石墨烯的制备

合集下载

石墨烯常用制备方法

石墨烯常用制备方法

石墨烯常用制备方法石墨烯是一种由碳原子构成的单层二维晶体结构,具有极高的导电性、热导率和机械强度,因此在电子学、光电子学、能源储存等领域具有广泛的应用前景。

本文将介绍石墨烯的常用制备方法。

1. 机械剥离法机械剥离法是最早被发现的石墨烯制备方法之一,也是最简单的方法之一。

该方法的原理是通过机械剥离的方式将石墨材料剥离成单层石墨烯。

具体操作方法是将石墨材料放置在硅基底上,然后用胶带反复粘贴和剥离,直到得到单层石墨烯。

这种方法的优点是简单易行,但是制备的石墨烯质量较差,且产量低。

2. 化学气相沉积法化学气相沉积法是一种通过化学反应在基底上生长石墨烯的方法。

该方法的原理是将石墨材料放置在高温下,使其分解成碳原子,然后在基底上沉积成石墨烯。

具体操作方法是将石墨材料放置在石英管中,然后将氢气和甲烷气体通入管中,使其在高温下反应生成石墨烯。

这种方法的优点是制备的石墨烯质量高,但是设备成本较高。

3. 化学还原法化学还原法是一种通过还原氧化石墨材料制备石墨烯的方法。

该方法的原理是将氧化石墨材料放置在还原剂中,使其还原成石墨烯。

具体操作方法是将氧化石墨材料放置在还原剂中,如氢气、氨气等,然后在高温下反应生成石墨烯。

这种方法的优点是制备的石墨烯质量高,且产量较高,但是还原剂的选择和操作条件对制备的石墨烯质量有很大影响。

4. 液相剥离法液相剥离法是一种通过液相剥离的方式制备石墨烯的方法。

该方法的原理是将石墨材料放置在液体中,然后通过超声波或机械剥离的方式将其剥离成单层石墨烯。

具体操作方法是将石墨材料放置在液体中,如水、有机溶剂等,然后通过超声波或机械剥离的方式将其剥离成单层石墨烯。

这种方法的优点是制备的石墨烯质量高,且操作简单,但是产量较低。

石墨烯的制备方法有很多种,每种方法都有其优缺点。

在实际应用中,需要根据具体需求选择合适的制备方法。

随着石墨烯制备技术的不断发展,相信未来石墨烯的制备方法会越来越多样化,也会越来越成熟。

石墨烯的制备方法

石墨烯的制备方法

采用粘胶带的方式,胶带采用特殊的3M思高牌胶带。使用镊子 夹取16 cm长的思高牌胶带贴附在高定向热解石墨片表面,轻轻压 实,使胶带和石墨片紧紧贴附,慢慢撕下。胶带表面会粘附有很薄 的一层石墨薄片,然后把胶带的两端对折,使石墨薄片夹在胶带具 有粘性一侧的中间,轻轻的压实,慢慢撕下,平稳的将石墨薄片一 分为二。完美的剥离,剥离的石墨薄片表面如原子般平滑,复制出 的石墨薄片是发亮的。重复3到l0次剥离,直到胶带上出现颜色如 墨水斑点一样的石墨薄片。小心的将附有石墨薄片的胶带贴附在氧 化的硅片上,轻轻挤压掉胶带和硅片之间的空气,使样品和胶带完 全贴附,保持l0 min,慢慢从硅片表面撕下胶带。这时数千小片石 墨都粘到了硅片上,而其中部分样品就是少层、甚至单层的石墨烯 。
1. 机械剥离法 2. 氧化石墨还原法
3. 化学气相沉积法 4. 外延生长发
机械剥离法:
是最早面剥离出石墨烯片层。早期的机械剥离法所制得的石墨薄片 通常含有几十至上百个片层,随着技术方法的改进,逐渐可以制备出 层数为几个片层的石墨薄片。 机械剥离法被广泛用于石墨烯片层的制备,特别在石墨烯的一 些光学、电学性能研究中,一般均以机械剥离法作为主要的制备方 法。与其他方法相比较,机械剥离法是最简单的方法,对实验室条 件的要求非常简单,并且容易获得高质量的石墨烯。 但制备的石墨烯薄片尺寸不易控制、重复性差,产率较低,而 且难以规模化制备单层石墨烯。
氧化石墨还原法
该方法主要采用强酸(如浓硫酸和发烟硝酸等)将本体石墨进行 氧化处理,通过热力学膨胀或者强力超声进行剥离,利用化学还原法 或其它方法将氧化石墨烯还原为石墨烯。所以,主要过程就分为氧 化和还原两个阶段。 氧化阶段:目前,对本体石墨进行氧化处理多采用 Hummers 法 。一般步骤为:将石墨粉和无水 NaNO3 加入置于冰浴内的浓 H2SO4 中,以 KMnO4 为氧化剂进行氧化处理,用 30% H2O2 还原剩余的氧 化剂,最后过滤、洗涤、真空脱水得到GO。 为了进一步强化其氧化强度,还可以利用过 K2S2O8 和 P2O5 对 本体石墨进行预氧化处理后,再进行 Hummers 法氧化。

论石墨烯的制备方法

论石墨烯的制备方法

论石墨烯的制备方法石墨烯是一种由碳原子组成的二维材料,由于其在电子、光学、机械等方面的独特性能,引起了广泛的关注和研究。

石墨烯的制备方法有很多种,下面就几种常见的制备方法进行介绍。

一、机械剥离法机械剥离法是最早发现的石墨烯制备方法之一。

这种方法是通过用胶带等机械手段将石墨材料中的层状结构分离得到石墨烯。

将石墨材料表面涂覆一层胶水或胶带,随后在胶面上用力撕去一小块,再将这块小块对折数次,然后再撕开,就可以得到一个更薄的石墨片,重复这个过程多次即可得到石墨烯。

这种方法简单易操作,但是比较耗时和耗力。

二、化学气相沉积法化学气相沉积法是一种较为常见的石墨烯制备方法。

该方法主要包括两个步骤,首先将金属催化剂(如铜、镍等)表面进行处理,然后将预先加热至高温的石墨片放入反应室中,在高温下与氢气、甲烷等碳源气体反应,然后通过冷却使其沉积在基底表面。

此时,石墨片原子层和基底表面结合,形成石墨烯薄膜。

三、化学还原法化学还原法是一种通过化学手段来制备石墨烯的方法。

这种方法一般是将氧化石墨氧化物如氧化石墨烯或氧化石墨烯纳米带等经过还原处理得到石墨烯。

常见的还原剂有氢气、氨气等。

四、电化学剥离法电化学剥离法是一种比较新颖的石墨烯制备方法。

该方法是通过在石墨基底和溶液中施加电场,将石墨片剥离成石墨烯。

具体操作过程是将石墨片作为阳极,放入含有离子溶液的电化学池中,然后施加电压,使石墨片与阳极之间发生剥离和离子交换,最终得到石墨烯。

电化学剥离法具有高效、可控性好等优点。

除了上述几种常见的制备方法外,还有许多其他的方法可以用来制备石墨烯,例如热解法、氧化还原法等。

这些方法各有优缺点,适用于不同的实际应用场景。

随着石墨烯研究的深入,相信会有更多更高效的制备方法被开发出来。

石墨烯制备

石墨烯制备

外延生长法
优点:能够制备出1—2碳原子层厚的石墨烯;
制得的石墨烯表现出较高的载流子迁移率等特性; 用于以SiC为衬底的石墨烯器件的研究。
缺点:SiC单晶衬底价格昂贵;SiC上的石墨烯难转移;
所制石墨烯无量子霍尔效应;难以获得大面积、 厚度均一的石墨烯(由于SiC晶体表面结构较为复杂)
化学合成法
以小分子或大分子有机物为前驱体,在碱金属催化 或环化脱氢等工艺条件下自下而上的石墨烯制备方法。
基本过程:
a 由环化脱氢过程得到连续的稠环芳烃结构 b 通过Diels-Alder反应、Pd催化的
Hagihara-Sonogashira等先合成六苯并蔻(HBC) c 在FeCl3等作用下环化脱氢得到较大平面的石墨烯
化学合成法
优点:结构完整;
有良好的加工性能; 产物具有质量高、纯度高;
缺点:反应复杂;
石墨烯的制备方法
➢微机械剥离法 ➢氧化石墨还原法 ➢外延生长法 ➢化学合成法 ➢化学气相沉积法
微机械分离法
⑴ 在高定向HOPG(热解石墨)表面用氧等离子 干刻蚀进行离子刻蚀,在表面刻蚀出一定大小 的微槽。 ⑵ 将其用光刻胶粘到玻璃衬底上。 ⑶ 用透明胶带进行反复撕揭, 去除多余HOPG。 ⑷ 将粘有微片的玻璃衬底放入丙酮溶液中超声 ⑸ 将单晶硅片放入丙酮溶剂中,将单层石墨烯 “捞出”。
石墨的氧化方法:Huminers、Brodie、Staudenmaiert 基本原理:用无机强质子酸(如浓硫酸)处理原始石墨, 将强酸小分子插入石墨层间,再用强氧化剂 (如KMn04、KCl04等)对其进行氧化。
还原的方法: 化学还原法、热还原法、 电化学还原法、激光照射还原
氧化石墨还量高,
石墨烯体材料完整地复制了泡沫

石墨烯制备

石墨烯制备

优点 • 大面积 • 高质量
ቤተ መጻሕፍቲ ባይዱ
缺点 • 条件比较苛刻 • 过程比较复杂
11
化学合成法
2.4化学合成方法
2010年,Mullen课题组 利用自下而上的化学合 成方法制备了石墨烯纳 米带。
1. 以10,100-dibromo9,90-bianthryl单体为前 驱体。
2. 单体热分解成双游离 基
3. 双游离基通过加聚反 应形成线性高分子链。
4. 通过环化脱氢作用形 成石墨烯纳米带。
12
化学合成法
自下而上的有机合成法
• 可以制备具有确定结构而且无缺陷的石墨烯纳米带 • 可以进一步对石墨烯纳米带进行功能化修饰
从有机小分子出发制备石墨烯
• 条件比较温和 • 易于控制 • 给连续化批量制备石墨烯提供了可能
13
其他方法及总结
除以上介绍的常见制备方法外,还有人研究了利用电弧法、切 割碳纳米管法、气相等离子体生长技术、静电沉积法口、原位自生 模板法等制备石墨烯。如何综合运用各种石墨烯制备方法的优势, 取长补短,解决石墨烯的不稳定性、量产等问题,完善其结构和电 性能是今后研究的热点和难点,也是今后开辟新的石墨烯合成途径 的关键。
2. 升温至生长温度,使碳通过扩散进入金属中
3. 快速降温使碳从金属中偏析出来。
9
CVD法
2010年,Bae课题组利用CVD法制备石墨烯,并将其转移到柔 性沉底上,得到尺寸达到30英寸的透明石墨烯电极,可作为触 摸屏幕。
10
CVD法
通过化学气相沉积在绝缘表面( 例如SiC) 或金属表 面( 例如Ni) 生长石墨烯, 是制备高质量石墨烯薄膜的重要 手段。
物理方法
1.物理方法
1.1机械剥离法 这类方法是通过机械力从石墨晶体的表面剥离出石墨烯 片层,即直接将石墨烯薄片从较大的晶体上剥离下来。

石墨烯的制备

石墨烯的制备

石墨烯的制备
石墨烯的制备如下:
1、微机械剥离法
方法:用光刻胶将其粘到玻璃衬底上,再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用范德华力或毛细管力将单层石墨烯“捞出”。

缺点:产物尺寸不易控制,无法可靠地制备出长度足够的石墨烯,不能满足工业化需求。

2、外延生长法
方法:在高温下加热SiC单晶体,使得SiC表面的Si原子被蒸发而脱离表面,剩下的C原子通过自组形式重构,从而得到基于SiC衬底的石墨烯。

缺点:对制备所需的sic晶面要求极高,而且在sic上生长的石墨烯难以剥离。

3、化学气相沉积法(CVD法)
方法:将碳氢化合物甲烷、乙醇等通入到高温加热的金属基底表面,反应持续一定时间后进行冷却,冷却过程中在基底表面便会形成数层或单层石墨烯。

缺点:制备所需条件苛刻,需要高温高真空。

成本高,生长完成后需要腐蚀铜箔的到石墨烯。

4、氧化还原法
方法:先用强氧化剂浓硫酸、浓硝酸、高锰酸钾等将石墨氧化成氧化石墨,氧化过程即在石墨层间穿插一些含氧官能团,从而加大了石墨层间距,然后经超声处理一段时间之后,就可形成单层或数层氧化石墨烯,再用强还原剂水合肼、硼氢化钠等将氧化石墨烯还原成石墨烯。

缺点:化学反应程度很难控制,反应不完全的情况下会有大量杂质。

石墨烯生产原料

石墨烯生产原料

石墨烯生产原料
石墨烯的生产原料主要有天然石墨、石墨粉、氧化石墨、氯化石墨以及石墨烯前体材料等。

1. 天然石墨:通过天然石墨进行石墨烯的制备。

天然石墨是一种含有大量碳元素的岩石矿石,在石墨烯的生产过程中,通过化学或物理方法对天然石墨进行氧化、还原、剥离等处理,最终得到石墨烯材料。

2. 石墨粉:石墨粉是一种细小粒径的石墨颗粒,通常直径在0.1-500微米之间。

石墨粉可以通过研磨、球磨等方法制备,然后通过氧化还原等工艺将石墨粉转化为石墨烯。

3. 氧化石墨:氧化石墨是一种含有氧元素的石墨材料,通过将天然石墨或石墨粉暴露在氧气、氧化剂或酸性条件下,使其发生氧化反应,生成氧化石墨。

随后,通过还原等措施,可以将氧化石墨转化为石墨烯。

4. 氯化石墨:氯化石墨是一种含有氯元素的石墨材料,通过将天然石墨或石墨粉与氯气反应,使其发生氯化反应,生成氯化石墨。

然后再通过还原剂将氯化石墨降解,生成石墨烯。

5. 石墨烯前体材料:除了上述原料,还可以使用一些石墨烯前体材料进行石墨烯的制备。

这些前体材料可以是含有碳元素的有机化合物,如石墨烷、石墨烯烷、多聚苯乙烯等,也可以是含有碳元素的无机化合物,如碳化硅、碳纳米管等。

这些前体材料经过适当的处理和转化,可以得到石墨烯材料。

需要注意的是,石墨烯的生产原料选择主要取决于生产工艺和方法,不同的生产方式可能会采用不同的原料。

石墨烯常用制备方法

石墨烯常用制备方法

石墨烯常用制备方法
一、石墨烯常用制备方法
1、气相沉积(CVD)
气相沉积(CVD)属于一种分子气相化学反应,它是在高温(一般情况下在550-950℃)和高压(一般在100-1000pa)的条件下,将原料通过催化剂转变为石墨烯电催化膜的制备方法。

优点:有温控,可以控制膜的厚度和结构。

缺点:需要高温和高压的条件,可能导致电催化膜品质不好。

2、硅基模板制备法
硅基模板制备法是通过化学气相沉积(CVD)在硅基模板上形成石墨烯的制备方法。

此方法在多晶硅基模板上形成石墨烯膜,经过后续处理去除模板,形成石墨烯膜。

优点:此方法可以在室温条件下进行,操作简便;可以得到高质量的石墨烯膜。

缺点:膜的厚度受模板的厚度影响较大;制备过程比较复杂。

3、电沉积制备法
电沉积制备法是在电极上通过催化剂和原料的反应,利用催化反应产生的电子电子反馈参与沉积物质,从而制备石墨烯的方法。

优点:操作简便,制备过程较快;不受模板的厚度影响,可以控制膜的厚度;可以得到高质量的石墨烯膜。

缺点:需要精确的控制电极,否则可能影响膜的品质。

4、氢化焙烧法
氢化焙烧法主要是将不饱和的物质(如碳氢物质或酰酸物质等)在高温下进行氢化反应,从而形成石墨烯的方法。

优点:制备过程比较简单,不需要高温和高压的条件;可以得到结构良好的石墨烯膜。

缺点:制备过程的温控不够精确,可能影响石墨烯膜的品质。

论石墨烯的制备方法

论石墨烯的制备方法

论石墨烯的制备方法石墨烯是一种二维单层的碳 allotrope,具有材料学和物理学等领域广泛的应用前景。

石墨烯的制备方法目前主要包括机械剥离法、化学气相沉积法、化学剥离法、氧化法、还原法等。

本文将对这些制备方法进行详细介绍。

一、机械剥离法机械剥离法是制备石墨烯最早的方法之一,也是最简单的方法之一。

这种方法的原理是通过机械力将石墨材料剥离成单层的石墨烯。

机械剥离法的典型代表是胶带法。

将石墨材料粘贴在一块胶带上,然后再将胶带从石墨材料上剥离。

反复进行该操作,直到胶带表面只剩下石墨烯单层。

这种方法制备的石墨烯单层质量较高,但生产效率较低,适用于小规模实验室制备。

二、化学气相沉积法化学气相沉积法是一种在高温高压条件下,通过化学反应在固体衬底表面生长石墨烯的方法。

该方法主要利用了石墨烯的化学气相反应动力学和热力学性质。

此方法包含两个主要过程,即在衬底表面通过化学反应形成石墨烯前体物质,然后通过热解、脱氢等过程形成石墨烯薄膜。

常用的衬底材料有镍、铜、铂等。

化学气相沉积法制备的石墨烯单层生产效率较高,适用于大面积制备。

三、化学剥离法化学剥离法是指利用化学方法将石墨材料分散在溶液中,并通过超声或机械力使其剥离成石墨烯单层。

最常用的化学剥离法是氧气剥离法和超声剥离法。

氧气剥离法是将石墨材料暴露在高温氧气环境下,使其氧化成氧化石墨氢化合物,然后通过酸浸取得石墨烯单层。

超声剥离法则是将石墨材料置于溶液中,通过超声波的作用使石墨材料剥离成石墨烯单层。

化学剥离法制备的石墨烯单层质量较高,但生产效率较低。

四、氧化法氧化法是一种将石墨材料通过氧化反应形成氧化石墨氢化合物,然后再通过热解、还原等过程得到石墨烯的方法。

常用的氧化剂有硝酸、高氯酸等。

氧化法制备的石墨烯质量相对较低,含有较多的杂质,但生产效率较高,适用于大规模制备。

石墨烯的制备方法包括机械剥离法、化学气相沉积法、化学剥离法、氧化法和还原法等。

不同的制备方法在成本、生产效率和质量等方面有所差异,适用于不同规模和需求的实验室和工业应用。

石墨烯的制备方法

石墨烯的制备方法

石墨烯的制备方法注:①物理剥离法生长的石墨烯是纳米或微米级薄膜或薄片形式,具有较好的电化学、热传导、力学以及抗腐蚀等特点;更适用于锂电池领域。

②化学沉积法可以生产大面积的石墨烯薄膜,主要应用于新一代半导体、光学元器件以及触摸屏领域。

由于石墨烯是在金属表面沉积生产,表面有金属污染的可能。

国内制备石墨烯的企业:①方大碳素是亚洲最大的炭素制品生产供应基地,可生产国内外客户所需的各种品种规格的石墨电极以及炭素制品。

②常州二维碳素科技有限公司主要从事大面积石墨烯透明导电薄膜的生产。

③深圳市贝瑞特新能源材料有限公司全球最大的锂电池负极材料供应商,是全球唯一拥有负极材料完整价值链的企业,客户包括三星,LG,日本三洋,比亚迪等。

④金路集团,与中科院合作研发石墨烯。

石墨烯基材料的应用和商业化用途1.石墨烯在触摸屏领域的应用目前显示器和触摸屏等器件中的导体材料主要是氧化铟锡ITO材料,这种材料价格高,易碎且有毒性(毒性与铅不相上下),而石墨烯由于其特殊的分子结构,具有很强的导电性能,且几乎完全透明,这两种特性使得石墨烯成为一种性能非常好的透明导体材料。

此外,石墨烯具有高韧性吧,能够拉升20%而不断裂。

因此可以制成可折叠,伸缩的显示器件。

随着石墨烯制备工艺的进一步发展,石墨烯的制备成本将大幅降低。

目前,国际上的一些电子生产厂商,如三星电子,苹果公司也开始在石墨烯技术中展开角逐。

三星的石墨烯技术专利遍布触摸柔性屏,曲面显示屏、石墨烯晶体管等各个领域。

在10年与韩国成均馆大学利用CVD法开发研制了30英寸单层石墨烯膜,创造石墨烯膜尺寸记录。

苹果公司目前也拥有至少两项与石墨烯相关的技术,预计将主要运用于手机显示屏。

国内也有多家公司业开始将石墨烯薄膜用于手机电容式触摸屏,并开始实现石墨烯触摸屏小批量生产。

这些公司有,重庆墨希科技有限公司,宁波墨西科技有限公司,常州二维碳素科技有限公司,辉锐科技等。

①常州二维碳素科技有限公司主要从事大面积石墨烯透明导电薄膜的生产,该产品主要市场包括:石墨烯透明导电薄膜材料的生产和销售,以及在透明电极、储能、电子器件等领域的应用技术开发和技术支持服务。

石墨烯常用制备方法

石墨烯常用制备方法

石墨烯常用制备方法一、介绍石墨烯是一种三维结构的单原子层石墨,具有良好的电子结构,它由一层原子厚的碳原子片状堆积在一起而构成,它具有优异的机械、电子、热、光等特性,是一种多面向的多功能材料,在催化、电池、膜、紫外栅、电子、传感器等领域有着广泛应用,所以被称为21世纪的“万物之母”。

本文将介绍石墨烯常用的制备方法,以及优劣比较,并针对不同制备之间的优缺点介绍如何进行改进和优化。

二、石墨烯常用制备方法1、化学气相沉积法(CVD)化学气相沉积法是一种常用的石墨烯制备方法,它通过在石墨或其它碳基衬底上利用高温高压的情况下,将气相中的碳原子集中到衬底表面,形成单层石墨烯的过程。

其优点是制备石墨烯的过程比较简单,可以大面积地生长,以及控制厚度比较准确,而缺点主要是生长的石墨烯质量受限于基材的质量,而且存在着一定的污染和杂质。

2、电沉积法电沉积法是一种基于电化学反应过程的石墨烯制备方法,它可以将碳原子通过电化学过程沉积到衬底表面,在不影响石墨烯结构的前提下,使石墨烯的质量和性质有较大的改善。

其优点是沉积的碳原子更加纯净,热稳定性也更高,而缺点是制备石墨烯的能力可能较弱,而且制备工艺较复杂,容易受到外界影响。

3、溶剂蒸发法溶剂蒸发法是一种常用的石墨烯制备方法,它主要是将碳源(有时会加入碳纳米管或其它碳材料)溶解在合适的溶剂中,然后再将溶解物在衬底上涂布,最后在室温或加热的情况下将溶剂蒸发,形成一层石墨烯的过程。

其优点是溶剂涂布和蒸发的步骤很容易控制,可以在各种不同的基材上,大面积制备石墨烯,而缺点是溶剂可能会损坏基材表面,从而影响石墨烯的质量。

4、光刻法光刻法是一种以激光或电子束来制备石墨烯的方法,它可以将石墨的表面释放出碳原子,然后在温度和压力合适的情况下,重新自组装成石墨烯的过程。

其优点是可以在表面进行准确控制,从而实现纳米材料的高效制备;而缺点是该制备过程受到很多外界因素的影响,从而会影响其制备效率。

三、总结石墨烯常用的制备方法有CVD、电沉积法、溶剂蒸发法和光刻法等,其中CVD制备的石墨烯质量受基材质量的影响,而电沉积可以以潜在的内能最低的方式沉积出非晶状的石墨烯;溶剂蒸发法可以在各种不同基材上进行大面积的制备;光刻法能够做到准确的控制,但容易受到外部影响。

石墨烯的制备原理与工艺

石墨烯的制备原理与工艺

石墨烯的制备原理与工艺
石墨烯的制备有多种方法,包括机械剥离法、热解法、化学气相沉积法等。

以下是其中几种常用的制备原理与工艺:
1. 机械剥离法(Scotch tape method):原理是通过机械剥离将三维石墨晶体剥离成单层石墨烯。

首先在一块石墨表面黏上一层胶带,并迅速剥离,重复此过程多次,使得石墨片层层剥离,最终得到单层石墨烯。

2. 热解法(Thermal exfoliation method):原理是通过高温处理石墨矿石或
石墨烯氧化物,使其产生剧烈的热胀冷缩,从而剥离成石墨烯片。

这个方法需要将石墨材料加热到几百到几千摄氏度,并在特定气氛下进行处理。

3. 化学气相沉积法(Chemical vapor deposition, CVD):原理是在金属表面或其他衬底上,通过气相化学反应沉积石墨烯。

一般的CVD过程中,石墨烯的前体物质(如甲烷、乙烯等)被加热至高温,使其分解生成碳原子,并在金属表面上沉积形成石墨烯。

以上仅为几种常见的石墨烯制备方法,每种方法的具体工艺细节可能会有所不同。

此外,还有其他一些制备方法,如化学剥离法、氧气化学剥离法等。

总的来说,石墨烯的制备原理是通过剥离石墨材料的层层结构,或者通过沉积碳原子形成单层结构的石墨烯。

石墨烯的制备方法

石墨烯的制备方法

三.外延生长法
外延生长法是在单晶体表面外延生长石墨层,然后通过化学刻蚀将石墨层从基片剥离。常见有 两种方法,一种为SiC表面分解法,一种为分子束沉积法。
1.SiC表面分解法
SiC外延生长石墨烯的机制: 在高温下, SiC表面Si升华,于是残留的碳原子聚集形成弯曲的石墨烯层,而生长的石墨烯 常因SiC表面的缺陷而受阻,在其它区域也发生同样的过程,最终在SiC表面形成连续、尺寸与 绝缘基片相当的石墨烯层
压力
烘烤
2.剥离出石墨烯片层 用透明胶带从光刻胶上反复的剥离,最后用丙酮将光 刻胶溶解,那些留在光刻胶上的较薄的石墨烯片层也 即分散在了丙酮溶液中。
丙酮溶解
3.获得石墨烯片层 将 SiO2 / Si 衬底在丙酮溶液中浸过后,再用大量的水 和丙醇冲洗衬底,一部分石墨烯片层就留在了衬底上。
冲洗
4.筛选石墨烯片层 将衬底在丙醇中超声,最后留在衬底上的基本上都是厚度小 于10 nm的片层(它们之间较强的范德华力和毛细管作用力), 其中就有单层的石墨烯。通过光学显微镜可以将薄的片层筛 选出来,再利用AFM寻找单层石墨烯并得到精确的厚度。
取向附生法
优点:单层石墨烯表现令人满意 不足:生产的石墨烯薄片往厚度不均匀
外延生长法
优点:能够制备出1-2碳原子厚度的石墨烯 不足:难以获得大面积、厚度均一的石墨烯
氧化石墨还原法
优点:成本较低、高效环保,并且能够大规模工业化生产 不足:容易导致一些物理、化学性能的损失
化学气相沉积法
优点:可制备出面积较大的石墨稀 不足:成本较高,工艺复杂
不同厚度的石墨烯片层在白光下的光学显微镜照片(a),所标厚 度为AFM测量值;有褶皱的单层石墨烯AFM图像(b),双层折叠 部分的厚度约为0.8 nm,证明石墨烯片层为单层石墨烯(尺寸大 小为3 um x3 um)

石墨烯制作方法

石墨烯制作方法

石墨烯制作方法
石墨烯制备方法可分为化学气相沉积(Chemical Vapour Deposition,简称 CVD)法和物理气相沉积(Physical Vapour Deposition,PVD)法两大类。

1、化学气相沉积(CVD)法
CVD法是用一定量的有机原料,在适当温度和压力条件下,反应生成气相化合物,再将其均匀地均密地沉积到在石墨片基材表面形成膜的一种技术,是全球最受欢迎的石墨烯制备方法。

CVD法的主要优点在于其原材料具有较低成本,并可以提供高质量石墨烯,范围广泛,形状和尺寸可调,耗时和成本低,以石墨烯为基础制备电化学传感器、催化剂和能源存储相关材料性能可有效提高等特点和优势。

不过CVD法制备的石墨烯的片尺寸一般较小,最适用于小尺度的应用。

PVD法主要是以室温下通过层层积累石墨原料(如石墨粉或石墨板),而利用离子束或共振电感等物理方法将其转换成薄膜的一种制备技术。

由于PVD法沉积过程不需要使用有机重要成分,因此其物性稳定性也很高。

PVD法是一种更早期被研究,并且广泛用于工业应用的技术,它可生成较大的石墨烯片,可以应用于制备太阳能电池、遗传材料和传感器等设备,且制备所需时间较短,特别适用于大尺度的应用,但该方法需要在容易氧化的条件下进行,会给很多工业应用带来麻烦,所以目前更多地被用于研究领域。

石墨烯工艺流程

石墨烯工艺流程

石墨烯工艺流程石墨烯作为一种新型二维材料,在材料科学领域具有广泛的应用前景。

其独特的物理和化学性质赋予其出色的导电性、热导率和机械强度,并且具有极高的表面积和高透明度。

下面将介绍石墨烯的制备工艺流程。

石墨烯的制备工艺主要包括机械剥离法、化学气相沉积法和化学剥离法等。

其中,机械剥离法是最早被发现的制备石墨烯的方法,在实践中也得到了广泛应用。

机械剥离法的原理是,通过使用胶带或其他粘性材料,将石墨晶体中的石墨层逐层剥离,最终获得单层的石墨烯。

具体的步骤如下:1. 准备石墨晶体:首先需要准备高质量的石墨晶体,可以通过机械研磨或化学氧化还原法等方法得到。

2. 制备基底:在制备石墨烯之前,需要准备一张适宜的基底材料,常用的有硅衬底或玻璃衬底。

3. 涂敷粘性材料:将胶带或其他粘性材料粘贴在基底表面,然后以一定的角度将其撕去。

重复多次,使石墨层剥离。

4. 转移石墨烯:将胶带或其他粘性材料上的石墨烯转移到其他基底上,可以通过静电吸附或干法转移等方法实现。

除了机械剥离法,化学气相沉积法也是制备石墨烯的常用方法之一。

其工艺流程如下:1. 准备衬底:选择适当的衬底,如金属衬底或二氧化硅衬底,并进行必要的表面处理。

2. 制备催化剂:通过化学方法或物理方法,在衬底表面制备一层金属催化剂,如铜、镍或钯。

3. 进行气相沉积:将预处理过的衬底放置在化学气相沉积反应器中,然后通过加热反应器,使金属催化剂表面发生碳源气体的分解,从而实现石墨烯的生长。

4. 清洗和转移:将生长好的石墨烯进行清洗和转移,常用的方法是浸泡在酸溶液中去除催化剂,然后用胶带或其他粘性材料转移到其他基底上。

化学剥离法是制备大面积石墨烯的一种常用方法,其工艺流程如下:1. 制备石墨晶体:同机械剥离法。

2. 涂覆保护层:在石墨晶体表面涂覆一层保护剂,如聚甲基丙烯酸甲酯(PMMA)。

3. 酸处理:将涂覆了保护剂的石墨晶体放入浓硝酸或硫酸中,使其发生氧化剥离反应。

反应后,石墨烯层会与保护剂分离。

比较三种化学方法制备石墨烯

比较三种化学方法制备石墨烯

一、利用液氨作为还原剂,还原氧化石墨。

工艺:1、将60 g的颗粒状天然石墨,硝酸钠30 g加入l0L的双层玻璃反应釜中冷却至0℃;再将2500 mL浓硫酸缓慢加入反应釜中充分搅拌3 0 min,保持反应体系的温度不高于4℃;然后,将180 g高锰酸钾加入反应釜中并充分搅拌60 min,同时保持反应体系温度不高于8℃,此阶段为低温反应。

2、撤走冷浴,用高温恒温循环泵将反应体系加热至35℃,并充分搅拌3h,得到褐色悬浮液,再缓慢加入90 g高锰酸钾反应12h,保持反应体系的温度不高于40℃,此阶段为中温反应。

3、撤走高温恒温循环泵,用低温冷却循环泵将反应系统温度控制在5℃以下,将7L去离子水缓慢滴加入褐色悬浮液中,体系温度骤然升高,并伴有大量气体生成,稀释的悬浮液在此温度下搅拌60 min。

4、向悬浮液中加入50 mL的H202 (30%),室温下搅拌60 min,得到亮黄色氧化石墨分散液。

5、将上述分散液静置2 h,分层,去除上清液后,加入一定量的去离子水,过滤,得到黄褐色滤饼。

用5000 mL稀盐酸(10%)将滤饼洗涤2次后,再分散于5000 mL 去离子水中,过滤,用大量去离子水洗涤至溶液中无氯离子(可用AgN03溶液检测),且接近中性。

然后将剩余固体产物在60 ℃的真空干燥箱中干燥24 h,研磨过筛后得到的氧化石墨。

石墨烯的制备用低温冷却循环泵在一定温度下将高纯氨在密封容器中液化,加入一定量干燥的氧化石墨用超声细胞粉碎机超声剥离1h,将一定量的金属铿放入液氨中,溶液变成蓝色,继续保持超声30 min溶液变黑,停止冷却自然升温使液氨挥发,向得到的黑色固体中加入乙醇超声分散,过滤用去离子水洗涤至中性,真空60℃干燥12h,得到黑色的石墨烯。

在其他实验条件相同的条件下,将铿用金属钠和金属钾代替,得到对应的碱金属还原的石墨烯。

小结:采用液氨作为溶剂超声剥离氧化石墨,利用液氨一碱金属强还原性,碱金属进一步插层剥离氧化石墨同时将其还原。

石墨烯制备方法

石墨烯制备方法

石墨烯制备方法石墨烯是一种由碳原子构成的二维晶格结构材料,具有优异的导电性、热导性和机械性能,被认为是未来材料科学领域的重要研究对象。

石墨烯的制备方法多种多样,下面将介绍几种常见的制备方法。

化学气相沉积法(CVD)。

化学气相沉积法是目前制备石墨烯最常用的方法之一。

其制备过程是在金属衬底上,通过加热挥发源产生的气态碳源(如甲烷、乙烯等)与载气(如氢气)在高温下反应,使得碳原子在金属表面沉积形成石墨烯。

CVD法制备的石墨烯具有较高的结晶度和较大的尺寸,适合用于大面积石墨烯的制备。

机械剥离法。

机械剥离法是一种通过机械剥离石墨烯单层的方法。

其制备过程是利用胶带或者刮刀等工具,将石墨晶体不断剥离,直至得到单层石墨烯。

这种方法制备的石墨烯单层质量较好,但是产率较低,适合于小规模实验室制备。

化学剥离法。

化学剥离法是利用化学剥离剂将石墨晶体表面的原子层一层一层地剥离,直至得到单层石墨烯。

这种方法制备的石墨烯单层质量较好,且可以实现大规模制备,但是对剥离剂的选择和使用条件要求较高。

氧化还原法。

氧化还原法是一种通过氧化石墨后再还原得到石墨烯的方法。

其制备过程是先将石墨氧化形成氧化石墨,再通过还原剂(如高温、化学还原剂等)将氧化石墨还原为石墨烯。

这种方法制备的石墨烯单层质量较好,且可以实现大规模制备,但是制备过程中需要严格控制氧化和还原的条件。

化学氧化剥离法。

化学氧化剥离法是一种通过将石墨氧化后再进行化学剥离得到石墨烯的方法。

其制备过程是先将石墨氧化形成氧化石墨,再通过化学剥离剂将氧化石墨一层一层地剥离,直至得到单层石墨烯。

这种方法制备的石墨烯单层质量较好,且可以实现大规模制备,但是对氧化和剥离剂的选择和使用条件要求较高。

总结。

以上介绍了几种常见的石墨烯制备方法,每种方法都有其特点和适用范围,科研工作者可以根据实际需要选择合适的制备方法。

随着石墨烯制备技术的不断发展,相信未来会有更多更高效的制备方法出现,推动石墨烯在材料科学领域的广泛应用。

石墨烯制备方法

石墨烯制备方法

石墨烯制备方法石墨烯是由碳原子层层叠加成的二维单层晶体结构,具有优异的导电、热传导、机械强度等性质,引起了广泛的研究兴趣和应用前景。

本文将介绍十种常见的石墨烯制备方法,并对其具体原理、优缺点、适用范围等方面进行详细描述。

1. 机械剥离法机械剥离法是最早被用于制备石墨烯的方法之一。

其基本原理是利用粘性较小的胶带或其它材料粘取石墨材料,通过不断剥离得到具有单层结构的石墨烯。

该方法操作简单,无需复杂的仪器设备,但其制备的单层石墨烯规模较小,不利于大规模应用。

2. 化学剥离法化学剥离法是利用氧化剂将多层石墨氧化成石墨烯氧化物,再通过还原剂将其还原成石墨烯的方法。

此方法实现了石墨烯的大规模制备,但其过程中需要使用腐蚀性氧化剂和还原剂,对环境及操作人员都有一定的危害。

3. CVD法化学气相沉积(CVD)法是目前最为常用的石墨烯制备方法之一。

其原理是在铜、镍等金属基底表面上通过热解碳源气体,使其在金属表面上形成石墨烯。

该法的优点是可实现大面积石墨烯制备,操作相对简单,但需要高温反应,生产成本相对较高。

4. 红外激光还原法红外激光还原法是通过用红外激光照射氧化石墨烯氧化物,使其还原成石墨烯的方法。

该方法可以在常温下进行,不需要高温反应,具有高效、快速的优点。

该方法难以控制石墨烯的尺寸和形态,需要对反应中氧化剂等物质进行处理。

5. 化学气相沉积-石墨烯转移法化学气相沉积-石墨烯转移法是将通过CVD法制备的石墨烯在聚丙烯酰胺凝胶表面进行生长,再将其转移到其它基底表面的方法。

该方法可以实现制备大规模、高质量的石墨烯,但转移过程中容易产生褶皱、损伤等问题。

6. 氧化还原法氧化还原法是通过对石墨进行氧化处理,形成氧化石墨烯,再通过还原剂还原成石墨烯的方法。

该方法可以制备大面积石墨烯,但氧化过程可能影响石墨烯的性质。

7. 液相剥离法液相剥离法是利用毛细现象将石墨材料悬浮于溶液中,通过范德华力将单层石墨烯从基底上剥离的方法。

石墨烯的制备

石墨烯的制备
第三、碳化硅表面外延生长法
碳化硅表面外延生长法是通过加热单晶碳化硅脱除硅,在单晶(0001)面上分解出石墨烯片层。具体过程是:将经氧气或氢气刻蚀处理得到的样品在高真空下通过电子轰击加热,除去氧化物。用俄歇电子能谱确定表面的氧化物完全被移除后,将样品加热使之温度升高至1250~1450℃后恒温1~20min,从而形成极薄的石墨层。在C-terminated表面比较容易得到高达100层的多层石墨烯。其厚度由加热温度决定,制备大面积具有单一厚度的石墨烯比较困难。
第二、取向附生法
取向附生法是利用生长基质原子结构“种”出石墨烯,首先让碳原子在1150℃下渗入钌,然后冷却,冷却到850℃后,之前吸收的大量碳原子就会浮到钌表面,镜片形状的单层的碳原子布满了整个基质表面,最终它们可长成完整的一层石墨烯。第一层覆盖80%后,第二层开始生长。底层的石墨烯会与钌产生强烈的相互作用,而第二层后就几乎与钌完全分离,只剩下弱电耦合,得到的单层石墨烯薄片表现令人满意。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响碳层的特性。
石墨烯的制备方法
石墨烯是最薄却也是最坚硬的纳米材料,其厚度只有0.335纳米,硬度超过钻石,重量几乎为零。它在室温下传递电子的速度比已知导体都快石墨烯具有导电性、机械特性、自旋传输和化学性质等特性。鉴于它有这么多的优点,那么它的制备方法是什么呢?
第一、撕胶带法/轻微摩擦法
最普通的是微机械分离法,直接将石墨烯薄片从较大的晶体上剪裁下来。2004年,海姆等用这种方法制备出了单层石墨烯,并可以在外界环境下稳定存在。典型制备方法是用另外一种材料膨化或者引入缺陷的热解石墨进行摩擦,体相石墨的表面会产生絮片状的晶体,在这些絮片状的晶体中含有单层的石墨烯。但缺点是此法利用摩擦石墨表面获得的薄片来筛选出单层的石墨烯薄片,其尺寸不易控制,无法可靠地制造长度足供应用的石墨薄片样本。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

石墨烯的制备
摘要: 近年来, 石墨烯以其独特的结构和优异的性能, 在化学、物理和材料学界引起了广泛的研究兴趣. 人们已经在石墨烯的制备方面取得了积极的进展, 为石墨烯的基础研究和应用开发提供了原料保障. 本文大量引用近三年最新参考文献, 综述了石墨烯的制备方法: 物理方法(微机械剥离法、液相或气相直接剥离法)与化学法(化学气相沉积法、晶体外延生长法、氧化−还原法), 并详细介绍了石墨烯的各种修饰方法. 分析比较了各种方法的优缺点, 指出了石墨烯制备方法的发展趋势.
关键词: 石墨烯; 石墨烯氧化物; 制备; 功能化石墨烯。

背景摘要
2004年, 英国曼彻斯特大学的Geim研究小组首次制备出稳定的石墨烯, 推翻了经典的“热力学涨落不允许二维晶体在有限温度下自由存在”的理论, 震撼了整个物理界[1], 引发了石墨烯的研究热潮[2]. 理想的石墨烯结构可以看作被剥离的单原子层石墨, 基本结构为sp2杂化碳原子形成的类六元环苯单元并无限扩展的二维晶体材料, 这是目前世界上最薄的材料—单原子厚度的材料. 这种特殊结构蕴含了丰富而新奇的物理现象, 使石墨烯表现出许多优异性质[3-6], 石墨烯不仅有优异的电学性能(室温下电子迁移率可达
2×105cm2/(V·s))[7-8], 突出的导热性能
(5000 W/(m·K))[9-10], 超常的比表面积(2630 m2/g)[11], 其杨氏模量(1100 GPa)和断裂强度(125 GPa)[12-13]也可与碳纳米管媲美, 而且还具有一些独特的性能, 如完美的量子隧道效应、半整数量子霍尔效应、永不消失的电导率等一系列性质[14]等. 与碳纳米管相比, 石墨烯的主要性能均与之相当, 甚至更好, 避免了碳纳米管研究和应用中难以逾越的手性控制、金属型和半导体型分离以及催化剂杂质等难题, 而且制备石墨烯的原料价格便宜. 正是由于石墨烯材料具有如此众多奇特的性质, 引起了物理、化学、材料等不同领域科学家的极大研究兴趣, 也使得石墨烯在电子、信息、能源、材料和生物医药等领域具有重大的应用前景。

一.石墨烯的制备方法概述
目前有关石墨烯的制备方法, 国内外有较多的文献综述,石墨烯的制备主要有物理方法和化学方法. 物理方法通常是以廉价的石墨或膨胀石墨为原料, 通过微机械剥离法、液相或气相直接剥离法来制备单层或多层石墨烯, 此法原料易得, 操作相对简单, 合成的石墨烯的纯度高、缺陷较少, 但费时、产率低下, 不适于大规模生产. 目前实验室用石墨烯主要多用化学方法来制备, 该法最早以苯环或其它芳香体系为核, 通过多步偶联反应取代苯环或大芳香环上6个, 循环往复, 使芳香体系变大, 得到一定尺寸的平面结构的石墨烯(化学合成法)[20]. 2006年Stankovich等[21]首次用肼还原脱除石墨烯氧化物(graphene oxide, 以下简称GO)的含氧基团从而恢复单层石墨的有序结构(氧化−还原法), 在此基础上人们
不断加以改进, 使得氧化−还原法(含氧化−修饰−还原法)成为最具有潜力和发展前途的合成石墨烯及其材料的方法[16]. 除此之外, 晶体外延生长、化学气相沉积也可用于大规模制备高纯度的石墨烯. 本文重点总结近三年化学法, 尤其是氧化−还原法制备石墨烯的研究进展, 并对制备石墨烯的各种途径的优缺点加以评述. 二.物理法制备石墨烯
2.1 微机械剥离法
微机械剥离法是最早用于制备石墨烯的物理方法. Geim等[1]在1mm厚的高定向热解石墨表面进行干法氧等离子刻蚀, 然后将其粘到玻璃衬底上, 接着在上面贴上1μm 厚湿的光刻胶, 经烘焙、反复粘撕, 撕下来粘在光刻胶上的石墨片放入丙酮溶液中洗去, 最后将剩余在玻璃衬底上的石墨放入丙醇中进行超声处理, 从而得到单层石墨烯. 虽然微机械剥离是一种简单的制备高质量石墨烯的方法, 但是它费时费力, 难以精确控制, 重复性较差, 也难以大规模制备.
2.2 液相或气相直接剥离法
通常直接把石墨或膨胀石墨(EG)(一般通过快速升温至1000℃以上把表面含氧基团除去来获取)加在某种有机溶剂或水中, 借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液。

Coleman 等参照液相剥离碳纳米管的方式将石墨分
散在N-甲基-吡咯烷酮(NMP) 中, 超声1h后单层石墨烯的产率为1%[22], 而长时间的超声(462h)可使石墨烯浓度高达
1.2mg/mL, 单层石墨烯的产率也提高到4%[23]. 他们的研究表明[22], 当溶剂的表面能与石墨烯相匹配时, 溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量, 而能够较好地剥离石墨烯的溶剂表面张力范围为40~50mJ/m2; Hamilton等[24]把石墨直接分散在邻二氯苯(表面张力: 36.6mJ/m2)中, 超声、离心后制备了大块状(100~500nm)的单层石墨烯; Drzal等[25]利用液−液界面自组装在三氯甲烷中制备了表面高度疏水、高电导率和透明度较好的单层石墨烯. 为提高石墨烯的产率, 最近Hou等[26]发展了一种称为溶剂热插层(solvothermal-asssisted exfoliation)制备石墨烯的新方法(图1), 该法是以EG为原料, 利用强极性有机溶剂乙腈与石墨烯片的双偶极诱导作用(dipole- induced dipole interaction)来剥离、分散石墨, 使石墨烯的总产率提高到10%~12%. 同时, 为增加石墨烯溶液的稳定性, 人们往往在液相剥离石墨片层过程中加入一些稳定剂以防止石墨烯因片层间的范德华力而重新聚集. Coleman 研究小组在水/十二烷基苯磺酸钠( SDBS) 中超声处理石墨30min, 详细研究了石墨初始浓度以及SDBS浓度对石墨烯产率的影响, 发现所得的石墨烯多数在5层以下, 并且具有较高的导电率(~104 S/m)[27], 后来发现柠檬酸钠作为稳定剂也具有较好的剥离分散效果[28]. Englert等[29]合成一种新型的水溶性含大芳香环的两亲性物质并作为片层石墨的稳定剂(图2), 利用该物质与石墨片层的π−π堆积与疏水作用来制备稳定的石墨烯水溶液. 最近, 为同时提
高单层石墨烯的产率及其溶液的稳定性, Li等[30]提出“exfoliation-rein-tercalation-expansion”方法(图3), 以高温处理后
(图1 溶剂热剥离法制备石墨烯)
(图2 合成的水溶性两亲性物质)
(图3 “剥离−再插层−膨胀”法制备石墨烯)
的部分剥离石墨为原料, 用特丁基氢氧化铵插层后,再以DSPE-mPEG 为稳定剂, 合成的石墨烯90%为单层, 且透明度较(83%~93%). 另外,一些研究人员研究了利用气流的冲击作用来提高剥离石墨片层的效率, Janowska等[31]以膨胀石墨为原料, 微波辐照下发现以氨水做溶剂能提高石墨烯的总产率(~8%), 深入研究证实高温下溶剂分解产生的氨气能渗入石墨片层中, 当气压超过一定数值足以克服石墨片层间的范德华力而使石墨剥离. Pu等[32]将天然石墨浸入超临界CO2中30min以达到气体插层的目的, 经快速减压后将气体充入SDBS的水溶液中即制得稳定的石墨烯水溶液, 该法操作简便、成本低, 但制备的石墨烯片层较多(~10层).
因以廉价的石墨或膨胀石墨为原料, 制备过程不涉及化学变化, 液相或气相直接剥离法制备石墨烯具有成本低、操作简单、产品质量高等优点, 但也存在单层石墨烯产率不高、片层团聚严重、需进一步脱去稳定剂等缺陷. 为克服这种现象, 最近Knieke等
[33]发展了一种大规模制备石墨烯的方法, 即液相“机械剥
离”. 该法采取了一种特殊的设备, 高速剪切含十二烷基磺酸钠的石墨水溶液, 3h后溶液中单层和多层石墨烯的浓度高达
25g/L, 而5h后50%以上的石墨烯厚度小于3nm, 该法具有成本低、产率高、周期短等优势, 是一种极有诱惑力的大规模制备石墨烯的途径.。

相关文档
最新文档