函数的基本性质单调性与最大小值学案2新人教版必修1
人教版高一数学必修1第一章《函数的基本性质——单调性与最大(小)值》学案
§1.3.1 单调性与最大(小)值班级 姓名 成绩学习目标:1.通过对初中已学习过的函数(特别是二次函数)图象的观察,分析,逐步理解函数的单调性及其几何意义。
2.能根据图像的升降特征,划分函数的区间;理解增(减)函数的定义,会证明函数在指定区间上的单调性。
学习重点:函数的单调性及其几何意义; 学习难点:函数的单调性的符号语言表示,;自主预习 一、知识梳理阅读课本P27-31,完成下列题目: 1、增函数的定义:如果对于定义域I 内 的 两个自变量的值12,x x ,当12x x <时,都有 ,那么就说函数()f x 在区间D 上是 ,称函数()y f x =在这一区间上具有(严格的)单调性,区间D 叫作的单调 。
2、减函数的定义:如果对于定义域I 内 的 两个自变量的值12,x x ,当12x x <时,都有 ,那么就说函数()f x 在区间D 上是 ,称函数()y f x =在这一区间上具有(严格的)单调性,区间D 叫作的单调 。
3、函数的最大值设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有 ;(2)存在0x I ∈,使得 ,则称M 是函数()y f x =的最大值; 4、函数的最小值设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有 ;(2)存在0x I ∈,使得 ,则称M 是函数()y f x =的最小值;二、自我检测:1、常见函数的图象以及函数值变化① 一次函数y =kx +b (k ≠0)的图象是 ,1)当 时,图象呈 趋势,表示y 随着x 的增大而增大; 2)当 时,图象呈 趋势,表示y 随着x 的增大而减小;②二次函数y=ax ²+bx +c= a (x +a b 2)²-aac b 442-(a ≠0)的图象是 ;1) 当a >0时,抛物线的开口向上,在对称轴的左边,函数图象呈 趋势,表示y 随着x 的增大而 ;在对称轴的右边,函数图象呈 趋势,表示y 随着x 的增大而 ;2) 当a <0时,抛物线的开口向上,在对称轴的左边,函数图象呈 趋势,表示y 随着x 的增大而 ;在对称轴的右边,函数图象呈 趋势,表示y 随着x 的增大而 ③ 反比例函数)0(≠=k xky 的图象是 ; 1) 当k >0时,在每个象限内,函数的图象呈 趋势,表示y 随着x 的增大而 ; 2) 当k <0时,在每个象限内,函数的图象呈 趋势,表示y 随着x 的增大而2、如图,定义在定义域]5,5[-上的函数)(x f y =,则该函数的 单调递增区间是 ; 单调递减区间是 ;3、函数)(x f y =([]22x ∈-,)的图象如右图所示,则函数()f x 的 最大值和最小值分别是 、 。
高中数学人教A版 必修1《3.2.1函数的单调性与最大(小)值》教案 Word
四、教学过程
教学
环节
教学内容设计意图
情境引入
课堂探究通过观察生活中熟悉的事物,引入本节新课。
提高学生概括、推理的能力。
通过思考,观察函数的图象,从特殊到一般,归纳总结最值的定义,提高学生的解决问题、分析问题的能力。
得出定义
类比定义类比得出最小值定义
函数最值的几何意义
常见题型
通过实际问题让学生明白怎样求二次函数在整个定义域上的最值以及利用函数的单调性求函数的最值,提高学生解决问题的能力,进一步掌握单调性与最值的关系。
课堂
小结
通过总结,
让学生进
一步巩固
本节所学
内容,提高
概括能力,
板书设计
课后练习
、
课后提高学生的数学运算能力和逻辑推理能力。
通过练习。
新教材2020-2021学年高中数学人教A版第一册学案:3.2.1 第1课时函数的单调性含解析
新教材2020-2021学年高中数学人教A版必修第一册学案:3.2.1 第1课时函数的单调性含解析3.2函数的基本性质3.2。
1单调性与最大(小)值第1课时函数的单调性[目标]1.记住函数的单调性及其几何意义,会证明简单函数的单调性;2。
会用函数的单调性解答有关问题;3.记住常见函数的单调性.[重点] 函数的单调性定义及其应用;常见函数的单调性及应用;函数单调性的证明.[难点]函数单调性定义的理解及函数单调性的证明.知识点一增函数与减函数的定义[填一填]一般地,设函数f(x)的定义域为I,区间D⊆I:如果∀x1,x2∈D,当x1〈x2时,都有f(x1)〈f(x2),那么就称函数f(x)在区间D上单调递增.特别地,当函数f(x)在它的定义域上单调递增时,我们就称它是增函数.如果∀x1,x2∈D,当x1<x2时,都有f(x1)〉f(x2),那么就称函数f(x)在区间D上单调递减.特别地,当函数f(x)在它的定义域上单调递减时,我们就称它是减函数.[答一答]1.在增函数与减函数的定义中,能否把“∀x1,x2∈D"改为“∃x1,x2∈D”?提示:不能,如图所示:虽然f(-1)〈f(2),但原函数在[-1,2]上不是增函数.2.设x1、x2是f(x)定义域某一个子区间M上的两个变量,如果f(x)满足以下条件,该函数f(x)是否为增函数?(1)对任意x1〈x2,都有f(x1)<f(x2);(2)对任意x1,x2,都有[f(x1)-f(x2)](x1-x2)〉0;(3)对任意x1、x2都有错误!>0.提示:是增函数,它们只不过是增函数的几种等价命题.3.由2推广,能否写出减函数的几个等价命题?提示:减函数(x1,x2∈M)⇔任意x1<x2,都有f(x1)>f(x2)⇔错误! <0⇔[f(x1)-f(x2)]·(x1-x2)〈0.知识点二函数的单调性与单调区间[填一填]如果函数y=f(x)在区间D上单调递增或单调递减,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.[答一答]4.函数的单调区间与其定义域是什么关系?提示:函数的单调性是对函数定义域内的某个子区间而言的,故单调区间是定义域的子集.5.函数f(x)=错误!的单调减区间是(-∞,0)∪(0,+∞)吗?提示:不是.例如:取x1=1,x2=-1,则x1>x2,这时f(x1)=f (1)=1,f(x2)=f(-1)=-1,故有f(x1)〉f(x2).这样与函数f(x)=错误!在(-∞,0)∪(0,+∞)上单调递减矛盾.事实上,f(x)=错误!的单调减区间应为(-∞,0)和(0,+∞).知识点三常见函数的单调性[填一填]1.设一次函数的解析式为y=kx+b(k≠0),当k〉0时,函数y =kx+b在R上是增函数;当k<0时,函数y=kx+b在R上是减函数.2.设二次函数的解析式为y=ax2+bx+c(a≠0).若a>0,则该函数在错误!上是减函数,在错误!上是增函数.若a<0,则该函数在错误!上是增函数,在错误!上是减函数.3.设反比例函数的解析式为y=错误!(k≠0).若k〉0,则函数y=错误!在(-∞,0)上是减函数,在(0,+∞)上也是减函数;若k 〈0,则函数y=错误!在(-∞,0)上是增函数,在(0,+∞)上也是增函数.[答一答]6.函数y=x2-x+2的单调区间如何划分?提示:函数在错误!上是减函数,在错误!上是增函数.类型一判断或证明函数的单调性[例1]证明:函数y=x+错误!在(0,3]上递减.[证明]设0<x1<x2≤3,则有y1-y2=错误!-错误!=(x1-x2)-错误!=(x1-x2)错误!。
人教A版高中数学必修一函数的基本性质单调性与最大小值学案新人教
1.3.1 单调性与最大(小)值(2)学案目的:使学生进一步掌握函数的单调性,理解函数的最大值和最小值的意义,会求函数的最大值和最小值。
重点:求函数的最大值和最小值。
难点:求函数的最大值和最小值。
过程:一、新课引入二、新课f(x)=x2有最低点,这时x=0,f(0)=0,对于任意的x都有f(x)≥f(0)这个最低点的函数值就是函数的最小值。
f(x)=x无最低点,无最小值。
思考:f(x)=-x2有最大值还是最小值?一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对任意的x∈I,都有f(x)<M;(2)存在x0∈I,使得f(x0)=M。
那么,我们称M是函数y=f(x)的最大值。
(maximum value)。
你会给出最小值的定义吗?(minimum value)例3、“菊花”烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点(大约在距地面高度25m到30m处)时爆裂。
如果在距地面高度18m的地方点火,并且烟花冲出的速度是14.7m/s。
(1)写出烟花距地面的高度与时间之间的关系式。
(2O 烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少?(精确 到1m )分析:根据物理知识,高度的公式为:h =-21gt 2+v 0t +h 0(g =9.8) 抛物线的顶点坐标为(-a b 2,a b ac 442-) 例4、求函数12-=x y 在区间[2,6]上的最大值和最小值。
分析:画出它的图象可知,函数在所给的区间上是递减的,因此在两个端点上分 别取得最大值和最小值。
解题过程中,可先证明它在给定的区间上是减函数。
解:设x 1、x 2是区间[2,6]上的任意两个数,且x 1<x 2,则f(x 1)-f(x 2)=121221---x x =)1)(1()(22112---x x x x 则2<x 1<x 2<6得:012>-x x ,)1)(1(21--x x >0所以,f(x 1)>f(x 2),因此,函数12-=x y 在区间[2,6]上是减函数。
人教课标版高中数学必修一《函数单调性与最大(小)值(第2课时)》教案(1)-新版
1.3.1 第二课时 函数的最大(小)值一、教学目标(一)核心素养教材以二次函数2()f x x =图象为例,观察出函数图象的最低点(0,0),这给我们提供了一种求函数最值的方法“图象观察法”,这也是一种最直接,最直观的方法.结合上一课时函数的单调性,学生通过函数图象,研究函数性质,寻求最值.在实际生活中,常遇到最值问题,我们是通过建立函数模型来进行研究,体现了数学与社会生活紧密联系.本节课,在探究函数的最值问题中,不断培育学生的数学运算、数学抽象、数学建模等数学核心素养.(二)学习目标1.通过函数图象,理解函数最大(小)值及几何意义.2.结合函数单调性求最大(小)值.3.函数最大(小)值的实际问题中的应用.(三)学习重点1.理解函数最大(小)值的概念及几何意义.2.求函数的最大(小)值.(四)学习难点结合函数单调性求最大(小)值.二、教学设计(一)课前设计1.预习任务一般地,设函数()f x 的定义域为I ,如果存在实数M 满足:(1)对任意的x I ∈,都有______;(2)存在0x I ∈,使得_______,那么我们称M 是函数()y f x =的最____值. 详解:()f x M ≤;0()f x M =;大或 ()f x M ≥;0()f x M =;小.2.预习自测(1)作函数22y x x =-+的图象,指出函数是否有的最值?若有,请求出最值.详解:有最大值,无最小值;最大值为1.(二)课堂设计1.知识回顾(1)常见初等函数的图象.(2)函数的单调性.2.问题探究探究一 通过函数图象,函数最高(低)点的位置特征及几何意义●活动① 学生作函数y x =,1y x=,2y x =图象,观察图象的最高(低)点生:y x =图象上下无限延伸,没有最高点,也没有最低点;1y x=图象上下无限延伸,没有最高点,也没有最低点,且中间断开; 2y x =图象往上无限延伸,没有最高点,最低点在(0,0)处;师:结合图像观察结论,能否阐述函数图象最高(低)点的位置特质及几何意义? 生:2y x =图象最低点在(0,0)处.仔细观察发现,位置特征:最低点位于函数图象上,不是图像外的其他点;几何意义:函数图象上所有点在坐标系中的位置都高于它或和它一样高(最低点本身).【设计意图】观察图象易找到最高(低)点,教学时对最高(低)点的位置特征、几何意义进行探究,展现数学概念生成的过程,培养学生严谨的逻辑推理能力. ●活动② 图象的最高(低)点所体现的函数对应关系本质师:点之间位置高度的如何量化,更显数学的严谨性.由第一课时函数单调性推导,我们在描述()f x 随着x 的增大而增大,任取点11(,)A x y 到22(,)B x y ,其中12x x <刻画x 的增大,因此,我们是借助于点的坐标来探究.同学们可以想一想:在坐标系中,图象的点的高度,是由构成图象点的纵坐标决定的.师:下面以2y x =图象最低点在(0,0)O 为例,探究函数对应关系本质图象上其他点的位置不低于点O⇔图象上任意点(,)Q x y 位置不低于点(0,0)O⇔任意点(,)Q Q Q x y 的纵坐标Q y 的值与(0,0)O 纵坐标O y 的值关系:Q O y y ≥;而任意点(,)Q Q Q x y 的横坐标Q x 的值与(0,0)O 横坐标O x 的关系:,Q O x x R ∈(定义域) ⇔定义域R 内,寻求纵坐标的最小值因此,我们可以下结论:函数图象的最高(低)点(,)Q Q Q x y 的实质是:函数在定义域内任取x 所对应的y 值小于或等于(大于或等于)该点的函数值Q y ;也可以这样描述,函数整个定义域I 内的函数值y 在Q x x =处有最大(小)值Q y ,称Q y 为函数的最大(小)值.关系流程如图:【设计意图】从图象的最高(低)点的“形”,如何过渡到最大(小)值这个“数”,是教学设计的重点.我们从最高(低)点的位置特征,几何意义分析,让学生充分认识到点的坐标,是图象的构成元素点的数量体现,对“形”的认识自然过渡到“数”的分析.点的坐标由横、纵坐标组成,在坐标系中图象上的点投影在x 轴所覆盖的范围、y 轴所覆盖的范围,分别对应了函数的定义域和值域.最高(低)点的横、纵坐标,在坐标系中该点投影在x 轴是其横坐标取值、y 轴上是其纵坐标取值,与其他点投影到y 轴上的值相比较,是最大(小)值,同时该点横、纵坐标分别对应了定义域内某个值,值域内的最大(小)值.●活动③函数最大(小)值的概念师:由以上的推导,我们能否生成函数最大(小)值的概念?生:存在某个值使得所有函数值都比它大(小)也可相等.师:由几何特征,这个值在值域中吗?请继续完善.生:这个值在值域中.值域中存在某个值,使得所有函数值都比它大(小). 师:函数定义域优先,值域中某个值是否有一个x 与之对应?生:至少有一个x 与之对应,即存在性.师:一般地,设函数()f x 的定义域为I ,如果存在实数M 满足:(1)对任意的x I ∈,都有()f x M ≤(()f x M ≥);(2)存在0x I ∈,使得0()f x M =,那么我们称M 是函数()y f x =的最大(小)值.【设计意图】学生要充分认识图象的最高(低)点的位置、该点坐标形式、坐标的对应实质这三者之间的联系,才能从“形”的位置特征及几何意义,到“数”对应方式,呈现了函数最大(小)值概念的生成过程.探究二 结合函数单调性求最大(小)值●活动①由图象观察函数最值.例1已知函数()11f x x x =++-.(1)画出()f x 的图象;(2)根据图象写出()f x 的最小值.【知识点】函数单调性 最值.【数学思想】数形结合思想.【解题过程】(1)解:()11f x x x =++-2,12,112,1x x x x x -≤-⎧⎪=-<<⎨⎪≥⎩其图象如图所示:(2)由图象,得函数()f x 的最小值为2.【思路点拨】画出函数()y f x =的图象,依据函数最值的几何意义,借助图象写出最值.【答案】(1)略;(2)2.同类训练 如图为函数()y f x =,[4,7]x ∈-的图象,指出它的最大值、最小值.【知识点】函数单调性.【数学思想】数形结合思想.【解题过程】观察函数图象可以知道,图象上位置最高的点是(3,3),最低的点是( 1.5,2)--,所以当3x =时取得最大值,最大值是3;当 1.5x =-时取得最小值,最小值是-2.【思路点拨】从左至右观察图象,在最高(低)点对应的纵坐标值,为函数的最大(小)值.【答案】3,-2.【设计意图】考查学生如何观察函数最值●活动②利用函数单调性求最值例2:求函数21y x =-在区间[2,6]上的最大值和最小值. 【知识点】函数单调性 最值.【数学思想】数形结合思想.【解题过程】解:12,[2,6]x x ∀∈,且12x x <211212122()22()()11(1)(1)x x f x f x x x x x --=-=----, 12,[2,6]x x ∈,12(1)(1)0x x ∴-->.12x x <,120x x ∴->,12()()0f x f x ∴->,即12()()f x f x >.21y x ∴=-是区间[2,6]上的减函数. 因此,函数21y x =-在区间[2,6]的两个端点分别取得最大值与最小值,即在2x =时取得最大值,最大值为2,在6x =时取得最小值,最小值为0.4.【思路点拨】由图象可观察函数单减,在2x =处有最大值,在6x =处有最小值.在实际解答题中,能说明函数的单调性应先证明,再求最值.【答案】2,0.4.同类训练 求函数4()f x x x=+在[1,2]x ∈上的最大值与最小值. 【知识点】函数单调性.【数学思想】数形结合思想.【解题过程】解:12,[1,2]x x ∀∈,且12x x <,则121212121212444()()()()()x x f x f x x x x x x x x x --=+-+=-. 12x x <,120x x ∴-<,1212,[1,2](1,4)x x x x ∈∴∈,,1212401x x x x ∴-<,>,1212()()0()().f x f x f x f x ∴->,即>4()f x x x∴=+在[1,2]x ∈上是减函数. 从而函数的最大值是(1)145f =+=,最小值是(2)224f =+=.【思路点拨】由函数单调性求最值.【答案】5,4.【设计意图】求函数最值时,首先判定函数在给定区间的单调性,结合函数图象,在区间的端点值处取得最值.●活动③二次函数的最值问题例3求函数2()22f x x ax =-+在[2,4]上的最小值.【知识点】二次函数图象性质.【数学思想】数形结合思想、分类讨论思想.【解题过程】解:函数2()22f x x ax =-+的对称轴是x a =,当2a <时,()f x 在[2,4]上单增,min ()(2)64f x f a ==-,当4a >时,()f x 在[2,4]上单减,min ()(4)188f x f a ==-,当24a ≤≤时,2min ()()2f x f a a ==-.综上所述2min64,2()2,24188,4a a f x a a a a -<⎧⎪=-≤≤⎨⎪->⎩【思路点拨】二次函数在闭区间上求最值,关键是根据图象的对称轴相对于所给区间的位置来确定,对于含字母系数的二次函数的最值,要注意分类讨论.【答案】2min 64,2()2,24188,4a a f x a a a a -<⎧⎪=-≤≤⎨⎪->⎩同类训练 求函数2()22f x x x =-+在[,1]t t +上的最小值.【知识点】二次函数图象性质.【数学思想】数形结合思想、分类讨论思想.【解题过程】解:函数2()22f x x x =-+的对称轴是1x =.当110t t +<⇒<时,()f x 在[,1]t t +上单减,2min ()(1)1f x f t t =+=+; 当1t >时,()f x 在[,1]t t +上单增,2min ()()22f x f t t t ==-+;当1101t t t ≤≤+⇒≤≤时,min ()(1)1f x f ==.综上所述2min21,0()1,0122,1t t f x t t t t ⎧+<⎪=≤≤⎨⎪-+>⎩【思路点拨】二次函数在闭区间上求最值,关键是根据图象的对称轴相对于所给区间的位置来确定,对于含字母系数的二次函数的最值,要注意分类讨论.【答案】2min 21,0()1,0122,1t t f x t t t t ⎧+<⎪=≤≤⎨⎪-+>⎩例4 函数2()34f x x x =--的定义域为[0,]m (0m >),值域为25[,4]4--,求m 的取值范围.【知识点】二次函数图象性质.【数学思想】数形结合思想.【解题过程】解:2()34(4)(1)f x x x x x =--=-+如图min 325()()24f x f ==-,错误!未找到引用源。
人教版高中数学必修一《集合与函数概念》之《函数的单调性与最大(小)值》学案
1.3.1单调性与最大(小)值(二)自主学习1.通过对一些熟悉函数图象的观察、分析,理解函数最大值、最小值的定义.2.会利用函数的单调性求函数的最值.1.函数的最大值、最小值的定义一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:(1)对于任意的x ∈I ,都有f (x )≤M (f (x )≥M );(2)存在x 0∈I ,使得f (x 0)=M .那么,称M 是函数y =f (x )的最大值(最小值).2.函数f (x )=x 2+2x +1 (x ∈R )有最小值,无最大值.若x ∈[0,1],则f (x )最大值为4,最小值为1.3.函数f (x )=1x在定义域上无最值.(填“有”或“无”)对点讲练利用单调性求函数最值【例1】 已知函数f (x )=x 2+2x +3x(x ∈[2,+∞)), (1)求f (x )的最小值; (2)若f (x )>a 恒成立,求a 的取值范围.分析 求最值问题往往依赖于函数的单调性,由于这个函数并不是我们所熟悉的函数,可考虑先判断一下单调性,再求最值.解 (1)任取x 1,x 2∈[2,+∞),且x 1<x 2,f (x )=x +3x+2, 则f (x 1)-f (x 2)=(x 1-x 2)⎝⎛⎭⎫1-3x 1x 2∵x 1<x 2,∴x 1-x 2<0又∵x 1≥2,x 2>2,∴x 1x 2>4,1-3x 1x 2>0∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).故f (x )在[2,+∞)上是增函数.∴当x =2时,f (x )有最小值,即f (2)=112. (2)∵f (x )最小值为f (2)=112, ∴f (x )>a 恒成立,只须f (x )min >a ,即a <112. 规律方法 运用函数单调性求最值是求函数最值的重要方法,特别是当函数图象不好作或作不出来时,单调性几乎成为首选方法.另外f (x )>a 恒成立,等价于f (x )min >a ,f (x )<a 恒成立,等价于f (x )max <a .变式迁移1 求函数f (x )=x x -1在区间[2,5]上的最大值与最小值;若f (x )<a 在[2,5]上恒成立,求a 的取值范围.解 任取2≤x 1<x 2≤5,则f (x 1)=x 1x 1-1,f (x 2)=x 2x 2-1, f (x 2)-f (x 1)=x 2x 2-1-x 1x 1-1=x 1-x 2(x 2-1)(x 1-1), ∵2≤x 1<x 2≤5,∴x 1-x 2<0,x 2-1>0,x 1-1>0.∴f (x 2)-f (x 1)<0.∴f (x 2)<f (x 1).∴f (x )=x x -1在区间[2,5]上是减函数. ∴f (x )max =f (2)=22-1=2. f (x )min =f (5)=55-1=54. f (x )<a 恒成立,等价于a >f (x )max ,即a >2.闭区间上二次函数的最值问题【例2】 函数f (x )=x 2-4x -4在闭区间[t ,t +1](t ∈R )上的最小值记为g (t ).(1)试写出g (t )的函数表达式;(2)作g (t )的图象并写出g (t )的最小值.分析 本题需要先求f (x )的最小值,关键是分析其对称轴x =2与区间[t ,t +1]的位置关系.解 (1)f (x )=x 2-4x -4=(x -2)2-8.当t >2时,f (x )在[t ,t +1]上是增函数,∴g (t )=f (t )=t 2-4t -4;当t ≤2≤t +1,即1≤t ≤2时,g (t )=f (2)=-8;当t +1<2,即t <1时,f (x )在[t ,t +1]上是减函数,∴g (t )=f (t +1)=t 2-2t -7.从而g (t )=⎩⎪⎨⎪⎧ t 2-2t -7 (t <1),-8 (1≤t ≤2),t 2-4t -4 (t >2).(2)g (t )的图象如图所示,由图象易知g (t )的最小值为-8.规律方法 (1)含有参数的二次函数的值域与最值问题,主要考虑其顶点(对称轴)与定义域区间的位置关系,由此进行分类讨论.(2)二次函数的对称轴与定义域区间的位置通常有三种关系:①定义域区间在对称轴右侧;②定义域区间在对称轴左侧;③定义域区间在对称轴的两侧.变式迁移2 求f (x )=x 2-2ax -1在区间[0,2]上的最大值和最小值.解 f (x )=(x -a )2-1-a 2,对称轴为x =a .①当a <0时,由图①可知,f (x )min =f (0)=-1,f (x )max =f (2)=3-4a .②当0≤a <1时,由图②可知,f (x )min =f (a )=-1-a 2,f (x )max =f (2)=3-4a .③当1≤a ≤2时,由图③可知,f (x )min =f (a )=-1-a 2,f (x )max =f (0)=-1.④当a >2时,由图④可知,f (x )min =f (2)=3-4a ,f (x )max =f (0)=-1.1.求函数的最值,若能作出函数的图象,由最值的几何意义不难得出.2.运用函数的单调性求最值是求最值的重要方法,特别是函数图象作不出来时,单调性几乎成为首选方法.3.探求二次函数在给定区间上的最值问题,一般要先作出y =f (x )的草图,然后根据图象的增减性进行研究.特别要注意二次函数的对称轴与所给区间的位置关系,它是求解二次函数在已知区间上最值问题的主要依据,并且最大(小)值不一定在顶点处取得.课时作业一、选择题1.函数f (x )=2x 2-6x +1在区间[-1,1]上的最小值为( )A .9B .-3 C.74 D.114答案 B2.函数f (x )(-2≤x ≤2)的图象如图所示,则函数的最大值,最小值分别为( )A .f (2),f (-2)B .f ⎝⎛⎭⎫12,f (-1)C .f ⎝⎛⎭⎫12,f ⎝⎛⎭⎫-32D .f ⎝⎛⎭⎫12,f (0) 答案 C3.函数f (x )=⎩⎪⎨⎪⎧2x +6, x ∈[1,2],x +7, x ∈[-1,1)则f (x )的最大值与最小值分别为( ) A .10,6 B .10,8C .8,6D .以上都不对答案 A解析 画图象可知.4.函数f (x )=11-x (1-x )的最大值是( ) A.45 B.54 C.34 D.43答案 D解析 f (x )=1⎝⎛⎭⎫x -122+34≤43. 5.函数y =|x -3|-|x +1|的( )A .最小值是0,最大值是4B .最小值是-4,最大值是0C .最小值是-4,最大值是4D .没有最大值也没有最小值答案 C解析 y =|x -3|-|x +1|=⎩⎪⎨⎪⎧ -4 (x ≥3)-2x +2 (-1≤x <3)4 (x <-1)作出图象可求. 二、填空题6.函数y =-x 2+6x +9在区间[a ,b ](a <b <3)有最大值9,最小值-7,则a =________,b =__________.答案 -2 0解析 y =-(x -3)2+18,∵a <b <3,∴在区间[a ,b ]上单调递增,即-b 2+6b +9=9,得b =0,-a 2+6a +9=-7,得a =-2.7.已知f (x )=x 2+2(a -1)x +2在区间[1,5]上的最小值为f (5),则a 的取值范围为________.答案 a ≤-4解析 由对称轴方程为x =1-a ,∵区间[1,5]上的最小值为f (5),∴1-a ≥5,得a ≤-4.8.若定义运算a ⊙b =⎩⎪⎨⎪⎧b ,a ≥b a ,a <b ,则函数f (x )=x ⊙(2-x )的值域是________. 答案 (-∞,1]解析 由题意知x ⊙(2-x )表示x 与2-x 两者中的较小者,借助y =x 与y =2-x 的图象,不难得出,f (x )的值域为(-∞,1].三、解答题9.已知函数f (x )=x 2+2ax +2,x ∈[-5,5].(1)当a =-1时,求函数f (x )的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数.解 (1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1,∵x ∈[-5,5],故当x =1时,f (x )的最小值为1.当x =-5时,f (x )的最大值为37.(2)函数f (x )=(x +a )2+2-a 2图象的对称轴为x =-a .∵f (x )在[-5,5]上是单调的,∴-a ≤-5,或-a ≥5.即实数a 的取值范围是a ≤-5,或a ≥5.10.已知函数f (x )=x 2+2x +a x,x ∈[1,+∞). (1)当a =12时,求函数f (x )的最小值; (2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.解 (1)当a =12时,f (x )=x +12x+2 设1≤x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+12x 1+2-⎝⎛⎭⎫x 2+12x 2+2 =(x 1-x 2)+⎝⎛⎭⎫12x 1-12x 2=(x 1-x 2)+x 2-x 12x 1x 2=(x 1-x 2)(2x 1x 2-1)2x 1x 2, ∵1≤x 1<x 2,∴x 1-x 2<0,2x 1x 2-1>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴函数f (x )在[1,+∞)上为增函数.∴f (x )min =f (1)=72. (2)方法一 在区间[1,+∞)上,f (x )=x 2+2x +a x>0恒成立,等价于x 2+2x +a >0恒成立. 设y =x 2+2x +a ,x ∈[1,+∞),y =x 2+2x +a =(x +1)2+a -1递增,∴当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时,函数f (x )恒成立,故a >-3.方法二 在区间[1,+∞)上f (x )=x 2+2x +a x>0恒成立等价于x 2+2x +a >0恒成立.即a >-x 2-2x 恒成立.又∵x ∈[1,+∞),a >-x 2-2x 恒成立,∴a 应大于函数u =-x 2-2x ,x ∈[1,+∞)的最大值.∴a>-x2-2x=-(x+1)2+1.当x=1时,u取得最大值-3,∴a>-3.。
高中数学新教材人教A版必修第一册学案:3.2函数的基本性质Word版含答案
【新教材】3.2.1 单调性与最大(小)值(人教A版)1、理解增函数、减函数的概念及函数单调性的定义;2、会根据单调定义证明函数单调性;3、理解函数的最大(小)值及其几何意义;4、学会运用函数图象理解和研究函数的性质.重点:1、函数单调性的定义及单调性判断和证明;2、利用函数单调性或图像求最值.难点:根据定义证明函数单调性.一、预习导入阅读课本76-80页,填写。
1.增函数、减函数的定义2、单调性与单调区间如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间上具有(严格的)________,区间D叫做y=f(x)的________.[点睛] 一个函数出现两个或者两个以上的单调区间时,不能用“∪”连接,而应该用“,”连接.如函数y=1x在(-∞,0),(0,+∞)上单调递减,却不能表述为:函数y=1x在(-∞,0)∪(0,+∞)上单调递减.3、函数的最大(小)值1.判断(正确的打“√”,错误的打“×”)(1)所有的函数在其定义域上都具有单调性.( )(2)在增函数与减函数的定义中,可以把“任意两个自变量”改为“存在两个自变量”.( )(3)任何函数都有最大值或最小值.( )(4)函数的最小值一定比最大值小.( )2.函数y=f(x)的图象如图所示,其增区间是( )A.[-4,4] B.[-4,-3],[1,4]C.[-3,1] D.[-3,4]3.函数y=f(x)在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是( )A .-1,0B .0,2C .-1,2 D.12,2 4.下列函数f (x )中,满足对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)的是( )A .f (x )=x 2B .f (x )=1xC .f (x )=|x |D .f (x )=2x +15.函数f (x )=2x,x ∈[2,4],则f (x )的最大值为______;最小值为________. 题型一 利用图象确定函数的单调区间例1求下列函数的单调区间,并指出其在单调区间上是增函数还是减函数:(1)y=3x-2;(2)y=-1x . 跟踪训练一1. 已知x ∈R,函数f(x)=x|x-2|,试画出y=f(x)的图象,并结合图象写出函数的单调区间.题型二 利用函数的图象求函数的最值例2 已知函数y=-|x-1|+2,画出函数的图象,确定函数的最值情况,并写出值域.跟踪训练二1.已知函数f(x)={1x ,0<x<1,x,1≤x ≤2.(1)画出f(x)的图象;(2)利用图象写出该函数的最大值和最小值.题型三 证明函数的单调性 例3 求证:函数f(x)=x+1x 在区间(0,1)内为减函数. 跟踪训练三1.求证:函数f(x)=21x在(0,+∞)上是减函数,在(-∞,0)上是增函数. 题型四 利用函数的单调性求最值例4 已知函数f(x)=x+ 4x .(1)判断f(x)在区间[1,2]上的单调性;(2)根据f(x)的单调性求出f(x)在区间[1,2]上的最值.跟踪训练四1.已知函数f(x)=6x−1(x∈[2,6],)求函数的最大值和最小值.题型五函数单调性的应用例5已知函数f(x)在区间(0,+∞)上是减函数,试比较f(a2-a+1)与f34⎛⎫⎪⎝⎭的大小.跟踪训练五1.已知g(x)是定义在[-2,2]上的增函数,且g(t)>g(1-3t),求t的取值范围.题型六单调性最值的实际应用例6“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h(单位:m)与时间t(单位:s)之间的关系为h(t)=-4.9t2+14.7t+18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1m)?跟踪训练六1. 某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金为3 600元时,能租出多少辆?(2)当每辆车的月租金为多少元时,租赁公司的月收益最大?最大月收益是多少?1.f(x)对任意两个不相等的实数a,b,总有f(a)−f(b)a−b>0,则必有( )A.函数f(x)先增后减 B.函数f(x)先减后增C.函数f(x)是R上的增函数 D.函数f(x)是R上的减函数2.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)的最小值为-2,则f(x)的最大值为( )A.-1 B.0C.1 D.23.已知函数f(x)=4x2-kx-8在区间(5,20)上既没有最大值也没有最小值,则实数k的取值范围是( ) A.[160,+∞) B.(-∞,40]C.(-∞,40]∪[160,+∞) D.(-∞,20]∪[80,+∞)4.若函数y=f(x)的定义域为R,且为增函数,f (1-a)<f(2a-1),则a的取值范围是。
人教A版《必修1》“1.3.1单调性与最大(小)值(第二课时)”导学案
第1页/共4页 高一数学《必修1》导学案 1.3.1单调性与最大(小)值(二)【使用说明及学法指导】先预习课本P30-P32内容,然后开始做学案。
【课前导学】画出下列函数的图象,根据图象填表,并指出图象的最高点或最低点能体现函数的什么特征?2. 一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:(1)对于任意的x ∈I ,都有f(x)≤M ;(2)存在x 0∈I ,使得f(x 0) = M. 那么,称M 是函数y =f (x )的最 值.3.试给出最小值的定义.“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。
只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。
《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。
其实《国策》中本身就有“先生长者,有德之称”的说法。
可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。
看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。
称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。
【预习自测】1. 函数2()2f x x x =-的最大值是( ).A. -1B. 0C. 1D. 22. 已知函数()f x 的图象关于y 轴对称,且在区间(,0)-∞上,当1x =-时,()f x 有最小值3,则在区间(0,)+∞上,当x = 时,()f x 有最 值为 . 函数 递增区间递减区间 最高点 最低点 ()23f x x =-+()23f x x =-+,[1,2]x ∈-2()21f x x x =++2()21f x x x =++,[2,2]x ∈-3.函数2()32f x x x =++在区间(5,5)-上的最大值、最小值分别是( )(A )42,12 (B )42,14- (C )12,14- (D )最小值14-,无最大值【课中导学】首先独立思考探究,然后合作交流展示探究一:作出函数223y x x =-+的图象,研究当自变量x 在下列范围内取值时的最大值与最小值.(1)10x -≤≤; (2)03x ≤≤ ; (3)(,)x ∈-∞+∞.要练说,得练听。
高中数学 1.3.1单调性与最大(小)值(2)导学案 新人教A版必修1-新人教A版高一必修1数学学案
§1.3.1 单调性与最大(小)值(2)1. 理解函数的最大(小)值及其几何意义;2. 学会运用函数图象理解和研究函数的性质.一、课前准备(预习教材P30~ P32,找出疑惑之处)复习1:指出函数2=++>的单调区间及单调性,并进行证明.f x ax bx c a()(0)复习2:函数2f x ax bx c a=++<的()(0) ()(0)=++>的最小值为,2f x ax bx c a最大值为 .复习3:增函数、减函数的定义及判别方法.二、新课导学※学习探究探究任务:函数最大(小)值的概念思考:先完成下表,新知:设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0) = M.那么,称M是函数y=f(x)的最大值(Maximum Value).试试:仿照最大值定义,给出最小值(Minimum Value)的定义.反思:什么方法可以求最大(小)值?※典型例题例1.一枚炮弹发射,炮弹距地面高度h(米)与时间t(秒)的变化规律是2=-,那h t t1305么什么时刻距离地面的高度达到最大?最大是多少?变式:经过多少秒后炮弹落地?试试:一段竹篱笆长20米,围成一面靠墙的矩形菜地,如何设计使菜地面积最大?小结:数学建模的解题步骤:审题→设变量→建立函数模型→研究函数最大值.例2.求32yx=-在区间[3,6]上的最大值和最小值.变式:求3,[3,6]2xy xx+=∈-的最大值和最小值.小结:先按定义证明单调性,再应用单调性得到最大(小)值.试试:函数2(1)2,[0,1]y x x=++∈的最小值为,最大值为 . 如果是[2,1]x∈-呢?※动手试试练1. 求函数2y x=+最小值.变式:求y x=.三、总结提升※ 学习小结1. 函数最大(小)值定义;.2. 求函数最大(小)值的常用方法:配方法、图象法、单调法.※ 知识拓展求二次函数在闭区间上的值域,需根据对称轴与闭区间的位置关系,结合函数图象进行研究. 例如求2()f x x ax =-+在区间[,]m n 上的值域,则先求得对称轴2a x =,再分2a m <、22a m n m +≤<、22m n a n +≤<、2a n ≥等四种情况,由图象观察得解.1. 函数2()2f x x x =-的最大值是( ).A. -1B. 0C. 1D. 22. 函数|1|2y x =++的最小值是( ).A. 0B. -1C. 2D. 33. 函数y x = ).4. 已知函数()f x 的图象关于y 轴对称,且在区间(,0)-∞上,当1x =-时,()f x 有最小值3,则在区间(0,)+∞上,当x = 时,()f x 有最 值为 .5. 函数21,[1,2]y x x =-+∈-的最大值为 ,最小值为 .1. 作出函数223=-+的简图,研究当自变量x在下列范围内取值时的最大值与最小值.y x x(1)10x∈-∞+∞.≤≤;(3)(,)x-≤≤;(2)03x。
人教A版必修1高中数学学案教案: (3.1 单调性与最大(小)值 第1课时)
1.3 函数的基本性质1.3.1 单调性与最大(小)值整体设计教学分析在研究函数的性质时,单调性和最值是一个重要内容.实际上,在初中学习函数时,已经重点研究了一些函数的增减性,只是当时的研究较为粗略,未明确给出有关函数增减性的定义,对于函数增减性的判断也主要根据观察图象得出,而本小节内容,正是初中有关内容的深化和提高:给出函数在某个区间上是增函数或减函数的定义,明确指出函数的增减性是相对于某个区间来说的,还说明判断函数的增减性既有从图象上进行观察的较为粗略的方法,又有根据定义进行证明的较为严格的方法、最好根据图象观察得出猜想,用推理证明猜想的正确性,这样就将以上两种方法统一起来了.由于函数图象是发现函数性质的直观载体,因此,在本节教学时可以充分使用信息技术创设教学情境,以利于学生作函数图象,有更多的时间用于思考、探究函数的单调性、最值等性质.还要特别重视让学生经历这些概念的形成过程,以便加深对单调性和最值的理解.三维目标1.函数单调性的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程的真谛,学会运用函数图象理解和研究函数的性质.2.理解并掌握函数的单调性及其几何意义,掌握用定义证明函数单调性的步骤,会求函数的单调区间,提高应用知识解决问题的能力.3.通过实例,使学生体会、理解到函数的最大(小)值及其几何意义,能够借助函数图象的直观性得出函数的最值,培养以形识数的解题意识.4.能够用函数的性质解决日常生活中的简单的实际问题,使学生感受到学习函数单调性的必要性与重要性,增强学生学习函数的紧迫感,激发学生学习的积极性.重点难点教学重点:函数的单调性和最值.教学难点:增函数、减函数、奇函数、偶函数形式化定义的形成.课时安排2课时设计方案(一)教学过程第1课时函数的单调性导入新课思路1.德国有一位著名的心理学家名叫艾宾浩斯(Hermann Ebbinghaus,1850~1909),他以自己为实验对象,共做了163次实验,每次实验连续要做两次无误的背诵.经过一定时间后再重学一次,达到与第一次学会的同样的标准.他经过对自己的测试,得到了一些数据.时间间隔t 0分钟20分钟60分钟8~9小时1天2天6天一个月记忆量y(百分100% 58.2% 44.2% 35.8% 33.7% 27.8% 25.4% 21.1% 比)观察这些数据,可以看出:记忆量y是时间间隔t的函数.当自变量(时间间隔t)逐渐增大时,你能看出对应的函数值(记忆量y)有什么变化趋势吗?描出这个函数图象的草图(这就是著名的艾宾浩斯曲线).从左向右看,图象是上升的还是下降的?你能用数学符号来刻画吗?通过这个实验,你打算以后如何对待刚学过的知识?(可以借助信息技术画图象)图1-3-1-1学生:先思考或讨论,回答:记忆量y随时间间隔t的增大而增大;以时间间隔t为x轴,以记忆量y为y轴建立平面直角坐标系,描点连线得函数的草图——艾宾浩斯遗忘曲线如图1-3-1-1所示.遗忘曲线是一条衰减曲线,它表明了遗忘的规律.随着时间的推移,记忆保持量在递减,刚开始遗忘速度最快,我们应利用这一规律,在学习新知识时一定要及时复习巩固,加深理解和记忆.教师提示、点拨,并引出本节课题.思路2.在第23届奥运会上,中国首次参加就获15枚金牌;在第24届奥运会上,中国获5枚金牌;在第25届奥运会上,中国获16枚金牌;在第26届奥运会上,中国获16枚金牌;在第27届奥运会上,中国获28枚金牌;在第28届奥运会上,中国获32枚金牌.按这个变化趋势,2008年,在北京举行的第29届奥运会上,请你预测一下中国能获得多少枚金牌?学生回答(只要大于32就可以算准确),教师:提示、点拨,并引出本节课题.推进新课新知探究提出问题①如图1-3-1-2所示为一次函数y=x,二次函数y=x2和y=-x2的图象,它们的图象有什么变化规律?这反映了相应的函数值的哪些变化规律?图1-3-1-2②函数图象上任意点P(x,y)的坐标有什么意义?③如何理解图象是上升的?④对于二次函数y=x2,列出x,y的对应值表(1).完成表(1)并体会图象在y轴右侧上升.x -4 -3 -2 -1 0 1 2 3 4f(x)=x2表(1)⑤在数学上规定:函数y=x2在区间(0,+∞)上是增函数.谁能给出增函数的定义?⑥增函数的定义中,把“当x1<x2时,都有f(x1)<f(x2)”改为“当x1>x2时,都有f(x1)>f(x2)”,这样行吗?⑦增函数的定义中,“当x1<x2时,都有f(x1)<f(x2)”反映了函数值有什么变化趋势?函数的图象有什么特点?⑧增函数的几何意义是什么?⑨类比增函数的定义,请给出减函数的定义及其几何意义?⑩函数y=f(x)在区间D上具有单调性,说明了函数y=f(x)在区间D上的图象有什么变化趋势?讨论结果:①函数y=x的图象,从左向右看是上升的;函数y=x2的图象在y轴左侧是下降的,在y轴右侧是上升的;函数y=-x2的图象在y轴左侧是上升的,在y轴右侧是下降的.②函数图象上任意点P的坐标(x,y)的意义:横坐标x是自变量的取值,纵坐标y是自变量为x时对应的函数值的大小.③按从左向右的方向看函数的图象,意味着图象上点的横坐标逐渐增大即函数的自变量逐渐增大.图象是上升的意味着图象上点的纵坐标逐渐变大,也就是对应的函数值随着逐渐增大.也就是说从左向右看图象上升,反映了函数值随着自变量的增大而增大.④在区间(0,+∞)上,任取x1、x2,且x1<x2,那么就有y1<y2,也就是有f(x1)<f(x2).这样可以体会用数学符号来刻画图象上升.⑤一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数.⑥可以.增函数的定义:由于当x1<x2时,都有f(x1)<f(x2),即都是相同的不等号“<”,也就是说前面是“<”,后面也是“<”,步调一致;“当x1>x2时,都有f(x1)>f(x2)”都是相同的不等号“>”,也就是说前面是“>”,后面也是“>”,步调一致.因此我们可以简称为:步调一致增函数.⑦函数值随着自变量的增大而增大;从左向右看,图象是上升的.⑧从左向右看,图象是上升的.⑨一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.简称为:步调不一致减函数.减函数的几何意义:从左向右看,图象是下降的.函数值变化趋势:函数值随着自变量的增大而减小.总结:如果函数y=f(x)在区间D上是增函数(或减函数),那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调递增(或减)区间.⑩函数y=f(x)在区间D上,函数值的变化趋势是随自变量的增大而增大(减小),几何意义:从左向右看,图象是上升(下降)的.应用示例思路1例1如图1-3-1-3是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?图1-3-1-3活动:教师提示利用函数单调性的几何意义.学生先思考或讨论后再回答,教师点拨、提示并及时评价学生.图象上升则在此区间上是增函数,图象下降则在此区间上是减函数.解:函数y=f(x)的单调区间是[-5,2),[-2,1),[1,3),[3,5].其中函数y=f(x)在区间[-5,2),[1,3)上是减函数,在区间[-2,1),[3,5]上是增函数.点评:本题主要考查函数单调性的几何意义,以及图象法判断函数单调性.图象法判断函数的单调性适合于选择题和填空题.如果解答题中给出了函数的图象,通常用图象法判断单调性.函数的图象类似于人的照片,我们能根据人的照片来估计其身高,同样我们根据函数的图象可以分析出函数值的变化趋势即单调性.图象法求函数单调区间的步骤是第一步:画函数的图象;第二步:观察图象,利用函数单调性的几何意义写出单调区间.变式训练课本P 32练习1、3.例2物理学中的玻意耳定律p=V k (k 为正常数)告诉我们,对于一定量的气体,当其体积V 减少时,压强p 将增大.试用函数的单调性证明.活动:学生先思考或讨论,再到黑板上书写.当学生没有证明思路时,教师再提示,及时纠正学生解答过程出现的问题,并标出关键的地方,以便学生总结定义法的步骤.体积V 减少时,压强p 将增大是指函数p=Vk 是减函数;刻画体积V 减少时,压强p 将增大的方法是用不等式表达.已知函数的解析式判断函数的单调性时,常用单调性的定义来解决. 解:利用函数单调性的定义只要证明函数p=V k 在区间(0,+∞)上是减函数即可. 点评:本题主要考查函数的单调性,以及定义法判断函数的单调性.定义法判断或证明函数的单调性的步骤是第一步:在所给的区间上任取.两个自变量x 1和x 2,通常令x 1<x 2;第二步:比.较f(x 1)和f(x 2)的大小,通常是用作差比较法比较大小,此时比较它们大小的步骤是作差、变形、看符号;第三步:再.归纳结论.定义法的步骤可以总结为:一“取(去.)”、二“比.”、三“再(赛.)”,因此简称为:“去比赛...”. 变式训练课本P 32练习4.思路2例1(1)画出已知函数f(x)=-x 2+2x+3的图象;(2)证明函数f(x)=-x 2+2x+3在区间(-∞,1]上是增函数;(3)当函数f(x)在区间(-∞,m]上是增函数时,求实数m 的取值范围.图1-3-1-4解:(1)函数f(x)=-x 2+2x+3的图象如图1-3-1-4所示.(2)设x 1、x 2∈(-∞,1],且x 1<x 2,则有f(x 1)-f(x 2)=(-x 12+2x 1+3)-(-x 22+2x 2+3)=(x 22-x 12)+2(x 1-x 2)=(x 1-x 2)(2-x 1-x 2).∵x 1、x 2∈(-∞,1],且x 1<x 2,∴x 1-x 2<0,x 1+x 2<2.∴2-x 1-x 2>0.∴f(x 1)-f(x 2)<0.∴f(x 1)<f(x 2).∴函数f(x)=-x 2+2x+3在区间(-∞,1]上是增函数.(3)函数f(x)=-x 2+2x+3的对称轴是直线x=1,在对称轴的左侧是增函数,那么当区间(-∞,m]位于对称轴的左侧时满足题意,则有m≤1,即实数m 的取值范围是(-∞,1].点评:本题主要考查二次函数的图象、函数的单调性及其应用.讨论有关二次函数的单调性问题时,常用数形结合的方法,结合二次函数图象的特点来分析;二次函数在对称轴两侧的单调性相反;二次函数在区间D 上是单调函数,那么二次函数的对称轴不在区间D 内.判断函数单调性时,通常先画出其图象,由图象观察出单调区间,最后用单调性的定义证明. 判断函数单调性的三部曲:第一步,画出函数的图象,观察图象,描述函数值的变化趋势;第二步,结合图象来发现函数的单调区间;第三步,用数学符号即函数单调性的定义来证明发现的结论.函数的单调性是函数的一个重要性质,是高考的必考内容之一.因此应理解单调函数及其几何意义,会根据定义判断、证明函数的单调性,会求函数的单调区间,能综合运用单调性解决一些问题,会判断复合函数的单调性.函数的单调性与函数的值域、不等式等知识联系极为密切,是高考命题的热点题型.变式训练已知函数f(x)是R 上的增函数,设F(x)=f(x)-f(a-x).(1)用函数单调性定义证明F(x)是R 上的增函数;(2)证明函数y=F(x)的图象关于点(2a ,0)成中心对称图形. 活动:(1)本题中的函数解析式不明确即为抽象函数,用定义法判断单调性的步骤是要按格式书写;(2)证明函数y=F(x)的图象上的任意点关于点(2a ,0)的对称点还是在函数y=F(x)的图象上即可.解:(1)设x 1、x 2∈R ,且x 1<x 2.则F(x 1)-F(x 2)=[f(x 1)-f(a-x 1)]-[f(x 2)-f(a-x 2)]=[f(x 1)-f(x 2)]+[f(a-x 2)-f(a-x 1)].又∵函数f(x)是R 上的增函数,x 1<x 2,∴a -x 2<a-x 2.∴f(x 1)<f(x 2),f(a-x 2)<f(a-x 1).∴[f(x 1)-f(x 2)]+[f(a-x 2)-f(a-x 1)]<0.∴F(x 1)<F(x 2).∴F(x)是R 上的增函数.(2)设点M(x 0,F(x 0))是函数F(x)图象上任意一点,则点M(x 0,F(x 0))关于点(2a ,0)的对称点M′(a -x 0,-F(x 0)).又∵F(a -x 0)=f(a-x 0)-f(a-(a-x 0))=f(a-x 0)-f(x 0)=-[f(x 0)-f(a-x 0)]=-F(x 0),∴点M′(a -x 0,-F(x 0))也在函数F(x)图象上,又∵点M(x 0,F(x 0))是函数F(x)图象上任意一点,∴函数y=F(x)的图象关于点(2a ,0)成中心对称图形. 例2(1)写出函数y=x 2-2x 的单调区间及其图象的对称轴,观察:在函数图象对称轴两侧的单调性有什么特点?(2)写出函数y=|x|的单调区间及其图象的对称轴,观察:在函数图象对称轴两侧的单调性有什么特点?图1-3-1-5(3)定义在[-4,8]上的函数y=f(x)的图象关于直线x=2对称,y=f(x)的部分图象如图1-3-1-5所示,请补全函数y=f(x)的图象,并写出其单调区间,观察:在函数图象对称轴两侧的单调性有什么特点?(4)由以上你发现了什么结论?试加以证明.活动:学生先思考,再回答,教师适时点拨和提示:(1)画出二次函数y=x2-2x的图象,借助于图象解决;(2)类似于(1);(3)根据轴对称的含义补全函数的图象,也是借助于图象写出单调区间;(4)归纳函数对称轴两侧对称区间上的单调性的异同来发现结论,利用轴对称的定义证明.解:(1)函数y=x2-2x的单调递减区间是(-∞,1),单调递增区间是(1,+∞);对称轴是直线x=1;区间(-∞,1)和区间(1,+∞)关于直线x=1对称,而单调性相反.(2)函数y=|x|的单调递减区间是(-∞,0),单调递增区间是(0,+∞);对称轴是y轴即直线x=0;区间(-∞,0)和区间(0,+∞)关于直线x=0对称,而单调性相反.(3)函数y=f(x),x∈[-4,8]的图象如图1-3-1-6.图1-3-1-6函数y=f(x)的单调递增区间是[-4,-1],[2,5];单调递减区间是[5,8],[-1,2];区间[-4,-1]和区间[5,8]关于直线x=2对称,而单调性相反,区间[-1,2]和区间[2,5]关于直线x=2对称,而单调性相反.(4)可以发现结论:如果函数y=f(x)的图象关于直线x=m对称,那么函数y=f(x)在直线x=m 两侧对称单调区间内具有相反的单调性.证明如下:不妨设函数y=f(x)在对称轴直线x=m的右侧一个区间[a,b]上是增函数,区间[a,b]关于直线x=m的对称区间是[2m-b,2m-a].由于函数y=f(x)的图象关于直线x=m对称,则f(x)=f(2m-x).设2m-b≤x1<x2≤2m-a,则b≥2m-x1>2m-x2≥a,f(x1)-f(x2)=f(2m-x1)-f(2m-x2).又∵函数y=f(x)在[a,b]上是增函数,∴f(2m-x1)-f(2m-x2)>0.∴f(x1)-f(x2)>0.∴f(x1)>f(x2).∴函数y=f(x)在区间[2m-b,2m-a]上是减函数.∴当函数y=f(x)在对称轴直线x=m的右侧一个区间[a,b]上是增函数时,其在[a,b]关于直线x=m的对称区间[2m-b,2m-a]上是减函数,即单调性相反.因此有结论:如果函数y=f(x)的图象关于直线x=m 对称,那么函数y=f(x)在对称轴两侧的对称单调区间内具有相反的单调性.点评:本题通过归纳——猜想——证明得到了正确的结论,这是我们认识世界发现问题的主要方法,这种方法的难点是猜想,突破路径是寻找共同的特征.本题作为结论记住,可以提高解题速度.图象类似于人的照片,看见人的照片就能估计这个人的身高、五官等特点,同样根据函数的图象也能观察出函数的性质特征.这需要有细致的观察能力.变式训练函数y=f(x)满足以下条件:①定义域是R ;②图象关于直线x=1对称;③在区间[2,+∞)上是增函数.试写出函数y=f(x)的一个解析式f(x)=(只需写出一个即可,不必考虑所有情况).活动:根据这三个条件,画出函数y=f(x)的图象简图(只要能体现这三个条件即可),再根据图象简图,联系猜想基本初等函数及其图象和已有的解题经验写出.解:定义域是R 的函数解析式通常不含分式或根式,常是整式;图象关于直线x=1对称的函数解析式满足:f(x)=f(2-x),基本初等函数中有对称轴的仅有二次函数,则由①②想到了二次函数;结合二次函数的图象,在区间[2,+∞)上是增函数说明开口必定向上,且正好满足二次函数的对称轴直线x=1不在区间[2,+∞)内,故函数的解析式可能是y=a(x-1)2+b(a>0).结合二次函数的图象和性质,可知这三条都可满足开口向上的抛物线,故有:形如y=a(x-1)2+b(a>0),或为y=a|x-1|+b(a>0)等都可以,答案不唯一.知能训练课本P 32练习2.【补充练习】1.利用图象法写出基本初等函数的单调性.解:①正比例函数:y=kx(k≠0)当k>0时,函数y=kx 在定义域R 上是增函数;当k<0时,函数y=kx 在定义域R 上是减函数.②反比例函数:y=xk (k≠0) 当k>0时,函数y=xk 的单调递减区间是(-∞,0),(0,+∞),不存在单调递增区间;当k<0时,函数y=x k 的单调递增区间是(-∞,0),(0,+∞),不存在单调递减区间. ③一次函数:y=kx+b(k≠0)当k>0时,函数y=kx+b 在定义域R 上是增函数;当k<0时,函数y=kx+b 在定义域R 上是减函数.④二次函数:y=ax 2+bx+c(a≠0)当a>0时,函数y=ax 2+bx+c 的单调递减区间是(-∞,a b 2-],单调递增区间是[ab 2-,+∞); 当a<0时,函数y=ax 2+bx+c 的单调递减区间是[a b 2-,+∞),单调递增区间是(-∞,a b 2-]. 点评:以上基本初等函数的单调性作为结论记住,可以提高解题速度.2.已知函数y=kx+2在R 上是增函数,求实数k 的取值范围.答案:k∈(0,+∞).3.二次函数f(x)=x 2-2ax+m 在(-∞,2)上是减函数,在(2,+∞)上是增函数,求实数a 的值. 答案:a=2.4.2005年全国高中数学联赛试卷,8已知f(x)是定义在(0,+∞)上的减函数,若f(2a 2+a+1)<f(3a 2-4a+1)成立,则a 的取值范围是______.分析:∵f(x)的定义域是(0,+∞),∴⎪⎩⎪⎨⎧>+>++0.14a -3a 0,1a 2a 22解得a<31或a>1. ∵f(x)在(0,+∞)上是减函数,∴2a 2+a+1>3a 2-4a+1.∴a 2-5a<0. ∴0<a<5.∴0<a<31或1<a<5,即a 的取值范围是(0,31)∪(1,5). 答案:(0,31)∪(1,5) 点评:本题实质是解不等式,但是这是一个不具体的不等式,是抽象不等式.解与函数有关的抽象不等式时,常用的技巧是利用函数的单调性“剥掉外衣”,转化为整式不等式. 拓展提升问题:1.画出函数y=x1的图象,结合图象探讨下列说法是否正确? (1)函数y=x 1是减函数;(2)函数y=x1的单调递减区间是(-∞,0)∪(0,+∞). 2.对函数y=x 1,取x 1=-1<x 2=2,则f(x 1)=-1<f(x 2)=21,满足当x 1<x 2时f(x 1)<f(x 2),说函数y=x 1在定义域上是增函数对吗?为什么? 3.通过上面两道题,你对函数的单调性定义有什么新的理解?解答:1.(1)是错误的,从左向右看,函数y=x 1的图象不是下降的. (2)是错误的,函数y=x1的单调递减区间是(-∞,0),(0,+∞).这表示在区间(-∞,0)∪(0,+∞)即定义域上是减函数,在定义域上函数y=x1的图象,从左向右看不是下降的,因此这是错误的.2.不对.这个过程看似是定义法,实质上不是.定义中x 1、x 2是在某区间内任意取的两个值,不能用特殊值来代替.3.函数单调性定义中的x 1、x 2必须是任意的,应用单调性定义解决问题时,要注意保持其任意性.点评:函数的单调性反映了函数在其定义域的子集上的性质,是函数的“局部性质”;函数y=f(x)在区间(a,b)和(b,c)上均是增(减)函数,那么在区间(a,b)∪(b,c)上的单调性不能确定.课堂小结本节学习了:①函数的单调性;②判断函数单调性的方法:定义法和图象法.活动:学生先思考或讨论,再回答.教师提示、点拨,及时评价.引导方法:从基本知识和基本技能两方面来总结.作业课本P39习题1.3A组2、3、4.设计感想“函数单调性”是一个重要的数学概念,以往的教学方法一般是由教师讲解为主,在单调性的定义教学中,往往缺少从定性的描述到定量表示的思维过程,即缺少“意义建构”.本设计致力于展示概念是如何生成的.在概念的发生、发展中,通过层层设问,调动学生的思维,突出培养了学生的思维能力,体现了教师是用教材教,而不是教教材.本节课是函数单调性的起始课,采用教师启发引导,学生探究学习的教学方法,通过创设情境,引导探究,师生交流,最终形成概念,获得方法.本节课使用了多媒体投影和计算机来辅助教学,为学生提供直观感性的材料,有助于学生对问题的理解和认识.考虑到部分学生数学基础较好、思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究函数单调性埋下伏笔.(设计者:张建国)设计方案(二)教学过程第1课时函数的单调性导入新课思路1.为了预测北京奥运会开幕式当天的天气情况,数学兴趣小组研究了2002年到2006年每年这一天的天气情况,如图1-3-1-7是北京市今年8月8日一天24小时内气温随时间变化的曲线图.图1-3-1-7问题:观察图1-3-1-7,能得到什么信息?(1)当天的最高温度、最低温度以及达到的时刻;(2)在某时刻的温度;(3)某些时段温度升高,某些时段温度降低.引导学生识图,捕捉信息,启发学生思考回答.教师:在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.归纳:用函数观点看,其实这些例子反映的就是随着自变量的变化,函数值是变大或变小.思路2.如图1-3-1-8所示,观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:图1-3-1-8随x 的增大,y 的值有什么变化?引导学生回答,点拨提示,引出课题.设计意图:创设情景,引起学生兴趣.推进新课新知探究提出问题问题①:分别作出函数y=x+2,y=-x+2,y=x 2,y=x 1的图象,并且观察自变量变化时,函数值的变化规律.如图1-3-1-9所示:图1-3-1-9问题②:能不能根据自己的理解说说什么是增函数、减函数?设计意图:从图象直观感知函数单调性,完成对函数单调性的第一次认识:直观感知. 问题③:如图1-3-1-10是函数y=x+x2(x>0)的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?图1-3-1-10设计意图:使学生体会到用数量大小关系严格表述函数单调性的必要性.问题④:如何从解析式的角度说明f(x)=x 2在[0,+∞)上为增函数?设计意图:把对单调性的认识由感性上升到理性的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为第三阶段的学习作好铺垫.问题⑤:你能用准确的数学符号语言表述出增函数的定义吗?设计意图:让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.活动:先让学生思考或讨论后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.引导方法与过程:问题①:引导学生进行分类描述图象是上升的、下降的(增函数、减函数),同时明确函数的图象变化(单调性)是对定义域内某个区间而言的,是函数的局部性质. 问题②:这种认识是从图象的角度得到的,是对函数单调性的直观、描述性的认识. 学生的困难是难以确定分界点的确切位置.问题③:通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.问题④:对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量x 1、x 2.问题⑤:师生共同探究:利用不等式表示变大或变小,得出增函数严格的定义,然后学生类比得出减函数的定义.归纳总结:1.函数单调性的几何意义:如果函数y=f(x)在区间D 上是增(减)函数,那么在区间D 上的图象是上升的(下降的).2.函数单调性的定义:略.可以简称为步调一致增函数,步调相反减函数.讨论结果:①(1)函数y=x+2,在整个定义域内y 随x 的增大而增大;函数y=-x+2,在整个定义域内y 随x 的增大而减小.(2)函数y=x 2,在[0,+∞)上y 随x 的增大而增大,在(-∞,0)上y 随x 的增大而减小.(3)函数y=x1,在(0,+∞)上y 随x 的增大而减小,在(-∞,0)上y 随x 的增大而减小.②如果函数f(x)在某个区间上随自变量x 的增大,y 也越来越大,我们说函数f(x)在该区间上为增函数;如果函数f(x)在某个区间上随自变量x 的增大,y 越来越小,我们说函数f(x)在该区间上为减函数.③不能.④(1)在给定区间内取两个数,例如2和3,因为22<32,所以f(x)=x 2在[0,+∞)上为增函数.(2)仿(1),取多组数值验证均满足,所以f(x)=x 2在[0,+∞)上为增函数.(3)任取x 1、x 2∈[0,+∞),且x 1<x 2,因为x 12-x 22=(x 1+x 2)(x 1-x 2)<0,即x 12<x 22.所以f(x)=x 2在[0,+∞)上为增函数.⑤略应用示例思路1例1课本P 29页例1.思路分析:利用函数单调性的几何意义.学生先思考或讨论,再回答.点评:本题主要考查函数单调性的几何意义.图象法求函数单调区间的步骤:①画函数的图象;②观察图象,利用函数单调性的几何意义写出单调区间.图象法的难点是画函数的图象,常见画法有描点法和变换法.答案:略.变式训练课本P 32练习4.例2课本P 32页例2.。
[精品]新人教版必修1高中数学1.3.1单调性与最大(小)值(2)导学案
131 《单调性与最大(小)值》(2)导案【习目标】1 理解函数的最大(小)值及其几何意义;2 会运用函数图象理解和研究函数的性质【重点难点】重点:应用函数单调性求函数最值。
难点:理解函数最值可取性的意义。
【知识链接】(预习教材P30~ P32,找出疑惑之处)复习1:指出函数2=++>的单调区间及单调性,并进行证明f x ax bx c a()(0)复习2:函数2=++>的最小值为,()(0)f x a x b x c a2()(0)=++<的最大值为f x ax bx c a复习3:增函数、减函数的定义及判别方法【习过程】※习探究探究任务:函数最大(小)值的概念思考:先完成下表,新知:设函数y=f()的定义域为I,如果存在实数M满足:对于任意的∈I,都有f()≤M;存在0∈I,使得f(0) = M那么,称M是函数y=f()的最大值(Maiu Value)试试:仿照最大值定义,给出最小值(Miniu Value)的定义.反思:一些什么方法可以求最大(小)值?※典型例题例1一枚炮弹发射,炮弹距地面高度h(米)与时间t(秒)的变化规律是2=-,那么什么时刻距离地面的高度达到最大?最大是多少?1305h t t变式:经过多少秒后炮弹落地?[##]试试:一段竹篱笆长20米,围成一面靠墙的矩形菜地,如何设计使菜地面积最大?小结:数建模的解题步骤:审题→设变量→建立函数模型→研究函数最大值例2求32y x =-在区间[3,6]上的最大值和最小值[]变式:求3,[3,6]2x y x x +=∈-的最大值和最小值[]小结: 先按定义证明单调性,再应用单调性得到最大(小)值试试:函数2(1)2,[0,1]y x x =++∈的最小值为 ,最大值为 如果是[2,1]x ∈-呢?※ 动手试试练1 用多种方法求函数2y x =变式:求=y x练2 一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如右:欲使每天的的营业额最高,应如何定价?[]【习反思】※ 习小结1 函数最大(小)值定义;2 求函数最大(小)值的常用方法:配方法、图象法、单调法※ 知识拓展求二次函数在闭区间上的值域,需根据对称轴与闭区间的位置关系,结合函数图象进行研究 例如求2()f x x ax =-+在区间[,]m n 上的值域,则先求得对称轴2a x =,再分2a m <、22a m n m +≤<、22m n a n +≤<、2a n ≥等四种情况由图象观察得解 75※ 自我评价 你完成本节导案的情况为( )A 很好B 较好 一般 D 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1 函数2()2f x x x =-的最大值是( )A -1B 0 1 D 22 函数|1|2y x =++的最小值是( )A 0B -1 2 D 3 3 函数y x = ) A 0 B 2 4 D4 已知函数()f x 的图象关于y 轴对称,且在区间(,0)-∞上,当1x =-时,()f x 有最小值3,则在区间(0,)+∞上,当x = 时,()f x 有最 值为5 函数21,[1,2]y x x =-+∈-的最大值为 ,最小值为1 作出函数223y x x =-+的简图,研究当自变量在下列范围内取值时的最大值与最小值.(1)10x -≤≤; (2)03x ≤≤ ;(3)(,)x ∈-∞+∞2 如图,把截面半径为10 c 的圆形木头锯成矩形木料,如果矩形一边长为x,面积为y,试将y表示成x的函数,并画出函数的大致图象,并判断怎样锯才能使得截面面积最大?。
人教A版高中数学必修一单调性与最大小值教学案新
§1.3.1函数的单调性与最大(小)值(1)第一课时 单调性【教学目标】1. 通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;2. 学会运用函数图象理解和研究函数的性质;3. 能够熟练应用定义判断与证明函数在某区间上的单调性. 【教学重点难点】重点:函数的单调性及其几何意义.难点:利用函数的单调性定义判断、证明函数的单调性 【教学过程】(一)创设情景,揭示课题1. 观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:○1 随x 的增大,y 的值有什么变化? ○2 能否看出函数的最大、最小值? ○3 函数图象是否具有某种对称性? 2. 画出下列函数的图象,观察其变化规律:(1)f(x) = x○1 从左至右图象上升还是下降 ______? ○2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ .(2)f(x) = -x+2 ○1 从左至右图象上升还是下降 ______? ○2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ . (3)f(x) = x 2 ○1在区间 ____________ 上, f(x)的值随着x 的增大而 ________ .○2 在区间 ____________ 上,f(x)的值随 着x 的增大而 ________ .3、从上面的观察分析,能得出什么结论?学生回答后教师归纳:从上面的观察分析可以看出:不同的函数,其图象的变化趋势不同,同一函数在不同区间上变化趋势也不同,函数图象的这种变化规律就是函数性质的反映,这就是我们今天所要研究的函数的一个重要性质——函数的单调性(引出课题)。
(二)研探新知1、y = x 2的图象在y 轴右侧是上升的,如何用数学符号语言来描述这种“上升”呢? 学生通过观察、思考、讨论,归纳得出:函数y = x 2在(0,+∞)上图象是上升的,用函数解析式来描述就是:对于(0,+∞)上的任意的x 1,x 2,当x 1<x 2时,都有x 12<x 22. 即函数值随着自变量的增大而增大,具有这种性质的函数叫增函数。
高中数学1.3.1单调性与最大(小)值教案新人教A版必修1
高中数学 1.3.1 单调性与最大(小)值教案 新人教 A 版必修 1
结论:这时,说 y1= x 2 在[0 , +∞ ] 上是增函数。 (同理分析 y 轴左侧部分)由此可有:
2. 定义:(投影 2)
一般地,设函数 f(x) 的定义域为 I :
如果对于属 于 I 内某个区间上的任意两个自变量的值
x1、 x2, 当 x1 x2 时都有 f(x 1)<
例 1. 下图是定义在闭区间
5,5 上的函数 y=f(x) 的图象,根据图象说出函数的单调区
间,以及在每一个区间上的单调性( 课本 P34 例 1)。
问题 3: y=f(x) 在区间 5, 2 , 1,3 上是减函数;在区间
2,1 , 3,5 上是增函数,那
么在两个区间的公共端点处,如: x=-2,x=-1,x=3 处是增函数还是减函数?
( 4) [ 2,2] ( 5) [ 2,4]
高中数学 1.3.1 单调性与最大(小)值教案 新人教 A 版必修 1
如果函数 y=f(x) 在某个区间是增函数或减函数 , 那么就说函说 y=f(x) 在这一区间具 有(严格的)单调性,这一区间叫做 y=f(x) 的单调区间,在单调区间上增函数的图象是 上升的,减函数的图象是下降的。 注意:( 1)函数的单调性也叫函数的增减性; (2)注意区间上所取两点 x1,x 2 的任意性; (3)函数的单调性是对某个区间而言的,它是一个局部概念。 (III )例题分析
随着 x 的增加, y 值在增加。 问题 2:怎样用数学语言表示呢?
设 x1、 x2 ∈[0 , +∞ ] ,得 y 1=f(x 1), y 2=f(x 2). 当 x1<x2 时, f(x 1 )< f(x 2). ( 学生不一定一下子答得比较完整,教师应抓住时 机予以启发 ) 。
高中数学1.3.1函数的单调性与最大小值第2课时教学设计新人教A版必修1
1.3.1单调性与最大(小)值(第二课时)教学设计一、学情分析本节课是人教版《数学》(必修Ⅰ)第一章第3节函数的单调性与最大(小)值的第二课时,次要学惯用符号言语刻画函数的的最大(小)值,并能用函数的单调性和函数的图象进行一些常见函数最值的求值.在此之前,先生对函数曾经有了一个初步的了解,同时,由于上一节曾经学习函数单调性的定义,先生能初步理解用数学言语抽象概括函数概念的必要性和表达方式,为函数最值概念的构成提供极大帮助.因而本节课经过函数的图象,先生容易找出相应的最大值和最小值.但这只是感性上的认识.为了让先生有一个从具体到抽象、特殊到普通的认识过程,本节课经过设计成绩串,逐渐让先生用数学言语描述函数最值的概念,并利用对概念的辨析深化了解最值的内涵.二、教学目标:1.知识与技能(1)理解函数的最大(小)值的概念及其几何意义.理解函数的最大(小)值是函数的全体性质.(2)能解决与二次函数有关的最值成绩,和利用函数的单调性和函数的图象求函数的最值,掌握用函数的思想解决一些理论成绩.2.过程与方法经过日常生活实例,引导先生进行分析、归纳、概括函数最值的概念.并借助函数的单调性,从数到形,以形助数,逐渐浸透、培养先生数形结合思想、分类讨论思想、优化思想.3.情感、态度与价值观以丰富的实例背景引入,让先生领会数学与日常生活毫不相关.在概念的构成过程中,培养先生从特殊到普通、从直观到抽象的思想提升过程,让先生感知数学成绩求解途径与方法,享用成功的快乐.三、重点、难点:重点:建构函数最值的概念过程,利用函数的单调性和函数的图象求函数的最值.难点:函数最值概念的构成.高一先生的逻辑思想和抽象概括能力较弱,面对抽象的方式化定义,容易产生思想妨碍.对此,本课紧紧捉住新旧知识间的内在联系,设置一系列成绩,让先生充分参与定义的符号化过程,从图形言语和自然言语向数学符号言语转化,逐渐打破难点.四、教学过程:(一)提出成绩,引入目标背景1:成绩1:求函数2)(x x f -=的最大值.意图:从熟习的二次函数动手,将求函数的最大值转化为研讨函数图象的最高点,引导先生经过图象分析.背景2:请看下图,这是某气象观测站某日00:00—24:00这24小时内的气温变化图.(图)成绩2:.(1)我们常说昼夜温差大,是指一天当中的最高温度和最低温度之差.请问,该天的最高气温是多少?(2)该图象能否建立一个函数关系?如何定义自变量?意图:明确是在函数背景下研讨成绩.回顾函数的定义和函数的表示法(图象法) 师:我们称此时该函数的最大值是32.意图:启发先生明确函数图象中存在最高点与函数存在最大值之间是分歧的,即明确函数图象和函数解析式是反映函数关系的不同表现方式,从而无认识地培养先生以形助数解决成绩的认识,并引出课题——《函数的最大(小)值》(二)层层深化,概念建构成绩3:经过这两个成绩,我们能否用数学言语给出普通函数最大值的定义? 意图:以具体实例为背景,让先生用数学言语来进行归纳表达,引导先生过渡到任意化的符号化表示,呈现知识的自然生成,领会从特殊到普通的思想.定义:普通地,设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)对于任意的I x ∈,都有M x f ≤)(成立;(2)存在I x ∈0,使得M x f =)(0.那么,我们称M 是函数)(x f y =的最大值.(预设:函数最大值定义中的第(1)点成绩不大,第(2)点容易被忽略。
《函数的单调性和最大(小)值》教学设计【高中数学人教A版必修1(新课标)】
《函数的单调性与最大(小)值》教学设计第一课时函数的单调性通过观察一些函数图像的特征,形成增(减)函数的直观认识。
再通过具体函数值的大小比较,认识函数值随自变量的增大(减小)的规律,由此得出增(减)函数单调性的定义。
掌握用定义证明函数单调性的步骤。
函数单调性的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程的真谛。
【知识与能力目标】1、结合具体函数,了解函数的单调性及其几何意义;2、学会运用函数图像理解和研究函数的性质;3、能够应用定义判断函数在某区间上的单调性。
【过程与方法目标】借助二次函数体验单调性概念的形成过程,领会数形结合的思想,运用定义进行判断推理,养成细心观察,严谨论证的良好的思维习惯。
【情感态度价值观目标】通过直观的图像体会抽象的概念,通过交流合作培养学生善于思考的习惯。
【教学重点】函数单调性的概念。
【教学难点】判断、证明函数单调性。
从观察具体函数图像引入,直观认识增减函数,利用这定义证明函数单调性。
通过练习、交流反馈,巩固从而完成本节课的教学目标。
(一)创设情景,揭示课题德国有一位著名的心理学家艾宾浩斯,对人类的记忆牢固程度进行了有关研究。
他经过测试,得到了以下一些数据:以上数据表明,记忆量y 是时间间隔t 的函数。
艾宾浩斯根据这些数据描绘出了著名的“艾宾浩斯遗忘曲线”,如图:思考1:当时间间隔t 逐渐增大你能看出对应的函数值y 有什么变化趋势?通过这个 试验,你打算以后如何对待刚学过的知识?思考2:“艾宾浩斯遗忘曲线”从左至右是逐渐下降的,对此,我们如何用数学观点进行解释? (二)研探新知观察下列各个函数的图像,并说说它们分别反映了相应函数的哪些变化规律:○1随x的增大,y的值有什么变化?○2能否看出函数的最大、最小值?○3函数图像是否具有某种对称性?画出下列函数的图像,观察其变化规律:(1)f(x) = x (2)f(x) = x2思考1:这两个函数的图像分别是什么?二者有何共同特征?思考2:如果一个函数的图像从左至右逐渐上升,那么当自变量x从小到大依次取值时,函数值y的变化情况如何?思考3:如图为函数f(x)在定义域I内某个区间D上的图像,对于该区间上任意两个自变量x1和x2,当x1<x2时, f(x1)与f(x2)的大小关系如何?思考4: 我们把具有上述特点的函数称为增函数,那么怎样定义“函数f(x)在区间D 上是增函数”?1、函数单调性定义(1)增函数一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数(increasing function)。
高中数学人教版必修1导学案:1.3.1单调性和最大(小)值(学生版)
1.3 函数的基本性质§1.3.1单调性与最大(小)值(一)撰稿: 修订:高一备课组 学生姓名: 第 小组一、学习目标 心中有数:1、函数单调性的定义2、如何用定义证明函数的单调性3、单调函数的图象性质二.自主学习,体会成功:【问题1】观察下列函数的图象,指出函数从左向右是怎样变化的?2x y = 3x y =【问题2】如何用数学语言来准确地表述这种y 值随着x 的值增大而增大(减小)呢? 进而抽象出单调性的定义1、定义:一般地,设函数)(x f 的定义域为I :如果对于属于定义域I 内某个区间D 上是任意两个自变量的值21,x x ,当 时,都有 ,那么就说)(x f 在这个区间上是增函数;如果对于属于定义域I 内某个区间D 上是任意两个自变量的值21,x x ,当 时,都有 ,那么就说)(x f 在这个区间上是减函数;【问题3】你能仿照这样的描述,说明函数2)(x x f =在区间(]0,∞-上是减函数吗?2、如果函数)(x f y =在某个区间是增函数或减函数,那么就说函数)(x f y =在这一区间具有(严格的) ,这一区间叫做)(x f y =的 ,也称这一区间为单调递增区间(或单调递减区间)3、在单调区间上增函数的图象是 ,减函数的图象是【问题4】函数)(x f =1x在其定义域上有单调性吗?为什么?【问题5】图4所示的是定义在闭区间[-5,5]上的函数f(x)的图象,根据图象说出f(x)的单调区间,并回答:在每一个单调区间上,f(x)是增函数还是减函数?三、合作探究,共同进步例1 :证明函数23)(+=x x f 在()+∞∞-,上是增函数.【问题6】总结出证明函数单调性的解题步骤(1) ;(2) ;(3) ;(4) .例2:证明函数1y x x=+在[1,+∞)上是增函数例3:利用函数单调性定义证明函数1)(3+-=x x f 在()+∞∞-,上是减函数四、过手训练,步步为营:(一)课堂训练,及时突破1.证明函数x x f 3)(=在()0,∞-上是减函数2.证明函数x x x f 2)(+=在()2,0是减函数3.证明函数x x x f -+=1)(2在其定义域内是减函数小结:1.用定义证明函数单调性的步骤:2.变形的方法:(二)课后作业,巩固知识1.如图,已知函数)(x f y =的图象(包括端点),根据图象说出函数的单调区间,以及在每1. 已知函数y=f(x)的图象,根据图象写出函数的单调区间:2、求证:)()(2+∈+=R x x a x x f 在区间(]a ,0上是单调递减函数。
高一数学人教A版必修1学案1.3.1.2单调性与最大(小)值
第一章集合与函数概念1.3函数的基本性质1.3.1 单调性与最大(小)值(第二课时)学习目标①通过实例,使学生体会、理解函数的最大(小)值及其几何意义,能够借助函数图象的直观性得出函数的最值,培养以形识数的解题意识;②能够用函数的性质解决日常生活中简单的实际问题,使学生感受到学习函数单调性的必要性与重要性,增强学生学习函数的紧迫感,激发学生学习的积极性.合作学习一、设计问题,创设情境某工厂为了扩大生产规模,计划重新建造一个面积为10 000 m2的矩形新厂址,新厂址的长为x m,则宽为m,所建围墙y m,假如你是这个工厂的厂长,你会选择一个长和宽各为多少米的矩形土地,使得新厂址的围墙y最短?二、自主探索,尝试解决问题1:如图所示是函数y=-x2-2x,y=-2x+1(x∈[-1,+∞)),y=f(x)的图象.观察这三个图象的共同特征.问题2:你是怎样理解函数y=f(x)的图象的?问题3:你是怎样理解函数图象最高点的?问题4:问题1中,在函数y=f(x)的图象上任取一点A(x,y),如图所示,设点C的坐标为(x0,y0),谁能用数学符号解释:函数y=f(x)的图象有最高点C?三、信息交流,揭示规律问题5:在数学中,形如问题1中函数y=f(x)的图象上最高点C的纵坐标就称为函数y=f(x)的最大值.谁能给出函数最大值的定义?1.函数最大值的定义问题6:函数最大值的定义中f(x)≤M即f(x)≤f(x0),这个不等式反映了函数y=f(x)的函数值具有什么特点?其图象又具有什么特征?问题7:函数最大值的几何意义是什么?问题8:函数y=-2x+1,x∈(-1,+∞)有最大值吗?为什么?问题9:点(-1,3)是不是函数y=-2x+1,x∈(-1,+∞)的最高点?问题10:由这个问题你发现了什么值得注意的地方?问题11:类比函数的最大值,请你给出函数最小值的定义及其几何意义.2.函数最小值的定义问题12:类比问题10,你认为讨论函数最小值应注意什么?四、运用规律,解决问题【例1】求函数y=在区间[2,6]上的最大值和最小值.【例2】画出函数y=-x2+2|x|+3的图象,指出函数的单调区间和最大值.【例3】“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h m与时间t s之间的关系为h(t)=-4.9t2+14.7t+18,那么烟花冲出去后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1 m)?五、变式演练,深化提高1.已知函数f(x)=x+(x>0).(1)证明当0<x<1时,函数f(x)是减函数;当x≥1时,函数f(x)是增函数;(2)求函数f(x)的最小值.2.求函数y=(x≥0)的最大值.3.求函数y=|x+1|+|x-1|的最大值和最小值.4.某超市为了获取最大利润做了一番试验,若将进货单价为8元的商品按10元一件的价格出售时,每天可销售60件,现在采用提高销售价格减少进货量的办法增加利润,已知这种商品每涨1元,其销售量就要减少10件,问该商品售价定为多少时才能赚取利润最大,并求出最大利润.六、反思小结,观点提炼请同学们从下列几方面分组讨论:1.函数的最值及几何意义如何?2.你学了哪几种求函数最值的方法?3.求函数最值时,要注意什么原则?七、作业精选,巩固提高课本P39习题1.3 A组第5题,B组第1,2题.参考答案问题1:函数y=-x2-2x图象有最高点A,函数y=-2x+1,x∈[-1,+∞)图象有最高点B,函数y=f(x)图象有最高点C.也就是说,这三个函数的图象的共同特征是都有最高点.问题2:函数图象是点的集合,是函数y=f(x)的一种表示形式,其上每一点的坐标(x,y)的意义是:自变量x的取值为横坐标,相应的函数值y为纵坐标.图象从“形”的角度描述了函数的变化规律.问题3:图象最高点的纵坐标是所有函数值中的最大值,即函数的最大值.问题4:由于点C是函数y=f(x)图象的最高点,则点A在点C的下方,即对定义域内任意x,都有y≤y0,即f(x)≤f(x0),也就是对函数y=f(x)的定义域内任意x,均有f(x)≤f(x0)成立.三、信息交流,揭示规律问题5:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的最大值.问题6:f(x)≤M反映了函数y=f(x)的所有函数值不大于实数M;这个函数的特征是图象有最高点,并且最高点的纵坐标是M.问题7:函数图象上最高点的纵坐标,体现了数形结合思想的应用.问题8:函数y=-2x+1,x∈(-1,+∞)没有最大值,因为函数y=-2x+1,x∈(-1,+∞)的图象没有最高点.问题9:不是,因为该函数的定义域中没有-1.问题10:讨论函数的最大值,要坚持定义域优先的原则;函数图象有最高点时,这个函数才存在最大值,最高点必须是函数图象上的点.问题11:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≥M;(2)存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的最小值.函数最小值的几何意义:函数图象上最低点的纵坐标.问题12:讨论函数的最小值,也要坚持定义域优先的原则;函数图象有最低点时,这个函数才存在最小值,最低点必须是函数图象上的点.四、运用规律,解决问题【例1】解:设2≤x1<x2≤6,则有f(x1)-f(x2)=-==,∵2≤x1<x2≤6,∴x2-x1>0,(x1-1)(x2-1)>0.∴f(x1)>f(x2),即函数y=在区间[2,6]上是减函数.所以,当x=2时,函数y=在区间[2,6]上取得最大值f(2)=2;当x=6时,函数y=在区间[2,6]上取得最小值f(6)=.【例2】解:函数图象如图所示.由图象得,函数的图象在区间(-∞,-1)和[0,1]上是上升的,在[-1,0)和(1,+∞)上是下降的,最高点是(-1,4)和(1,4),故函数在(-∞,-1),[0,1]上是增函数;函数在[-1,0),(1,+∞)上是减函数,最大值是4.点评:本题主要考查函数的单调性和最值,以及最值的求法.求函数的最值时,先画函数的图象,确定函数的单调区间,再用定义法证明,最后借助单调性写出最值,这种方法适用于做解答题.单调法求函数最值:先判断函数的单调性,再利用其单调性求最值;常用到下面的结论:①如果函数y=f(x)在区间(a,b]上单调递增,在区间[b,c)上单调递减,则函数y=f(x)在[a,c]上,当x=b时取最大值f(b);②如果函数y=f(x)在区间(a,b]上单调递减,在区间[b,c)上单调递增,则函数y=f(x)在[a,c]上,当x=b时取最小值f(b).【例3】解:作出函数h(t)=-4.9t2+14.7t+18的图象,如图所示,显然,函数图象的顶点就是烟花上升的最高点,顶点的横坐标就是烟花爆裂的最佳时刻,纵坐标就是这时距地面的高度.由二次函数的知识,对于函数h(t)=-4.9t2+14.7t+18,我们有:当t=-=1.5时,函数有最大值h=≈29.即烟花冲出后1.5 s是它爆裂的最佳时刻,这时距地面的高度约是29 m.点评:本题主要考查二次函数的最值问题,以及应用二次函数解决实际问题的能力.解应用题步骤是:①审清题意读懂题;②将实际问题转化为数学问题来解决;③归纳结论.注意:要坚持定义域优先的原则;求二次函数的最值要借助图象,即数形结合.五、变式演练,深化提高1.解:(1)任取x1,x2∈(0,+∞)且x1<x2,则f(x1)-f(x2)=(x1+)-(x2+)=(x1-x2)+=,∵x1<x2,∴x1-x2<0,x1x2>0.当0<x1<x2<1时,x1x2-1<0,∴f(x1)-f(x2)>0.∴f(x1)>f(x2),即当0<x<1时,函数f(x)是减函数.当1≤x1<x2时,x1x2-1>0,∴f(x1)-f(x2)<0.∴f(x1)<f(x2),即当x≥1时,函数f(x)是增函数.(2)方法一:由(1)得当x=1时,函数f(x)=x+,x>0取最小值.又f(1)=2,则函数f(x)=x+,x>0取最小值2.方法二:借助于计算机软件画出函数f(x)=x+,x>0的图象,如图所示,由图象知,当x=1时,函数f(x)=x+,x>0取最小值f(1)=2.2.解:可证明函数y=(x≥0)是减函数,∴函数y=(x≥0)的最大值是f(0)=3.3.解:方法一:(图象法)y=|x+1|+|x-1|=其图象如图所示.由图象得,函数的最小值是2,无最大值.方法二:(数形结合)函数的解析式y=|x+1|+|x-1|的几何意义是:y是数轴上任意一点P到±1的对应点A,B的距离的和,即y=|PA|+|PB|,如图所示,观察数轴,可得|PA|+|PB|≥|AB|=2,即函数有最小值2,无最大值.4.解:设商品售价定为x元时,利润为y元,则y=(x-8)[60-(x-10)·10]=-10[(x-12)2-16]=-10(x-12)2+160(10<x<16).当且仅当x=12时,y有最大值160元,即售价定为12元时可获最大利润160元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.1 单调性与最大(小)值(2)学案
目的:使学生进一步掌握函数的单调性,理解函数的最大值和最小值的意义,会求函数的最大值和最小值。
重点:求函数的最大值和最小值。
难点:求函数的最大值和最小值。
过程:
一、新课引入
二、新课
f(x)=x2有最低点,这时x=0,f(0)=0,对于任意的x都有f(x)≥f(0)这个最低点的函数值就是函数的最小值。
f(x)=x无最低点,无最小值。
思考:f(x)=-x2有最大值还是最小值?
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
(1)对任意的x∈I,都有f(x)<M;
(2)存在x0∈I,使得f(x0)=M。
那么,我们称M是函数y=f(x)的最大值。
(maximum value)。
你会给出最小值的定义吗?(minimum value)例3、“菊花”烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点(大约在距地面高度25m到30m处)时爆裂。
如果在距地面高度18m的地方点火,并且烟花冲出的速度是14.7m/s。
(1)写出烟花距地面的高度与时间之间的关系式。
(2O 烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少?(精确 到1m )
分析:根据物理知识,高度的公式为:h =-
2
1gt 2+v 0t +h 0(g =9.8) 抛物线的顶点坐标为(-a b 2,a b ac 442-) 例4、求函数1
2-=x y 在区间[2,6]上的最大值和最小值。
分析:画出它的图象可知,函数在所给的区间上是递减的,因此在两个端点上分 别取得最大值和最小值。
解题过程中,可先证明它在给定的区间上是减函数。
解:设x 1、x 2是区间[2,6]上的任意两个数,且x 1<x 2,则
f(x 1)-f(x 2)=121221---x x =)
1)(1()(22112---x x x x 则2<x 1<x 2<6得:012>-x x ,)1)(1(21--x x >0
所以,f(x 1)>f(x 2),因此,函数1
2-=x y 在区间[2,6]上是减函数。
当x =2时,函数取得最大值为2;
当x =6时,函数取得最小值为0.4。
练习:P38 2、3、4
作业:P45 5、6、7、8
补充练习:。