长度要相等,油管需弯曲时,控制弯曲半径相等。

4.从同步阀2和同步阀3的出油口至4只油缸的上腔进口的油管长度要相等,油管需弯曲时,控制弯曲半径相等。

5.从4只油缸的下腔出油口的油管至液压站阀块进油口的长度要相等,油管需弯曲时,控制弯曲半径相等。

6.同步阀在出厂之前,均已调试好,在按上述5点要求安装好后,即可进行调试,在调试时,一般同步阀不需调整,即可达到4只油缸同步的目的,如四只相同油缸工作中还有差异,则对同步阀进行微调,就可达到四只相同油缸工作同步的要求。

7.根据以上原理,可方便解决2只油缸、3只油缸……N只油缸工作的同步问题。

液压缸同步控制的方法

液压缸同步控制的方法

液压缸同步控制的方法液压缸同步控制是一种常用的液压系统控制方法,通过合理的设计和调节,可以实现多个液压缸的同步运动。

液压缸同步控制在工业生产中有着广泛的应用,可以提高生产效率和产品质量。

液压缸是液压系统中的重要执行元件,通过液压油的压力来产生线性运动。

液压缸同步控制是指在多个液压缸中同时施加相同的作用力或运动,使它们能够同步运动,达到协调工作的目的。

液压缸同步控制可以通过多种方式实现,下面将介绍几种常用的方法。

第一种方法是采用单一泵源驱动多个液压缸。

在这种方式下,所有的液压缸都连接在同一个液压泵上,通过共享一个泵源来实现同步运动。

这种方法的优点是结构简单,成本低廉,适用于工作负载相对较轻的场合。

然而,由于液压泵的输出流量有限,当液压缸数量增多时,每个液压缸的速度和力量会受到限制,无法满足高负载和高速运动的需求。

第二种方法是采用多泵源驱动多个液压缸。

在这种方式下,每个液压缸都连接在一个独立的液压泵上,通过各自的泵源来实现同步运动。

这种方法可以提供更大的输出流量和更高的工作压力,适用于高负载和高速运动的场合。

然而,每个液压缸都需要独立的泵源,系统结构复杂,成本较高。

第三种方法是采用液压伺服阀控制多个液压缸。

液压伺服阀是一种能够根据控制信号调节液压系统压力和流量的装置。

通过使用液压伺服阀,可以实现对多个液压缸的精确控制和同步运动。

这种方法的优点是控制精度高,响应速度快,并且可以实现复杂的运动轨迹。

不过,液压伺服阀的制造和调试相对复杂,成本较高。

除了上述的方法,还可以采用电子控制系统来实现液压缸的同步控制。

通过使用传感器和电子控制器,可以实时监测和调节液压缸的运动状态,并使其同步运动。

电子控制系统具有控制精度高、响应速度快和可编程性强的优点,可以实现复杂的运动控制。

然而,电子控制系统的成本较高,对于一些简单的应用场合可能不太适用。

总结起来,液压缸同步控制是一种重要的液压系统控制方法,可以实现多个液压缸的同步运动。

液压同步阀工作原理

液压同步阀工作原理

液压同步阀工作原理
液压同步阀是一种广泛应用于液压系统中的控制元件,其主要功能是实现多个执行元件的同步运动。

液压同步阀的工作原理如下:
1. 油液流动调节:液压同步阀内部有多个油液通道,通过打开或关闭这些通道,可以实现对液压系统中油液的流动量进行调节。

通过合理调节液压同步阀内的通道,可以实现对多个执行元件的流量分配控制,从而实现同步运动。

2. 压力调节:液压同步阀内部还配有压力控制装置,可以通过调节压力阀的开度来控制液压系统中的压力。

当系统中某个执行元件的工作压力达到设定值时,压力阀会自动调节液压系统中的工作压力,确保各个执行元件在不同工作条件下的同步运动。

3. 信号传递:液压同步阀可以通过外部信号的输入,实现对多个执行元件的同步控制。

根据控制信号的不同,液压同步阀会相应地调节油液的流动和压力,从而使多个执行元件的运动保持同步。

综上所述,液压同步阀通过调节油液的流量和压力,并根据外部信号的输入来实现对多个执行元件的同步控制。

它在液压系统中扮演着关键的角色,能够确保液压系统中各个执行元件的同步运动,提高系统的工作效率和精度。

液压系统三缸同步_顺序动作回路的设计与分析_邓乐

液压系统三缸同步_顺序动作回路的设计与分析_邓乐

Mining & Processing Equipment 53近年来,随着环境保护意识的增强,垃圾的处理和综合利用受到关注。

在为某公司生产的垃圾送料器液压系统设计时,遇到了要求三个液压缸同步前进,然后顺序后退的回路设计问题,这里,液压系统的主要作用是完成垃圾的送料,为保证垃圾能够可靠地送料,要求在一个工作循环中,三个液压缸同步前进,到位后三个液压缸依次顺序后退至原位(此时卸料)。

1 主要技术问题及解决方法针对以上问题,在细致地分析了系统主要功能要求的基础上,可以把该系统设计的主要问题归纳为两个:单因此可以采用1所分别为固接Ⅲ缸筒外的机分流同步阀的出口相连(如图2、3所示)。

其实现位移同步运动的原理为:缸筒左移时,Ⅰ、Ⅲ缸筒依靠单向分流同步阀实现同步,同时利用机械挡块1、3的作用迫使挡块2移动,从而使缸筒Ⅱ与Ⅰ、Ⅲ同步运动;缸筒右移时,则按Ⅰ→Ⅱ→Ⅲ的顺序运动。

当机械挡块1、3按照图1中虚线所示的方式连接、而油路连接不改变时可以实现三缸筒同步向右移动,而按Ⅰ→Ⅱ→Ⅲ的顺序向左移动。

三缸顺序动作可以采用行程控制方式 (行程阀和行程开关如图2所示)或压力控制方式(顺序阀或压力继电器)。

2 同步—顺序动作回路的几种方案根据以上分析,可以拟定以下4个方案:(1) 方案1如图2所示,采用行程阀实现三缸顺序动作。

工作过程为:启动后,电磁换向阀1左位接通,Ⅰ、Ⅱ、Ⅲ三缸筒同步左移;至左端点时,缸筒Ⅰ压下行程开关1XK,使阀1右位接通;三缸进、出油口转换,首先缸筒Ⅰ右移,至右端点时压下行程阀3,接着缸筒Ⅱ右移,Ⅱ至右端点时压下行程阀2,缸Ⅲ右移,Ⅲ至右位时压下行程开关2XK,阀1左位接通,完成一个工作循环。

(2) 方案2如图3所示,与方案1不同之处是采用两个顺序阀实现三缸的顺序动作,其中顺序阀2的动作压力比阀3的小,左移时三缸同步,右移时按照Ⅰ、Ⅱ、Ⅲ的顺序移动,其动作顺序为:假设三缸筒处于右位时为原位,Ⅲ压下2XK,当阀1左位接通时,三缸筒同步左移,同时Ⅲ松开2XK,移至左端时,Ⅰ压下1换向,右位接通,缸筒Ⅰ首先右移,右端时,开顺序阀2右移动,力进一步增加,阀32X成一个工作循环。

两个液压缸的同步回路

两个液压缸的同步回路

两个液压缸的同步回路
液压缸是一种常见的液压元件,广泛应用于各种机械设备中。


果需要实现两个液压缸的同步工作,可以采用同步回路来实现。

本文
将介绍两个液压缸同步回路的原理和操作方法。

首先,同步回路的基本原理是通过调节油液流量来控制液压缸的
运动,从而保持两个液压缸的同步。

在同步回路中,通常会使用一个
供油阀来控制油液流向液压缸,并配合一个压力传感器来监测液压系
统的压力。

其次,为了实现两个液压缸的同步运动,需要确保液压系统中的
油液供应充足且压力稳定。

可以通过增加油箱容量和设置压力调节阀
来实现这一点。

另外,为了减小液压系统的响应时间,通常会在系统
中加入一个快速供油回路,以提高液压系统的工作效率。

另外,为了保证同步回路的正常运行,还需要对液压系统进行一
些维护和保养。

定期检查液压油的清洁度和粘度,及时更换老化的密
封件和油封,以确保液压系统的正常运行。

此外,还需要定期检查液
压管路和接头的连接情况,防止泄漏和松动。

最后,需要注意的是,当液压系统出现故障或异常情况时,应及
时停机检修,并找到故障原因进行修复。

在操作液压系统时,应遵循
相关的操作规程和安全操作规范,确保工作人员的人身安全。

总而言之,两个液压缸的同步回路是一种实现液压系统同步工作
的重要方法。

通过调节油液流量和压力,可以实现液压缸的同步运动。

在使用过程中,需要注意维护保养和及时处理故障,以确保液压系统
的正常运行。

双缸液压启闭机闸门不同步问题的探讨与解决

双缸液压启闭机闸门不同步问题的探讨与解决

双缸液压启闭机闸门不同步问题的探讨与解决摘要:桃林口水库溢流坝表孔弧门采用了双缸液压启闭机,由于没有纠偏系统,在实际运行中常发生闸门双缸活塞杆运动不同步的现象,影响闸门安全运行,为此结合闸门大修增加了双缸液压启闭机闸门纠偏控制系统。

本文主要结合桃林口水库的双缸液压启闭机系统改造,介绍了双缸液压启闭机闸门纠偏的主要工作原理和双缸活塞杆运动不同步问题的解决。

关键词:水闸;双缸液压启闭机;同步;plc;纠偏;中图分类号:tv697 文献标识码:a 文章编号:大中型水闸是水利枢纽工程中的重要建筑,在运行管理中,具有重要作用。

大中型水闸的启闭往往采用液压启闭的方式,其原因在于液压启闭机油缸内的油液为柔性工作介质,能达到减轻闸门局部开启时高速水流对闸门产生的震动,具有实现闸门平稳运行的作用,同时由于液压启闭机具有体积小﹑砼配合结构简单﹑启闭力大等特点。

所以很多水利工程中,大中型水闸均选用液压启闭机,并引进电气自动化控制,以保证在汛期时泄水闸快速安全准确动作﹑提高闸门启闭效率。

由于各种原因,闸门启闭机两油缸中的活塞杆行程往往不能保持同步,造成闸门两端启闭速度不同而倾斜,严重影响水闸的正常运行,甚至造成事故。

因此,保证两油缸中的活塞杆同步运行,进而保证闸门的平稳启闭,是保证水闸安全运行的重要条件。

桃林口水库大坝表孔弧门采用了双缸液压启闭机,由于当时没有设计纠偏功能,上述问题经常发生,对此我们结合大修增加了纠偏系统,取得了较好的效果。

1、闸门纠偏电气控制原理闸门纠偏电气控制系统(如图1),是由现地控制装置plc控制调节阀组,调节注入油缸中的流量,从而达到控制闸门启闭速度。

开度仪通过测得的油缸行程反馈给plc。

对于双缸液压启闭机,改造时配有两个开度仪,可以测得左右油缸活塞杆的行程,并将数据输入plc中进行处理,一旦左右油缸中活塞杆的行程差超过设定值,则判断左右油缸出现了偏差,需要进行纠偏。

plc输出信号控制调节阀组,调整左右油缸的流量,从而使左右油缸的活塞运动速率保持一致,闸门保持水平启动。

液压油缸同步升降控制

液压油缸同步升降控制

内燃机与配件1绪论1.1课题背景和目的本课题的背景是基于中密度纤维板生产线中的预压机上下层液压油缸升降控制。

未改造前的控制方式液压同步效果满足不了同步要求。

未改造前设备的情况是预压机升降控制使用时左右的油缸共用的同一组电磁阀,施加压力后纤维会有反弹,左右油缸高度不一致,毛坯板压制出来左右也会有高度差。

通过单独的改变左右压力值来调整左右高度差效果不佳,还会造成电机过载。

单纯的通过液压压力控制满足不了位置控制的要求。

1.2国内外当前研究现状目前国内外研究实现液压油缸同步的方式多种多样,总结归类的控制方法主要有以下几种。

1.2.1第一种方法:机械硬性连接同步该同步方式是将多个一样型号的油缸并联使用一组电磁阀控制。

该方式在中密度纤维板生产显得多层热压机处有使用,热压机下方几组一样的油缸同时给油作用于下压板,下压板上升和加压。

1.2.2第二种方法:节流阀控制同步该方式是在管路上分别安装节流阀,调整节流阀,向两路油缸等量供油。

该控制方式的精度受负载和机械连接强度影响。

负载不均的情况下,两个油缸会出现损伤或者位置控制不一致。

1.2.3第三种方法:单独压力补偿同步两组油缸分别使用独立的流量阀控制。

两组油缸分别控制,配合溢流阀,管路上增加节流阀,调整溢流阀值和节流阀,可以实现等量或者不等量的控制。

1.2.4第四种方法:同步马达控制每一路油缸单独使用一组同样排量的液压马达控制,控制每个油缸的流量,实现同步。

实际使用时仍旧需要安装节流阀和溢流阀调节流量消除误差。

该控制方式精度比较高,但是成本也很高,使用的范围也比较有限。

1.2.5第五种方法:比例阀控制使用比例阀,两组油缸分开控制,用比例阀控制油缸流量,可以在油缸上增加位移传感器,结合油缸伸出的距离误差,调整比例阀流量实现同步。

该控制方式精度非常高。

在纤维板平压线上使用比较多,在纤维板多层生产线上没有使用的原因有比例阀对油品要求较高,控制技术要求比较高,需要用户有较高技术的维护维修人员。

液压系统同步回路的分析与应用

液压系统同步回路的分析与应用

要】 该文介绍 了液压传动中 比较常见而且实用的一种技术——多缸 同步动作 , 包括阀控 同步回路 . 液压缸控制 的同步 回路 . 同步马达
【 关键词 l 液压技术 : 液压系统: 液压 同步回路
【 bt c]h hr t t dcs ui l drs cr itnatni ast f r ta t ho g i hd ucpe tedi .c d A s at eca c r noue m hc i e y h n ao co s o a il e nl y n yr l r sr renl e r T a eir yn n o zi i ro p cc c o a i si v i u
21 0 2年
第 2 期 1
S INC CE E&T C N O YIF R T O E H OL G O MA I N N
o机械 与电子0
科技信息
液压系统同步回路的分析与应用
郭 猛 ( 济南 钢铁股 份有 限公 司宽厚 板厂 山东
【 摘
控 制 的 同 步 回路 等
济南
2 0 1 51 ) 0
s n h o o sv l e s n h o o sl o y c r n u a v y c r n u o p,wi d a l y i d rn s re e lz y c r n u o p, t y c mo o e lz y c r n u o p t hy r u i c ln e i e is r a ie s n h o o s lo wi s n t rr a ie s n h o o sl o h c h
21 年 02
第 2 期 1
22 同步缸控制 的同步 回路 . 如图 4 本 回路为采用同步缸和补油装置 的同步回路 。同步 提升 . 机构 . 上升时压力油经 同步缸将等 量油进入 A、 B提升缸 , 同步缸 是同 活塞杆串联有 两个相 同的活塞 ,在两个相 同缸体 内移动 的液压 缸。 用节流阀 c控制提升缸下行 的速度 。 其他元件 的作用是为了消除因泄 漏而影响同步精度 其补偿作用 为: () 1提升时 . A、 当 B缸或 同步缸 中一缸 先到终点时 , 压力上 升 , 顺 序阀 D打开 . 压力油进入 A或 B缸使 其完成行程。D阀关 闭时 , 由于 其 内部泄漏 . 使压力油流 人系统 内. 将破坏 A、 B缸的平衡 , 以装 上 所 个流量稍大于 D阀漏损量 的节流阀 E。 () 2 下降时 . 三个缸因有泄漏 , 当其 中一缸先到底部 时, 力增高 , 压 压力油使平衡 阀 F和 G及液控单 向阀 H和 I 打开 , 时, B缸的排 此 A、 油可不经 同步缸而排出 . 以完成其行 程 阀 H和 I 是为 了防止 阀 F和 G漏损而 引起 A、 B缸的不平衡 () 3 同步缸的补油 . 为了保证提升时, B两 缸确实紧固地处于顶 A、 端位置 . 两提升缸必须 比同步缸先到达顶端 。因此 , 在下行时 , 三个缸 都要完全返回底部。这 由阀 J K来执行 ; 和 在下行时 A、 B缸 已到达底 部 . 时回路压力 升高 , J 这 阀 打开 , 油经过阀 F、 H、 进入 同步缸 , 使 G、 I 以完成其行程。 23 用数字油缸实现同步运 动 _ 数字油缸是一种 比较新型的高精度 油缸 , 形与普 通液压缸没什 外 么 区别 . 但它却将伺服阀 、 传感器 、 闭环 自 调节 功能均设计组合在液 动 压缸 内部 . 它几乎集 中了现 有液压技术 的所有 功能 , 并且 能直接接受 专用数 字控制器 、 算机或 P C可编程控 制器发 出的数 字脉冲信号 计 L 而可靠工作 . 脉冲频率代表速度 , 脉冲总数代 表行程 , 一一对应 。数字 缸 只需接通液压 油源 . 不需任何 其它液压 阀件 , 所有的功 能直 接通过 给定 的电子脉冲控制技术来完成 . 能高精度 的完成油缸动作 的同步 。

液压系统同步回路的设计

液压系统同步回路的设计

摘要:通过对液压系统中同步回路的分析,介绍了各种同步回路设计时的优缺点及设计的改进措施,以便根据具体情况选择合适同步回路。

关键词:液压系统;同步回路;串联缸;节流阀;分流阀1前言在液压系统设计中,要求执行机构动作同步的情况较多,设计人员通常采用节流调速、串联液压缸、分流阀及同步马达等一系列方案来实现。

由于在设备制造和运行中存在一系列内在和外在因素,如泄露、制造误差、摩擦和阻力等问题,使同步回路在应用时获得的同步效果有差异,这就要求在方案设计时针对不同工况选择不同的同步回路。

下面介绍一些常用的同步回路设计方法,为设计人员合理地选择同步回路提供参考。

2同步回路的设计2.1液压缸机械结合同步回路图1中回路由两执行油缸和刚性梁组成,通过刚性梁联接实现两缸同步。

图2中回路由两执行油缸、齿轮齿条缸组成,通过齿轮齿条将两缸联接在一起,从而实现同步。

两液压回路液压缸的同步都是靠机械结构来保证的,这种回路特点是同步性能较可靠,但由于油缸的受力有差别时硬性的机械作用力可能对油缸有所损伤,同时对机械联接的强度要求有所增加。

在实际应用上,我公司生产的6000t/h 堆取料机,其大臂俯仰油缸就是采用机械刚性联接实现同步的,满足了油缸同步的要求。

2.2串联液压缸同步回路图3中回路由泵、溢流阀、换向阀及两串联缸组成,要求实现两串联缸同步。

实现此串联液压缸同步回路的前提条件是:必须使用双侧带活塞杆的液压缸,或者串联的两油腔的有效作用面积相等,这样根据油缸速度为流量与作用面积的比值,油缸的速度才能相同。

但是,这种结构往往由于制造上的误差、内部泄露及混入空气等原因而影响其同步性。

对于负载一定时,需要的油路压力要增加,其增加的倍数为其所串联的油缸数。

为了补偿因为泄露造成的油缸不同步问题,在设计同步回路时可以采用带补油装置的同步回路,见图4。

图4中回路较图3增加了液压锁和控制液压锁打开的换向阀,这条油路的增加可使两串联缸更好地实现同步。

液压顶推系统同步性的改进与应用

液压顶推系统同步性的改进与应用
分流集流阀在工程机械上使用广泛,一般额定压力在20MPa~35MPa,而在我们主变装卸施工当中液压顶推系统压力最高达到了50Mpa,因此普通的分流集流阀无法满足要求,从一些液压件生产厂家了解到如果要提高分流集流阀的额定压力,其内部阀芯需要采用铸件,我们向一家同步阀制造公司订做2只额定流量为8L/min,额定压力为60 Mpa的分流集流阀。
1.液压顶推系统不同步产生的原因
我们常采用的液压顶推装置一般是由一个作业人员控制两台高压油泵,每台油泵则连接一只或者两只顶推缸(加装三通),由于顶推点并不是预先设定的,加紧,推移液压系统(单机)
而是在作业现场根据变压器基础情况来确定,有些变压器基础为“井”字型,有些则是一块平面,两侧顶点的设定位置与变压器重心距离并不是相等的,因此阻力不同,油缸顶推速度不同,流量不同,则油缸顶推的行程也不相同,另外作业人员同时操控两台油泵前后也需要一定的反应时间,使顶推两端行程差距变大,液压顶推装置顶推不同步容易造成变压器偏斜,情况严重的还可能影响到施工安全。
通过比较分析,我们认为第一套控制方式液压阀使用太多,连接复杂操作不便,容易发生故障;第三套控制方式虽然使用液压同步马达同步精度较高,但是成本太高不适用;我们最终选择了第二套控制方式,在现有的液压顶推装置中加装分流集流阀,油路系统连接简单,同步精度可以达到3%,基本上能够满足施工要求。
2.2分流集流阀的应用
参考文献:
[1]万会熊明仁雄.液压与气压传动.北京:国防工业出版社,2008
图1顶升试验油路图
注:BZ63-4型高压油泵额定压力为63Mpa,额定流量为4L/min
图2图3
根据分流集流阀的特性,如果需要三缸、四缸同步则可以采用两个或两个以上的分流集流阀对系统流量进行调节,例如三缸同步有两种办法实现,一种可以采用二接法,将阀误差正负搭配,提高同步精度;另外一种是采用2:1的比例式分流集流阀,两种连接方式简单容易操作。四缸或四缸以上同步则需要3个或三个以上的分流集流阀才能实现。我们可以根据所使用的顶推缸数量来灵活搭配分流集流阀,从而控制流量达到同步的目的。

彻底解决液压系统四缸同步的有效方法

彻底解决液压系统四缸同步的有效方法

彻底解决液压系统四缸同步的有效方法液压系统的四缸同步是指液压系统中的多个缸体在同一时间内以相同的速度、位置和力量运动。

确保四缸同步对液压系统的性能和工作效率至关重要。

下面是一些有效的方法来彻底解决液压系统四缸同步的问题:1.使用电子控制技术:利用电子控制技术可以实现更精确的控制和监测多个缸体的运动,确保它们以相同的速度、位置和力量运动。

通过使用传感器和反馈装置,可以实时监测每个缸体的位置和速度,并对液压系统进行相应的调整。

2.定制设计和优化设计:对液压系统进行定制设计和优化设计,确保各个缸体具有相同的工作参数和特性。

这包括选择合适的缸体、活塞杆、密封件和阀门等液压元件,并进行适当的调整和优化,以保证四缸同步工作的稳定性和可靠性。

3.合理选择控制阀:控制阀对液压系统的四缸同步至关重要。

选择合适的控制阀,可以控制液压系统中的液压流量、压力和方向,并确保各个缸体以相同的速度、位置和力量运动。

根据实际应用需求,选择具有良好稳定性和可靠性的控制阀,并进行适当的操作和调整。

4.定期维护和检查:定期维护和检查液压系统是确保四缸同步的有效方法。

定期检查液压系统中的关键部件,如泵、阀门、密封件等,以确保它们处于良好的工作状态。

同时,定期更换或修复磨损或损坏的部件,以保持液压系统的正常运行。

5.进行系统调试和校准:进行系统调试和校准是确保液压系统四缸同步的重要步骤。

在初次安装或系统改装后,应进行系统调试和校准,以确保液压系统中各个缸体的运动参数和特性相匹配。

通过调整和校准液压系统的控制参数,可以实现四缸的同步运动。

总结起来,彻底解决液压系统四缸同步的有效方法包括使用电子控制技术、定制设计和优化设计、合理选择控制阀、定期维护和检查以及进行系统调试和校准。

通过综合应用这些方法,可以确保液压系统的四缸同步工作稳定、可靠和高效。

浅谈几种常见液压同步控制回路及应用

浅谈几种常见液压同步控制回路及应用

HEBEINONGJI摘要:液压同步控制回路是液压技术的重要组成部分,随着液压技术在工业生产、工程机械、农业机械等领域的广泛应用,在重型负载或负载体积较大需要多个支点工况时,则需要多个执行元件同时驱动负载运动,此时,液压同步控制技术就显得尤为重要。

本文结合在农业机械上的一些实际应用,介绍了一些常见的液压同步控制回路。

关键词:液压同步控制回路;分流集流阀;串联液压油缸同步;智能农机浅谈几种常见液压同步控制回路及应用铁建重工新疆有限公司陈晨概述液压同步控制回路是液压技术的一个重要组成部分,广泛应用于工业生产、工程机械、农业机械、港口机械等多个领域⑴。

当被驱动的负载体积较大或质量较重需要多个支点时,依靠单一执行元件难以驱动负载,此时,需要多个执行元件以相同的位移或相等的速度共同驱动负载。

由于液阻、偏载、空气混入、内泄漏以及制造误差等诸多因素进而导致各执行液压油缸的运动速度不同步,引起误差累积,最终使各执行液压油缸产生不同步现象,轻则使负载或活塞杆变形导致卡死,重则导致负载倾翻危及人身安全。

因此,了解并掌握常见的液压同步控制回路,分析并研究液压同步控制技术在驱动重型负载或体积较大需要多个支点的负载工况时的实际应用意义重大[2T。

液压同步控制回路在农业机械中的应用极为广泛,例如采棉机内棉箱的升降、棉箱门的开关、玉米收获机及青贮饲料机粮箱的升降、免耕播种机底盘的升降(用于调节播种作业深度)等,如果两个或多个液压油缸在运动过程中不同步,将会导致采棉机内棉箱、棉箱门、玉米收获机及青贮饲料机粮箱的卡死、变形、活塞杆弯曲、连接销轴断裂等情况发生,进而影响其正常作业。

如果免耕播种机底盘的两个液压油缸运动不同步将影响种子播种深度,进而严重影响种子的成活率。

能够实现多执行元件同步的回路不止一种,然而,随着实践的不断检验,一些液压同步控制回路逐渐淡出了人们的视线,本文就农业机械中常见的几种液压同步控制回路的工作原理、应用、优缺点进行介绍。

液压多缸同步方法的选择

液压多缸同步方法的选择

液压多缸同步方法的选择液压多缸同步方法的选择是根据具体的应用场景和需求来决定的。

在液压系统中,多缸同步是指在同时工作的多个液压缸之间,使其活塞在行程过程中保持同步运动。

液压多缸同步方法的选择涉及到多个方面的考虑,如精度要求、速度要求、控制方式、成本等因素。

以下是液压多缸同步方法的一些选择。

1.电子控制同步电子控制同步是通过电子控制器来实现多缸同步的方法。

在这种方法中,每个液压缸都配备有传感器,测量位移或力,并将数据传输给控制器。

控制器根据传感器的反馈信号控制液压系统,使多个液压缸的位置或力保持同步。

电子控制同步的优点是可以实现很高的精度和灵活性,可以适应不同的工况和要求。

然而,电子控制同步的成本较高,对控制系统和传感器的要求也较高。

2.机械同步装置机械同步装置是通过机械连接件来保持多个液压缸同步运动的方法。

常见的机械同步装置有连杆机构、同步滑块、同步辊筒等。

机械同步装置的优点是结构简单、成本低、可靠性高。

然而,机械同步装置的精度通常较低,不适用于要求较高的应用场合。

3.液压同步阀液压同步阀是一种特殊的液控阀,可以实现多个液压缸的同步运动。

液压同步阀通过传感器测量液压缸的位置或力,并通过控制液控阀的开关状态来调节液压流量分配,从而实现多个液压缸的同步运动。

液压同步阀的优点是结构简单、成本低、成熟稳定。

然而,液压同步阀的精度较机械同步装置略低,适用于精度要求较低的应用场合。

4.液压伺服系统液压伺服系统是一种通过液压缸与伺服阀、控制器等组成的闭环控制系统实现多缸同步运动的方法。

液压伺服系统可以根据传感器反馈的位置或力信号,通过控制器的调节,使液压缸的位置或力保持同步。

液压伺服系统的优点是可以实现精度较高的同步运动,并且具有较强的鲁棒性。

然而,液压伺服系统的设计和调试较为复杂,成本较高。

在选择液压多缸同步方法时,需要综合考虑以上几个因素,根据具体的应用场景和需求选择合适的方法。

同时,还需要考虑系统的可靠性、维护性和经济性等因素,确保系统在长期运行中的稳定性和可靠性。

液压系统的可靠性分析与优化设计

液压系统的可靠性分析与优化设计

液压系统的可靠性分析与优化设计液压系统是工业中常见的传动系统之一,其使用广泛,具有传动效率高、传递能力强、结构简单等优点。

液压系统的可靠性是关系到整个工业生产线运作的重要因素之一,因此,通过对液压系统的可靠性进行分析和优化设计,可以有效提高整个生产线的工作效率和稳定性。

一、液压系统的可靠性分析液压系统的可靠性是指在规定的条件下,液压系统连续运行的时间。

液压系统的可靠性与该系统的结构、设计参数、质量、工况及运维等多个方面有关。

1.系统结构液压系统结构的合理性是决定其可靠性的重要因素之一。

液压系统的结构合理性表现在以下方面:(1)系统结构简单,易于操作和维护;(2)系统连接件数量少,连接方式可靠;(3)系统中的元器件结构紧凑,防尘、防水、防潮等维护措施得当;(4)系统配有过载保护、过压保护、过流保护等保护装置,能够承受与其设计负荷相符合的高负荷工况。

2.设计参数设计参数的合理性对液压系统的可靠性也有很大影响。

设计参数的合理性体现在以下几个方面:(1)工作压力的选择:设计应考虑系统的最大压力、工作压力等;(2)流量设计:液压系统的流量设计应该保证其系统的正常工作;(3)系统容积:液压系统容积和缸径等设计要符合要求,且不得过大;(4)系统元器件布局:元器件布局的合理性对系统性能影响很大,不当的布局不仅影响流体流动,也会导致系统能量损失增加、成本提高、易磨损等问题。

3.质量液压系统各零部件的质量、材料和制造工艺直接影响系统的可靠性和寿命。

首先要保证选用的零部件是卓越的,以便在恶劣的工作环境下能够正常工作;其次要保证制作工艺和安装质量好,从而保证系统的可靠性提高。

4.工作环境工作环境是液压系统可靠性的重要因素之一。

在某些恶劣环境下,机器和元器件容易受到腐蚀、磨损,影响其可靠性,甚至短期内导致系统故障。

因此,应对液压系统工作环境做好充足的保护,包括遮阳、防尘、隔水等。

二、液压系统的优化设计在了解液压系统可靠性因素的前提下,对液压系统进行优化设计可以进一步提高系统的可靠性和稳定性。

液压缸同步回路原理

液压缸同步回路原理

液压缸同步回路原理
液压缸同步回路是一种用于控制多个液压缸同时运动的系统。

其原理是通过将多个液压缸连接在同一个液压回路中,使它们受到相同的压力和流量控制,从而实现同步运动。

液压缸同步回路通常包括以下组成部分:
1. 液压源:提供压力和流量的液压泵或液压发生器。

2. 液压阀:控制液压流量和压力的阀门,包括流量阀、压力阀、方向阀等。

3. 液压缸:转换液压能为机械能的执行元件。

4. 传感器:用于监测液压缸位置、速度和力等参数的传感器,包括位移传感器、速度传感器、压力传感器等。

液压缸同步回路的控制原理是通过液压阀控制液压流量和压力,使多个液压缸受到相同的控制信号,从而实现同步运动。

当液压泵提供压力和流量时,液压阀根据控制信号调节液压流量和压力,使多个液压缸受到相同的作用力,从而实现同步运动。

传感器监测液压缸的运动状态,将反馈信号送回控制系统,以实现闭环控制。

液压缸同步回路广泛应用于各种工业机械、冶金设备、船舶装备等领域,可以有效提高工作效率和生产质量。

液压同步 偏载

液压同步 偏载

液压同步偏载
液压同步偏载是液压系统中的一个常见问题,通常发生在多缸液压系统中。

当系统中的各个液压缸由于各种原因(如负载不均、摩擦力差异、泄漏等)产生速度差异时,就会发生偏载现象。

偏载会导致液压系统的不稳定,影响系统的正常运行。

为了解决这个问题,可以采取以下措施:
1. 优化设计:在设计阶段充分考虑各种因素,如负载分配、摩擦力、泄漏等,以确保液压缸的同步性能。

2. 选用高精度元件:选择高精度、低摩擦的液压元件,如高质量的密封圈、低阻力的油管等,以减小摩擦力和泄漏对同步性能的影响。

3. 增加调速阀:在每个液压缸的进油路上安装调速阀,通过调节流量来控制每个液压缸的速度。

4. 使用比例阀:比例阀可以根据输入信号的大小来控制输出流量的大小,从而实现液压缸的同步控制。

5. 引入补偿机制:在液压系统中引入补偿机制,如采用流量补偿、压力补偿等方式,以减小由于负载不均、泄漏等因素对同步性能的影响。

以上信息仅供参考,如有疑问,建议咨询专业人士获取解答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解决机械设计中四只油缸工作同步的有效方法在机械行业液压系统设计中,长期以来,一套液压站油路控制四只相同油缸工作中的同步,是一项比较难以解决的难题。

本人在公司机械产品设计中,设计了一套液压站及油管布线图,在联接液压站阀块与机械上油缸的管路系统上新增采用了同步阀,终于解决了这一难题。

现提供液压站油路控制四只相同油缸工作中的同步,与大家交流,供参考。

1.在油管路上,设计增加了3只同步阀(见下图)。

同步阀规格的选用,视油管孔径及油管接头规格,可上网查找相应的同步阀。

2.在机械产品的油管路设计上,要用相同规格的无缝钢管,即使用油管内径相同的油管。

3.从液压站阀块出油口接头至同步阀1后,从同步阀1两出油口至同步阀2和同步阀3的进油口油管长度要相等,油管需弯曲时,控制弯曲半径相等。

4.从同步阀2和同步阀3的出油口至4只油缸的上腔进口的油管长度要相等,油管需弯曲时,控制弯曲半径相等。

5.从4只油缸的下腔出油口的油管至液压站阀块进油口的长度要相等,油管需弯曲时,控制弯曲半径相等。

6.同步阀在出厂之前,均已调试好,在按上述5点要求安装好后,即可进行调试,在调试时,一般同步阀不需调整,即可达到4只油缸同步的目的,如四只相同油缸工作中还有差异,则对同步阀进行微调,就可达到四只相同油缸工作同步的要求。

7.根据以上原理,可方便解决2只油缸、3只油缸……N只油缸工作的同步问题。

1、两个油缸外载荷的偏差,如两个液压油缸的阻力不同、摩擦力不同会导致不平衡。

其中阻力小的油缸位移量就会大一些。

2、内部摩擦力的不同,如每个油缸的活塞与油缸之间,活塞杆与密封件之间的摩擦里的差距导致油缸不同步。

3、两个油缸的输油管路上液压油沿程阻力的不同导致油缸出现不同步。

4、控制原件调整的偏差导致流量的偏差出现不同步,如每个油缸使用独立的节流阀会出现进出油的流量的差别影响到两个油缸的同步。

5、被支撑件的油缸支撑点最初就已经出现偏差,即初始状态就是偏斜的。

6、液压油缸使用时间过长后出现活塞与油缸之间内泄漏导致双油缸不同步。

双油缸运行不同步的解决办法:
7、机械刚性同步与机械传动同步
机械刚性同步是将被驱动件制造成具有足够刚度的结构,当油缸出现不同步现象时靠其自身的较强的刚度来实现同步。

这种方式只有在结构设计条件许可的条件下进行。

机械传动同步是将被驱动件在条件许可时采用齿轮或齿条的附属设施实现双油缸的同步。

8、回路中使用节流阀
采用节流阀后可以分别调整两个油缸的进出口的液压油流量,达到调整两个油缸速度的目的。

最终实现两个油缸同步的调整。

优点是比较简单。

缺点是同步效果不佳。

调整后同步的偏差仍然比较大。

9、在液压回路中使用分流阀与集流阀或者调速阀
分流阀与集流阀或者调速阀调整两个油缸的同步效果要比采用节流阀好一些。

这是因为分流阀与集流阀或者调速阀对流量的控制相对准确。

10、两个液压油缸分别使用独立定量泵供油实现双缸同步
采用两个油泵分别驱动两个油缸,由于两个油泵的流量相等。

两个油缸
之间的进出油缸的液压油不受相互牵连。

尽管载荷有所不同,但在流量相同的条件下可以实现同步。

11、回路中采用同步马达实现双油缸同步
供油的同步马达是能够相对准确分配流量的液压控制元件。

液压油通过同步马达后实现对两个油缸均分。

采用同步马达能够比较精确的实现双油缸的同步。

12、采用同步油缸实现双油缸同步在液压回路中增加一个油缸使之与另两个工作油缸实现串联而实现两个工作油缸的同步。

在这个系统中所使用的实现双液压油缸同步的油缸是与原承载两个油缸相同的油缸。

而在这个油缸里的油永远不会回到油箱。

所以,中间油缸需要认真排气与补油。

通过中间油缸与两个承载油缸的连接实现力的传递和位移的传递。

但此时所需要的油泵的流量仅仅是前述几个系统小一半,而压力应是前述系统的两倍。

13、使用位置传感器测量行程位置并通过电气控制系统实现闭环控制的同步
通过电气的方式测量两个油缸的相对位置偏差,当出现偏差时调整进入每个油缸的液压油的流量来控制不同步的大小。

例如,一个油缸速度慢了可以通过电气控制另一个油缸减速。

当两个油缸达到或接近同步位置时两个油缸再同时前进。

整个过程为连续检测连续调整的过程。

在控制原理上是测量两个油缸的位置,将测量位置信号结果送入计算机,计算机判断结果,然后计算机根据这个结果调整油缸的位置行程,从而实现了双液压油缸运行同步的目的。

相关文档
最新文档