卡尺示值误差测量结果的不确定度

卡尺示值误差测量结果的不确定度
卡尺示值误差测量结果的不确定度

卡尺示值误差测量结果的不确定度

页 码

第1页,共6页 制作

日期 核准

日期

1.概述:

1.1 测量方法:依据QJ/JJ 05.03.15-98

1.2 环境条件:温度:20±5℃ 湿度:75%以上

1.3 测量标准:三个规格为51.2mm,121.5mm,191.8mm 的量块

1.4 被测对象:分度值为0.01mm 的三把相同量程的卡尺,最大允许示值误差为±0.01mm 1.5 测量过程:卡尺示值误差是以三个量块进行校准的。 1.6 评定结果的使用

在符合上述条件下的测量结果,一般可直接使用本不确定的评定结果。

2.数学模型

e=L-L b

e 卡尺的最大允许示值误差

L 尺的示值

L b 量块的长度尺寸

3.输入量的标准不确定的评定

3.1输入量L 的不确定度主要来源于卡尺分度值量化误差的不确定度,采用B 类方法进行评定。卡尺的分度值为0.01mm,量化误差为??

?

??201.0mm,估计其为均匀分布,包含因子为3,标准不确定度U(L)为 U(L)=3

201.0m m ???

??=0.0029mm=2.9um 由以上计算可得,U(L)可视为确定已知量,则自由度V(L) ∞

3.2 输入量L b 的不确定度来源主要是测量重复性引起的标准不确定度U(L b )评定,可以通过连续测量得到测量列(采用A 类方法进行评定)。用三把相同量程的卡尺对三个量块连续测量10次得到的数据见第四页以卡尺A 、B 、C 对量块51.2mm 测量的10个数据为例. <1>求其平均值

bA L =

n

1

()2.5119.5119.5119.5110

1

1

++??++=

∑=n

i bA

L

=51.195mm

卡尺示值误差测量结果的不确定度

页 码

第2页,共6页 制作

日期 核准

日期

<2>求单次标准差

S A =

()

()()()1

10195.512.51195.5119.51195.5119.511

2222

--??+-+-=

--∑n L L

bA bA

=0.00527mm=5.27um

将A 、B 、C 三把相同的卡尺分别按上述方法求得单次实验标准差,如表1-1所示

表1-1 3组实验标准差计算结果

量块标准值(mm) 51.1(A) 51.2(B) 51.2(C) 实验标准差S j (um) 5.27

5.16

4.22

<3> 合并样本标准差

S p =()()()[]

2

221222.416.527.53

11++=∑=m j j

S m =4.91 um

则可得u(L bA )=S p =4.91um 自由度 V(L bA )=

()()()27110311

=-?=-=∑=n m V m

j bA

L

以3.2中相同的方法用卡尺A 、B 、C 对量块121.5mm 、191.8mm 进行计算,得到3组合并样本标准差,如表1-2

表 1-2 3组合并样本标准差

量块标准值(mm) 51.2 121.5 191.8 合并样本标准差Sp(j)(um) 4.91 4.47 4.17 自由度

27

27

27

4 合成标准不确定度的评定 4.1 灵敏系数

数学模型 e=L-L b

灵敏系数 c 1=?e/?L=1 c 2=?e/?L b =-1

4.2 合成标准不确定度的计算

输入量L 、L b 彼此独立不相关,所以,合成标准不确定度可按下式得 Uc(e)=

()[]()[]

2

22

1L b u c L u c +

卡尺示值误差测量结果的不确定度

页 码

第3页,共6页 制作

日期 核准

日期

G.校准测量能力

4)A 类不确定度评定的流程

量块为51.2mm 时 Uc(e)=()()um 70.591.419.2122=?-+? 量块为121.5mm 时 Uc(e)=()()um 33.547.419.2122=?-+? 量块为191.8mm 时 Uc(e)=

()()um 08.517.419.212

2=?-+?

4.2 合成标准不确定度的有效自由度

V eff =()()[]()()[]()

b b L V L u

c L V L u c e Uc 42414+ 当量块为51.2mm 时 V eff =

()()()27

91.419.2170.54

44

?-+∞?=49

当量块为121.5mm 时 V eff =

()()()5527

47.419.2133.52

44

=?-+∞

?

当量块为191.8mm 时 V eff =

()()()4527

17.419.2108.52

44

=?-+∞

?

5. 扩展不确定度的评定取置信概率P=95%,按有效自由度V eff ,查t 分布表得Kp 值为 当量块为51.2mm 时 Kp=t 95(49)=2.01 当量块为121.5mm 时 Kp=t 95(55)=2.00 当量块为191.8mm 时 Kp=t 95(45)=2.01

扩展不确定度U95时当量块为51.2mm 时 U 95=t 95(49)×Uc(e)=2.01×5.70=11.457um 当量块为121.5mm 时 U 95=t 95(55)×Uc(e)=2.00×5.33=10.66um 当量块为191.8mm 时 U 95=t 95(45)×Uc(e)=2.01×5.08=10.21um 6.测量结果不确定度报告与表示

卡尺示值误差测量结果的不确定度

页 码

第4页,共6页 制作

日期

核准

日期

卡尺的示值误差测量结果的扩展不确定度为

当量块为51.2mm 时 U 95=11.457um V eff =2.01 当量块为121.5mm 时 U 95=10.660um V eff =2.00 当量块为191.8mm 时 U 95=10.210um V eff =2.00

51.2 mm

1

2

3

4

5

6

7

8

9

10

A 51.19 51.19 51.19 51.19 51.2 51.2 51.2 51.2 51.19 51.2

B 51.18 51.19 51.18 51.18 51.18 51.19 51.19 51.19 51.19 51.19 C

51.2

51.21

51.2

51.2

51.21

51.2

51.2

51.2

51.2

51.2

121.5mm

1

2

3

4

5

6

7

8

9

10

A 121.49 121.5 121.49 121.49 121.49 121.49 121.49 121.49 121.49 121.49

B 121.45 121.46 121.46 121.45 121.46 121.46 121.46 121.46 121.45 121.46 C

121.50

121.51

121.50

121.51

121.51

121.51

121.51

121.51

121.50

121.50

191.8mm

1 2 3 4 5 6 7 8 9 10 A 191.78 191.79 191.78 191.78 191.78 191.78 191.78 191.78 191.78 191.78 B 191.74 191.75 191.75 191.74 191.74 191.74 191.74 191.74 191.74 191.74 C

191.81

191.81

191.81

191.81

191.81

191.81

191.81

191.80

191.80

191.80

卡尺 次数 卡尺 次数 卡尺 次数

卡尺示值误差测量结果的不确定度

页 码

第5页,共6页 制作

日期 核准

日期

扩展不确定度评定的流程

开始

取出合成标准不确定度Uc (y )

当根据中心极限定律Uc (y )可能接近正态分布时,可按Up 给出

无必要给出Up 时

当可以估计Uc (y )接近某种分布时,乘以下列包含因子k ,可得U99: 均匀分布3=k

两点分布k=1

三角分布6=k

2

=k 给出U ,p=0.99

计算有效自由度 ∑=vi

u u veff i c

4

4/

选定要求的置信水准P 一般取0.95,0.99 按分查和t P veff 布临界值

)(v tp )

(v tp kp =计算)(y kpuc Up =

给出p Up ,值

选定包含因子K 一般为2~3

计算)(y kuc U =

给出U ,指明k

结束

6.测量不确定度的报告与表示

1) 被测量的最佳估计值一般是有量纲的量;

2)不确定度以Uc (y ),U(y)形式给出时,具有同被测量最佳估计值相同的量纲;

卡尺示值误差测量结果的不确定度页码第6页,共6页制作日期核准日期

3)有关输入量与输出量的函数关系以及灵敏系数Ci;

4)修正值和常数的来源及其不确定度;

5)输入量Xi的实验观测数据及其估计值Xi,标准不确定度U(Xi)的评定方法及其量值、自由度Vi,并将它们列成表格;

6)对所有相关输入量给出其协方差或相关系数r及其获得方法;

7)测量结果的数据处理程序,该程序应易于重复,必要时报告结果的计算应能独立重划

复。附件:见以下相关数据表

n 2 3 4 5 6 7 8 9

C 1.13 1.64 2.06 2.33 2.53 2.70 2.85 2.97

v 0.9 1.8 2.7 3.6 4.5 5.3 6.0 6.8

P(%) 50 68.27 90 95 95.45 99 99.73

K p 0.67 1 1.645 1.960 2 2.576 3

表3 常用分布与k、u(x i)的关系

分布类别P(%)k U(x i)

正态99.73 3 α/3

三角100 6α/6

梯形β100 2 α/2 矩形(均匀)100 3α/3反正弦100 2α/2

两点100 1 α

压力传感器测量误差不确定度分析

线性压力传感器(静态)基本误差不确定度评定 吉林省计量科学研究院:张攀峰 李德辉 韩晓飞 孙俊峰 1、评定依据:JJG 860-1994 《压力传感器(静态)》 JJF 1059-1990 《测量不确定度评定与表示》 JJF 1094-2002 《测量仪器特性评定》 2、测量方法: 检定/校准、检测装置由标准器(在此为0.02级活塞式压力计)、压力源、三通接头用导压管连接起来而组成,导压管另一端与压力传感器(以下简称传感器)连接起来,连接处不得泄漏,外加对传感器供电电源,并由数字电压表读取传感器输出。通过采用多次循环测量确定被测传感器工作直线方程的方法进行检定/校准、检测。 3、数学模型 依据JJG 860 — 1994 压力传感器(静态)检定规程可知,线性压力传感器的基本误差公式为: A =±(ξS +ξLH )------(1) 式中:A ——传感器各检定/校准、检测点的基本误差(以绝对误差表示) ξLH ——传感器各检定/校准、检测点系统标准不确定度分量 3 方差和灵敏度系数 ()()() () 22 222212------+=LH S u C u C A u ξξ

式中:灵敏度系数C 1=C 2=1 则: 4 标准不确定度一览表 5 标准不确定度分量的计算 5.1 由被检定/校准、检测传感器重复性引起的标准不确定度u (ξS ): 用0.02级活塞压力计检定/校准、检测由北京中航机电技术公司生产CYB —IOS 型,编号为2H2883,测量范围为0—80MPa,0.25级传感器的0MPa 、10MPa 、20MPa 、30MPa 、40MPa 、50MPa 、60MPa 、70MPa 、80MPa 点,分别读取被检定/校准、检测传感器各点四个循环读数如下表所示: 传感器在整个测量范围内的标准偏差为s : ()()() () 3222------+=LH S u u A u ξξ) 4(21 2 1 2------+= ∑∑==m S S s m i Di m i Ii

测量仪器准确度、最大允许误差和不确定度辨析

测量仪器准确度、最大允许误差和不确定度辨析国家计量技术规范JJF1033—2001《计量标准考核规范》对所采用的计量标准器具、配套设备以及所开展的检定/校准项目的准确度指标,要求填写“不确定度或准确度等级或最大允许误差”;JJF1069—2000《法定计量检定机构考核规范》要求填写检定/校准“准确度等级或测量扩展不确定度”;实验室国家认可的校准项目则是填写“不确定度/准确度等级”。以上几种表述方式,表面看来仅仅在文字上有所区别,而实际,在对不确定度如何表达的问题上,存在不同的理解和误区。例如,JJF1033—2001对计量标准器具、配套设备不确定度的解释是“已知测量仪器或量具的示值误差,并且需要对测量结果进行修正时,填写示值误差的测量不确定度”;另JJF1033—2001对所开展的检定及校准项目不确定度的解释是“指用该计量标准检定或校准被测对象所给出的测量结果不确定度,其中不应包括由被测对象所引入的不确定度分量”(见JJF1033—2001国家统一宣贯教材《计量标准考核规范实施指南》,中国计量出版社)。对仪器的不确定度,在同一规范中,已有不同的理解,在其它规范中的含义也各有区别,还有不少专家提出用不确定度表示测量仪器的特性,根本就是不合适。为了对表述测量仪器的准确度指标有统一和清晰的理解,对仪器准确度等级、最大允许误差和不确定度的意义和内在联系进行分析和探讨,是十分必要的。 一、准确度等级是用符号表示的准确度档次 测量仪器准确度是定性概念。这个问题在JJF1001—1998《通用计量术语及定义》,JJF1059—1999《测量不确定度的评定与表示》,BIPM、ISO等7个国 际计量组织1993年颁布的《国际基本和通用计量名词术语》(VIM)、ISO等7 个国际组织于1993年正式颁布《测量不确定度表示指南》(GUM)已有明确的解释。JJF1033—2001《计量标准考核规范》也已将JJF1033—1992中对计量标准 准确度赋予一个定量计算公式的规定作出修订,以测量结果不确定度取代。明确测量仪器准确度是定性概念,以和国际接轨以及和上面规范保持一致是十分必要的。由于VIM和GUM是以多个国际组织的名义联合颁布,国际上各个组织也在逐渐消除这种不规范的表述。对于一些不合适的表达,如“二等活塞压力计的准确度为±0.05%”,只能是对标准、规范等文件的修订逐步改正。

测量的不确定度,测量误差

什么叫测量的不确定度?什么叫测量误差?测量不确定度和误差是计量学中研究的基本命题,也是计量测试人员经常运用的重要概念之一。它直接关系着测量结果的可靠程度和量值传递的准确一致。然而很多人由于概念不清,很容易将二者混淆或误用,本文结合学习《测量不确定度评定与表示》的体会,着重谈谈二者之间的不同之处。 首先要明确的是测量不确定度与误差二者之间概念上的差异。 测量不确定度表征被测量的真值所处量值范围的评定。它按某一置信概率给出真值可能落入的区间。它可以是标准差或其倍数,或是说明了置信水准的区间的半宽。它不是具体的真误差,它只是以参数形式定量表示了无法修正的那部分误差范围。它来源于偶然效应和系统效应的不完善修正,是用于表征合理赋予的被测量值的分散性参数。不确定度按其获得方法分为 A、B两类评定分量。A类评定分量是通过观测列统计分析作出的不确定度评定,B类评定分量是依据经验或其他信息进行估计,并假定存在近似的“标准偏差”所表征的不确定度分量。 误差多数情况下是指测量误差,它的传统定义是测量结果与被测量真值之差。通常可分为两类: 系统误差和偶然误差。误差是客观存在的,它应该是一个确定的值,但由于在绝大多数情况下,真值是不知道的,所以真误差也无法准确知道。我们只是在特定的条件下寻求最佳的真值近似值,并称之为约定真值。 通过对概念的理解,我们可以看出测量不确定度与测量误差的主要有以下几方面区别: 一.评定目的的区别: 测量不确定度为的是表明被测量值的分散性; 测量误差为的是表明测量结果偏离真值的程度。 二.评定结果的区别:

测量不确定度是无符号的参数,用标准差或标准差的倍数或置信区间的半宽表示,由人们根据实验、资料、经验等信息进行评定,可以通过A,B两类评定方法定量确定;测量误差为有正号或负号的量值,其值为测量结果减去被测量的真值,由于真值未知,往往不能准确得到,当用约定真值代替真值时,只可得到其估计值。 三.影响因素的区别: 测量不确定度由人们经过分析和评定得到,因而与人们对被测量、影响量及测量过程的认识有关; 测量误差是客观存在的,不受外界因素的影响,不以人的认识程度而改变;因此,在进行不确定度分析时,应充分考虑各种影响因素,并对不确定度的评定加以验证。 否则由于分析估计不足,可能在测量结果非常接近真值(即误差很小)的情况下评定得到的不确定度却较大,也可能在测量误差实际上较大的情况下,给出的不确定度却偏小。 四.按性质区分上的区别: 测量不确定度分量评定时一般不必区分其性质,若需要区分时应表述为: “由随机效应引入的不确定度分量”和“由系统效应引入的不确定度分量”; 测量误差按性质可分为随机误差和系统误差两类,按定义随机误差和系统误差都是无穷多次测量情况下的理想概念。 五.对测量结果xx的区别: “不确定度”一词本身隐含为一种可估计的值,它不是指具体的、确切的误差值,虽可估计,但却不能用以修正量值,只可在已修正测量结果的不确定度中考虑修正不完善而引入的不确定度; 而系统误差的估计值如果已知则可以对测量结果进行修正,得到已修正的测量结果。

误差分析及不确定度流程

流程图 周子桢 20 (1)求直接测量的物理量的算数平均值∑===m i i N N m N 11 (2)利用公式以及 直接测量的物理量的平均值 计算 待测物理量算术平均值 (3)求直接测量的物理量的A 类不确定度 n S n n N N S u n i i N A = --= =∑=) 1() (1 2 (4)求直接测量的物理量的B 类不确定度 3 仪 仪?= ?u 3 估 估?= ?u

①.仪器误差 仪 ?的确定: A.由仪器的准确度表示 B.由仪器的准确度级别来计算 % 级别电表的满量程电表的最大误差 = B. 由仪器的准确度等级计算 C.国标或者仪器说明书中作了规定 国标:钢直尺 mm 15.0=?仪 仪器说明书: n m N +?=?%仪 3 ?(三位半)数字万用表 ◎ 有4位数字显示位 ◎ 第一位不能完整显示0-9 ◎ ? 指该位能显示2个数字,其中最大数字为1,也即,该位能显示0-1 个字 仪2%5.0+?=?U

◎ U 是测量值 ◎ 2个字:末位为2的数字 ◎例:量程2V 档能显示的最大值是,因此2个字是 D.未给出仪器误差时 可以估读的仪器 最小分度/2 不能估读的仪器 最小分度 ②.估读误差 估 ? 的确定 仪器分辨率 最小分度(不能估读的仪器) 最小分度/10(可以估读的仪器) A. 不能估读的仪器 =?估 如:游标卡尺、数字仪表、分光计 B. 可以估读的仪器 /5 2最小分度分辨率估=?=? C.根据实际情况放大估读误差

(5)求直接测量的物理量的合成不确定度 A 类不确定度分量 Am Ai A A u u u u ,......,,21 B 类不确定度分量 Bn Bj B B u u u u ,......,,21 2221 1 22估仪??==++=+= ∑∑u u u u u A m i n j Bj Ai σ 通常情况下m=1,n=2 If (还有直接测量的物理量的合成不确定度 没有算出来)回到(3) (6)求待测物理量的相对不确定度 设N 为待测物理量,X 、Y 、Z 为直接测量量 ...)z ,y ,x (f N = ... dz z f dy y f dx x f dN +??+??+??= 若先取对数再微分,则有: ...)z ,y ,x (f ln N ln =

通用卡尺示值误差测量结果的不确定度评定报告

通用卡尺示值误差测量结果的不确定度评定 1.概述: 1.1测量依据:JJG30—2012《通用卡尺检定规程》。 1.2环境条件:温度22℃±5℃,湿度≤60%。 1.3测量标准:3级量块或5等量块。 1.4被测对象的测量范围、分度值(分辨力)、示值误差如下: 1.5测量方法 对于测量范围小于300mm的卡尺,测量点的分布不少于均匀分布的3点,对于测量范围大于500mm卡尺,测量点的分布不少于均匀分布的6点。被测卡尺各点示值误差以该点读数值(示值)与量块尺寸(测量标准)之差确定。 1.6测量模型 对分度值为0.02,测量范围为(0~200)mm游标卡尺191.8mm点示值误差校准的测量不确定进行评估。 2.数学模型 通用卡尺示值误差 e=L d - L s +L d·αd·△t d- L s·αs·△t s (1)式中:e—卡尺的示值误差; L d—卡尺的误差值; L s—量块的示值。 考虑到温度偏离20℃时,线膨胀系数及温度差的影响,上述公式可用以下形式表示 e=L d - L s +L d·αd·△t d- L s·αs·△t s (2)式中:e—卡尺的示值误差;

L d —卡尺的读数值(20℃条件下); L s —量块的示值(20℃条件下); αd 、αs —卡尺和量块的线膨胀系数; △t d 、△t s —卡尺和量块的偏离标准温度20℃的值。 3.方差和灵敏系数 由于△t d 和△t s 基本是采用同一支卡尺测量而具有相关性,其数学处理过程比较复杂,为了简化数学处理过程,需要通过如下方法将相关转化为不相关。 令δα=αd -αs δt=△t d -△t s 取L≈L d ≈L s α=αd =αs △t =△t d =△t s 得如下示值误差的计算公式: e =L d - L s +L·δα·△t - L·α·δt (3) 由公式(3)可以看出,各变量之间彼此不相关,由公式)()( 22 2 i i c x u f u ???=χ得: u c 2 =u 2(e )=c 12·u 12+ c 22·u 22+ c 32·u 32 +c 42·u 42 (4) 式中:11=??= d L e c 12-=??=s L e c t L e c ??=??= δα3 αδ?=??=L t e c 4 公式(4) 中u 1,u 2,u 3,u 4分别表示L d , L s ,δα,δt 的标准不确定度。 4.标准不确定度评定 4.1游标卡尺读数的对线误差估算的标准不确定度分量u 1 分度值为0.02mm 的游标卡尺, 对线误差分布区间为0.01mm,为均匀分布,故标准不确定度u 1 为 3 2)01.0(1?= mm u =2.89μm 4.2校准用3级量块估算的测量不确定度分量u 2 测量用的3级量块的长度尺寸偏差0.80 μm +16×10-6L (L —测量长度mm),为均匀分布,当被测尺寸在191.8mm 的情况下,故测量不确定度u 2为 u 2= =?+732 .11918 .0168.0 2.23μm 4.3卡尺和量块的热膨胀系数差估算的测量不确定度分量u 3

不确定度与数据处理

不确定度与数据处理 一、 误差与不确定度 1.误差与不确定度的关系 (1)误差:测量结果与客观真值之差 ?x =x -A 其中A 称为真值,一般不可能准确知道,常用约定真值代替:?????理论公式计算结果 —理论值更高精度仪器测量结果—标准值如物理常数等 —公认值 对一个测量过程,真值A 的最佳估计值是平均值x 。 在上述误差公式中,由于A 不可知,显然?x 也不可知,对误差的最佳估计值是不确定度u (x )。 (2)不确定度:对误差情况的定量估计,反映对被测量值不能肯定的程度。 通常所说“误差”一般均为“不确定度”含义。 不确定度分为A 、B 两个分量,其中A 类分量是可用统计方法估计的分量,它的主要成分是随机误差。 2.随机误差: 多数随机误差服从正态分布。定量描述随机误差的物理量叫标准差。 (1)标准差与标准偏差 标准差 k A x i k ∑-=∞ →2 ) (lim σ ∵真值A 不可知,且测量次数k 为有限次 ∴ σ 实际上也不可知,于是: 用标准偏差S 代替标准差σ : 1 ) ()(2 --= ∑k x x x S i ——单次测量的标准偏差 结果表述: x i ± S (x ) (置信概率~68.3%) 真值的估计值 单次测量标准差最佳估计值 S (x )的物理意义:在有限次测量中,每个测量值平均所具有的标准偏差。(并不是只做一次测量) 通常不严格区分标准差与标准偏差,统称为标准差。 (2)平均值的标准差 真值的最佳估计值是平均值,故结果应表述为: x ± S (x ) (置信概率~68.3%) 平均值的标准差最佳估计值 其中 ) 1() ()(2 --= ∑k k x x x S i ——平均值的标准偏差 例1:某观察量的n 次独立测量的结果是X 1, X 2, , X n 。试用方差合成公式证明平均值的标准偏差是样本标准偏差的 n 1,即n X S X S )()(=。 解: n X X i ∑= 由题知X i 相互独立,则根据方差合成公式有 n X u X u X u n ) ()()(212++= 利用样本标准偏差的定义,可知 u (X i )=S (X ) i =1,2, ,n 故 n X S n X nS n X S X S X S X u )()() ()()()(222= = ++= = 3.系统误差与仪器误差(限) (1)系统误差:在同一被测量的多次测量过程中,保持恒定或以可以预知方式变化的那一部分误差称为系统误差。已被确切掌握了其大小和符号的系统误差,称为可定系统误差;对大小和符号不能确切掌握的系统误差称为未定系统误差。前者一般可以在测量过程中采取措施予以消除或在测量结果中进行修正;而后者一般难以作出修正,只能估计出它的取值范围。 在物理实验中,对未定系统误差的估计常常利用仪器误差限来进行简化处理。

测量不确定度与数据处理复习纲要

测量不确定度与数据处理复习纲要 §1 测量及其误差 1 测量的概念 测量:为确定被测对象的测量值,首先要选定一个单位,然后用这个单位与被测对象进行比较,求出它对该单位的比值──倍数,这个数即为数值。表示一个被测对象的测量值时必须包含数值和单位两个部分。 目前,在物理学上各物理量的单位,都采用中华人民共和国法定计量单位,它是以国际单位制(SI)为基础的单位。它是以米(长度)、千克(质量)、秒(时间)、安培(电流强度)、开尔文(热力学温度)、摩尔(物质的量)和坎德拉(发光强度)作为基本单位,称为国家单位制的基本单位;其它量(如力、能量、电压、磁感应强度等等)的单位均可由这些基本单位导出,称为国际单位制的导出单位。 2 直接测量、间接测量、等精度测量 测量分为直接测量和间接测量。直接测量是指把待测物理量直接与作为标准的物理量相比较,例如用直尺测某长度,间接测量是指按一定的函数关系,由一个或多个直接测量量计算出另一个物理量。 同一个人,用同样的方法,使用同样的仪器并在相同的条件下对同一物理量进行的多次测量,叫做等精度测量。以后说到对一个量的多次测量,如无另加说明,都是指等精度测量。 3 测量的正确度、精密度和精确度 正确度表示测量结果系统误差的大小,精密度表示测量结果随机性的大小,精确度则综合反映出测量的系统误差与随机性误差的大小。 4 误差的概念 测量值x与真值X之差称为测量误差Δ,简称误差。 Δ=x-X。 误差的表示形式一般分为绝对误差与相对误差。 绝对误差使用符号±Δx。x表示测量结果x与直值X之间的差值以一定的可能性(概率)出现的范围,即真值以一定的可能性(概率)出现在x-Δx至x+Δx区间内。 相对误差使用符号β。由于仅根据绝对误差的大小还难以评价一个测量结果的可靠程度,还需要看测定值本身的大小,故用相对误差能更直观的表达测定值的误差大小。

误差和不确定度的区别和联系

误差与不确定度的概念比较 实验教学中关于误差和不确定度的区别和联系,是学生感到难以理解并准确掌握的概念之一,本文将对此比较总结如下。 1误差和不确定度的定义 1.1 误差的概念 各被测量量在实验当时条件下均有不依人的意志为转移的真实大小,此值被称为被测量的真值。即真值就是被测量量所具有的、客观的真实数值。然而实际测量时,总是由具体的观测者,通过一定的测量方法,使用一定的测量仪器和在一定的测量环境中进行的。由于受到观测者的操作和观察能力,测量方法的近似性,测量仪器的分辨力和准确性,测量环境的波动等因素的影响,其测量结果和客观的真值之间总有一定的差异。测量结果与真值的差为测量值的误差,即 测量值(x)-真值(a)=误差(ε) 在实验中通常要处理的来源于测量值的误差有两类:偶然误差和系统误差。 对于偶然误差,有算术平均值作为被测量真值的最佳估计值,相应的误差有标准偏差s ,它的定义为 1)(12 --=∑=n x x s n i i ------------------------------(1) 式中n 为测量值的个数。对于算术平均值的标准偏差,用来表示算术平均值的偶然误差,表达式为 n s x s /)(=------------------------------------(2) 二者的统计意义是,标准偏差小的测量值,其可靠性较高。 对于系统误差,不能用统计的方法评定不确定度,首先要对实验理论分析或对比分析之后,可以得知其系统误差的来源,并可采取一定的措施去削减系统误差。例如由于天平左右臂长不完全相同导致的系统误差,可将物体放在天平左盘、右盘上各称一次取平均去消除,而对于单摆周期与振幅有关,缩小振幅可以减小此项系统误差,在测量要求更高时,可根据理论分析得出的修正公式去补正。 1.2 不确定度的概念 测量不确定度则是评定作为测量质量指标的此量值范围,即对测量结果残存误差的评估。设测量值为x ,其测量不确定度为u ,则真值可能在量值范围(x-u ,x+u)之中,显然此量值范围越窄,即测量 不确定度越小,用测量值表示真值的可靠性就越高。 不确定度也有两类:A 类标准不确定度和B 类不确定度。 由于偶然效应,A 类标准不确定度用统计方法来评定,其就取为平均值的标准偏差,即(2)式,也可写为 n s x s x u A /)()(==-------------------------(3) B 类评定的标准不确定度为 u(x)=Δ/3--------------------------------------(4) (4)式又称为仪器的标准误差。该式是根据仪器误差概率密度函数遵从均匀分布规律,由数学计算所得。 式中Δ为极限误差或仪器误差,是在规定的使用条件下,正确使用仪器时,仪器的示值和被测量真值之间可能出现的最大误差,其可以从下列几种情况中获得:国家计量技术规范;计量仪器说明书或检定书;仪器准确度等级;仪器分度值或经验(粗略估计)等。 2 二者的比较 不同类型的误差中究竟如何来区分误差和不确定度,表达式等方面有何不同,仍然有很多教材没有说明清楚。1993年,国际标准化组织颁布了《测量不确定度表达指南》(UGM),1999年,国家技术监督局颁布了《测量不确定度的评定与表示》 (JJF1059-1999)。这两个文件的颁布,标志着我国各技术领域 在不确

误差精度与不确定度有什么关系

误差、精度与不确定度有什么关系? 一、误差的基本概念: 1.误差的定义: 误差=测得值-真值; 因此,误差是一个值,数学上就是坐标轴上的一个点,是具有正负号的一个数值。 2.误差的表示方法: 2.1 绝对误差: 绝对误差=测量值-真值(约定真值) 在检定工作中,常用高一等级准确度的标准作为真值而获得绝对误差。 如:用一等活塞压力计校准二等活塞压力计,一等活塞压力计示值为100.5N/cm2,二等活塞压力计示值为100.2N/cm2, 则二等活塞压力计的测量误差为-0.3N/cm2。 2.2 相对误差: 相对误差=绝对误差/真值X100% 相对误差没有单位,但有正负。 如:用一等标准水银温度计校准二等标准水银温度计,一等标准水银温度计测得20.2℃,二等标准水银温度计测得20.3℃,则二等标准水银温度计的相对误差为0.5%。 2.3 引用误差: 引用误差=示值误差/测量范围上限(或指定值)X100% 引用误差是一种简化和实用方便的仪器仪表示值的相对误差。 如测量范围上限为3000N的工作测力计,在校准示值2400N处的示值为2392.8N,则其引用误差为-0.3%。 3.误差的分类: 3.1 系统误差:在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量的真值之差。 3.2 随机误差:测量结果与在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差。 3.3 粗大误差:超出在规定条件下预期的误差。 二、精度:

1.精度细分为: 准确度:系统误差对测量结果的影响。 精密度:随机误差对测量结果的影响。 精确度:系统误差和随机误差综合后对测量结果的影响。 精度是误差理论中的说法,与测量不确定度是不同的概念,在误差理论中,精度定量的特征可用目前的测量不确定度(对测量结果而言)和极限误差(对测量仪器仪表)来表示。对测量而言,精密度高的准确度不一定高,准确度高的精密度不一定高,但精确度高的准确度与精密度都高,精度是精确度的简称。目前,不提倡精度的说法。 三、测量不确定度: 1.定义:表征合理地赋予被测量之值地分散性,与测量结果相联系地参数。 (1)此参数可以是诸如标准差或其倍数,或说明了置信水准的区间的半宽度。 (2)测量不确定度由多个分量组成。其中一些分量可用测量列结果的统计分布估算,并用实验标准差表征。另一些分量则可用基于经验或其他信息的假定概率分布估算,也可用标准偏差表征。 (3)测量结果应理解为被测量之值的最佳估计,而所有的不确定度分量均贡献给了分散性,包括那些由系统效应引起的(如,与修正值和参考测量标准有关的)分量。 由此可以看出,测量不确定度与误差,精度在定义上是不同的。因此,其概念上的差异也造成评价方法上的不同。 四、测量误差和测量不确定度的主要区别 1.定义上的区别:误差表示数轴上的一个点,不确定度表示数轴上的一个区间; 2.评价方法上的区别:误差按系统误差与随机误差评价,不确定度按A类B类评价; 3.概念上的区别:系统误差与随机误差是理想化的概念,不确定度只是使用估计值; 4.表示方法的区别:误差不能以±的形式出现,不确定度只能以±的形式出现; 5.合成方法的区别:误差以代数相加的方法合成,不确定度以方和根的方法合成; 6.测量结果的区别:误差可以直接修正测量结果,不确定度不能修正测量结果;误差按其定义,只和真值有关,不确定度和影响测量的因素有关; 7.得到方法的区别:误差是通过测量得到的,不确定度是通过评定得到的; 8.操作方法的区别:系统误差与随机误差难于操作,不确定评定易于操作; 误差与测量不确定度是相互关联的,就是说,测量误差也包含不确定度,反之,评

测量误差与测量不确定度的联系

测量误差与测量不确定度的联系 摘要:主要研究测量误差和测量不确定度的联系,分析了测量不确定度的提出 和发展情况以及其科学意义,在此基础上,对测量误差和测量不确定度的联系进 行了探讨。 关键词:测量误差;测量不确定度 测量误差和测量不确定是测量专业经常涉及到的两个概念,二者之间有一定 联系,但是也有一定区别,实际工作中发现,很多技术报告和学术研究都存在着 把误差当做不确定度的情况,这是一种作为研究人员和测量专业从业人员不应该 有的常识性错误。深入探究测量误差和测量不确定度的联系,对提高测量精度控 制误差有重要意义。 一、测量不确定度 (一)提出与发展 不确定度一词最早来自1927年德国物理学家海森堡于量子力学中提出的不 确定度关系,也称作测不准关系。1963年,美国标准局数理统计专家艾森哈特对 仪器校准系统的研究中,首次提出测量不确定度的概念。1970年,NBS测量保证 方案的研究与推广工作对不确定度的定量表示方法进行了研究推广。1977年,国际计量委员会要求国际计量局成立不确定度表示工作组,征求多个国家计量院和 国际组织关于不确定度的意见之后,公布了一份测量不确定度建议书,即为INC- 1(1980)《实验不确定度表述》,标志着测量不确定度表示方式逐渐统一。 1986年,CIPM和其他国际组织共同制定了《不确定度测量表示指导细则》,并 与1995年进行了增补修订。 (二)内涵 测量不确定度是经典误差理论的应用和发展,是现代误差理论的主要内容, 也是测量结果质量评定重要参考指标,用于表示、定量评定测量结果变化的不肯 定性和人们对测量认识不足的程度,不确定度越小,表示测量结果可用价值越高,可用价值越高,其测量水平也随之提升。测量不确定度广泛用于贸易、生产、医疗、环保以及科学技术领域,计量标准的建立、检定规程的制定、实验室认可和 质量认证都要求出具测量不确定度分析报告。严格意义上讲,不出具不确定的此 类昂数据是没有意义的数据,科技工作者和测量专业技术人员都应该深刻理解测 量不确定的概念,理解不确定度争取的表示和评定方法,才能够更好的适应现代 计量测试技术发展。 二、测量误差与测量不确定度的联系 (一)对测量不确定度的正确认识 1、定义 JJF1059-1999沿用了GUM95的测量不确定度定义,表述测量不确定度为合理赋予被测量值的分散性、和测量结果有联系的参数。 2、来源 测量不确定度主要来自不完善、不完整的被测量定义、不合理的被测量实现 方法、代表性不强的取样、不周全的测量环境影响认识与控制、仪器读数/分辨率/鉴别域偏差、参与计算常量/参量不准确、测量方法和测量程序假定性与近似性。 3、分类

数字指示秤示值误差测量结果不确定度报告

数字指示秤示值误差测量结果不确定度报告 一、概述 依据JJG555—1996 《非自动秤通用检定规程》 JJG539—1997 《数字指示秤》 JJF 1059—1999 《测量不确定度评定与表示》 JJF 1001—1998 《通用计量术语及定义》 在环境温度为28.4℃,湿度为47%的条件下,用标准器为M1等级标准砝码(0~2)kg,对检定分度值为e =1g ,最大秤量 2kg ,最小秤量20g的(Ⅲ)数字指示秤进行检定,对其最大秤量2kg点测量十次,得到数据如下:(g) 二、建立数学模型 E =P – m 式中: E —数字指示秤的示值误差; P —数字指示秤的示值; m —标准砝码质量值。 其灵敏系数为: 1 1 = ? ? = P E c 1 2 - = ? ? = m E c

三、分析不确定度来源 1.测量重复性引起的不确定度u (P 1) 2.电源电压稳定度引起的不确定度u (P 2) 3.偏载测量引起的不确定度u (P 3) 4.使用标准砝码引起的不确定度u (m ) 四、评定各分量的不确定度 1.测量重复性引起的不确定度u (P 1) 据贝塞尔公式得出单词测量标准差为: 1 12 --=∑=n P P s n i i )( ≈0.063g 平均值标准差: ()() g 020.010 063 .010====s P s P u 故: u (P 1) =|C1|() P u =|C1|*0.020 =0.020g 2.电源电压稳定度引起的不确定度u (P 2) 电源电压在规定条件下变化可能会造成的示值变化为: ±0.2e(e=1g) 即±0.2g 区间半宽a=0.2 其服从均匀分布,包含因子k=3 有

秒表测量误差测量不确定度的评估

6.6 秒表测量误差测量不确定度的评估 6.6.1 概述 6.6.1.1测量依据:JJG237-2010《秒表检定规程》 6.6.1.2 计量标准:主要计量标准为时间检定仪,时间间隔测量范围(1~99999)s 。 表1 实验室的计量标准器和配套设备 6.6.1.3被校对象: 表2 被校准的机械秒表和电子秒表的分类 6.6.1.4 测量方法: 6.6.1.4.1 机械秒表测量误差的测量方法:按被校机械秒表的秒度盘和分度盘的满刻度值两个校准点进行校准,对每一被校准测量点测量3次,按下式(1)计算每次的测量误差,按(2)式取其中误差最大的作为校准结果。 0T T T i i -=? (1) {}Max i T T ?=? (2) 式中: i T —— 每次的测量值; 0T —— 时间检定仪给出的标准值; i T ?—— 每次测量得到的测量误差; T ?—— 校准结果给出的测量误差。 6.6.1.4.2 电子秒表测量误差的测量方法:对电子秒表的测量误差选择10s 、10min 、1h 三个校准点进行校准,对10s 、10min 两个受校点测量3次,1h 受校点测量2次,按下式(1)计算每次的测量误差,按(2)式取其中误差最大的作为校准结果。 6.6.1.5环境条件 1) 环境温度:(20±5)℃,校准过程中温度变化不超过2℃;相对湿度(65±15)%; 2) 周围无影响仪器正常工作的电磁干扰和机械振动; 3) 电源电压在额定电压的±10%,50Hz 。 6.6.2数学模型

{}Max i T T T 0-=? (3) 式中: T ? —— 机械秒表、电子秒表走时示值测量误差; i T —— 被校机械秒表、电子秒表每次走时测量值; 0T —— 时间检定仪给出的标准时间间隔值。 i —— 测量次数, 一般为3次, 当电子秒表测量1h 点时, 为2次。 6.6.3不确定度传播率 )()()(02 222212T u c T u c T u i c +=? 式中,灵敏系数1/1=???=i T T c ,1/02=???=T T c 。 6.6.4机械秒表、电子秒表测量误差标准不确定度的评定 6.6.4.1 输入量T 0的标准不确定度 标准设备时间检定仪标准装置的扩展不确定度为U 0=1.55×10-6×T+0.0092s, k =2 则将校准点3s ,对应的标准时间T 0的扩展不确定度为 U 0=1.55×10-6×3s+0.0092s=0.0092s ,k=2 ;则该标准引起的标准不确定度 分量为:s s k U T u 0046.02 0092.0)(00== =。 6.6.4.2 输入量T i 的标准不确定度 以被校机械秒表、分辨力0.01s 、校准点3s 为例 1)示值重复性引起的不确定度:校准3s 测量点,共进行3次的重复测量,极差为0.005s, 则单次测量的重复性为: s s s d R T s n i 0030.000295.0693 .1005.0)(≈=== 。 因测量误差为取最大的单次测量误差, 则A 类标准不确定度分量为单次测量的重复性为:s T s T u i i 0030.0)()(1==。 2)读数误差引起的不确定度: 由被校准机械秒表的分辨力引起的,采用B 类标准不确定度评定。已知分辨力为0.01s ,则不确定度区间半宽度为0.005s ,按均分布计算, s s T u i 00289.03 005.0)(2== 由于重复性分量包含了人员读数引入的不确定度分量,为避免重复计算,只计算最大影响量)(1i T u ,舍弃)(2i T u 。 6.6.5合成标准不确定度 6.6.5.1主要标准不确定度汇总表3

不确定度测定汇总 ()

测量不确定度评定与表示 测量的目的是确定被测量值或获取测量结果。有测量必然存在测量误差,在经典的误差理论中,由于被测量自身定义和测量手段的不完善,使得真值不可知,造成严格意义上的测量误差不可求。而测量不确定度的大小反映着测量水平的高低,评定测量不确定度就是评价测量结果的质量。 图1 1 识别测量不确定度的来源 测量不确定度来源的识别应从分析测量过程入手,即对测量方法、测量系统和测量程序作详细研究,为此必要时应尽可能画出测量系统原理或测量方法的方框图和测量流程图。 检测和校准结果不确定度可能来自: (1)对被测量的定义不完善; (2)实现被测量的定义的方法不理想; (3)取样的代表性不够,即被测量的样本不能代表所定义的被测量; (4)对测量过程受环境影响的认识不全,或对环境条件的测量与控制不完善; (5)对模拟仪器的读数存在人为偏移; (6)测量仪器的计量性能 (如最大允许误差、灵敏度、鉴别力、分辨力、死区及稳定性等)的局限性,即导致仪器的不确定度; (7)赋予计量标准的值或标准物质的值不准确; (8)引用于数据计算的常量和其它参量不准确; (9)测量方法和测量程序的近似性和假定性; (10)在表面上看来完全相同的条件下,被测量重复观测值的变化。 分析时,除了定义的不确定度外,可从测量仪器、测量环境、测量人员、测量方

法等方面全面考虑,特别要注意对测量结果影响较大的不确定度来源,应尽量做到不遗漏、不重复。 2 定义 2.1 测量误差简称误差,是指“测得的量值减去参考量值。” 2.2 系统测量误差简称系统误差,是指“在重复测量中保持恒定不变或按可预见的方式变化的测量误差的分量。” 系统测量误差的参考量值是真值,或是测量不确定度可忽略不计的测量标准的测量值, 或是约定量值。系统测量误差及其来源可以是已知的或未知的。对于已知的系统测量误差可 以采用修正来补偿。系统测量误差等于测量误差减随机测量误差。 2.3 随机测量误差简称随机误差,是指“在重复测量中按不可预见的方式变化的测量误差的分量。” 随机测量误差的参考量值是对同一个被测量由无穷多次重复测量得到的平均值。随机测量误差等于测量误差减系统测量误差。 图2 测量误差示意图 2.4 测量不确定度简称不确定度,是指“根据用到的信息,表征赋予被测量值分散性的非负参数。” 测量不确定度一般由若干分量组成。其中一些分量可根据一系列测量值的统计分布,按测量不确定度的A类评定(随机效应引起的)进行评定,并用标准偏差表征;而另一些分量则可根据基于经验或其它信息所获得的概率密度函数,按测量不确定度的B类评定(系统效应引起的)进行评定,也用标准偏差表征。 2.5 标准不确定度是“以标准偏差表示的测量不确定度。”

指示表的示值误差测量结果的不确定度分析

指示表的示值误差测量结果的不确定度分析 1测量方法 依据《JJG34-2008指示表(指针式、数显式)检定规程》、《JJG35-2006 杠杆表检定规程》、《JJF1102-2003内径表校准规范》、《JJG379-2009大量程百分表检定规程》、《JJG830-2007深度指示表检定规程》,《JJG109-2004百分表式卡规检定规程》、《JJF1253-2010带表卡规校准规范》、《JJF1255-2010厚度表校准规范》、依据《JJF1059.1-2012测量不确定度评定与表示》要求,指示表示值误差是用相应准确度等级的指示类量具检定仪,按规定的测量间 隔在正向进行检定,取正行程中的各受检点误差中最大值与最小值之差 作 为全量程的示值误差。 2测量模型 现对量程为10mm 指示表(分度值为0.01mm)的10mm 点和量程为1mm 的 指示表(分度值或分辨力为0.001mm)1mm 点的示值误差测量结果不确定度进 行分析计算。 指示表的示值误差e : =e d L -S L +d d d t L ???αΔt d -s S S t L ???αL S (1.1) 式中: d L ------指示表的示值(20℃条件下) S L ------检定仪的示值(20℃条件下) αd 、αs ------分别为指示表和检定仪的线胀系数 Δt d 、Δt s ------分别为指示表和检定仪偏离温度20℃时的数值 令 s d ααδα-=;s d t t t ?-?=δ 取 s d L L L ≈≈;α≈αd ≈αs ;s d t t t ?≈?≈? 得 =e d L -S L +t L t L δαδα??-??? (1.2)

误差精度与不确定度的区分

作为计量人员,误差、精度与不确定度是应该搞清楚的概念,但这些概念互相联系又有区别,也常常使人不知所芸。在此略作论述,希望能引起大家讨论。 一、误差的基本概念: 1.误差的定义: 误差=测得值-真值; 因此,误差是一个值,数学上就是坐标轴上的一个点,是具有正负号的一个数值。 2.误差的表示方法: 2.1 绝对误差: 绝对误差=测量值-真值(约定真值) 在检定工作中,常用高一等级准确度的标准作为真值而获得绝对误差。如:用一等活塞压力计校准二等活塞压力计,一等活塞压力计示值为 100.5N/cm2,二等活塞压力计示值为100.2N/cm2,则二等活塞压力计的测量误差为-0.3N/cm2。 2.2 相对误差: 相对误差=绝对误差/真值X100% 相对误差没有单位,但有正负。 如:用一等标准水银温度计校准二等标准水银温度计,一等标准水银温度计测得20.2℃,二等标准水银温度计测得20.3℃,则二等标准水银温度计的相对误差为0.5%。 2.3 引用误差: 引用误差=示值误差/测量范围上限(或指定值)X100%引用误差是一种简化和实用方便的仪器仪表示值的相对误差。 如测量范围上限为3000N的工作测力计,在校准示值2400N处的示值为2392.8N,则其引用误差为-0.3%。 3.误差的分类: 3.1 系统误差:在重复性条件下,对同一被测量进行无限多次测量所得结

果的平均值与被测量的真值之差。 3.2 随机误差:测量结果与在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差。 3.3 粗大误差:超出在规定条件下预期的误差。 二、精度: 1.精度细分为:准确度:系统误差对测量结果的影响。精密度:随机误差对测量结果的影响。精确度:系统误差和随机误差综合后对测量结果的影响。精度是误差理论中的说法,与测量不确定度是不同的概念,在误差理论中,精度定量的特征可用目前的测量不确定度(对测量结果而言)和极限误差(对测量仪器仪表)来表示。对测量而言,精密度高的准确度不一定高,准确度高的精密度不一定高,但精确度高的准确度与精密度都高,精度是精确度的简称。目前,不提倡精度的说法。 三、测量不确定度: 1.定义:表征合理地赋予被测量之值地分散性,与测量结果相联系地参数。 (1)此参数可以是诸如标准差或其倍数,或说明了置信水准的区间的半宽度。 (2)测量不确定度由多个分量组成。其中一些分量可用测量列结果的统计分布估算,并用实验标准差表征。另一些分量则可用基于经验或其他信息的假定概率分布估算,也可用标准偏差表征。 (3)测量结果应理解为被测量之值的最佳估计,而所有的不确定度分量均贡献给了分散性,包括那些由系统效应引起的(如,与修正值和参考测量标准有关的)分量。 由此可以看出,测量不确定度与误差,精度在定义上是不同的。因此,其概念上的差异也造成评价方法上的不同。 四、测量误差和测量不确定度的主要区别 1.定义上的区别:误差表示数轴上的一个点,不确定度表示数轴上的一个

实验1.1_测量误差与不确定度(20130325修订)

预习操作记录实验报告总评成绩 《大学物理实验(I)》课程实验报告 学院: 专业: 年级: 实验人姓名(学号): 参加人姓名(学号): 日期: 年 月 日 星期 上午[ ] 下午[ ] 晚上[ ] 室温: 相对湿度: 实验1.1 测量误差与不确定度 [实验前思考题] 1.列举测量的几种类型? 2.误差的分类方法有几种? 3.简述直接测量量和间接测量量的平均值及其实验标准差的计算方法,以本实验中实验桌面积的测量为例加以说明。

4.测量仪器导致的不确定度如何确定?在假设自由度为无穷大的情况下,直接测量量的扩展不确定度如何计算?请写出计算步骤。 (若不够写,请自行加页)

[ 实验目的 ] 1.学习游标卡尺、螺旋测微计、读数显微镜、电子天平的使用方法。 2.学习长度、重量、密度等基本物理量的测量方法。 3.学习测量误差和不确定度的概念和计算方法。 [ 仪器用具 ] 编号 仪器名称 数量 主要参数(型号,测量范围,测量精度) 1 游标卡尺 1 2 螺旋测微计 1 3 读数显微镜 1 4 钢尺 1 5 钢卷尺 1 6 电子密度天平 1 7 量杯 1 8 待测薄板 1 9 待测金属丝 1 10 待测金属杯 1 [ 原理概述 ] 1.机械式游标卡尺 图1.1. 1 游标卡尺结构 查阅教材和说明书,写出游标卡尺各部分的名称: A. C . E . G . B. D . F . H .

图1.1. 2 游标卡尺读数 假设游标卡尺的单位为cm ,箭头所指的刻线对齐,则读数为: cm . 2. 机械式螺旋测微计 图1.1. 3 螺旋测微计结构 查阅教材和说明书,写出螺旋测微计各部分的名称: A. C . E . G . I . B. D . F . H . 图1.1. 4 螺旋测微计读数 假设螺旋测微计的单位为mm ,按左图,读数为: mm . 注意:(1)转动微分筒之前需逆时针扳动锁把,使微分筒可自由转动。(2)为保证测量时测杆与被测物表面的接触力恒定,测杆上安装有棘轮装置,使用时应通过旋转棘轮使测杆与工件接触,直至棘轮发出“咔咔”的声音。这点对测量橡胶等较软的物体特别重要,同时还可起到保护螺纹的作用。(3)使用螺旋测微计之前需校准零刻度。(4)使用完毕,需使对杆和测杆离开一段距离,避免存放过程中因热胀冷缩损坏螺纹。 3.读数显微镜测量原理

卡尺示值误差测量结果的不确定度

卡尺示值误差测量结果的不确定度 页 码 第1页,共6页 制作 日期 核准 日期 1.概述: 1.1 测量方法:依据QJ/JJ 05.03.15-98 1.2 环境条件:温度:20±5℃ 湿度:75%以上 1.3 测量标准:三个规格为51.2mm,121.5mm,191.8mm 的量块 1.4 被测对象:分度值为0.01mm 的三把相同量程的卡尺,最大允许示值误差为±0.01mm 1.5 测量过程:卡尺示值误差是以三个量块进行校准的。 1.6 评定结果的使用 在符合上述条件下的测量结果,一般可直接使用本不确定的评定结果。 2.数学模型 e=L-L b e 卡尺的最大允许示值误差 L 尺的示值 L b 量块的长度尺寸 3.输入量的标准不确定的评定 3.1输入量L 的不确定度主要来源于卡尺分度值量化误差的不确定度,采用B 类方法进行评定。卡尺的分度值为0.01mm,量化误差为?? ? ??201.0mm,估计其为均匀分布,包含因子为3,标准不确定度U(L)为 U(L)=3 201.0m m ??? ??=0.0029mm=2.9um 由以上计算可得,U(L)可视为确定已知量,则自由度V(L) ∞ 3.2 输入量L b 的不确定度来源主要是测量重复性引起的标准不确定度U(L b )评定,可以通过连续测量得到测量列(采用A 类方法进行评定)。用三把相同量程的卡尺对三个量块连续测量10次得到的数据见第四页以卡尺A 、B 、C 对量块51.2mm 测量的10个数据为例. <1>求其平均值 bA L = n 1 ()2.5119.5119.5119.5110 1 1 ++??++= ∑=n i bA L =51.195mm

相关文档
最新文档