九年级(上)第五章《视图与投影》基础过关测试卷及答案

合集下载

(典型题)初中数学九年级数学上册第五单元《投影与视图》测试卷(含答案解析)

(典型题)初中数学九年级数学上册第五单元《投影与视图》测试卷(含答案解析)

一、选择题1.由10个完全相同的小正方体搭成的物体如图所示.如果再添加若干个相同的小正方体之后,所得到的新物体从正面看和从左面看都跟原来的相同,那么这样的小正方体最多还可以添加()个.A.3 B.4 C.5 D.62.如图是由几个大小相同的小立方块搭成的几何体从上面看到的形状图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体从正面看到的形状图是()A.B.C.D.3.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是()A.20πB.18πC.16πD.14π4.观察如图所示的几何体,从左面看到的图形是()A.B.C.D.5.如图是由四个相同的小正方体组成的立体图形,它的主视图为().A.B.C.D.6.下面的几何体中,俯视图为三角形的是()A.B.C.D.7.下列几何体是由4个相同的小正方体搭成的,其中左视图与主视图相同的是()A.B.C.D.8.如图是由6个完全相同的小正方体组成的立体图形,它的左视图是( )A.B.C.D.9.如图是由4个大小相同的小正方体摆成的几何体,它的左视图是()A.B.C.D.10.由4个小立方体搭成如图所示的几何体,从正面看到的平面图形是()A.B.C.D.11.如图所示的几何体,它的左视图为( ).A.B.C.D.12.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不相同的几何体是()A.①②B.②③C.②④D.③④二、填空题13.用若干个大小相同的小立方块搭一个几何体,使得从正面和从上面看到的这个几何体的形状如图所示,则搭出这个几何体至少需要_____个小立方体,最多需要_____个小立方体.14.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算该几何体的底面周长为______cm.15.如图,在A时测得一棵大树的影长为4米,B时又测得该树的影长为6米,若两次日照的光线互相垂直,则树的高度是______.16.小明希望测量出电线杆AB的高度,于是在阳光明媚的一天,他在电线杆旁的点D处立一标杆CD,使标杆的影子DE与电线杆的影子BE部分重叠(即点E、C、A在一直线上),量得ED=2米,DB=4米,CD=1.5米,则电线杆AB长为_____17.小亮在上午8时,9时30分,10时,12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为________.18.用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体最少需要正方体_____个.19.若干个桶装方便面摆放在桌子上,小明从三个不同方向看到的图形(分别是:主视图,左视图,和俯视图)如图所示,则这一堆方便面共有__________个20.如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是______cm3.三、解答题21.用小立方块搭一个几何体,使它从正面和上面看到的形状如图所示,从上面看到形状中小正方形中的字母表示在该位置上小立方块的个数,请问:(1)b=;c=;(2)这个几何体最少由个小立方块搭成,最多由个小立方块搭成;(3)从左面看这个几何体的形状图共有种,请在所给网格图中画出其中的任意一种.【答案】(1)1,3;(2)9,11;(3)4,左视图见解析.【分析】(1)由主视图可知,第二列小立方体的个数均为1,那么b=1;第二列小立方体的个数均为1,那么c=3;(2)第一列小立方体的个数最少为2+1+1,最多为2+2+2,那么加上其它2列小立方体的个数即可;(3)由(2)可知,这个几何体最少由9个小立方块搭成,最多由11个小立方块搭成,所以共有7种情况;其中从左面看该几何体的形状图共有4种;小立方块最多时几何体的左视图有3列,每列小正方形数目分别为3,2,2.【详解】(1)b=1,c=3;(2)这个几何体最少由4+2+3=9个小立方块搭成;这个几何体最多由6+2+3=11个小立方块搭成;(3)能搭出满足条件的几何体共有7种情况,其中从左面看该几何体的形状图共有4种;小立方块最多时几何体的左视图如图所示:故答案为:(1)1,3;(2)9,11;(3)4.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数.22.如图,是一个由小正方体搭成的几何体从上面看得到的平面图形,小正方形中的数字表示该位置上的小正方体的个数.请你画出从它的正面和左面看所得到的平面图形.【答案】见解析.【分析】由已知条件可知,主视图有3列,每列小正方形数目分别为4,1,3;左视图有3列,每列小正方形数目分别为2,4,3,据此画出图形解题.【详解】从正面看:从左面看:【点睛】本题考查几何体的三视图画法,是重要考点,难度一般,掌握相关知识是解题关键.23.如图是由若干个大小相同的小正方体搭成的几何体,请画出从正面、左面、上面看到的这个几何体的形状图.【答案】图见解析.【分析】根据几何体的三视图(主视图、左视图、俯视图)的定义即可得.【详解】画图如下:【点睛】本题考查了三视图,熟练掌握三视图的画法是解题关键.24.如图是一些棱长为1cm的小立方块组成的几何体.请你画出从正面看,从左面看,从上面看到的这个几何体的形状图.【答案】见解析【分析】根据三视图的定义画出图形即可.【详解】解:三视图如图所示:【点睛】本题考查作图-三视图,解题的关键是理解三视图的定义,属于中考常考题型.25.下图是由几个棱长为1的小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,请画出这个几何体的主视图和左视图;并计算出该几何体的表面积【答案】画图见解析;40【分析】先根据题意可得主视图有3列,每列小正方数形数目分别为3,3,2;左视图有2列,每列小正方形数目分别为3,2,然后画出立体图形计算表面积即可.【详解】解:主视图和左视图如图所示:此几何体为:∴其几何表面积为:()++⨯+⨯855222=⨯+1824=+364=.40【点睛】本题主要考查了几何体的三视图画法以及立体图形表面积的求法,正确画出三视图和立体图形是解答本题的关键.26.由12个完全相同的棱长为1cm的小正方体搭成的几何体,如图所示.(1)请画出这个几何体的三视图.(2)请计算它的表面积.42cm.【答案】(1)画图见解析;(2)2【分析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2;左视图有3列,每列小正方形数目分别为3,2,2;俯视图有3列,每列小正方数形数目分别为3,3,1.据此可画出图形;(2)利用几何体的形状进而求出其表面积;【详解】(1)S=⨯+++(2)2(677)2=⨯+2202()2=42cm答:它的表面积是42cm2.【点睛】本题考查了三视图的画法以及表面积的求法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,物体的表面积是指露在外部的所有表面积之和.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】为保持这个几何体的从左面看和从正面看到的形状图不变,可在最底层第二列第三行加1个,第三列第二行加2个,第三列第三行加1个,即可得最多可以再添加4个小正方体.【详解】解:保持从上面看到的图形和从左面看到的图形不变,最多可以再添加4个小正方体; 故选:B .【点睛】本题主要考查了由三视图判断几何体,根据主视图和左视图解答是解题的关键. 2.C解析:C【分析】根据主视图的定义判断即可.【详解】解:这个几何体从正面看到的图形是C ,故选:C .【点睛】本题考查三视图的应用,熟练掌握三视图的意义及观察方法是解题关键.3.B解析:B【分析】由几何体的三视图可得出原几何体为圆锥和圆柱组合体,根据图中给定数据求出表面积即可.【详解】 由几何体的三视图可得出原几何体为圆锥和圆柱组合体,且底面半径为422r ==, ∴这个几何体的表面积=底面圆的面积+圆柱的侧面积+圆锥的侧面积 22r rh rl πππ=++=22π+2⨯2⨯2π+3⨯2π=18π,故选:B .【点睛】本题考查了由三视图判断几何体、圆锥和圆柱的计算,由几何体的三视图可得出原几何体为圆锥和圆柱组合体是解题的关键.4.C解析:C【分析】从左面只看到两列,左边一列3个正方形、右边一列1个正方形,据此解答即可.【详解】解:观察几何体,从左面看到的图形是故选:C.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.A解析:A【分析】根据几何体的三视图解答即可.【详解】根据立体图形得到:主视图为:,左视图为:,俯视图为:,故答案为:A.【点睛】此题考查小正方体组成的几何体的三视图,解题的关键是掌握三视图的视图角度及三视图的画法.6.D解析:D【分析】根据俯视图是从物体上面看,所得到的图形,分别得出四个几何体的俯视图,即可解答.【详解】A、长方体的俯视图是长方形,故本选项错误;B、圆锥的俯视图是带圆心的圆,故本选项错误;C、圆柱的俯视图是圆,故本选项错误;D、三棱柱的俯视图是三角形,故本选项正确;故选:D.【点睛】本题主要考查简单几何体的三视图;考查了学生的空间想象能力,属于基础题.7.B解析:B【分析】分别画出四个选项中简单组合体的三视图即可.【详解】A、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;B、左视图为,主视图为,左视图与主视图相同,故此选项符合题意;C、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;D、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;故选B.【点睛】此题主要考查了简单组合体的三视图,关键是掌握左视图和主视图的画法.8.D解析:D【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.【详解】左视图有2层3列,第一层有3个正方形,第二层有一个正方形;每列上正方形的分布从左到右分别是2,1,1个.故选D.【点睛】此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.9.C解析:C【分析】根据左视图即从物体的左面观察得得到的视图,进而得出答案.【详解】如图所示,该几何体的左视图是:.故选C.【点睛】此题主要考查了几何体的三视图;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.10.C解析:C【解析】【分析】找到从正面看所得到的图形即可.【详解】解:该几何体的主视图是故选C.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.11.D解析:D【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看是上大下小等宽的两个矩形,矩形的公共边是虚线,故选:D.【点睛】本题考查简单组合体的三视图,从左边看得到的图形是左视图,注意看不到而且是存在的线是虚线.12.B解析:B【解析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,分别得到每个几何体的三视图,进而得到答案:正方体主视图、左视图、俯视图都是正方形;圆柱主视图和左视图是长方形,俯视图是圆;圆锥主视图和左视图是三角形、俯视图是带圆心的圆;球主视图、左视图、俯视图都是圆.∴三视图有两个相同,而另一个不相同的几何体是圆柱和圆锥.故选B.二、填空题13.710【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由主视图可得第二层立方体的可能的个数相加即可【详解】解:综合主视图和俯视图这个几何体的底层有5个小正方体第二层最少有2个最多有5个因解析:7, 10.【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【详解】解:综合主视图和俯视图,这个几何体的底层有5个小正方体,第二层最少有2个,最多有5个,因此搭成这样的一个几何体至少需要小正方体木块的个数为:5+2=7个,至多需要小正方体木块的个数为:5+5=10个,故答案为:7,10.【点睛】此题主要考查了几何体的三视图,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.14.4πcm【分析】根据主视图是等腰三角形利用等腰三角形的性质勾股定理求得底边的长这就是圆锥底面圆的直径计算周长即可【详解】如图根据主视图的意义得三角形是等腰三角形∴三角形ABC是直角三角形BC==2∴解析:4πcm.【分析】根据主视图是等腰三角形,利用等腰三角形的性质,勾股定理求得底边的长,这就是圆锥底面圆的直径,计算周长即可.【详解】如图,根据主视图的意义,得三角形是等腰三角形,∴三角形ABC是直角三角形,=,∴底面圆的周长为:2πr=4πcm.故答案为:4πcm.【点睛】本题考查了几何体的三视图,熟练掌握圆锥的三视图及其各视图的意义是解题的关键.15.6【解析】【分析】根据题意画出示意图易得:Rt△EDC∽Rt△FDC进而可得=;即DC2=ED•FD代入数据可得答案【详解】解:根据题意作△EFC;树高为CD且∠ECF=90°ED=4FD=9;易得解析:6【解析】【分析】根据题意,画出示意图,易得:Rt△EDC∽Rt△FDC,进而可得EDDC=DCFD;即DC2=ED•FD,代入数据可得答案.【详解】解:根据题意,作△EFC;树高为CD,且∠ECF=90°,ED=4,FD=9;易得:Rt△EDC∽Rt△FDC,∴EDDC = DC FD即DC2=ED•FD,代入数据可得DC2=36,DC=6;故答案为6.【点睛】本题通过投影的知识结合三角形的相似,求解高的大小;是平行投影性质在实际生活中的应用.16.5【分析】根据题意求出△ECD∽△EAB利用相似三角形的对应边成比例即可解答【详解】∵CD∥AB∴△ECD∽△EAB∴ED:EB=CD:AB∴2:6=15:AB∴AB=45米答:电线杆AB长为45米解析:5【分析】根据题意求出△ECD∽△EAB,利用相似三角形的对应边成比例即可解答.【详解】∵CD∥AB,∴△ECD∽△EAB,∴ED:EB=CD:AB,∴2:6=1.5:AB,∴AB=4.5米.答:电线杆AB长为4.5米.故答案为4.5.【点睛】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程即可求出电线杆AB长.17.上午8时【解析】解:根据地理知识北半球不同时刻太阳高度角不同影长也不同规律是由长变短再变长故答案为上午8时点睛:根据北半球不同时刻物体在太阳光下的影长是由长变短再变长来解答此题解析:上午8时【解析】解:根据地理知识,北半球不同时刻太阳高度角不同影长也不同,规律是由长变短,再变长.故答案为上午8时.点睛:根据北半球不同时刻物体在太阳光下的影长是由长变短,再变长来解答此题.18.7【解析】解:根据俯视图可知第一层由5个根据主视图可知第二层至少有2个故这样的几何体最少需要正方体7个解析:7【解析】解:根据俯视图可知第一层由5个,根据主视图可知第二层至少有2个,故这样的几何体最少需要正方体7个.19.5【分析】利用三视图得到排数及列数即可得到答案【详解】由三视图可知此摆放体有两排第一排有一列第二排有两列第一排一列有一个第二排两列分别有两个∴1+2+2=5个故答案为:5【点睛】此题考查三视图的应用解析:5【分析】利用三视图得到排数及列数,即可得到答案.【详解】由三视图可知,此摆放体有两排,第一排有一列,第二排有两列,第一排一列有一个,第二排两列分别有两个,∴1+2+2=5个,故答案为:5.【点睛】此题考查三视图的应用,会看三视图的组成特点及分析得到排数列数是解题的关键. 20.24【分析】根据主视图和俯视图求出长方体的长宽高即可解题【详解】解:由主视图可知长方体长为4高为3由俯视图可知长方体宽为2∴长方体体积==24cm3【点睛】本题考查了利用三视图求立体图形的体积属于简解析:24【分析】根据主视图和俯视图求出长方体的长宽高即可解题.【详解】解:由主视图可知长方体长为4,高为3,由俯视图可知长方体宽为2,⨯⨯=24 cm3∴长方体体积=432【点睛】本题考查了利用三视图求立体图形的体积,属于简单题,看懂三视图是解题关键.三、解答题21.无22.无23.无24.无25.无26.无。

(好题)初中数学九年级数学上册第五单元《投影与视图》测试(包含答案解析)

(好题)初中数学九年级数学上册第五单元《投影与视图》测试(包含答案解析)

一、选择题1.由10个完全相同的小正方体搭成的物体如图所示.如果再添加若干个相同的小正方体之后,所得到的新物体从正面看和从左面看都跟原来的相同,那么这样的小正方体最多还可以添加()个.A.3 B.4 C.5 D.62.下面的三视图所对应的物体是().A. B. C.D.3.如图是由几个大小相同的小立方块搭成的几何体从上面看到的形状图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体从正面看到的形状图是()A.B.C.D.4.如图所示,左侧的几何体是由若干个大小相同的小正方休组成的,该几何体的主视图(从正:面看)是( )A.B.C.D.5.“津南”幼儿园的小朋友正在玩搭积木的游戏,小南的城堡已经有26cm高,小开拿了一些A正方体木块和B正方体木块过来帮忙,已知A正方体木块高2cm,B正方体木块高bcm,且A、B两种正方体木块数量相同,小开将所有的木块一块接一块的依次叠加上去,现在量得小南的城堡有40cm高,则所有满足要求的整数b的值的和为()A.12 B.15 C.16 D.176.用大小和形状完全相同的小正方体木块搭成一个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为()A.13个B.16个C.19个D.22个7.如图,由一些完全相同的小正方体搭成的几何体的左视图和俯视图,则这个几何体的主视图不可能是()A.B.C.D.8.在某光源下,两根木棒在同一平面内的影子如图所示,此时,第三根木棒的影子表示正确的是( )A.B.C.D.9.下列四个几何体中,从正面看得到的平面图形是三角形的是()A.B.C.D.10.桌上摆放着一个由相同正方体组成的组合体,其俯视图如图所示,图中数字为该位置小正方体的个数,则这个组合体的左视图为()A.B.C.D.11.如图是一个底面为正方形的几何体的实物图,则其俯视图为()A.B.C.D.12.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B处,她在灯光照射下的影长l与行走的路程s之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.二、填空题13.如图,是由一些相同的小正方体构成的几何体从三个不同方向看到的形状图,则构成这个几何体的小正方体有_____个.14.身高1.5米的小强站在旗杆旁,测得小强和旗杆在地面上的影长分别为2米和16米,则旗杆的高度为___米.15.某几何体是由若干个小正方体组成的,它无论从正面看还是从左面看得到的视图都是如图的样子,堆成该几何体的正方体数最少与最多的块数分别是、n,则+=______.m n16.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积是______17.地面上有一支蜡烛,蜡烛前面有一面墙,王涛同学在蜡烛与墙之间运动,则他在墙上的投影长度随着他离墙的距离变小而________(增大、变小)18.如图是由若干个棱长为1的小正方体堆砌而成的几何体,那么这个几何体露在外面的面积是_____.19.如果圆柱的侧面展开图是相邻两边长分别为6,12的长方形,那么这个圆柱的体积等于_______(π取3)20.如图是一个正三棱柱的三视图,则这个正三棱柱的侧面积是________.三、解答题21.如图是由一些棱长都为1的小正方体组合成的简单几何体.(1)画出该几何体的主视图、左视图和俯视图;(2)如果在这个几何体上再添加一些小正方体,并保持俯视图和左视图不变,最多可以再添加块小正方体.【答案】(1)见解析;(2)3【分析】(1)根据三视图的定义画出图形即可.(2)根据题目条件解决问题即可.【详解】解:(1)如图所示:(2)在这个几何体上再添加一些小正方体,并保持俯视图和左视图不变,最多可以再添加3个小正方体,故答案为:3.【点睛】此题主要考查了画三视图,根据三视图求小立方快最多最少的个数;解题的关键根据物体正确作出三视图.22.画出下列几何体的三视图【答案】见解析【分析】根据主视图是从正面看所得到的图形,俯视图是从上面看所得到的图形,左视图时从左边看所得到的图形画出图形即可.【详解】如图所示:【点睛】本题主要考查了几何体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.23.用5个完全相同的小正方体组合成如图所示的立体图形,请你画出从正面、左面和上面看到的几何体的形状.【答案】见解析【分析】从正面看有3列,每列小正方形数目分别为1,1,2;从左面看有2列,每列小正方形的数目分别为2,1;从上面看有3列,每列小正方形的数目为2,1,1.【详解】解:如图所示:.【点睛】本题考查了实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.24.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.【答案】见解析【分析】根据从三个不同方向看到的小正方形相对位置画图即可.【详解】解:如图所示:【点睛】此题考查的是画三视图,解决此题的关键是根据从三个不同方向看到的小正方形相对位置画图.25.如图所示是一个包装盒从不同方向看到的图形,求这个包装盒的表面积(结果保留π)【答案】600πcm 2【分析】首先确定该几何体的形状,然后根据其表面积计算方法求得表面积即可.【详解】解:观察三视图发现该几何体是圆柱,且圆柱的底面直径为20cm ,高为20cm , ∴表面积为:20π×20+2×π×102=600πcm 2,故答案为:600πcm 2 .【点睛】本题考查了由三视图判断几何体的知识,解题的关键是确定几何体的形状并确定其各个部分的尺寸,难度不大.26.如图,正方形硬纸板的边长为a ,其4个角上剪去的小正方形的边长为b (b <2a ),这样可制作一个无盖的长方体纸盒.(1)这个纸盒的容积为 ;(2)画出这个长方体纸盒的三视图.(在图上用含a 、b 的式子标明视图的长和宽)【答案】(1)b(a ﹣2b)2;(2)详见解析【分析】(1)根据图形,得出底面边长、高,从而得出长方体纸盒体积;(2)脑海中构建立体图形,绘制三视图.【详解】解:(1)由题意知纸盒的底面边长为a ﹣2b 、高为b ,则这个纸盒的容积为b(a ﹣2b)2,故答案为:b(a ﹣2b)2.(2)如图所示:【点睛】本题考查立体图形的三视图,解题关键是在脑海中构建出立体图形的样子.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】为保持这个几何体的从左面看和从正面看到的形状图不变,可在最底层第二列第三行加1个,第三列第二行加2个,第三列第三行加1个,即可得最多可以再添加4个小正方体.【详解】解:保持从上面看到的图形和从左面看到的图形不变,最多可以再添加4个小正方体;故选:B.【点睛】本题主要考查了由三视图判断几何体,根据主视图和左视图解答是解题的关键.2.A解析:A【分析】本题可利用排除法解答.从俯视图看出这个几何体上面一个是圆,直径与下面的矩形的宽相等,故可排除B,C,D.【详解】解:从主视图左视图可以看出这个几何体是由上、下两部分组成的,故排除D选项,从上面物体的三视图看出这是一个圆柱体,故排除B选项,从俯视图看出是一个底面直径与长方体的宽相等的圆柱体,故选:A.【点睛】此题考查由三视图还原实物基本能力,还原实物的形状关键是能想象出三视图和立体图形之间的关系,从而得出该物体的形状.本题只从俯视图入手也可以准确快速解题.3.C解析:C【分析】根据主视图的定义判断即可.【详解】解:这个几何体从正面看到的图形是C,故选:C.【点睛】本题考查三视图的应用,熟练掌握三视图的意义及观察方法是解题关键.4.D解析:D【分析】根据简单组合体的三视图的意义可得答案,从正面看到的图形是底层有3个,上层的右侧有1个正方形.【详解】解:从这个组合体的正面看到的是两行,从正面看到的图形是底层有3个,上层的右侧有1个正方形,故D符合题意.故选:D.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.D解析:D【分析】根据题意可知用A、B正方体磊高了14cm,由于数量相同,假设用了k个A正方体和k个B正方体,则可列式(2+b)k=14,然后经过讨论得出结论即可.【详解】解:城堡原来高26cm,现在高40cm,所以,城堡增加了:40-26=14cm则用A、B正方体磊高了14cm,而A正方体木块高2cm,B正方体木块高bcm,设用了k个A正方体和k个B正方体,则有(2+b)k=14①当k=1时,b=14-2=12cm②当k=2时,b=14252-=cm仅有2种符合题意,∴12+5=17故选:D.【点睛】本题考查了立体图形,解题的关键根据立体图形正确得出A、B立方体木块之间的关系.6.A解析:A【分析】由几何体的正视图和俯视图,我们可以判断出这个几何体由一些相同的小正方体构成,其中根据俯视图我们可以判断该几何体共有7摞小正方体组成,然后根据主视图推算每摞小正方体的最少个数,即可得到答案.【详解】根据俯视图我们可以判断该几何体共有7摞小正方体组成,根据正视图,可得:左边2摞,最高层数为3,故小正方体最少有3+1=4个,中间2摞,最高层数为2,故小正方体最少有2+1=3个,右边3摞,最高层数为4,故小正方体最少有4+1+1=6个,故小正方体最少有13个.故选A.【点睛】本题主要考查几何体的三视图,掌握三视图的定义,是解题的关键.7.A解析:A【分析】由左视图可得出这个几何体有2层,由俯视图可得出这个几何体最底层有4个小正方体.分情况讨论即可得出答案.【详解】解:由题意可得出这个几何体最底层有4个小正方体,有2层,当第二层第一列有1个小正方体时,主视图为选项B;当第二层第二列有1个小正方体时,主视图为选项C;当第二层第一列,第二列分别有1个小正方体时,主视图为选项D;故选:A.【点睛】本题考查的知识点是简单几何体的三视图,根据所给三视图能够还原几何体是解此题的关键.8.C解析:C【分析】根据a、b两根木棒的投影分析知这是中心投影,将a、b木棒的顶端与影子的末端分别连接,得到光源O,再连接光源O与木c的顶端,延长与地面的交点即为木棒c影子的末端,由此即可得到答案.【详解】如图,将a、b木棒的顶端与影子的末端分别连接,得到光源O,连接光源O与木c的顶端并延长与地面的交点为E,连接EF即为木棒c的影子,故选:C.【点睛】此题考查中心投影,在灯光下,距离光源近的物体的影子短,离光源远的物体的影子长,熟练掌握中心投影的知识是解题的关键.9.B解析:B【分析】依次分析每个几何体的主视图,即可得到答案.【详解】A.主视图为矩形,不符合题意;B.主视图为三角形,符合题意;C.主视图为矩形,不符合题意;D.主视图为矩形,不符合题意.故选:B.【点睛】此题考查几何体的三视图,掌握每一个几何体的三视图的图形是解题关键.10.D解析:D【分析】根据从左边看到的图形是左视图解答即可.【详解】由俯视图可知,该组合体的左视图有3列,其中中间有3层,两边有2层,故选D.【点睛】本题考查了简单组合体的三视图,从左边看到的图形是左视图.11.D解析:D【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:从上面看易得到被一条直线分割成两个长方形的正方形.故选D.【点睛】本题考查三视图的知识,俯视图是从物体的上面看得到的视图.12.C解析:C【解析】试题分析:∵小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系应为:当小红走到灯下以前:l随S的增大而减小;当小红走到灯下以后再往前走时:l随S的增大而增大,∴用图象刻画出来应为C.故选C.考点:1.函数的图象;2.中心投影;3.数形结合.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.6【分析】根据三视图可知:组成几何体的正方体的分布情况进而求出答案【详解】根据几何体的三视图可知:组成该几何体的正方体分布如下:∴构成这个几何体的小正方体有6个故答案是:6【点睛】本题主要考查几何体解析:6【分析】根据三视图可知:组成几何体的正方体的分布情况,进而求出答案.【详解】根据几何体的三视图可知:组成该几何体的正方体分布如下:∴构成这个几何体的小正方体有6个.故答案是:6.【点睛】本题主要考查几何体的三视图,根据三视图想象出几何体的样子,是解题的关键. 14.12【分析】根据同一时刻同一地点物高与影长成正比求得答案即可【详解】设旗杆高度为x米根据题意得:解得:x=12故答案为:12【点睛】考核知识点:相似三角形的应用理解相似三角形性质是关键解析:12【分析】根据同一时刻同一地点物高与影长成正比求得答案即可.【详解】设旗杆高度为x米,根据题意得:1.5 162 x解得:x=12,故答案为:12.【点睛】考核知识点: 相似三角形的应用.理解相似三角形性质是关键.15.【分析】根据题意画出最少和最多的两种情况得出m和n计算即可【详解】由题意可画如图:m=5n=9∴m+n=14故答案为:14【点睛】本题考查三视图根据主视图和左视图得出画出俯视图中最多和最少的情况是解解析:【分析】根据题意画出最少和最多的两种情况,得出m和n,计算即可.【详解】由题意可画如图:m=5 n=9∴m+n=14.故答案为:14.【点睛】本题考查三视图,根据主视图和左视图得出画出俯视图中最多和最少的情况是解题关键. 16.3π【分析】由三视图可知:该几何体是一个圆锥其轴截面是一个高为的正三角形可计算边长为2据此即可得出表面积【详解】由三视图可知:该几何体是一个圆锥其轴截面是一个高为的正三角形∴正三角形的边长==2∴圆解析:3π【分析】3为2,据此即可得出表面积.∴正三角形的边长==2.sin︒60∴圆锥的底面圆半径是1,母线长是2,∴底面周长为2π∴侧面积为1×2π×2=2π,∵底面积为πr2=π,2∴全面积是3π.故填:3π.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.17.变小【分析】可连接光源和人的头顶可知墙上的影长和人到墙的距离变化规律是:距离墙越近影长越短距离墙越远影长越长【详解】连接光源和人的头顶可知墙上的影长和人到墙的距离变化规律是:距离墙越近影长越短距离墙解析:变小.【分析】可连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长.【详解】连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长,则王涛同学在墙上投影长度随着他离墙的距离变小而变小.故答案为:变小.【点睛】本题综合考查了中心投影的特点和规律,中心投影的特点是:(1)等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;()2等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.18.23【分析】根据简单组合体的三视图的面积得出该几何体的露在外面的面积【详解】解:(5+3)×2+5+2=23故答案为:23【点睛】此题主要考查几何体的三视图正确理解三视图的概念是解题关键解析:23【分析】根据简单组合体的三视图的面积,得出该几何体的露在外面的面积.【详解】解:(5+3)×2+5+2=23,故答案为:23.此题主要考查几何体的三视图,正确理解三视图的概念是解题关键.19.36或72【分析】分两种情况:①底面周长为6高为12;②底面周长为12高为6;先根据底面周长得到底面半径再根据圆柱的体积公式计算即可求解【详解】①底面周长为6高为12则体积为:×()2×12=36;解析:36或72【分析】分两种情况:①底面周长为6,高为12;②底面周长为12,高为6;先根据底面周长得到底面半径,再根据圆柱的体积公式计算即可求解.【详解】①底面周长为6,高为12,则体积为:π×(62π)2×12=36;②底面周长为12,高为6,则体积为:π×(122π)2×6=72.综上所述,这个圆柱的体积可以是36或72.故答案为:36或72.【点睛】本题考查了展开图折叠成几何体,本题关键是熟练掌握圆柱的体积公式,注意分类思想的运用.20.cm2【分析】由已知中的三视图判断出三棱柱的底面上的边长和棱柱的高求出侧面积即可得到答案【详解】解:由已知中三视图可得这是一个正三棱柱底面的高为:2cm则底面边长为:2÷=cm棱柱的高为3cm则正三解析:2【分析】由已知中的三视图,判断出三棱柱的底面上的边长和棱柱的高,求出侧面积,即可得到答案.【详解】解:由已知中三视图,可得这是一个正三棱柱,底面的高为:2cm,则底面边长为:3cm,棱柱的高为3cm,则正三棱柱的侧面积为:×3=2,故答案为:2.【点睛】本题考查的知识点是由三视图求侧面积,其中根据已知中的三视图判断出几何的形状,并分析出棱长,高等关键几何量是解答本题的关键.三、解答题21.无22.无23.无24.无25.无26.无。

(必考题)初中数学九年级数学上册第五单元《投影与视图》测试(含答案解析)

(必考题)初中数学九年级数学上册第五单元《投影与视图》测试(含答案解析)

一、选择题1.如图是由几个大小相同的小立方块搭成的几何体从上面看到的形状图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体从正面看到的形状图是()A.B.C.D.2.如图所示,是由8个完全相同的小正方体搭成的几何体.若小正方体的棱长为1,则该几何体的表面积是()A.16 B.30 C.32 D.343.如图,几何体由6个大小相同的正方体组成,其俯视图...是()A.B.C.D.4.如图,是由一些相同的小正方形围成的立方体图形的三视图,则构成这种几何体的小正方形的个数是()A .4B .6C .9D .125.如图,一个几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为( )A .4π B .2π C .32π D .π6.如图是由五个棱长为2的小立方块搭建而成的几何体,则它的左视图的面积是( )A .3B .4C .12D .167.如下图所示是由一些大小相同的小正方体构成的三种视图,那么构成这个立体图的小正方体的个数是 ( )A .6B .7C .8D .98.如图的几何体的俯视图是( )A.B.C.D.9.一个密封的圆柱体容器中装了一半的水,如果将该容器水平放置如图,那么稳定后的水面形状为().A.B.C.D.10.下列四个几何体中,从正面看得到的平面图形是三角形的是()A.B.C.D.11.下图是从不同的方向看一个物体得到的平面图形,则该物体的形状是()A.圆锥B.圆柱C.三棱锥D.三棱柱12.如右图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位览的小立方体的个数,则从左面乔这个几何体所得到的图形是()A.B.C.D.二、填空题13.写出图中圆锥的主视图名称________.14.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x=______,y=________.15.如图,直角坐标平面内,小明站在点A(﹣10,0)处观察y轴,眼睛距地面1.5米,他的前方5米处有一堵墙DC,若墙高DC=2米,则小明在y轴上的盲区(即OE的长度)为_____米.16.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______.17.一个立体图形的三视图如图所示,这个立体图形的名称是__.18.如图1所示的是由8个相同的小方块组成的几何体,它的三个视图都是22的正方形若拿掉若干个小方块后,从正面和左面看到的图形如图2所示,则可以拿掉小方块的个数为_____.19.如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n,则n的最小值与最大值的和为______.20.一个几何体,从不同方向看到的图形如图所示.拼成这个几何体的小正方体的个数为______.三、解答题21.如图,在阳光下,小玲同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时小强同学在测量树的高度时,发现树的影子有一部分(0.2 米)落在教学楼的第一级台阶上,落在地面上的影长为4.42米,每级台阶高为0.3米.小玲说:“要是没有台阶遮挡的话,树的影子长度应该是 4.62米.”小强说:“要是没有台阶遮挡的话,树的影子长度肯定比 4.62米要长.”(1)你认为谁的说法对?并说明理由;(2)请根据小玲和小强的测量数据计算树的高度.【答案】(1)小强的说法对,理由见解析;(2)8米.【分析】(1)画出解题示意图,利用同一时刻,物高与影长成正比,计算判断即可;(2)利用同一时刻,物高与影长成正比,计算判断即可;【详解】解:(1)小强的说法对;根据题意画出图形,如图所示,根据题意,得10.6DE EH =, ∵DE=0.3米,∴0.30.60.18EH =⨯=(米).∵GD ∥FH ,FG ∥DH , ∴四边形DGFH 是平行四边形, ∴0.2FH DG ==米. ∵AE=4.42米,∴AF=AE+EH+FH=4.42+0.18+0.2=4.8(米), 即要是没有台阶遮挡的话,树的影子长度是4.8米, ∴小强的说法对;(2)由(1)可知:AF=4.8米.∵10.6AB AF =, ∴8AB =米.答:树的高度为8米. 【点睛】本题考查了太阳光下的平行投影问题,准确理解影长的意义,灵活运用同一时刻,物高与影长成正比是解题的关键.22.请你画出下面几何体的主视图,左视图,俯视图.【答案】见解析. 【分析】根据三视图的概念作图即可.【详解】解:如图所示:【点睛】此题主要考查了三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看所得到的图形.23.作图题(1)如图所示的几何体是由5个相同的正方体搭成的,请画出它的三视图.(涂阴影)(2)如图是一些小正方块所搭几何体的俯视图,小正方块中的数字表示该位置的小方块的个数,请画出这个几何体的主视图和左视图:(涂阴影)【答案】(1)见解析;(2)见解析.【分析】(1)根据三视图的定义画图即可;(2)根三视图的定义再结合题意画图即可.【详解】解:(1)该立体图形的三视图如图:(2)该几何体的主视图和左视图如图:【点睛】本题考查了根据立体图形画三视图,较好的空间想象能力是解答本题的关键.24.在阳光下,小玲同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时小强同学测量树的高度时,发现树的影子有一部分0.2米落在教学楼的第一级台阶上,落在地面上的影长为4.42米,每级台阶高为0.3米.小玲说:“要是没有台阶遮挡的话,树的影子长度应该是4.62米”;小强说:“要是没有台阶遮挡的话,树的影子长度肯定比4.62米要长”.(1)你认为小玲和小强的说法对吗?(2)请根据小玲和小强的测量数据计算树的高度;(3)要是没有台阶遮挡的话,树的影子长度是多少?【答案】(1)小玲的说法不对,小强的说法对;(2)树的高度为8米;(3)树的影子长度是4.8米.【分析】(1)根据题意可得小玲的说法不对,小强的说法对;(2)根据题意可得DEEH=10.6,DE=0.3,EH=0.18,进而可求大树的影长AF,所以可求大树的高度;(3)结合(2)即可得树的影长.【详解】(1)小玲的说法不对,小强的说法对,理由如下(2)可得;(2)根据题意画出图形,如图所示,根据平行投影可知:DEEH=10.6,DE=0.3,∴EH=0.3×0.6=0.18,∵四边形DGFH是平行四边形,∴FH=DG=0.2,∵AE=4.42,∴AF=AE+EH+FH=4.42+0.18+0.2=4.8,∵ABAF =10.6,∴AB=4.80.6=8(米).答:树的高度为8米.(3)由(2)可知:AF=4.8(米),答:树的影子长度是4.8米.【点睛】考查了相似三角形的应用、平行投影,解题关键是掌握并运用平行投影.25.如图,某一广告墙PQ旁有两根直立的木杆AB和CD,某一时刻在太阳光下,木杆CD 的影子刚好不落在广告墙PQ上.(1)画出太阳光线CE和AB的影子BF;(2)若AB=10米,CD=6米,CD到PQ的距离DQ的长为8米,求此时木杆AB的影子BF的长.【答案】(1)如图所示,见解析;(2)木杆AB 的影长BF 是403米. 【分析】(1)连结CQ ,即为太阳光线CE ,过A 点作CE 的平行线与BQ 交于点F ,即可得到AB 的影子BF ;(2)根据在同一时刻的太阳光线下,物体高度与影子长度对应成比例可列出关系式,代入数值计算即可求得BF 的长. 【详解】解:(1)如图所示,CE 和BF 即为所求;(2)设木杆AB 的影长BF 为x 米, 由题意,得:CD DQ AB BF =,即6810x=, 解得:403x =. 答:木杆AB 的影子BF 的长为403米. 【点睛】本题考查了相似三角形的应用,理解题意并熟练运用相似三角形的性质是解题的关键.26.如图,甲、乙两个几何体是由一些棱长是1的正方体粘连在一起所构成的,这两个几何体从上面看到的形状图相同是“”请回答下列问题:(1)请分别写出粘连甲、乙两个几何体的正方体的个数.(2)甲、乙两个几何体从正面、左面、上面三个方向所看到的形状图中哪个不相同?请画出这个不同的形状图.(3)请分别求出甲、乙两个几何体的表面积.【答案】(1)见解析,甲的正方体有8个;乙的正方体有7个;(2)见解析;(3)甲几何体的表面积为:28;乙几何体的表面积为:28【分析】(1)分别利用几何的形状得出组成的个数;(2)甲的左视图从左往右3列正方形的个数依次为2,2,2;乙的左视图从左往右3列正方形的个数依次为2,1,2;(3)直接利用几何体的形状进而得出表面积.【详解】解:(1)如图所示:甲的正方体有4+4=8个;乙的正方体有4+3=7个;(2)甲、乙两个几何体的主视图相同,俯视图也相同,只有左视图不同;甲、乙两个几何体的左视图不同,如图所示:;(3)甲几何体的表面积为:14+14=28;乙几何体的表面积为:14+1+5+8=28.【点睛】本题考查了视图的相关知识;用到的知识点是:三视图分别是从物体的正面、左面、上面看得到的平面图形.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据主视图的定义判断即可.【详解】解:这个几何体从正面看到的图形是C,故选:C.【点睛】本题考查三视图的应用,熟练掌握三视图的意义及观察方法是解题关键.2.D解析:D【分析】首先要数清这个组合体的表面是由几个正方形组成的,再乘以1个正方形的面积即可得到表面积.【详解】+6×2+2)×21=34解:这个组合几何体的表面积为:(5×2+52故选:D.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.3.C解析:C【分析】细心观察图中几何体中正方体摆放的位置,根据俯视图是从上面看到的图形判定则可.【详解】解:从物体上面看,底层是1个小正方形,上层是并排放4个小正方形.故选:C.【点评】本题考查了三视图的知识,俯视图是从物体上面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.4.D解析:D【分析】根据三视图,得出立体图形,从而得出小正方形的个数.【详解】根据三视图,可得立体图形如下,我们用俯视图添加数字的形式表示,数字表示该图形俯视图下有几个小正方形则共有:1+1+1+2+2+2+1+1+1=12故选:D【点睛】本题考查三视图,解题关键是在脑海中构建出立体图形,建议可以如本题,通过在俯视图上标数字的形式表示立体图形帮助分析.5.D解析:D【分析】这个几何体的侧面是以底面圆周长为长、圆柱体的高为宽的矩形,根据矩形的面积公式计算即可.【详解】根据三视图可得几何体为圆柱,圆柱体的侧面积=底面圆的周长⨯圆柱体的高=11ππ⨯⨯= 故答案为:D .【点睛】本题考查了圆柱体的侧面积问题,掌握矩形的面积公式是解题的关键.6.C解析:C【分析】先确定几何体的左视图的形状,再根据图形求面积.【详解】由图知该几何体的左视图由两列构成,第一列是两个小正方块,第二列是一个小正方块,共三个小正方块,∴它的左视图的面积是23212,故选:C.【点睛】此题考查几何体的三视图,根据几何体得到三视图的图形形状是解题的关键. 7.B解析:B【解析】【分析】根据三视图,将每一层的小正方体的个数求出来相加,即可得到答案.【详解】根据三视图得:该几何体由两层小正方体构成,最底层有6个,顶层由1个,共有7个,故选:B.【点睛】此题考察正方体的构成,能够理解图形的位置关系是解题的关键.8.C解析:C【分析】安装几何体三视图进行判断即可;【详解】解:本几何体的俯视图是后排有三个,前排有两个,即答案为C.【点睛】本题主要考查了简单几何体的三视图,掌握是从物体正面、左面和上面看物体以及较好的空间思维能力是解答本题的关键.9.A解析:A【分析】根据垂直于圆柱底面的截面是矩形,可得答案.【详解】由水平面与圆柱的底面垂直,得水面的形状是长方形.故选:A.【点睛】本题考查了截几何体和认识立体图形.解题的关键是能够正确认识立体图形,明确垂直于圆柱底面的截面是长方形,平行圆柱底面的截面是圆形.10.B解析:B【分析】依次分析每个几何体的主视图,即可得到答案.【详解】A.主视图为矩形,不符合题意;B.主视图为三角形,符合题意;C.主视图为矩形,不符合题意;D.主视图为矩形,不符合题意.故选:B.【点睛】此题考查几何体的三视图,掌握每一个几何体的三视图的图形是解题关键.11.A解析:A【解析】【分析】根据图形的三视图特点,进行选择.【详解】由题意图形的三视图可判断图形为圆锥.故答案选A.【点睛】本题主要考查的是三视图的性质特征,熟练掌握三视图的性质特征是本题的解题关键. 12.D解析:D【分析】从正面看,得到从左往右2列正方形的个数依次为3, 3;从左面看得到从左往右2列正方形的个数依次为5,1,依此画出图形即可.【详解】解:由题意知:该几何体为:故从左面看为:故选D.【点睛】本题考查三视图,解题关键是得到每列正方形的具体的数目为这列正方体的最多数目.二、填空题13.等腰三角形【解析】主视图是指从正面看圆锥体从正面看是等腰三角形故答案为:等腰三角形解析:等腰三角形【解析】主视图是指从正面看,圆锥体从正面看是等腰三角形,故答案为:等腰三角形.14.1或23【分析】由俯视图可知该组合体有两行两列左边一列前一行有两个正方体结合主视图可知左边一列叠有2个正方体从而求解【详解】解:由俯视图可知该组合体有两行两列左边一列前一行有两个正方体结合主视图可知解析:1或2 3【分析】由俯视图可知,该组合体有两行两列,左边一列前一行有两个正方体,结合主视图可知左边一列叠有2个正方体,从而求解【详解】解:由俯视图可知,该组合体有两行两列,左边一列前一行有两个正方体,结合主视图可知左边一列叠有2个正方体,故x=1或2;由主视图右边一列可知,右边一列最高可以叠3个正方体,故y=3.故答案为1或2;3.15.5【详解】首先作出BM⊥EO得出△BND∽△BME即可得出再利用已知得出BNBMDN的长即可求出EM进而求出EO即可解:过点B作BM⊥EO交CD于点N∵CD∥EO∴△BND∽△BME∴∵点A(﹣10解析:5【详解】首先作出BM⊥EO,得出△BND∽△BME,即可得出BN DNBM EM=,再利用已知得出BN,BM,DN的长,即可求出EM,进而求出EO即可.解:过点B作BM⊥EO,交CD于点N,∵CD∥EO,∴△BND∽△BME,∴BN DNBM EM=,∵点A(﹣10,0),∴BM=10米,∵眼睛距地面1.5米,∴AB=CN=MO=1.5米,∵DC=2米,∴DN=2﹣1.5=0.5米,∵他的前方5米处有一堵墙DC,∴BN=5米,∴50.510EM=,∴EM=1米,∴EO=1+1.5=2.5米.故答案为2.5.16.72【解析】分析:∵由主视图得出长方体的长是6宽是2这个几何体的体积是36∴设高为h则6×2×h=36解得:h=3∴它的表面积是:2×3×2+2×6×2+3×6×2=72解析:72【解析】分析:∵由主视图得出长方体的长是6,宽是2,这个几何体的体积是36,∴设高为h,则6×2×h=36,解得:h=3.∴它的表面积是:2×3×2+2×6×2+3×6×2=72.17.正四棱柱【分析】由主视图和左视图可确定是柱体再由俯视图可确定具体形状【详解】解:由主视图和左视图可确定是柱体再由俯视图可确定是正四棱柱故答案为:正四棱柱【点睛】本题考查了由三视图还原立体图形掌握立体解析:正四棱柱.【分析】由主视图和左视图可确定是柱体,再由俯视图可确定具体形状.【详解】解:由主视图和左视图可确定是柱体,再由俯视图可确定是正四棱柱.故答案为:正四棱柱.【点睛】本题考查了由三视图还原立体图形,掌握立体图形的三视图的形状,注意解题所用的方法.18.4或5【分析】根据正面和左面看到的图形可知上面一层必须保留左后面的正方体上层其它的正方体拿掉下层已经拿掉正方体的对应位置的正方体保留右前面的正方体其它两个可有可无或者去掉右前方的正方体另外两个保留据解析:4或5【分析】根据正面和左面看到的图形可知,上面一层必须保留左后面的正方体,上层其它的正方体拿掉,下层已经拿掉正方体的对应位置的正方体保留右前面的正方体其它两个可有可无或者去掉右前方的正方体,另外两个保留,据此作答即可.【详解】解:根据题意,拿掉若干个小立方块后,从正面和左面看到的图形如图2所示,所以可拿掉的小方块的个数可为5个或4个.故答案为:4或5.【点睛】本题考查了简单组合体的三视图.主要考查学生的空间想象能力.19.26【分析】从俯视图中可以看出最底层小正方体的个数及形状由主视图可以看出每一列的最大层数和个数从而算出总的个数【详解】解:根据主视图和俯视图可知该几何体中小正方体最少分别情况如下:故n的最小值为1+解析:26【分析】从俯视图中可以看出最底层小正方体的个数及形状,由主视图可以看出每一列的最大层数和个数,从而算出总的个数【详解】解:根据主视图和俯视图可知,该几何体中小正方体最少分别情况如下:故n的最小值为1+1+1+1+3+2+1=10,该几何体中小正方体最多分别情况如下:该几何体中小正方体最大值为3+3+3+2+2+2+1=16,故最大值与最小值得和为10+16=26故答案为:26【点睛】本题主要考查了由三视图判断几何体中小正方体的个数问题,可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的可能个数.20.6【分析】根据从不同方位看到的图形的形状可知该几何体有2列2行底面有4个小正方体摆成大正方体上面至少2个小正方体放在靠前面的2个小正方体上面由此解答【详解】由题图可知该几何体第一层有4个小正方体第二解析:6【分析】根据从不同方位看到的图形的形状可知,该几何体有2列2行,底面有4个小正方体摆成大正方体,上面至少2个小正方体,放在靠前面的2个小正方体上面.由此解答.【详解】由题图可知,该几何体第一层有4个小正方体,第二层有2个小正方体,所以拼成这个几何体的小正方体的个数为6.故答案为:6.【点睛】本题主要考查从不同方向观察物体和几何体,关键注重培养学生的空间想象能力.三、解答题21.无22.无23.无24.无25.无26.无。

(必考题)初中数学九年级数学上册第五单元《投影与视图》测试(包含答案解析)

(必考题)初中数学九年级数学上册第五单元《投影与视图》测试(包含答案解析)

一、选择题1.如图,在直角坐标系中,点P (2,2)是一个光源.木杆AB 两端的坐标分别为(0,1),(3,1).则木杆AB 在x 轴上的投影长为( )A .3B .5C .6D .7 2.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是( )A .仅主视图不同B .仅俯视图不同C .仅左视图不同D .主视图、左视图和俯视图都相同 3.如图是一个几何体的三视图,根据图中提供的数据,计算这个几何体的表面积是( )A .4860π+B .4840π+C .4830π+D .4836π+ 4.如图,一个几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为( )A .4πB .2πC .32πD .π5.一个几何体是由一些大小相同的小正方体搭成的,其俯视图与左视图如图所示,则搭成该几何体的方式有( )种A .2B .3C .5D .6 6.如图是用4个同样大小正方体搭成的立体图形,从左面看,它应是下列图形中的( )A .B .C .D . 7.如图的几何体的俯视图是( )A .B .C .D . 8.如图是由6个完全相同的小正方体组成的立体图形,它的左视图是( )A .B .C .D . 9.如图是一个底面为正方形的几何体的实物图,则其俯视图为( )A.B.C.D.10.如图是一个由多个相同的小正方体堆成的几何体从上面看得到的平面图形,小正方形中的数字表示在该位置的小正方体的个数,那么从正面看该几何体得到的平面图形是()A.B.C.D.11.如右图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位览的小立方体的个数,则从左面乔这个几何体所得到的图形是()A.B.C.D.12.下列哪种影子不是中心投影()A.皮影戏中的影子 B.晚上在房间内墙上的手影C.舞厅中霓红灯形成的影子 D.太阳光下林荫道上的树影二、填空题13.甲乙两人在太阳光下并行,乙的身高1.8m,他的影长是2.1m,甲比乙矮12cm,此刻甲的影长是_____.14.用小立方块搭成的几何体从正面和上面看的视图如图,这个几何体中小立方块的个数可以是________.15.一个几何体的三视图如图所示,则这个几何体是_____.16.下图是某天内,电线杆在不同时刻的影长,按先后顺序应当排列为:________.17.如图所示,身高1.5m的小华站在距路灯杆5m的C点处,测得她在灯光下的影长CD 为2.5m,则路灯的高度AB为_____米.18.如果一个几何体从某个方向看到的平面图形是圆,则该几何体可能是________ (至少填两种几何体)19.若干个桶装方便面摆放在桌子上,小明从三个不同方向看到的图形(分别是:主视图,左视图,和俯视图)如图所示,则这一堆方便面共有__________个20.如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n,则n的最小值与最大值的和为______.三、解答题21.如图是一个几何体的三视图.(1)说出这个几何体的名称;(2)若主视图的宽为4cm ,长为7cm ,左视图的宽为3cm ,俯视图为直角三角形,其中斜边长为5cm ,求这个几何体中所有棱长的和,以及它的表面积和体积.【答案】(1)三棱柱;(2)所有棱长的和为45cm ;表面积为296cm ;体积为342cm【分析】(1)根据三视图可以判断该几何体是三棱柱;(2)根据三视图和直三棱柱各棱长的关系求出各棱长,再根据表面积和体积公式计算即可.【详解】解:(1)根据三视图,这个几何体是三棱柱 ;(2)由题意,棱长的和:()4232527345cm ⨯+⨯+⨯+⨯= ,表面积:()()24322345796cm⨯÷⨯+++⨯=, 体积:()3432742cm ⨯÷⨯=,答:所有棱长的和为45cm ;表面积为296cm ;体积为342cm .【点睛】本题考查由三视图判断几何体、求棱柱的表面积和体积,熟记常见几何体的三视图,掌握三视图与几何体的各棱长关系是解答的关键.22.“如图是由10个同样大小的小正方体搭成的几何体,(1)请分别画出它的主视图和左视图.(2)如果在这个几何体的表面喷上黄色的漆(底面不涂色),有_________个小正方体只有两面黄色,有_________个小正方体只有三面黄色,(3)在俯视图和左视图不变的情况下,你认为最多还可以添加_________个小正方体.【答案】(1)见解析;(2)2,3;(3)4【分析】(1)主视图从左至右每列个数分别为3、1、2,左视图左至右每列个数分别为3、2、1. (2)注意题干中的底面不涂色,涂2面的在第一层后面最左面的2个,涂3面的在中间层的后面的左面和第一层的最中间以及第一层的最后最右面,一共3个.(3)要使俯视图和左视图不变,可以在第二列,第二层和第三层的3个空缺处添加,第三层第三列的最上面也可添加.【详解】(1)(2)设由下到上分别是第一层到第三层,由左到右分别是第一列到第三列,有前到后分别是第一行到第三行.有2个面是黄色的应为第一层第一列第三行和第一层第二列第三行的2个小正方体.有3个面是黄色的应为第二层第一列第三行、第一层第二列第二行和第一层第三列第三行的3个小正方体.故答案为2,3.(3)要使俯视图和左视图不变,可添加至第二层第二列第二行、第二层第二列第三行、第三层第二列第三行、第三层第三列第三行.所以可添加4个小正方体.故答案为4.【点睛】本题主要考查作三视图.利用空间想象能力,并把几何体按空间排序来解决问题.23.如图是由四个大小相同的小正方体搭成的一个立体图形,画出从正面,从上面,从左面三个方向看到的立体图形的形状图.【答案】见解析【分析】观察图形可知,从正面看到的图形是两层:下层3个正方形,上层1个靠中间;从左面看到的图形是2层:下层2个正方形,上层1个靠左边;从上面看到的图形是两行:后面一行3个正方形,前面一行1个正方形靠左边,据此即可画图【详解】解:如图【点睛】此题考查了从不同方向观察几何体,锻炼了学生的空间想象力和抽象思维能力.24.一个零件的主视图、左视图、俯视图如图所示(尺寸单位:厘米),求这个零件的表面积.【答案】900cm 2【分析】由题意可得这个零件是长方体,再根据长方体的表面积公式解答即可.【详解】解:由题意可得:这个零件是长方体,且这个零件的表面积=()2101221015212152900cm⨯⨯+⨯⨯+⨯⨯=.答:这个零件的表面积是900cm 2.【点睛】本题考查了几何体的三视图和长方体表面积的计算,正确理解题意、明确求解的方法是关键.25.如图是由8个相同的小正方体组成的一个几何体(1)画出几何体从正面看、左面看、上面看的形状图;(2)现量得小立方体的棱长为2cm ,现要给该几何体表面涂色(不含底面),求涂上颜色部分的总面积.【答案】(1)见解析 (2)2116cm【分析】(1)分别画出几何体图即可;(2)根据题意得涂上颜色的总面积为正反面面积,左右两侧面积,和向上一侧面积,求出总小正方形个数乘以面积即可.【详解】(1)从正面看;从左面看;从上面看.(2)(6×2+6×2+5)×2×2=116(cm2)答:涂色部分面积为116cm2.【点睛】本题考查了立体图形的三视图,及表面积的求法,正确理解三视图的概念,并形成空间图形观念是解题关键.26.一作图题:下列物体是由六个小正方体搭成的,请在下列网格中分别画出从正面、左面、上面看到的立体图形的形状.【答案】答案见解析【分析】根据主视图,左视图,俯视图定义,首先运用形体分析法把组合体分解为若干个形体,确定它们的组合形式,判断形体间邻接表面是否处于共面、相切和相交的特殊位置;然后逐个画出形体的三视图.【详解】【点睛】本题考查了三视图的作图,三视图是主视图、俯视图、左视图的统称,从物体的前面向后面投射所得的视图称主视图,从物体的上面向下面投射所得的视图称俯视图,从物体的左面向右面投射所得的视图称左视图.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用中心投影,延长PA 、PB 分别交x 轴于A′、B′,作PE ⊥x 轴于E ,交AB 于D ,如图,证明△PAB ∽△PA′B′,然后利用相似比可求出A'B'的长.【详解】延长PA 、PB 分别交x 轴于A ′、B ′,作PE ⊥x 轴于E ,交AB 于D ,如图∵P (2,2),A (0,1),B (3,1).∴PD =1,PE =2,AB =3,∵AB ∥A ′B ′,∴△PAB ∽△PA ′B ′, ∴AB AD A B AE ='',即312A B ='' ∴A ′B ′=6,故选:C .【点睛】 本题考查了中心投影和三角形相似,引出辅助线利用三角形相似的性质求解是本题的关键.2.D解析:D【分析】分别画出所给两个几何体的三视图,然后比较即可得答案.【详解】第一个几何体的三视图如图所示:第二个几何体的三视图如图所示:观察可知这两个几何体的主视图、左视图和俯视图都相同,故选D.【点睛】本题考查了几何体的三视图,正确得出各几何体的三视图是解题的关键.3.A解析:A【分析】首先根据题目所给出的三视图,判断出该几何体为34个圆柱体,该圆柱体的底部圆的半径为4,高为6,之后根据每个面分别求出表面积,再将面积进行求和,即可求出答案.【详解】解:∵根据题目所给出的三视图,判断出该几何体为34个圆柱体,该圆柱体的底部圆的半径为4,高为6,∴该几何体的上、下表面积为:22133S =2πr =2π4=24π44⨯⨯⨯⨯⨯,该几何体的侧面积为:233S =2462πr h=48+2π46=48+36π44⨯⨯+⨯⨯⨯⨯⨯, ∴总表面积为:12S=S +S =4860π+,故选:A .【点睛】本题考查了几何体的表面积,解题的关键在于根据三视图判断出几何体的形状,并把每个面的面积分别计算出来,掌握圆、长方体等面积的计算公式也是很重要的.4.D解析:D【分析】这个几何体的侧面是以底面圆周长为长、圆柱体的高为宽的矩形,根据矩形的面积公式计算即可.【详解】根据三视图可得几何体为圆柱,圆柱体的侧面积=底面圆的周长⨯圆柱体的高=11ππ⨯⨯= 故答案为:D .【点睛】本题考查了圆柱体的侧面积问题,掌握矩形的面积公式是解题的关键.5.C解析:C【分析】根据几何体的俯视图与左视图,可得搭成该几何体的叠加方式,进而即可得到答案.【详解】由题意得:搭成该几何体(俯视图中小正方形中的数字表示在该位置上的小正方体块)的个数的方式如下:,故选C .【点睛】本题主要考查几何体的三视图,掌握三视图的定义,是解题的关键.6.A解析:A【分析】从左面观察三个正方形的形状即可解答.【详解】解:从左面看,共有2列,左边一列是两个正方形,右边是一个正方形,且下齐.故答案为A.【点睛】本题考查了立体图形的三视图,理解三视图的概念以及较好的空间思维能力是解答本题的关键.7.C解析:C【分析】安装几何体三视图进行判断即可;【详解】解:本几何体的俯视图是后排有三个,前排有两个,即答案为C.【点睛】本题主要考查了简单几何体的三视图,掌握是从物体正面、左面和上面看物体以及较好的空间思维能力是解答本题的关键.8.D解析:D【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.【详解】左视图有2层3列,第一层有3个正方形,第二层有一个正方形;每列上正方形的分布从左到右分别是2,1,1个.故选D.【点睛】此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.9.D解析:D【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:从上面看易得到被一条直线分割成两个长方形的正方形.故选D.【点睛】本题考查三视图的知识,俯视图是从物体的上面看得到的视图.10.C解析:C【解析】【分析】找到从正面看所得到的图形即可.解:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右的列数分别是1,2,2.故选:C.【点睛】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力.11.D解析:D【分析】从正面看,得到从左往右2列正方形的个数依次为3, 3;从左面看得到从左往右2列正方形的个数依次为5,1,依此画出图形即可.【详解】解:由题意知:该几何体为:故从左面看为:故选D.【点睛】本题考查三视图,解题关键是得到每列正方形的具体的数目为这列正方体的最多数目.12.D解析:D【解析】【分析】根据中心投影的性质,找到不是灯光的光源即可.【详解】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有B选项得到的投影为平行投影,所以太阳光下林荫道上的树影不是中心投影.故选:D.解决本题的关键是理解中心投影的形成光源为灯光.二、填空题13.96m【分析】根据同一时刻两人的身高与影长成正比列出算式求得甲的影长即可【详解】解:∵同一时刻两人的身高与影长成正比∴18:21=(18﹣012):甲的影长解得:甲的影长=196故答案为196m【点解析:96m【分析】根据同一时刻两人的身高与影长成正比列出算式求得甲的影长即可.【详解】解:∵同一时刻两人的身高与影长成正比,∴1.8:2.1=(1.8﹣0.12):甲的影长,解得:甲的影长=1.96,故答案为1.96m.【点睛】考查了相似三角形的应用及平行投影的知识,解题的关键是了解同一时刻两人的身高与影长成正比.14.【解析】【分析】从俯视图中可以看出最底层小正方体的个数及形状从主视图和左视图可以看出每一层小正方体的层数和个数从而算出总的个数【详解】从俯视图可以看出下面的一层有6个由主视图可以知道在中间一列的一个解析:8、9、10【解析】【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】从俯视图可以看出,下面的一层有6个,由主视图可以知道在中间一列的一个正方体上面可以放2个或在一个上放2个,另一个上放1或2个;所以小立方块的个数可以是6+2=8个,6+2+1=9个,6+2+2=10个.故答案为8、9、10.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.15.三棱柱【解析】试题分析:如图所示根据三视图的知识可使用排除法来解答解:根据俯视图为三角形主视图以及左视图都是矩形可得这个几何体为三棱柱故答案为三棱柱考点:由三视图判断几何体解析:三棱柱试题分析:如图所示,根据三视图的知识可使用排除法来解答.解:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱,故答案为三棱柱.考点:由三视图判断几何体.16.DABC【解析】试题分析:根据北半球上太阳光下的影子变化的规律易得答案试题解析:DABC.【解析】试题分析:根据北半球上太阳光下的影子变化的规律,易得答案.试题根据北半球上太阳光下的影子变化的规律,从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.可得顺序为DABC.考点:平行投影.17.5【解析】【分析】由于人和地面是垂直的即和路灯平行构成相似三角形根据对应边成比例列方程解答即可【详解】解:∵CE∥AB∴△ADB∽△EDC∴AB:CE=BD:CD即AB:15=75:25解得:AB=解析:5.【解析】【分析】由于人和地面是垂直的,即和路灯平行,构成相似三角形.根据对应边成比例,列方程解答即可.【详解】解:∵CE∥AB,∴△ADB∽△EDC∴AB:CE=BD:CD即AB:1.5=7.5:2.5解得:AB=4.5m.即路灯的高度为4.5米.故答案为4.5【点睛】考查相似三角形的应用,只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出路灯的高度,体现了转化的思想.18.圆锥圆柱球【解析】只要几何体的三视图中得一个视图是圆即可找到视图中有圆的几何体即可解:视图中有圆的几何体有圆锥圆柱球等故答案为圆锥圆柱球解析:圆锥、圆柱、球【解析】只要几何体的三视图中得一个视图是圆即可找到视图中有圆的几何体即可解:视图中有圆的几何体有圆锥,圆柱,球等.故答案为圆锥、圆柱、球.19.5【分析】利用三视图得到排数及列数即可得到答案【详解】由三视图可知此摆放体有两排第一排有一列第二排有两列第一排一列有一个第二排两列分别有两个∴1+2+2=5个故答案为:5【点睛】此题考查三视图的应用解析:5【分析】利用三视图得到排数及列数,即可得到答案.【详解】由三视图可知,此摆放体有两排,第一排有一列,第二排有两列,第一排一列有一个,第二排两列分别有两个,∴1+2+2=5个,故答案为:5.【点睛】此题考查三视图的应用,会看三视图的组成特点及分析得到排数列数是解题的关键. 20.26【分析】从俯视图中可以看出最底层小正方体的个数及形状由主视图可以看出每一列的最大层数和个数从而算出总的个数【详解】解:根据主视图和俯视图可知该几何体中小正方体最少分别情况如下:故n的最小值为1+解析:26【分析】从俯视图中可以看出最底层小正方体的个数及形状,由主视图可以看出每一列的最大层数和个数,从而算出总的个数【详解】解:根据主视图和俯视图可知,该几何体中小正方体最少分别情况如下:故n的最小值为1+1+1+1+3+2+1=10,该几何体中小正方体最多分别情况如下:该几何体中小正方体最大值为3+3+3+2+2+2+1=16,故最大值与最小值得和为10+16=26故答案为:26【点睛】本题主要考查了由三视图判断几何体中小正方体的个数问题,可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的可能个数.三、解答题21.无22.无23.无24.无25.无26.无。

(必考题)初中数学九年级数学上册第五单元《投影与视图》测试卷(含答案解析)

(必考题)初中数学九年级数学上册第五单元《投影与视图》测试卷(含答案解析)

一、选择题1.用棱长为1的小立方体摆成如图所示的几何体,从左面看这个几何体得到的平面图形的面积是()A.3 B.4 C.5 D.62.如图,是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的个数为n,则n不可能是( )A.9 B.10 C.11 D.123.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同4.如图所示的物体组合,它的左视图是()A.B.C.D.5.如图是某零件的模型,则它的左视图为()A.B.C.D.6.下面是由几个小正方体搭成的几何体,则这个几何体的左视图为()A.B.C.D.7.如图是用4个同样大小正方体搭成的立体图形,从左面看,它应是下列图形中的()A.B.C.D.8.在某光源下,两根木棒在同一平面内的影子如图所示,此时,第三根木棒的影子表示正确的是( )A.B.C.D.9.下列四个几何体中,从正面看得到的平面图形是三角形的是()A.B.C.D.10.如图是由4个大小相同的小正方体摆成的几何体,它的左视图是()A.B.C.D.11.如图是某几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.长方体D.正方体12.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不相同的几何体是()A.①②B.②③C.②④D.③④二、填空题13.下列投影或利用投影现象中,________是平行投影,________是中心投影. (填序号)14.如图,是由一些相同的小正方体构成的几何体从三个不同方向看到的形状图,则构成这个几何体的小正方体有_____个.15.如图,在A时测得一棵大树的影长为4米,B时又测得该树的影长为6米,若两次日照的光线互相垂直,则树的高度是______.16.如图的几何体由若干个棱长为1的正方体堆放而成,则这个几何体的俯视图面积_____.17.一个几何体的三视图如图所示,则这个几何体是_____.18.如图所示,身高1.5m的小华站在距路灯杆5m的C点处,测得她在灯光下的影长CD 为2.5m,则路灯的高度AB为_____米.19.如果一个几何体从某个方向看到的平面图形是圆,则该几何体可能是________ (至少填两种几何体)20.长方体的主视图与俯视图如图所示,则这个长方体的体积是_______________________.三、解答题21.已知一个几何体的三视图如图所示,描述该几何体的形状,并根据图中数据计算它的表面积.(结果精确到1cm2)【答案】6021cm2【分析】根据主视图和侧视图为一个长方形,而俯视图都为一个等腰直角三角形形,故这个几何体为一个直三棱柱.表面积=2个直角边为底长方形的面积+2个等腰直角三角形的面积+1个斜边为底的大长方形面积.【详解】解:∵有2个视图为长方形,∴该几何体为柱体,∵第3个视图为直角三角形,∴该柱体为直三棱柱,∵直角三角形斜边长为:2230+30=302cm,∴表面积为1⨯⨯⨯⨯⨯⨯≈6021cm2.23030+25030+503022【点睛】本题主要考查了由三视图确定几何体和求直三棱柱的表面积,掌握由平面的三视图到空间立体图图形的想象是解题关键22.如图是由10个同样大小的小正方体搭成的几何体.(1)请分别画出它的主视图和俯视图;(2)这个几何体的表面积是________.【答案】(1)见解析;(2)38.【分析】(1)观察可以发现:主视图有3列,每列小正方形数目分别为3,I,2;俯视图有3列,每列小正方形数目分别为3,2,1;(2)分别从各个方向确定可以看到的正方形面数,相加后乘1个面的面积即可.【详解】解:(1)如图所示:(2)(1×1)×(6+6+7+7+6+6)=1×38=38该几何体的表面积是38.故答案为38.【点睛】本题主要考查了几何体的三视图画法以及几何体的表面积,根据立体图形可知主视图、左视图、俯视图确定出有几列且每一列上的有几个正方形成为解答本题的关键.23.已知下图为一几何体从三个方向看到的形状图:从正面看:长方形从左面看:长方形从上面看:等边三角形(1)写出这个几何体的名称;(2)任意画出它的一种表面展开图;(3)根据图中所给的数据,求这个几何体的侧面积.96cm【答案】(1)三棱柱;(2)见解析;(3)2【分析】(1)由三视图可知,该几何体为三棱柱;(2)画出三棱柱的展开图即可;(3)根据三棱柱侧面积计算公式计算可得.【详解】解:(1)由三视图可知,该几何体为三棱柱;(2)展开图如下:(3)这个几何体的侧面积为3×8×4=96cm2.【点睛】本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力.注意:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.24.如图是某几何体的三种形状图.(1)说出这个几何体的名称;(2)若从正面看到的形状图的长为15cm,宽为4cm;从左面看到的形状图的宽为3cm,从上面看到的形状图的最长边长为5cm,求这个几何体的所有棱长的和为多少?它的侧面积为多少?它的体积为多少?【答案】(1)直三棱柱;(2)所有棱长的和69cm,侧面积180cm2,体积90cm3【分析】(1)只有棱柱的主视图和左视图才能出现长方形,根据俯视图是三角形,可得到此几何体为三棱柱;(2)这个几何体的所有棱长的和为2个3cm、2个4cm、2个5cm,3个15cm的和;三个长为15cm,宽分别为3cm、4cm、5cm的长方形的面积即是几何体的侧面积;先求出俯视图的面积,再乘高15cm,即为体积.【详解】解:(1)直三棱柱;(2)这个几何体所有棱长的和:153345269cm⨯+++⨯=.它的侧面积:(3+4+5)15⨯=180cm2;它的体积:12×3×4×15=90cm3故这个几何体的所有棱长的和为69cm,它的侧面积为180cm2,它的体积为90cm3.【点睛】此题考查从三视图判断几何体,掌握棱柱的侧面都是长方形,上下底面是几边形就是几棱柱是解决问题的关键.25.如图,这是一个小正方体所搭建的几何体的俯视图,正方形中的数字表示在该位置小正方体的个数,请你画出从正面看和从侧面看的图形.【答案】见详解【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为2,3,3;左视图有2列,每列小正方形数目分别为3,3.据此可画出图形.【详解】解:如图所示:【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.26.作图题:从正面、左面、上面观察如图所示的几何体,分别画出你所看到的平面图形.【答案】见解析.【分析】直接利用画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等,进而得出答案.【详解】【点睛】此题主要考查了作三视图,正确把握观察角度进而得出三视图的形状是解题关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先画出几何体的左视图,再确定小正方形的个数即可解答.【详解】解:几何体的左视图为:面积为:4×1=4故选:B【点睛】考查简单几何体的三视图的画法,主视图、左视图、俯视图实际上就是从正面、左面、上面对该几何体正投影所得到的图形.画三视图时还要注意“长对正、宽相等、高平齐”.2.D解析:D【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据主视图与俯视图得出答案.【详解】解:根据几何体的主视图和俯视图,可以得出那个主视图看最少5个,那个俯视图看,最左边正方形前后可以有三列,分别有三个,故最多有3×3+2=11个,故不可能为12个,故选:D.【点睛】本题考查了三视图的应用,根据从俯视图看,最左边正方形前后可以有三列,分别有三个从而得出答案是解决问题的关键.3.D解析:D【分析】分别画出所给两个几何体的三视图,然后比较即可得答案.【详解】第一个几何体的三视图如图所示:第二个几何体的三视图如图所示:观察可知这两个几何体的主视图、左视图和俯视图都相同,故选D.【点睛】本题考查了几何体的三视图,正确得出各几何体的三视图是解题的关键.4.D解析:D【分析】通过对简单组合体的观察,从左边看圆柱是一个长方形,从左边看正方体是一个正方形,但是两个立体图形是并排放置的,正方体的左视图被圆柱的左视图挡住了,只能看到长方形,邻边用虚线画出即可.【详解】从左边看圆柱的左视图是一个长方形,从左边看正方体的左视图是一个正方形,从左边看圆柱与正方体组合体的左视图是一个长方形,两图形的邻边用虚线画出,则如图所示的物体组合的左视图如D选项所示,故选:D.【点睛】本题考查了简单组合体的三视图.解答此题要注意进行观察和思考,既要丰富的数学知识,又要有一定的生活经验和空间想象力.5.D解析:D【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】从左面看去,是两个有公共边的矩形,如图所示:故选:D.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.6.D解析:D【分析】根据几何体的三视图的定义以及性质进行判断即可.【详解】根据几何体的左视图的定义以及性质得,这个几何体的左视图为故答案为:D.【点睛】本题考查了几何体的三视图,掌握几何体三视图的性质是解题的关键.7.A解析:A【分析】从左面观察三个正方形的形状即可解答.【详解】解:从左面看,共有2列,左边一列是两个正方形,右边是一个正方形,且下齐.故答案为A.【点睛】本题考查了立体图形的三视图,理解三视图的概念以及较好的空间思维能力是解答本题的关键.8.C解析:C【分析】根据a、b两根木棒的投影分析知这是中心投影,将a、b木棒的顶端与影子的末端分别连接,得到光源O,再连接光源O与木c的顶端,延长与地面的交点即为木棒c影子的末端,由此即可得到答案.【详解】如图,将a、b木棒的顶端与影子的末端分别连接,得到光源O,连接光源O与木c的顶端并延长与地面的交点为E,连接EF即为木棒c的影子,故选:C.【点睛】此题考查中心投影,在灯光下,距离光源近的物体的影子短,离光源远的物体的影子长,熟练掌握中心投影的知识是解题的关键.9.B解析:B【分析】依次分析每个几何体的主视图,即可得到答案.【详解】A.主视图为矩形,不符合题意;B.主视图为三角形,符合题意;C.主视图为矩形,不符合题意;D.主视图为矩形,不符合题意.故选:B.【点睛】此题考查几何体的三视图,掌握每一个几何体的三视图的图形是解题关键.10.C解析:C【分析】根据左视图即从物体的左面观察得得到的视图,进而得出答案.【详解】如图所示,该几何体的左视图是:.故选C.【点睛】此题主要考查了几何体的三视图;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.11.A解析:A【解析】【分析】根据几何体的三视图,对各个选项进行分析,用排除法得到答案.【详解】根据俯视图是三角形,长方体和正方体以及三棱锥不符合要求,B、C、D错误,根据几何体的三视图,三棱柱符合要求,故选A.【点睛】本题考查的是几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.12.B解析:B【解析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,分别得到每个几何体的三视图,进而得到答案:正方体主视图、左视图、俯视图都是正方形;圆柱主视图和左视图是长方形,俯视图是圆;圆锥主视图和左视图是三角形、俯视图是带圆心的圆;球主视图、左视图、俯视图都是圆.∴三视图有两个相同,而另一个不相同的几何体是圆柱和圆锥.故选B.二、填空题13.④⑥①②③⑤【分析】根据中心投影的性质找到是灯光的光源即可判断出中心投影;再利用平行光下的投影属于平行投影可判断出平行投影【详解】解:①②③⑤都是灯光下的投影属于中心投影;④因为太阳光属于平行光线所解析:④⑥ ①②③⑤【分析】根据中心投影的性质,找到是灯光的光源即可判断出中心投影;再利用平行光下的投影属于平行投影可判断出平行投影.【详解】解:①②③⑤都是灯光下的投影,属于中心投影;④因为太阳光属于平行光线,所以日晷属于平行投影;⑥中是平行光线下的投影,属于平行投影,故答案为:④⑥;①②③⑤.【点睛】此题主要考查了中心投影和平行投影的性质,解题的关键是根据平行投影和中心投影的区别进行解答即可.14.6【分析】根据三视图可知:组成几何体的正方体的分布情况进而求出答案【详解】根据几何体的三视图可知:组成该几何体的正方体分布如下:∴构成这个几何体的小正方体有6个故答案是:6【点睛】本题主要考查几何体解析:6【分析】根据三视图可知:组成几何体的正方体的分布情况,进而求出答案.【详解】根据几何体的三视图可知:组成该几何体的正方体分布如下:∴构成这个几何体的小正方体有6个.故答案是:6.【点睛】本题主要考查几何体的三视图,根据三视图想象出几何体的样子,是解题的关键.15.6【解析】【分析】根据题意画出示意图易得:Rt△EDC∽Rt△FDC进而可得=;即DC2=ED•FD代入数据可得答案【详解】解:根据题意作△EFC;树高为CD且∠ECF=90°ED=4FD=9;易得解析:6【解析】【分析】根据题意,画出示意图,易得:Rt△EDC∽Rt△FDC,进而可得EDDC=DCFD;即DC2=ED•FD,代入数据可得答案.【详解】解:根据题意,作△EFC;树高为CD,且∠ECF=90°,ED=4,FD=9;易得:Rt△EDC∽Rt△FDC,∴EDDC = DC FD即DC2=ED•FD,代入数据可得DC2=36,DC=6;故答案为6.【点睛】本题通过投影的知识结合三角形的相似,求解高的大小;是平行投影性质在实际生活中的应用.16.5【分析】先得出从上面看所得到的图形再求出俯视图的面积即可【详解】从上面看易得第一行有1个正方形第二行有3个正方形第三行有1个正方形共5个正方形s所以面积为5故答案为5【点睛】本题考查了三视图的知识解析:5【分析】先得出从上面看所得到的图形,再求出俯视图的面积即可.【详解】从上面看易得第一行有1个正方形,第二行有3个正方形,第三行有1个正方形,共5个正方形,s所以面积为5.故答案为5.【点睛】本题考查了三视图的知识,熟知俯视图是从物体的上面看得到的视图是解决问题的关键. 17.三棱柱【解析】试题分析:如图所示根据三视图的知识可使用排除法来解答解:根据俯视图为三角形主视图以及左视图都是矩形可得这个几何体为三棱柱故答案为三棱柱考点:由三视图判断几何体解析:三棱柱【解析】试题分析:如图所示,根据三视图的知识可使用排除法来解答.解:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱,故答案为三棱柱.考点:由三视图判断几何体.18.5【解析】【分析】由于人和地面是垂直的即和路灯平行构成相似三角形根据对应边成比例列方程解答即可【详解】解:∵CE∥AB∴△ADB∽△EDC∴AB:CE=BD:CD即AB:15=75:25解得:AB=解析:5.【解析】【分析】由于人和地面是垂直的,即和路灯平行,构成相似三角形.根据对应边成比例,列方程解答即可.【详解】解:∵CE∥AB,∴△ADB∽△EDC∴AB:CE=BD:CD即AB:1.5=7.5:2.5解得:AB=4.5m.即路灯的高度为4.5米.故答案为4.5【点睛】考查相似三角形的应用,只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出路灯的高度,体现了转化的思想.19.圆锥圆柱球【解析】只要几何体的三视图中得一个视图是圆即可找到视图中有圆的几何体即可解:视图中有圆的几何体有圆锥圆柱球等故答案为圆锥圆柱球解析:圆锥、圆柱、球【解析】只要几何体的三视图中得一个视图是圆即可找到视图中有圆的几何体即可解:视图中有圆的几何体有圆锥,圆柱,球等.故答案为圆锥、圆柱、球.20.36【分析】根据所给的三视图判断出长方体的长宽高再根据体积公式进行计算即可【详解】解:由主视图可知这个长方体的长和高分别为4和3由俯视图可知这个长方体的长和宽分别为4和3因此这个长方体的长宽高分别为解析:36【分析】根据所给的三视图判断出长方体的长、宽、高,再根据体积公式进行计算即可.【详解】解:由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和3,因此这个长方体的长、宽、高分别为4、3、3,则这个长方体的体积为4×3×3=36.故答案为:36.【点睛】此题考查了三视图判断几何体,注意:主视图主要反映物体的长和高,左视图主要反映物体的宽和高,俯视图主要反映物体的长和宽.三、解答题21.无22.无23.无24.无25.无26.无。

九年级上册数学单元测试卷-第五章 投影与视图-北师大版(含答案)

九年级上册数学单元测试卷-第五章 投影与视图-北师大版(含答案)

九年级上册数学单元测试卷-第五章投影与视图-北师大版(含答案)一、单选题(共15题,共计45分)1、在一间屋子里的屋顶上挂着一盏白炽灯,在它的正下方有一个球,如图所示,下列说法:(1)球在地面上的影子是圆;(2)当球向上移动时,它的影子会增大;(3)当球向下移动时,它的影子会增大;当球向上或向下移动时,它的影子大小不变.其中正确的有()A.0个B.1个C.2个D.3个2、某校积极开展综合实践活动,一次九年级数学小组发现校园里有一棵被强台风摧折的大树,其残留的树桩DC的影子的一端E刚好与倒地的树梢重合,于是他们马上利用其测量旁边钟楼AB的高度.如图是根据测量活动场景抽象出的平面图形.活动中测得的数据如下:①大树被摧折倒下的部分DE=10m;②tan∠CDE=;③点E到钟楼底部的距离EB=7m;④钟楼AB的影长BF=(20 +8)m;⑤从D点看钟楼顶端A点的仰角为60°.(点C,E,B,F在一条直线上).请你选择几个需要的数据,用你喜欢的方法求钟楼AB的高度,则AB=()A.15 mB.(15 +6)mC.(12 +6)mD.15m3、如图所示几何体的俯枧图是()A. B. C. D.4、某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的俯视图是()A. B. C. D.5、如图是由五个完全一样的立方体搭建而成的立体图形,它的俯视图是()A. B. C. D.6、下面几何体的主视图为()A. B. C. D.7、如图,下面的几何体由两个大小相同的正方体和一个圆柱体组成,则它的左视图是()A. B. C. D.8、桌上摆放着一个由相同正方体组成的组合体,其俯视图如图所示,图中数字为该位置小正方体的个数,则这个组合体的左视图为()A. B. C. D.9、如图中的几何体的主视图是()A. B. C. D.10、如图所示,该几何体的俯视图是()A. B. C. D.11、右图是由4个相同的小正方体组成的几何体,其俯视图为()A. B. C. D.12、如图所示,该几何体的俯视图是()A. B. C. D.13、下图是由个大小相同的小正方体组成的几何体,它的左视图是()A. B. C. D.14、如图,由相同的小正方体搭成的几何体的主视图是()A. B. C. D.15、下图的几何体从上面看到的图形是左图的是()A. B. C. D.二、填空题(共10题,共计30分)16、某数学课外活动小组想利用树影测量树高,他们在同一时刻测得一身高为1.5 m的同学的影长为1.35 m,由于大树靠近一幢建筑物,因此树影的一部分落在建筑物上,如图所示,他们测得地面部分的影长为3.6 m,建筑物上的影长为1.8 m,则树的高度为________.17、太阳光形成的投影是________ ,手电筒、电灯泡所发出的光线形成的投影是________ .18、皮影戏中的皮影是由投影得到的________19、如图,在A时测得某树的影长为4米,B时又测得该树的影长为9米,若两次日照的光线互相垂直,则树的高度为________ 米.20、一幢4层楼房只有一个窗户亮着一盏灯,一棵小树和一根电线杆在窗口灯光下的影子如图所示,则亮着灯的窗口是________号窗口.21、如图,是小明在一天中四个时刻看到的一棵树的影子的俯视图,请你将它们按时间的先后顺序进行排列________.22、如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.23、三角尺在灯泡O的照射下在墙上形成影子(如图所示).现测得OA=20cm,OA′=50cm,这个三角尺的周长与它在墙上形成的影子的周长的比是________.24、如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为________m.25、教室中的矩形窗框在太阳光的照射下,在地面上的影子是________ .三、解答题(共5题,共计25分)26、由大小相同的5个小立方块搭成的几何体如图所示,请在方格中画出该几何体从上面和左面看到的形状图(用黑色笔将虚线画为实线).27、如图是由相同的5个小正方体组成的几何体,请画出它的三种视图,若每个小正方体的棱长为a,试求出该几何体的表面积.28、如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1m长的影子如图所示,已知窗框的影子DE到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度.(即AB的值)29、如图是由7个相同的小立方块搭成的几何体.已知它的左视图如下.请画出它的主视图和俯视图.30、如图所示,太阳光线AC和A´C´是平行的,同一时刻两个建筑物在太阳下的影子一样长,那么建筑物是否一样高?请说明理由.参考答案一、单选题(共15题,共计45分)1、C2、B3、A4、D5、B6、C7、D8、D9、D10、B11、C12、B13、B14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。

(基础题)北师大版九年级上册数学第五章 投影与视图含答案

(基础题)北师大版九年级上册数学第五章 投影与视图含答案

北师大版九年级上册数学第五章投影与视图含答案一、单选题(共15题,共计45分)1、如图是由四个大小相同的立方体组成的几何体,则这个几何体的左视图是()A. B. C. D.2、如图是由5个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A. B. C. D.3、下图是由7个完全相同的小立方块搭成的几何体,那么这个几何体的主视图是()A. B. C. D.4、下列图中是太阳光下形成的影子是()A. B. C.D.5、下列哪种光线形成的投影不是中心投影()A.探照灯B.太阳C.手电筒D.路灯6、由六个相同的立方体搭成的几何体如图所示,下面有关它的三个视图的说法正确的是()A.左视图与主视图相同B.俯视图与主视图相同C.左视图与俯视图相同D.三个视图都相同7、用3个相同的立方体如图所示,则它的主视图是()A. B. C. D.8、如图是一个由5个相同正方体组成的立体图形,它的主视图是()A. B. C. D.9、如图所示的物体的左视图为()A. B. C. D.10、如图是由4个小正方体组成的立体图形,它的主视图是()A. B. C. D.11、如图所示的几何体,它的左视图正确的是()A. B. C. D.12、如图是一个“中”的几何体,则该几何体的俯视图为()A. B. C. D.13、如图,是由两个正方体组成的几何体,则该几何体的俯视图为()A. B. C. D.14、如图是五个大小相同的正方体组成的几何体,这个几何体的俯视图是()A. B. C. D.15、如图是由完全相同的6个小正方体组成的几何体,则该几何体从上面看为()A. B. C. D.二、填空题(共10题,共计30分)16、人无论在太阳光照射下,还是在路灯光照射下都会形成影子,那么影子的长短随时间的变化而变化的是________,影子的长短随人的位置的变化而变化的是________.17、某校九年级科技小组,利用日晷原理,设计制造了一台简易的“日晷”,并在一个阳光明媚的日子里记录了不同时刻晷针的影长,其中10:00时的影长被墨水污染.请根据规律,判断10:00时,该晷针的影长是________cm.18、一个矩形薄木版在太阳光下形成的投影可能是________ (在“梯形”、“矩形”、“平行四边形”、“三角形”、“线段”、“一般四边形”中选择两个即可).19、如图:(A)(B)(C)(D)是一天中四个不同时刻的木杆在地面上的影子,将它们按时间先后顺序进行排列,为________ .20、如图,右边的两个图形分别是由左边的物体从两种不同的方向观察得到的,请在这两种平面图形的下面填写它们各是从什么方向看得到的。①________②________.21、某数学兴趣小组利用太阳光测量一棵树的高度(如图),在同一时刻,测得树的影长为4.8米,小明的影长为1.2米,已知小明的身高为1.5米,则树高为________ 米.22、如图所示,平地上一棵树高为5米,两次观察地面上的影子,第一次是当阳光与地面成45°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长________ 米.23、如图,是小明在一天中四个时刻看到的一棵树的影子的俯视图,请你将它们按时间的先后顺序进行排列________.24、画视图时,看得见的轮廓线通常画成________,看不见的部分通常画成________.25、如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为________ m.三、解答题(共5题,共计25分)26、由大小相同的5个小立方块搭成的几何体如图所示,请在方格中画出该几何体从上面和左面看到的形状图(用黑色笔将虚线画为实线).27、如图,铜亭广场装有智能路灯,路灯设备由灯柱AC与支架BD共同组成(点C处装有安全监控,点D处装有照明灯),灯柱AC为6米,支架BD为2米,支点B到A的距离为4米,AC与地面垂直,∠CBD=60°.某一时刻,太阳光与地面的夹角为45°,求此刻路灯设备在地面上的影长为多少?28、高高的路灯挂在路边的上方,高傲而明亮,小明拿着一根2米长的竹竿,想量一量路灯的高度,直接量是不可能的.于是,他走到路灯旁的一个地方,竖起竹竿(即AE),这时,他量了一下竹竿的影长(AC)正好是1米,他沿着影子的方向走,向远处走出两根竹竿的长度(即AB=4米),他又竖起竹竿,这时竹竿的影长正好是一根竹竿的长度(即BD=2米).此时,小明抬头瞧瞧路灯,若有所思地说:“噢,我知道路灯有多高了!”同学们,请你和小明一起解答这个问题:(1)在图中作出路灯O的位置,并作OP⊥l于P.(2)求出路灯O的高度,并说明理由.29、画图:如图是小明与爸爸(线段AB)、爷爷(线段CD)在同一路灯下的情景,其中,粗线分别表示三人的影子.请根据要求,进行作图(不写画法,但要保留作图痕迹);(1)画出图中灯泡所在的位置.(2)在图中画出小明的身高.30、大唐芙蓉园是中国第一个全方位展示盛唐风貌的大型皇家园林式文化主题公园,全园标志性建筑一紫云楼为代表,展示了“形神升腾紫云景,天下臣服帝王心”的唐代帝王风范(如图①).小风和小花等同学想用一些测量工具和所学的几何知识测量“紫云楼”的高度,来检验自己掌握知识和运用知识的能力,他们经过研究需要两次测量:首先,在阳光下,小风在紫云楼影子的末端C点处竖立一根标杆CD,此时,小花测得标杆CD的影长CE=2米,CD=2米;然后,小风从C点沿BC方向走了5.4米,到达G处,在G处竖立标杆FG,接着沿BG后退到点M处时,恰好看见紫云楼顶端A,标杆顶端F在一条直线上,此时,小花测得GM=0.6米,小风的眼睛到地面的距离HM=1.5米,FG=2米.如图②,已知AB⊥BM,CD⊥BM,FG⊥BM,HM⊥BM,请你根据题中提供的相关信息,求出紫云楼的高AB.参考答案一、单选题(共15题,共计45分)1、A2、C3、C4、A5、B6、A7、A8、D9、A10、C11、B12、C13、D14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)30、。

(典型题)初中数学九年级数学上册第五单元《投影与视图》检测卷(含答案解析)

(典型题)初中数学九年级数学上册第五单元《投影与视图》检测卷(含答案解析)

一、选择题1.在同一时刻的太阳光下,小刚的影子比小红的影子长,那么,在晚上同一路灯下()A.不能够确定谁的影子长B.小刚的影子比小红的影子短C.小刚跟小红的影子一样长D.小刚的影子比小红的影子长2.如图所示的几何体的主视图是()A.B.C.D.3.将如图的R t ABC绕直角边旋转一周,所得几何体的正投影是()A.直角三角形B.等腰三角形C.等边三角形D.圆4.如图所示,该几何体的俯视图为()A.B.C.D.5.如图所示的物体组合,它的左视图是()A.B.C.D.6.如图,是由一些相同的小正方形围成的立方体图形的三视图,则构成这种几何体的小正方形的个数是()A.4 B.6 C.9 D.127.用大小和形状完全相同的小正方体木块搭成一个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为()A.13个B.16个C.19个D.22个8.如图是某零件的模型,则它的左视图为()A.B.C.D.9.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.10.下列四个几何体中,从正面看得到的平面图形是三角形的是()A.B.C.D.11.桌上摆放着一个由相同正方体组成的组合体,其俯视图如图所示,图中数字为该位置小正方体的个数,则这个组合体的左视图为()A.B.C.D.12.下列说法正确的是()A.三角形的正投影一定是三角形B.长方体的正投影一定是长方形C.球的正投影一定是圆D.圆锥的正投影一定是三角形二、填空题13.如图是两棵小树在同一时刻的影子,那么图①是________投影,图②是________投影.14.用小立方块搭成的几何体从正面和上面看的视图如图,这个几何体中小立方块的个数可以是________.15.如图的几何体由若干个棱长为1的正方体堆放而成,则这个几何体的俯视图面积_____.16.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为___________.17.由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是______个.18.如图所示是某种型号的正六角螺母毛坯的三视图,则它的侧面积为2cm.19.如图1所示的是由8个相同的小方块组成的几何体,它的三个视图都是22的正方形若拿掉若干个小方块后,从正面和左面看到的图形如图2所示,则可以拿掉小方块的个数为_____.20.如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是______cm3.三、解答题21.如图是由若干个大小相同的小正方体搭成的几何体,请画出从正面、左面、上面看到的这个几何体的形状图.【答案】见解析【分析】根据几何体的三视图(主视图、左视图、俯视图)的定义即可得.【详解】画图如下:【点睛】本题考查了三视图,熟练掌握三视图的画法是解题的关键.22.如图是由8个相同的小立方体组成的一个几何体,请分别画出这个几何体从左面、从上面看到的形状图.【答案】见解析.【分析】左视图有3列,每列小正方形数目分别为2,3,1;俯视图有3列,每列小正方形数目分别为2,1,2.【详解】如图所示:【点睛】本题考查几何体的三视图画法,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.23.如图是由9个相同的棱长为2cm小立方体组成的一个几何体(1)请利用下方网格画出这个几何体的从正面看到主视图、从左面看到的左视图和从上面看到的俯视图(一个网格为小立方体的一个面).(2)计算这个堆积几何体的表面积(含底面).【答案】(1)见解析;(2)144cm2【分析】(1)主视图有3列,每列小正方形数目分别为2,3,1;左视图有3列,每列小正方形数目分别为3,1,2;俯视图有3列,每列小正方形数目分别为1,3,2;(2)分别求出各个方向的小正方形的个数,进一步即可求解.【详解】解:(1)如图所示:(2)6×6×(2×2)=144(cm2).故这个堆积几何体的表面积(含底面)是144cm2.【点睛】本题考查了简单组合体的三视图及求小立方块堆砌图形的表面积.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线画成实线,看不见的轮廓画成虚线,不要漏掉.24.一个几何体由一些大小相同的小立方块组成,从正面和从上面看到的几何体的形状图如图所示.(1)若组成这个几何体的小立方块的个数为n,请你写出n的所有可能值(2)请你画出从左面看到的几何体所有可能的形状图【答案】(1)n=8,9,10,11;(2)见解析【分析】(1)分析题意可知几何体最底一层有5个正方体,第二层最少有2个正方体,最多有4个正方体,最上层最少有1个,最多有两个,分别求和即可得到答案;(2)根据形状图的定义画出图形即可.【详解】解:(1)∵俯视图有5个正方形,∴几何体的最底层有5个正方体,由主视图可知,第二层最少有2个正方体,最多有4个正方体,最上层最少有1个,最多有两个,∴组成该几何体的小正方体的个数为:①5+2+1=8;②5+3+1=9;③5+3+2=5+4+1=10;④5+4+2=11∴n=8,9,10,11.(2)从左面看到的形状图有以下5种情形:【点睛】本题考查了由三视图判断几何体,由三视图想象几何体的形状,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.25.如图,这是一个由小立方块塔成的几何体从上面看到的形状图,小正方形中的数字表示该位置的小立方块的个数.请你画出它从正面、从左面看到的形状图.【答案】见解析 【分析】分别利用小立方块的个数得出其形状,进而画出左视图与主视图. 【详解】 解:如图所示:【点睛】本题考查了作三视图,正确想象出立体图形的形状是解题的关键.26.学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为1.6m 的小明()AB 的影子BC 长是3m ,而小颖()EH 刚好在路灯灯泡的正下方H 点,并测得6m HB . (1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G ; (2)求路灯灯泡的垂直高度GH ;(3)如果小明沿线段BH 向小颖(点H )走去,当小明走到BH 中点B 1处时,请在图中画出此时小明的影长B 1C 1,并求B 1C 1的长;【答案】(1)见解析;(2)路灯灯泡的垂直高度GH 是4.8m ;(3)小明的影子11B C 的长是32m . 【分析】(1)根据题意,连接CA ,HE 并延长相交于点G ,即为所求路灯灯泡的位置,作出图形即可;(2)根据题意得到△ABC∽△GHC ,根据相似三角形的性质得到AB BC GHHC=,代入即可求出答案,(3)与(2)类似得到△111A B C∽△GH1C,根据相似三角形的性质推出11111A B B CGH HC=,代入即可求出答案,连接G1A延长交HC于点1C,即得小明的影子.【详解】(1)如图,连接CA,HE并延长相交于点G,即为所求路灯灯泡的位置,作出图形即可;(2)由题意得:易得△ABC∽△GHC,∴AB BCGH HC=,∴ 1.636+3GH=,解得:GH=4.8,答:路灯灯泡的垂直高度GH是4.8m;故答案为:4.8;(3)连接G1A延长交HC于点1C,则1B1C即为小明的影子,在(1)中作图即得,与(2)类似,易证△111A B C∽△GH1C,∴11111A B B CGH HC=,设11B C长为xm,1B为HB的中点,则1.64.83xx=+,解得:x=32,即11B C=32m,答:小明的影子11B C的长是32m;故答案为:32.【点睛】本题主要考查了相似三角形的性质,相似三角形的应用,解一元一次方程等知识点的理解和掌握,把实际问题转化成数学问题是解此题的关键,题型较好,用的数学思想是转化的思想.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】在同一路灯下由于两人所在位置不同,因此影长也不同,所以无法判断谁的影子长.【详解】在同一路灯下由于位置不同,影长也不同,所以无法判断谁的影子长.故选:A.【点睛】本题综合考查了平行投影和中心投影的特点及规律,正确理解平行投影和中心投影的特点和规律是解题的关键.2.A解析:A【分析】找到从几何体的正面看所得到的图形即可.【详解】解:主视图是一个“L”形的组合图形.故选:A.【点睛】此题考查几何体的三视图,掌握几何体三视图观察的方位及图形形状是解题的关键.3.B解析:B【分析】首先得到旋转后得到的几何体,找到从正面看所得到的图形即可.【详解】解:Rt△ABC绕直角边AC旋转一周,所得几何体是圆锥,而圆锥的正投影(主视图)是等腰三角形,故选:B.【点睛】本题考查了平行投影,解题的关键是掌握正投影的概念.4.C解析:C【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一些等宽的矩形,其中有两条宽是虚线,故选:C.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.5.D解析:D【分析】通过对简单组合体的观察,从左边看圆柱是一个长方形,从左边看正方体是一个正方形,但是两个立体图形是并排放置的,正方体的左视图被圆柱的左视图挡住了,只能看到长方形,邻边用虚线画出即可.【详解】从左边看圆柱的左视图是一个长方形,从左边看正方体的左视图是一个正方形,从左边看圆柱与正方体组合体的左视图是一个长方形,两图形的邻边用虚线画出,则如图所示的物体组合的左视图如D选项所示,故选:D.【点睛】本题考查了简单组合体的三视图.解答此题要注意进行观察和思考,既要丰富的数学知识,又要有一定的生活经验和空间想象力.6.D解析:D【分析】根据三视图,得出立体图形,从而得出小正方形的个数.【详解】根据三视图,可得立体图形如下,我们用俯视图添加数字的形式表示,数字表示该图形俯视图下有几个小正方形则共有:1+1+1+2+2+2+1+1+1=12故选:D【点睛】本题考查三视图,解题关键是在脑海中构建出立体图形,建议可以如本题,通过在俯视图上标数字的形式表示立体图形帮助分析.7.A解析:A【分析】由几何体的正视图和俯视图,我们可以判断出这个几何体由一些相同的小正方体构成,其中根据俯视图我们可以判断该几何体共有7摞小正方体组成,然后根据主视图推算每摞小正方体的最少个数,即可得到答案.【详解】根据俯视图我们可以判断该几何体共有7摞小正方体组成,根据正视图,可得:左边2摞,最高层数为3,故小正方体最少有3+1=4个,中间2摞,最高层数为2,故小正方体最少有2+1=3个,右边3摞,最高层数为4,故小正方体最少有4+1+1=6个,故小正方体最少有13个.故选A.【点睛】本题主要考查几何体的三视图,掌握三视图的定义,是解题的关键.8.D解析:D【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】从左面看去,是两个有公共边的矩形,如图所示:故选:D.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.9.C解析:C【分析】根据从上面看这个物体的方法,确定各排的数量可得答案.【详解】从上面看这个物体,可得后排三个,前排一个在左边,故选:C.【点睛】本题考查了三视图,注意俯视图后排画在上边,前排画在下边.10.B解析:B【分析】依次分析每个几何体的主视图,即可得到答案.【详解】A.主视图为矩形,不符合题意;B.主视图为三角形,符合题意;C.主视图为矩形,不符合题意;D.主视图为矩形,不符合题意.故选:B.【点睛】此题考查几何体的三视图,掌握每一个几何体的三视图的图形是解题关键.11.D解析:D【分析】根据从左边看到的图形是左视图解答即可.【详解】由俯视图可知,该组合体的左视图有3列,其中中间有3层,两边有2层,故选D.【点睛】本题考查了简单组合体的三视图,从左边看到的图形是左视图.12.C解析:C【解析】【分析】根据正投影是垂直照射物体时所看到的平面图形,特别要注意这与物体的摆放有直接的关系,由此分析各选项即可得解.【详解】A. 三角形的正投影不一定是三角形,错误B. 长方体的正投影不一定是长方形,错误C. 球的正投影一定是圆,正确D. 圆锥的正投影不一定是三角形,错误故选C.【点睛】此题主要考察了正投影的概念:光线垂直照射物体所看到的平面图形叫做正投影;一个物体的正投影与物体的摆放有直接的关系.二、填空题13.平行中心【解析】【分析】两物体若是平行投影则等比例放大或缩小中心投影则不同【详解】图①是平行投影图②是中心投影故答案为:平行中心【点睛】本题考查了平行投影和中心投影的知识关键是掌握平行投影和中心投影解析:平行中心【解析】【分析】两物体若是平行投影,则等比例放大或缩小,中心投影则不同.【详解】图①是平行投影,图②是中心投影.故答案为:平行、中心.【点睛】本题考查了平行投影和中心投影的知识,关键是掌握平行投影和中心投影的特点与不同.14.【解析】【分析】从俯视图中可以看出最底层小正方体的个数及形状从主视图和左视图可以看出每一层小正方体的层数和个数从而算出总的个数【详解】从俯视图可以看出下面的一层有6个由主视图可以知道在中间一列的一个解析:8、9、10【解析】【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】从俯视图可以看出,下面的一层有6个,由主视图可以知道在中间一列的一个正方体上面可以放2个或在一个上放2个,另一个上放1或2个;所以小立方块的个数可以是6+2=8个,6+2+1=9个,6+2+2=10个.故答案为8、9、10.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.15.5【分析】先得出从上面看所得到的图形再求出俯视图的面积即可【详解】从上面看易得第一行有1个正方形第二行有3个正方形第三行有1个正方形共5个正方形s所以面积为5故答案为5【点睛】本题考查了三视图的知识解析:5【分析】先得出从上面看所得到的图形,再求出俯视图的面积即可.【详解】从上面看易得第一行有1个正方形,第二行有3个正方形,第三行有1个正方形,共5个正方形,s所以面积为5.故答案为5.【点睛】本题考查了三视图的知识,熟知俯视图是从物体的上面看得到的视图是解决问题的关键. 16.cm2【解析】根据三视图得到圆锥的底面圆的直径为6cm即底面圆的半径为3cm圆锥的高为4cm所以圆锥的母线长==5所以这个圆锥的侧面积=π×3×5=15π(cm2)故答案为15πcm2解析:15πcm2【解析】根据三视图得到圆锥的底面圆的直径为6cm,即底面圆的半径为3cm,圆锥的高为4cm,所以圆锥的母线长,所以这个圆锥的侧面积=π×3×5=15π(cm2).故答案为15πcm2.17.11【解析】解:综合主视图和俯视图该几何体的底面最多应该有3+2=5个小正方体第二层最多有3个小正方体第三层最多有3个小正方体因此组成这个几何体的小正方体最多块数是5+3+3=11个故答案为11点睛解析:11【解析】解:综合主视图和俯视图,该几何体的底面最多应该有3+2=5个小正方体,第二层最多有3个小正方体,第三层最多有3个小正方体,因此组成这个几何体的小正方体最多块数是5+3+3=11个.故答案为11.点睛:本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.18.36【分析】正六角螺母侧面为6个相同的长方形求出每个长方形的面积即可得出它的侧面积【详解】2×3=6cm26×6=36cm2故答案为:36【点睛】本题主要考查正六棱柱的三视图将三视图上边的长度转化为解析:36【分析】正六角螺母侧面为6个相同的长方形,求出每个长方形的面积,即可得出它的侧面积.【详解】2×3=6cm2,6×6=36cm2.故答案为:36.【点睛】本题主要考查正六棱柱的三视图,将三视图上边的长度转化为正六棱柱对应边的长度是解题关键.19.4或5【分析】根据正面和左面看到的图形可知上面一层必须保留左后面的正方体上层其它的正方体拿掉下层已经拿掉正方体的对应位置的正方体保留右前面的正方体其它两个可有可无或者去掉右前方的正方体另外两个保留据解析:4或5【分析】根据正面和左面看到的图形可知,上面一层必须保留左后面的正方体,上层其它的正方体拿掉,下层已经拿掉正方体的对应位置的正方体保留右前面的正方体其它两个可有可无或者去掉右前方的正方体,另外两个保留,据此作答即可.【详解】解:根据题意,拿掉若干个小立方块后,从正面和左面看到的图形如图2所示,所以可拿掉的小方块的个数可为5个或4个.故答案为:4或5.【点睛】本题考查了简单组合体的三视图.主要考查学生的空间想象能力.20.24【分析】根据主视图和俯视图求出长方体的长宽高即可解题【详解】解:由主视图可知长方体长为4高为3由俯视图可知长方体宽为2∴长方体体积==24cm3【点睛】本题考查了利用三视图求立体图形的体积属于简解析:24【分析】根据主视图和俯视图求出长方体的长宽高即可解题.【详解】解:由主视图可知长方体长为4,高为3,由俯视图可知长方体宽为2,⨯⨯=24 cm3∴长方体体积=432【点睛】本题考查了利用三视图求立体图形的体积,属于简单题,看懂三视图是解题关键.三、解答题21.无22.无23.无24.无25.无26.无。

九年级数学上册第五章《投影与视图》测试卷-北师大版(含答案)

九年级数学上册第五章《投影与视图》测试卷-北师大版(含答案)

九年级数学上册第五章《投影与视图》测试卷-北师大版(含答案)(满分120 分)一、选择题(每题3分,共30 分)1. 如图放置的圆柱体的左视图为()2.小明从路灯底部走开时,他的影子()A.逐渐变长B. 逐渐变短C.不变D.无法确定3.下面所给几何体的俯视图是()4.小红拿着一块正方形纸板站在阳光下,则正方形纸板的影子不可能是()A.正方形B. 平行四边形C. 圆形D.线段5.如图所示的物体由两个紧靠在一起的圆柱体组成,它的主视图是()6.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的大小的变化情况是()A. 越来越小B. 越来越大C. 大小不变D.不能确定7.下列投影一定不会改变△ABC 的形状和大小的是()A.中心投影B.平行投影C.当△ABC 平行于投影面时的正投影D.当△ABC 平行于投影面时的平行投影8.如图是一个几何体的三视图,则该几何体的展开图可以是()9.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()10.如图是某工件的三视图,则此工件的体积为()A.144π c m3B. 12π c m3C. 36π c m3D.24π c m3二、填空题(每题4 分,共28分)11.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是____________.12.小军晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说:"广场上的大灯泡一定位于两人__________________________.13.如图,三角尺与其在灯光照射下的投影组成位似图形,它们的相似比为2 :5,且三角尺的一边长为8 c m,则这条边在投影中的对应边长为____________________.14. 太阳光线形成的投影称为____________________像手电筒、路灯、台灯的光线形成的投影称为_______________________.15.长方体的主视图、俯视图如图所示,则其左视图面积为____________________.16.一个几何体的三视图如图所示,其中主视图、左视图都是腰长为4,底边为2的等腰三角形,则这个几何体的体积为_________________.17.如图,在A 时测得旗杆CD的影长DE是4 m,B时测得的影长DF是8 m,两次的日照光线恰好垂直,则旗杆的高度为______________.三、解答题(一)(每题 6 分,共18 分)18. 画出如图所示几何体的三视图.19.如图,水平放置长方体底面是长为4和宽为2的矩形,它的主视图的面积为12.(1)求长方体的体积;(2)画出长方体的左视图.(用1c m代表1个单位长度)20.如图,小明利用所学的数学知识测量旗杆AB 的高度.(1)请你根据小明在阳光下的投影,画出旗杆AB 在阳光下的投影;(2)已知小明的身高为1.6 m,在同一时刻测得小明和旗杆AB 的投影长分别为0.8 m和6 m,求旗杆AB 的高.四、解答题(二)(每题8分,共24 分)21.一个几何体的三视图如图所示,(1)这个几何体名称是___________;(2)求该几何体的全面积.22.小明把镜子放在离树(AB)8 米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,CD=1.6 米,请你计算树(AB)的高度.23.如图所示为一几何体的三视图.(1)写出这个几何体的名称;(2)若三视图中的长方形的长为10 c m,正三角形的边长为4 c m,求这个几何体的侧面积.五、解答题(三)(每题10 分,共20 分)24. 5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是________(立方单位),表面积是______________(平方单位);(2)画出该几何体的主视图和左视图.25.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图;(2)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.参考答案一、1.A 2.A 3.B 4.C 5.A 6.A 7.C 8.A 9.C 10.B 二、11.3 12.之间 13.20c m 14.平行投影 中心投影 15. 3 16.15317.42m 三、18.解:三视图如下图所示:19.解:(1 )12 x 2 =2420.解:(1)如图所示:(2)如图,∵ DE 、AB 都垂直于地面,且光线DF //AC , ∴∠DEF=∠ABC , ∠DFE=∠ACB , ∴ Rt △DEF~Rt △ABC=,=1.60.86DE EF AB BC AB 即 ∴AB=12(m )答:旗杆AB 的高为12 m .四、21.解:(1)圆柱 (2)S 底圆=π·12=π S 侧=2π· 1·3=6π ∴S 全=2π+6π=8π(c m 2)22.解:由题意得∠B=∠D =90° 又由光的反射原理可知∠AEB =∠CED ∴△ABE~△CDE)81.6=2.41,(6=3A B AB B E AB CD DE 即∴米23.解:(1)三棱柱(2)侧面积为:3 x 4 x 10= 120(c m 2) 五、24.解:(1)5 22(2)如图所示:25.解:(1)这个几何体的主视图和左视图如图所示:(2)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:。

第5章 投影与视图 北师大版数学九年级上册单元闯关双测卷(测基础)及答案

第5章 投影与视图 北师大版数学九年级上册单元闯关双测卷(测基础)及答案

第五章 投影与视图(测基础)——2023-2024学年北师大版数学九年级上册单元闯关双测卷【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.下列光线所形成的投影是平行投影的是( )A.太阳光线B.台灯的光线C.手电筒的光线D.路灯的光线2.如图所示的几何体的主视图是( )A. B. C. D.3.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是( )A.B.C. D.4.榫卯是我国古代建筑、家具的一种结构方式,它通过两个构件上凹凸部位相结合来将不同构件组合在一起,如图是其中一种榫,其主视图是( )A. B. C. D.5.把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是( )A. B. C. D.6.在我国古代建筑中经常使用榫卯构件,如图是某种榫卯构件的示意图,其中,卯的俯视图是( )A. B.C. D.7.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1 m的竹竿的影长是0.8 m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上,她先测得留在墙壁上的影高为1.2 m,又测得落在地面的影长为2.6m,请你帮她算一下,树高是( )A.3.25 mB.4.25 mC.4.45 mD.4.75 m8.如图所示的几何体,它的左视图是( )A. B. C. D.9.图所示的是测量旗杆的高度的方法,已知AB是标杆,线段BC表示AB在太阳光下的影子,DE为旗杆,线段BD表示DE在太阳光下的影子,下列选项叙述错误的是( )A.太阳光线是平行光线B.C.只需量出AB和BD的长,就可以计算出旗杆的高D.量出AB、BC、DB的长,可以计算出旗杆的高.10.甲、乙、丙、丁四人分别面对面坐在一个四边形桌子旁边,桌上一张纸上写着数字“9”,甲说他看到的是“6”,乙说他看到的是“”,丙说他看到的是“”,丁说他看到的是“9”,则下列说法正确的是( )A.甲在丁的对面,乙在甲的左边,丙在丁的右边B.丙在乙的对面,丙的左边是甲,右边是乙C.甲在乙的对面,甲的右边是丙,左边是丁D.甲在丁的对面,乙在甲的右边,丙在丁的右边二、填空题(每小题4分,共20分)11.图所示的几何体中,主视图的轮廓是三角形的是_____________.12.古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长3米,它的影长FD是6米,同一时刻测得OA 是286米,则金字塔的高度OB是_______米.13.如图,小明在A时测得某树的影长为8m,B时又测得该树的影长为2m,若两次日照的光线互相垂直,则树的高度为____________.14.如图,一块直角三角尺,,测得边的中心投影的长为24 cm,则的长为___________cm.15.如图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则搭成的几何体小立方体的个数最大是________.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)在指定的位置画出如图所示物体的三视图.17.(8分)如图,AB和DE是直立在地面上的两根立柱,某一时刻AB在阳光下的投影.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.18.(10分)如图①,一个工件是由大长方体上面中间部位挖去一个小长方体后形成的,主视图是凹字形的轴对称图形.(1)请在图②中合适的位置补画该工件的俯视图;(2)若该工件表面需涂油漆,根据图中尺寸(单位:cm),计算需涂油漆的面积. 19.(10分)小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图所示,此时测得地面上的影长为8米,坡面上的影长为4米已知斜坡的坡角为30°,同一时刻,一根长为1米,垂直于地面放置的标杆在地面上的影长为2米,请计算出树的高度.20.(12分)由几个相同的棱长为1的小正方体搭成的几何体的俯视图如图(1)所示,格中的数字表示该位置的小正方体的个数.(1)请在图(2)中分别画出这个几何体的主视图和左视图;(2)根据三视图,求这个组合几何体的表面积.(包括底面积)(3)若用上述小正方体搭成的几何体的俯视图不变,各位置的小正方体个数可以改变(总数目不变),要使搭成的组合几何体的表面积最大(包括底面积),应该怎么搭,请仿照图(1),将数字填写在图(3)的正方形中.21.(12分)学习投影后,小红、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为1.6 m的小红()的影子的长是3,而小颖()刚好在路灯灯泡的正下方H点,并测得.(1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G;(2)求路灯灯泡的垂直高度;(3)如果小红沿线段向小颖()走去,当小红走到中点处时,求其影子的长;当小红继续走剩下路程的到处时,求其影子的长;当小红继续走剩下路程的到处,…,按此规律继续走下去,当小红走剩下路程的到处时,其影子的长为__________m(直接用n的代数式表示).答案以及解析1.答案:A解析:四个选项中只有太阳光可认为是平行光线;故太阳光线下形成的投影是平行投影.故选A.2.答案:B解析:从正面看,是一个矩形,矩形的中间有一条纵向的实线.故选B.3.答案:D解析:A.影子的方向不相同,故本选项错误;B.影子的方向不相同,故本选项错误;C.相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误;D.影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;故选D.4.答案:B解析:该几何体的主视图是:故选:B.5.答案:A解析:光线由上向下照射此正六棱柱时的正投影是从上向下看该几何体得到的平面图形,应为.6.答案:C解析:卯的俯视图是,故选C.7.答案:C解析:如图,设是在地面上的影子,树高为,∵一根长为1 m的竹竿的影长是0.8 m,,,即.∴树在地面上的实际影长是0.96+2.6=3.56(m).根据竹竿的高与其影子的比值和树高与其影子的比值相同,得,解得.∴树高是4.45 m.8.答案:C解析:该几何体的左视图如选项C所示,故选C.9.答案:C解析:由太阳光线是平行光线,可得,又,,,,即已知AB、BC、DB的长,可以计算出旗杆的高,故A,B,D中叙述正确,不符合题意;C中,只量出AB和BD的长,不知道BC的长,不能求出旗杆的高,故C中叙述错误,符合题意.故选C.10.答案:D解析:由题意可得,甲说他看到的是“6,丁说他看到的是“9”,说明两人坐对面,乙和丙坐对面,又乙说他看到的是“”,乙在甲右边,则丙在丁右边.故选D.11.答案:②③解析:①的主视图的轮廓是矩形;②的主视图的轮廓是三角形,③的主视图的轮廓是等腰三角形,故答案是②③.12.答案:143解析:据相同时刻的物高与影长成比例,设金字塔的高度BO为x米,则可列比例为,解得:,经检验,是原方程的解,.故答案为:143.13.答案:解析:根据题意,作,树高为CD,且,,,,,即,解得.故答案为: 4 .14.答案:解析:,.,,.15.答案:7解析:由俯视图易得最底层有4个立方体,由左视图易得第二层最多有3个立方体和最少有1个立方体,那么小立方体的个数可能是5个或6个或7个.故答案为:7.16.答案:解析:该物体的三视图如图所示17.解析:(1)连接AC,过点D作,交直线BC于点F,线段EF即为DE的投影.(2),.,.,(m).18.答案:(1)俯视图如图所示.(2).答:需涂油漆的面积为.19.答案:如图,延长AC交直线BD于点F,过点C作于点E.在中,米,,则米,所以米.根据同一时刻物高与影长对应成比例,得,则米,所以米.又,所以米,所以树的高度为米.20.答案:(1)这个几何体的主视图和左视图如图所示:(2)由俯视图知,上表面共有3个小正方形,下表面共有3个小正方形;由左视图知,左表面共有4个小正方形,右表面共有4个小正方形;由主视图知,前表面共有5个小正方形,后表面共有5个小正方形.每个小正方形的面积为1,故这个组合几何体的表面积为.(3)(答案不唯一)要使表面积最大,则需满足两个小正方体重合的面最少,此时俯视图如下:21.解析:(1)如图所示.(2),.,.(3)同(2)得,.设长为,则,解得,即.同理,,解得.,解得.。

(北师大版)厦门市九年级数学上册第五单元《投影与视图》检测卷(含答案解析)

(北师大版)厦门市九年级数学上册第五单元《投影与视图》检测卷(含答案解析)

一、选择题1.如图是由几个大小相同的小立方块搭成的几何体从上面看到的形状图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体从正面看到的形状图是()A.B.C.D.2.在同一时刻的太阳光下,小刚的影子比小红的影子长,那么,在晚上同一路灯下()A.不能够确定谁的影子长B.小刚的影子比小红的影子短C.小刚跟小红的影子一样长D.小刚的影子比小红的影子长3.由5个相同的小正方体组成的几何体如图所示,该几何体的主视图是()A.B.C.D.4.将如图的R t ABC绕直角边旋转一周,所得几何体的正投影是()A.直角三角形B.等腰三角形C.等边三角形D.圆5.如图所示,该几何体的俯视图为()A.B.C.D.6.下面的几何体中,俯视图为三角形的是()A.B.C.D.7.如图所示的物体组合,它的左视图是()A.B.C.D.8.如图,一个几何体由5个大小相同的正方体搭成,则这个立体图形从左面观察得到的平面图形是()A.B.C.D.9.如下图所示是由一些大小相同的小正方体构成的三种视图,那么构成这个立体图的小正方体的个数是()A.6 B.7 C.8 D.910.如图是某兴趣社制作的模型,则它的俯视图是()A.B.C.D.11.如图,下列关于物体的主视图画法正确的是()A.B.C.D.12.若几何体的三视图如图所示,则该几何体是()A.长方体B.圆柱C.圆锥D.三棱柱二、填空题13.一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为__________.14.小明希望测量出电线杆AB的高度,于是在阳光明媚的一天,他在电线杆旁的点D处立一标杆CD,使标杆的影子DE与电线杆的影子BE部分重叠(即点E、C、A在一直线上),量得ED=2米,DB=4米,CD=1.5米,则电线杆AB长为_____15.如图所示的几何体的三视图,这三种视图中画图不符合规定的是________.16.写出图中圆锥的主视图名称________.17.在常见的几何体圆锥、圆柱、球、长方体中,主视图与它的左视图一定完全相同的几何体有__________(填编号)18.n 个单位小立方体叠放在桌面上,所得几何体的主视图和俯视图均如图所示.那么n 的最大值与最小值的和是_____.19.一个几何体,从不同方向看到的图形如图所示.拼成这个几何体的小正方体的个数为______.20.一透明的敞口正方体容器装有一些液体,棱AB 始终在水平桌面上,容器底部的倾斜角为α,(CBE α∠=,如图1所示),此时液面刚好过棱CD ,并与棱'BB 交于点Q ,此时液体的形状为直三棱柱,三视图及尺寸如图2所示,当正方体平放(正方形ABCD 在桌面上)时,液体的深度是__________dm .三、解答题21.如图是由一些棱长都为1的小正方体组合成的简单几何体.(1)画出该几何体的主视图、左视图和俯视图;(2)如果在这个几何体上再添加一些小正方体,并保持俯视图和左视图不变,最多可以再添加块小正方体.【答案】(1)见解析;(2)3【分析】(1)根据三视图的定义画出图形即可.(2)根据题目条件解决问题即可.【详解】解:(1)如图所示:(2)在这个几何体上再添加一些小正方体,并保持俯视图和左视图不变,最多可以再添加3个小正方体,故答案为:3.【点睛】此题主要考查了画三视图,根据三视图求小立方快最多最少的个数;解题的关键根据物体正确作出三视图.22.如图是一个几何体的三视图.(1)说出这个几何体的名称;(2)若主视图的宽为4cm ,长为7cm ,左视图的宽为3cm ,俯视图为直角三角形,其中斜边长为5cm ,求这个几何体中所有棱长的和,以及它的表面积和体积.【答案】(1)三棱柱;(2)所有棱长的和为45cm ;表面积为296cm ;体积为342cm【分析】(1)根据三视图可以判断该几何体是三棱柱;(2)根据三视图和直三棱柱各棱长的关系求出各棱长,再根据表面积和体积公式计算即可.【详解】解:(1)根据三视图,这个几何体是三棱柱 ;(2)由题意,棱长的和:()4232527345cm ⨯+⨯+⨯+⨯= ,表面积:()()24322345796cm⨯÷⨯+++⨯=, 体积:()3432742cm ⨯÷⨯=,答:所有棱长的和为45cm ;表面积为296cm ;体积为342cm .【点睛】本题考查由三视图判断几何体、求棱柱的表面积和体积,熟记常见几何体的三视图,掌握三视图与几何体的各棱长关系是解答的关键.23.某兴趣小组开展课外活动.如图,小明从点M 出发以1.5米/秒的速度,沿射线MN 方向匀速前进,2秒后到达点B ,此时他(AB)在某一灯光下的影长为MB ,继续按原速行走2秒到达点D ,此时他(CD)在同一灯光下的影子GD 仍落在其身后,并测得这个影长GD 为1.2米.(1)请在图中画出光源O 点的位置,并画出O 到MN 的垂线段OH(不写画法); (2)若小明身高1.5m ,求OH 的长.【答案】(1)见解析;(2)4m【分析】(1)作射线MA 和GC 交于O ,过O 作OH ⊥MN ,垂足为H ;(2)证明△CDG ∽△OHG 和△ABM ∽△OHM ,列比例式,可得OH 的长.【详解】解:(1)如图所示:(2)由题意得:BM=BD=2×1.5=3,∵CD ∥OH ,∴△CDG ∽△OHG , ∴CD DG OH GH=, ∵AB=CD=1.5, ∴1.5 1.21.2OH DH=+①, ∵AB ∥OH ,∴△ABM ∽△OHM , AB BM OH MH=, ∴1.536OH DH=+②, 由①②得:OH=4,则OH 的长为4m .【点睛】 本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.也考查了构建相似三角形,利用相似三角形的性质计算相应线段的长.24.如图所示是一个包装盒从不同方向看到的图形,求这个包装盒的表面积(结果保留π)【答案】600πcm 2【分析】首先确定该几何体的形状,然后根据其表面积计算方法求得表面积即可.【详解】解:观察三视图发现该几何体是圆柱,且圆柱的底面直径为20cm ,高为20cm , ∴表面积为:20π×20+2×π×102=600πcm 2,故答案为:600πcm 2 .【点睛】本题考查了由三视图判断几何体的知识,解题的关键是确定几何体的形状并确定其各个部分的尺寸,难度不大.25.如图,这是一个由小立方块塔成的几何体从上面看到的形状图,小正方形中的数字表示该位置的小立方块的个数.请你画出它从正面、从左面看到的形状图.【答案】见解析【分析】分别利用小立方块的个数得出其形状,进而画出左视图与主视图.【详解】解:如图所示:【点睛】本题考查了作三视图,正确想象出立体图形的形状是解题的关键.26.如图,正方形硬纸板的边长为a ,其4个角上剪去的小正方形的边长为b (b <2a ),这样可制作一个无盖的长方体纸盒.(1)这个纸盒的容积为;(2)画出这个长方体纸盒的三视图.(在图上用含a、b的式子标明视图的长和宽)【答案】(1)b(a﹣2b)2;(2)详见解析【分析】(1)根据图形,得出底面边长、高,从而得出长方体纸盒体积;(2)脑海中构建立体图形,绘制三视图.【详解】解:(1)由题意知纸盒的底面边长为a﹣2b、高为b,则这个纸盒的容积为b(a﹣2b)2,故答案为:b(a﹣2b)2.(2)如图所示:【点睛】本题考查立体图形的三视图,解题关键是在脑海中构建出立体图形的样子.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据主视图的定义判断即可.【详解】解:这个几何体从正面看到的图形是C,故选:C.【点睛】本题考查三视图的应用,熟练掌握三视图的意义及观察方法是解题关键.2.A解析:A【分析】在同一路灯下由于两人所在位置不同,因此影长也不同,所以无法判断谁的影子长.【详解】在同一路灯下由于位置不同,影长也不同,所以无法判断谁的影子长.故选:A.【点睛】本题综合考查了平行投影和中心投影的特点及规律,正确理解平行投影和中心投影的特点和规律是解题的关键.3.D解析:D【分析】找到从几何体的正面看所得到的图形即可.【详解】解:主视图有3列,每列小正方形数目分别为2,1,1,故选:D.【点睛】此题主要考查了简单几何体的三视图,主视图是从物体的正面看得到的视图.4.B解析:B【分析】首先得到旋转后得到的几何体,找到从正面看所得到的图形即可.【详解】解:Rt△ABC绕直角边AC旋转一周,所得几何体是圆锥,而圆锥的正投影(主视图)是等腰三角形,故选:B.【点睛】本题考查了平行投影,解题的关键是掌握正投影的概念.5.C解析:C【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一些等宽的矩形,其中有两条宽是虚线,故选:C.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.6.D解析:D【分析】根据俯视图是从物体上面看,所得到的图形,分别得出四个几何体的俯视图,即可解答.【详解】A、长方体的俯视图是长方形,故本选项错误;B、圆锥的俯视图是带圆心的圆,故本选项错误;C、圆柱的俯视图是圆,故本选项错误;D、三棱柱的俯视图是三角形,故本选项正确;故选:D.【点睛】本题主要考查简单几何体的三视图;考查了学生的空间想象能力,属于基础题.7.D解析:D【分析】通过对简单组合体的观察,从左边看圆柱是一个长方形,从左边看正方体是一个正方形,但是两个立体图形是并排放置的,正方体的左视图被圆柱的左视图挡住了,只能看到长方形,邻边用虚线画出即可.【详解】从左边看圆柱的左视图是一个长方形,从左边看正方体的左视图是一个正方形,从左边看圆柱与正方体组合体的左视图是一个长方形,两图形的邻边用虚线画出,则如图所示的物体组合的左视图如D选项所示,故选:D.【点睛】本题考查了简单组合体的三视图.解答此题要注意进行观察和思考,既要丰富的数学知识,又要有一定的生活经验和空间想象力.8.B解析:B【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【详解】从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形.故选:B.【点睛】本题考查了三视图的知识,左视图是从物体的左侧面看得到的视图.9.B解析:B【解析】【分析】根据三视图,将每一层的小正方体的个数求出来相加,即可得到答案.【详解】根据三视图得:该几何体由两层小正方体构成,最底层有6个,顶层由1个,共有7个,故选:B.【点睛】此题考察正方体的构成,能够理解图形的位置关系是解题的关键.10.B解析:B【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选B.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.11.C解析:C【分析】根据主视图是从正面看到的图形,进而得出答案.【详解】主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线,画法正确的是:.故选C.【点睛】本题考查了三视图的知识,关键是找准主视图所看的方向.12.D解析:D【解析】【分析】根据两个视图是长方形得出该几何体是柱体,再根据俯视图是三角形,得出几何体是三棱柱.【详解】主视图和左视图是长方形,∴几何体是柱体,俯视图的大致轮廓是三角形,∴该几何体是三棱柱;所以D选项是正确的.【点睛】此题考查由三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.二、填空题13.【分析】由已知三视图为圆柱首先得到圆柱底面半径从而根据圆柱体积=底面积乘高求出它的体积【详解】解:由三视图可知圆柱的底面直径为4高为6∴底面半径为2∴V=πr2h=22×6•π=24π故答案是:24解析:24π【分析】由已知三视图为圆柱,首先得到圆柱底面半径,从而根据圆柱体积=底面积乘高求出它的体积.【详解】解:由三视图可知圆柱的底面直径为4,高为6,∴底面半径为2,∴V=πr2h=22×6•π=24π,故答案是:24π.【点睛】此题考查的是圆柱的体积及由三视图判断几何体,关键是先判断圆柱的底面半径和高,然后求其体积.14.5【分析】根据题意求出△ECD∽△EAB利用相似三角形的对应边成比例即可解答【详解】∵CD∥AB∴△ECD∽△EAB∴ED:EB=CD:AB∴2:6=15:AB∴AB=45米答:电线杆AB长为45米解析:5【分析】根据题意求出△ECD∽△EAB,利用相似三角形的对应边成比例即可解答.【详解】∵CD∥AB,∴△ECD∽△EAB,∴ED:EB=CD:AB,∴2:6=1.5:AB,∴AB=4.5米.答:电线杆AB长为4.5米.故答案为4.5.【点睛】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程即可求出电线杆AB长.15.俯视图【解析】解:根据几何体的摆放位置可知主视图正确;左视图正确;俯视图缺少两条看不到的虚线故不符合规定的是俯视图故答案为俯视图解析:俯视图【解析】解:根据几何体的摆放位置可知,主视图正确;左视图正确;俯视图缺少两条看不到的虚线.故不符合规定的是俯视图.故答案为俯视图.16.等腰三角形【解析】主视图是指从正面看圆锥体从正面看是等腰三角形故答案为:等腰三角形解析:等腰三角形【解析】主视图是指从正面看,圆锥体从正面看是等腰三角形,故答案为:等腰三角形.17.①②③【解析】解:①圆锥主视图是三角形左视图也是三角形②圆柱的主视图和左视图都是矩形;③球的主视图和左视图都是圆形;④长方体的主视图是矩形左视图也是矩形但是长和宽不一定相同故选①②③解析:①②③【解析】解:①圆锥主视图是三角形,左视图也是三角形,②圆柱的主视图和左视图都是矩形;③球的主视图和左视图都是圆形;④长方体的主视图是矩形,左视图也是矩形,但是长和宽不一定相同,故选①②③.18.23【分析】由主视图和左视图可得:这个几何体有3层3列3行最底层有1+2+3=6个正方体第二层最多有5个最少有2个第三层最多有3个最少有1个求出最大值与最小值再求和即可【详解】解:综合主视图和俯视图解析:23【分析】由主视图和左视图可得:这个几何体有3层,3列,3行,最底层有1+2+3=6个正方体,第二层最多有5个,最少有2个,第三层最多有3个,最少有1个,求出最大值与最小值,再求和即可.【详解】解:综合主视图和俯视图,底面有3+2+1=6个,第二层最多有5个,最少有2个,第三层最多有3个,最少有1个,最多有:6+5+3=14,最小有:6+2+1=9,那么n的最大和最小值的和是14+9=23.故答案为:23.【点睛】本题考查由几个相同的小正方形搭成的几何体个数问题,视图的形状决定几何体行与列和层,正视图决定层数与列数,左视图决定行数与层数,而俯视图决定行数与列数,图形的形状除了决定行、列、层外,还有位置.19.6【分析】根据从不同方位看到的图形的形状可知该几何体有2列2行底面有4个小正方体摆成大正方体上面至少2个小正方体放在靠前面的2个小正方体上面由此解答【详解】由题图可知该几何体第一层有4个小正方体第二解析:6【分析】根据从不同方位看到的图形的形状可知,该几何体有2列2行,底面有4个小正方体摆成大正方体,上面至少2个小正方体,放在靠前面的2个小正方体上面.由此解答.【详解】由题图可知,该几何体第一层有4个小正方体,第二层有2个小正方体,所以拼成这个几何体的小正方体的个数为6.故答案为:6.【点睛】本题主要考查从不同方向观察物体和几何体,关键注重培养学生的空间想象能力.20.5【分析】根据水面与水面平行可以得到CQ与BE平行利用勾股定理即可得到BQ的长液体正好是一个以△BCQ为底面的直棱柱据此即可求出液体的体积即可得到液体的深度【详解】解:∵由图知:CQ∥BEBQ=4C解析:5【分析】根据水面与水面平行可以得到CQ与BE平行,利用勾股定理即可得到BQ的长,液体正好是一个以△BCQ为底面的直棱柱,据此即可求出液体的体积,即可得到液体的深度.【详解】解:∵由图知:CQ∥BE,BQ=4,CQ=5,根据勾股定理得:3BQ==(dm),液体的体积为:1344=242⨯⨯⨯(dm3),液体深度为:24÷(4×4)=1.5(dm),故答案为:1.5【点睛】本题主要考查的是四边形的体积计算以及三视图的认识,正确的理解棱柱的体积计算是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无。

北师大版九年级数学(上)第5章 投影与视图常考题及答案解析

北师大版九年级数学(上)第5章 投影与视图常考题及答案解析

《第5章投影与视图》常考题1.如图是某兴趣社制作的模型,则它的俯视图是( )A.B.C.D.2.在小明住的小区有一条笔直的路,路中间有一盏路灯,一天晚上,他行走在这条路上,如图,当他从A点走到B点的过程,他在灯光照射下的影长l与所走路程s的变化关系图象大致是( )A. B. C. D.3.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为( )A. B. C. D.4.如图所示的几何体,其俯视图是( )A.B.C.D.5.下列光线所形成是平行投影的是( )A. 太阳光线B. 台灯的光线C. 手电筒的光线D. 路灯的光线6.下列几何体中,从正面观察所看到的形状为三角形的是( )A. B. C. D.7.下列结论中正确的是( )①在阳光照射下,同一时刻的物体,影子的方向是相同的.②物体在任何光线照射下影子的方向都是相同的.③固定的物体在路灯照射下,影子的方向与路灯的位置有关.④固定的物体在光线照射下,影子的长短仅与物体的长短有关.A. ①③B. ①③④C. ①④D. ②④8.已知某物体的三视图如图所示,那么与它对应的物体是( )A. B. C. D.9.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是( )A. B.C. D.10.下列立体图形中,它的三视图都相同的是( )A. B. C. D.11.从正面和上面看一个几何体的平面图形,如图所示.若这个几何体最多由n个小正方体组成,最少由m个小正方体组成,则m+n=______.12.一个由若干个相同的小正方体组成的几何体的主视图和俯视图如图所示,则小正方体的最少个数为______.13.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是.14.将7个棱长为1的小立方体摆成如图所示几何体,该几何体的俯视图的面积为______ .15.如图所示,水平放置的长方体的底面是长为4cm、宽为2cm的长方形,它的主视图的面积为16cm2,则长方体的体积等于______cm3.16.请写出一个三视图都相同的几何体:______.17.如图,一棵树(AB)的高度为7.5米,下午某一个时刻它在水平地面上形成的树影长(BE)为10米,现在小明想要站这棵树下乘凉,他的身高为1.5米,那么他最多离开树干______米才可以不被阳光晒到?18.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为______ .19.在测量旗杆高度的活动课中,某小组学生于同一时刻在阳光下对一根直立于平地的竹竿及其影长和旗杆的影长进行了测量,得到的数据如图所示,根据这些数据计算出旗杆的高度为______m.20.如图1所示的是由8个相同的小方块组成的几何体,它的三个视图都是2×2的正方形.若拿掉若干个小方块后,从正面和左面看到的图形如图2所示,则最多可以拿掉小方块的个数为______ .21.如图是由五块积木搭成,这几块积木都是相同的正方体,请画出这个图形的主视图、左视图和俯视图.22.用小立方体搭一个几何体,使它从正面、从上面看到的形状图如图所示.(1)它最多需要多少个小立方体?它最少需要多少个小立方体?(2)请你画出这两种情况下的从左面看到的形状图.23.(1)如图是一个组合几何体的两种视图,请写出这个组合几何体是由哪两种几何体组成的;(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的体积.(结果保留π)24.如图,是由两个长方体组合而成的一个立体图形的主视图和左视图,根据图中所标尺寸(单位:mm).(1)直接写出上下两个长方体的长、宽、高分别是多少;(2)求这个立体图形的体积.25.如图,已知一个几何体的主视图与俯视图,求该几何体的体积.(π取3.14,单位:cm)26.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:碟子的个数碟子的高度(单位:cm)1222+1.532+342+4.5……(1)当桌子上放有x(个)碟子时,请写出此时碟子的高度(用含x的式子表示);(2)分别从三个方向上看,其三视图如上图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.27.如图,AB是公园的一圆形桌面的主视图,MN表示该桌面在路灯下的影子;CD则表示一个圆形的凳子的主视图.(1)请你在图中标出路灯O的位置,并画出CD的影子PQ(要求保留画图痕迹,光线用虚线表示);(2)若桌面直径和桌面与地面的距离均为1.2m,测得影子的最大跨度MN为2m,求路灯O与地面的距离.28.如图,从上往下看A、B、C、D、E、F六个物体,能得到a、b、c、d、e、f六个图形,请把上下两行中对应的图形与物体连接起来.29.如图是由7个完全相同的小立方块搭成的几何体,已知每个小立方块的棱长为2cm.(1)画出该几何体的三视图;(2)求出该几何体的表面积.30.如图,路灯(P点)距地面9米,身高1.5米的小云从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?答案和解析1.【答案】B【解析】解:该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选:B.根据俯视图即从物体的上面观察得得到的视图,进而得出答案.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.2.【答案】C【解析】解:当他从A点走到路灯下时,影长l逐渐变小,当从路灯下走到B点时,他在灯光照射下的影长l逐渐变长.故选:C.根据中心投影的特点,当他从A点走到路灯下时,影长l逐渐变小,当从路灯下走到B点时,他在灯光照射下的影长l逐渐变长,即随S的逐渐增大,l先由大变小,再由小变大,从而可对四个选项进行判断.本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.也考查了函数图象.3.【答案】A【解析】解:从左面看可得到从左到右分别是3,2个正方形.故选:A.由已知条件可知,左视图有2列,每列小正方形数目分别为3,2.据此可作出判断.本题考查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.4.【答案】A【解析】解:从上面看是一个矩形,矩形的中间处有两条纵向的实线,实线的两旁有两条纵向的虚线.故选:A.找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.【答案】A【解析】解:四个选项中只有太阳光可认为是平行光线;故太阳光线下形成的投影是平行投影.故选:A.判断投影是平行投影的方法是看光线是否是平行的,如果光线是平行的,所得到的投影就是平行投影.本题考查平行投影的概念,属于基础题,注意基本概念的掌握是关键.6.【答案】A【解析】解:A.从正面看是一个等腰三角形,故本选项符合题意;B.从正面看是一个矩形,矩形的中间有一条纵向的实线,故本选项不符合题意;C.从正面看是一个圆,故本选项不符合题意;D.从正面看是一个矩形,故本选项不符合题意;故选:A.利用从正面看到的图叫做主视图判断即可.此题主要考查了简单组合体的三视图,正确把握观察角度得出正确视图是解题关键.7.【答案】A【解析】解:①由于太阳光线是平行光线,所以物体在阳光照射下,影子的方向是相同的,故正确;②物体在太阳光线照射下影子的方向都是相同的,在灯光的照射下影子的方向与物体的位置有关,故错误;③物体在路灯照射下,影子的方向与路灯的位置有关,故正确;④物体在点光源的照射下,影子的长短与物体的长短和光源的位置有关,故错误.所以正确的有①③.故选:A.利用平行投影和中心投影的特点和规律分别分析可判断正误.本题考查了平行投影和中心投影的特点和规律.平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.8.【答案】C【解析】解:由三视图知,该几何体是下面是长方体,上面是一个圆柱体,且长方体的宽与圆柱底面直径相等,符合这一条件的是C选项几何体,故选:C.该几何体是下面是长方体,上面是一个圆柱体,且长方体的宽与圆柱底面直径相等,从而得出答案.本题主要考查由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.9.【答案】C【解析】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项正确.D、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D选项错误;故选:C.根据平行投影的特点,利用两小树的影子的方向相反可对选项A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对选项C、D进行判断.本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.10.【答案】A【解析】解:球的三视图都是大小相同的圆,因此选项A符合题意;圆锥的主视图、左视图都是等腰三角形,俯视图是圆,因此选项B不符合题意;三棱柱主视图、左视图是长方形,俯视图为三角形,因此选项C不符合题意;圆柱的主视图、左视图是长方形,俯视图为圆,因此选项D不符合题意;故选:A.根据球体、圆锥体、圆柱体、三棱柱的三视图进行判断即可.本题考查简单几何体的三视图,理解视图的意义是正确判断的前提.11.【答案】16【解析】解:易得第一层有4个正方体,第二层最多有3个正方体,最少有2个正方体,第三层最多有2个正方体,最少有1个正方体,n=4+3+2=9,m=4+2+1=7,所以m+n=9+7=16.故答案为:16.主视图、俯视图是分别从物体正面、上面看所得到的图形.考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.12.【答案】7【解析】解:由俯视图易得最底层有4个正方体,由主视图第二层最少有2个正方体,由主视图第三层最少有1个正方体,那么最少有4+2+1=7个立方体.故答案为:7.易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层正方体的可能的最少个数,相加即可.本题考查了由三视图判断几何体.俯视图小正方形的个数即为最底层的小正方体的个数,主视图第二层和第三层小正方形的个数即为其余层数小正方体的最少个数.13.【答案】从不同的方向观察同一物体时,看到的图形不一样【解析】解:根据从不同的方向观察物体,得到图形可能不同,所以“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.故答案为:从不同的方向观察同一物体时,看到的图形不一样.根据从不同的方向看物体得到图形可能不同,可得答案.本题考查了从不同的方向看物体.14.【答案】4【解析】解:从上面看,底层是两个小正方形,上层是两个小正方形,所以该几何体的俯视图的面积为4.故答案为:4.据从上面看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上面看得到的图形是俯视图是解题关键.15.【答案】32【解析】解:依题意,得长方体的体积=16×2=32cm3.故答案为:32.由主视图的面积=长×高,长方体的体积=主视图的面积×宽,得出结论.本题考查了简单几何体的三视图.关键是明确主视图是由长和高组成的.16.【答案】球(或正方体)【解析】解:球的三视图是3个全等的圆;正方体的三视图是3个全等的正方形,故答案为:球(或正方体).三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形,找到从3个方向得到的图形全等的几何体即可.考查三视图的有关知识,注意三视图都相同的常见的几何体有球或正方体.17.【答案】8【解析】解:设小明这个时刻在水平地面上形成的影长为x米,根据题意得x1.5=107.5,解得x=2,小明这个时刻在水平地面上形成的影长为2米,因为10−2=8(米),所以他最多离开树干8米才可以不被阳光晒到.故答案为8.=设小明这个时刻在水平地面上形成的影长为x米,利用同一时刻物体的高度与影长成正比得到x1.510,解得x=2,然后计算两影长的差即可.7.5本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.同一时刻物体的高度与影长成正比.18.【答案】66【解析】解:如图所示:AB=3√2,∵AC2+BC2=AB2,∴AC=BC=3,∴正方形ACBD面积为:3×3=9,侧面积为:4AC×CE=3×4×4=48,故这个长方体的表面积为:48+9+9=66.故答案为:66.根据三视图图形得出AC=BC=3,EC=4,即可求出这个长方体的表面积.此题主要考查了利用三视图求长方体的表面积,得出长方体各部分的边长是解决问题的关键.19.【答案】12【解析】【分析】本题只要是把平行投影的问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解即可,体现了转化的思想.此题的文字叙述比较多,解题时要认真分析题意.利用平行投影的性质,相似三角形的对应边成比例解答.【解答】解:设旗杆的高度为xm,根据题意,得:x9=0.80.6,解得:x=12,即旗杆的高度为12m,故答案为:12.20.【答案】5【解析】解:根据题意,拿掉若干个小立方块后保证从正面和左面看到的图形如图2所示,所以最底下一层必须有2个小立方块,上面一层必须保留1个立方块,所以最多能拿掉小立方块的个数为8−(2+1)=5(个).故答案为:5.拿掉若干个小立方块后保证从正面和左面看到的图形如图2所示,所以最底下一层必须有2个小立方块,上面一层必须保留1个立方块,即可知最多可以拿掉小立方块的个数.本题考查了由三视图判断几何体,几何体的三种视图,掌握定义是关键.解决此类图的关键是由立体图形得到三视图,学生由于空间想象能力不够,易造成错误.21.【答案】解:从正面看从左往右2列正方形的个数依次为3,1;从左面看从左往右2列正方形的个数依次为3,1;从上面看从左往右2列正方形的个数依次为2,1;【解析】画出从正面,左面,上面看,得到的图形即可.考查画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.22.【答案】解:这样的几何体不只有一种,它最多需要2×5=10个小立方体,它最少需要2×3+ 2=8个小立方体.小立方体最多时的左视图有2列,从左往右依次为2,2个正方形;小立方体最少时的左视图有2种情况:①有2列,从左往右依次为1,2个正方形;②有2列,从左往右依次为2,2个正方形;如图所示:【解析】利用左视图以及主视图可以得出这个几何体最多的块数、以及最少的块数.再画出这两种情况下的从左面看到的形状图.本题主要考查了简单组合体的三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,解题的关键是理解题意,灵活运用所学知识解决问题.23.【答案】解:(1)这个组合几何体是由圆柱和长方体组成的;)2×6=80+24π(cm3).(2)体积=8×5×2+π(42【解析】(1)找到从正面和上面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.(2)根据题目所给尺寸,计算出几何体的体积即可.此题主要考查了简单几何体的三视图,以及几何体的表面积,关键是掌握三视图所看的位置.24.【答案】解:(1)根据三视图可得:上面的长方体长4mm,高4mm,宽2mm,下面的长方体长6mm,宽8mm,高2mm;(2)立体图形的体积是:4×4×2+6×8×2=128(mm3).【解析】(1)根据三视图得到两个长方体的长,宽,高即可;(2)根据(1)中各部分的尺寸计算体积即可.此题主要考查了由三视图判断几何体以及求几何体的体积,根据图形看出长方体的长,宽,高是解题的关键.25.【答案】解:3.14×(20÷2)2×32+30×25×40=3.14×100×32+30000=10048+30000=40048(cm3).故该几何体的体积是40048cm3.【解析】该几何体一个圆柱叠放在一个长方体上面,因此体积是一个圆柱体和一个长方体体积的和.本题考查了由三视图判断几何体的知识,解题的关键是判断该几何体的形状.26.【答案】解:由题意得:(1)2+1.5(x−1)=1.5x+0.5(2)由三视图可知共有12个碟子∴叠成一摞的高度=1.5×12+0.5=18.5(cm)【解析】由表中给出的碟子个数与碟子高度的规律,可以看出碟子数为x时,碟子的高度为2+ 1.5(x−1).考查获取信息(读表)、分析问题解决问题的能力.找出碟子个数与碟子高度的之间的关系式是此题的关键.27.【答案】解:(1)如图,连接MA、NB并延长,它们的交点即为路灯O的位置,再连接OC、OD,并延长交地面于点P、Q,连接PQ,则PQ为CD的影子,所以点O和PQ为所作;(2)如图,过点O作OF⊥MN交AB于点E,交MN于点F,由题可得AB=1.2m,EF=1.2m,MN=2m,∵AB//MN,∴△OAB∽△OMN,∴AB:MN=OE:OF,即1.2:2=(OF−1.2):OF,解得OF=3(m).答:路灯O与地面的距离为3m.【解析】(1)连接MA、NB并延长,它们的交点即为路灯O的位置,然后再连接OC、OD,并延长交地面于点P、Q点,连接PQ,则PQ为CD的影子;(2)如图,过点O作OF⊥MN交AB于点E,交MN于点F,由题可得AB=1.2m,EF=1.2m,MN=2m,证明△OAB∽△OMN,利用相似比等于对应高的比,计算出OF即可得到路灯O与地面的距离.本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影,中心投影的光线特点是从一点出发的投射线.也考查了相似三角形的判定与性质.28.【答案】解:连线如下:【解析】俯视图是从物体上面所看到的图形,可根据各立体图形的特点进行判断.本题考查了三视图的知识,俯视图是从物体的上面看所得到的视图.29.【答案】解:(1)如图所示:;(2)该几何体的表面积为(5+3+5)×2×2×2=112(cm2).答:该几何体的表面积是112cm2.【解析】(1)主视图有3列,每列小正方形数目分别为2,1,2;左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每行小正方形数目分别为2,2,1;(2)几何体的表面积就是利用主视图、左视图、俯视图所看到的面的个数乘以2再乘以每个小正方形的面积即可.本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.30.【答案】解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP,∴MAMO =ACOP,即MA20+MA =1.59,解得,MA=4米;同理,由△NBD∽△NOP,可求得NB=1.2米,则马晓明的身影变短了4−1.2=2.8米.∴变短了,短了2.8米.【解析】根据AC//BD//OP,得出△MAC∽△MOP,△NBD∽△NOP,再利用相似三角形的性质进行求解,即可得出答案.此题考查了中心投影,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解答问题.。

北师大版九年级数学上册《第五章投影与视图》单元测试卷及答案

北师大版九年级数学上册《第五章投影与视图》单元测试卷及答案

北师大版九年级数学上册《第五章投影与视图》单元测试卷及答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列是平行投影的是()A.B.C.D.2.如图,晚上小明在路灯下沿路从A处径直走到B处,这一过程中他在地上的影子()A.一直都在变短B.先变短后变长C.一直都在变长D.先变长后变短3.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m4.如图,将一个长方体内部挖去一个圆柱,这个几何体的主视图是()A .B .C .D .5.如图,是一个由铁铸灌成的几何体的三视图,根据图中所标数据,铸灌这个几何体需要的铁的体积为( )A .12πB .18πC .24πD .78π6.从某个方向观察一个正六棱柱,可看到如图所示的图形,其中四边形ABCD 为矩形,E F 、分别是AB DC 、的中点.若86AD AB ==,,则这个正六棱柱的侧面积为( )A .483B .96C .144D .963二、填空题7.如图是三角尺在灯泡O 的照射下在墙上形成的影子,现测得30cm 20cm OA AA '==,,这个三角尺的面积与它在墙上形成的影子的面积的比是 .8.古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF 长32米,它的影长FD 是3米,同一时测得OA 是274米,则金字塔的高度BO 是米.9.地面上有一支蜡烛,蜡烛前面有一面墙,王涛同学在蜡烛与墙之间运动,则他在墙上的投影长度随着他离墙的距离变小而 (增大、变小)10.墙壁CD 上D 处有一盏灯(如图),小明站在A 处测得他的影长与身长相等,都为1.6m ,他向墙壁走1m 到B 处时发现影子刚好落在A 点,则灯泡与地面的距离CD = .11.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据计算该几何体的底面周长为cm .12.用八个同样大小的小立方体粘成一个大立方体如图1,得到的几何体的三视图如图2所示,若小明从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图仍是图2,则他取走的小立方体最多可以是个.三、解答题13.在学习完投影的知识后,小张同学立刻进行了实践,他利用所学知识测量操场旗杆的高度.(1)如图,请你根据小张(AB)在阳光下的投影(BE),画出此时旗杆(CD)在阳光下的投影.(2)已知小张的身高为1.76m,在同一时刻测得小张和旗杆的投影长分别为0.44m和5.5m,求旗杆的高度.14.如图,是小亮晚上在广场散步的示意图,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置(1)在小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为.(2)请你在图中画出小亮站立AB处的影子.15.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)画出这个几何体的表面展开图;(3)根据图中的数据,求这个几何体的侧面积.16.如图,是用几个相同的正方体搭出的几何体,请解答下列问题:(1)分别在方格纸中画出从正面、左面、上面看这个几何体时看到的图形;(2)若每个小正方体的棱长为2,要给这个几何体地面以上的部分涂上颜色,求涂色部分的面积;(3)小亮说可以在这个几何体上再摆放上几个相同的小正方体,使新几何体和原几何体分别从上面和从左面看到的形状相同,你觉得他说的对吗?如果你认为小亮说法正确请在下面的方格纸中画出两种添加小正方体后,从正面看到的新几何体的形状图;你认为可以有___________种添加小正方体的方式;满足小亮说法的添加小正方体个数最少可以摆___________个,最多可以摆___________个.如果你认为小亮说法不正确,请说明理由.参考答案题号 1 2 3 4 5 6答案 B B A A B D1.【答案】B【分析】本题考查了平行投影的知识,定义:在一束平行光线照射下形成的投影叫做平行投影.特征:平行投影的投影线是平行的.牢记平行投影的定义是解题的关键.【详解】如图所示,连接影子的顶端和物体的顶端得到投影线,若投影线平行则为平行投影.通过作图可知A、C、D中影子的顶端和物体的顶端连线不平行,只有选项B中影子的顶端和物体的顶端连线平行.故选B.2.【答案】B【分析】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.根据中心投影的特征可得小亮在地上的影子先变短后变长.【详解】解:在小亮从A处径直走到路灯下时,他在地上的影子逐渐变短;当他走到路灯下,再走到B处时,他在地上的影子逐渐变长∴小亮在地上的影子先变短后边长故选:B.3.【答案】A 【详解】∵BE∵AD ∵∵BCE∵∵ACD ∵CB CEAC CD=,即CB CE AB BC DE EC =++ ∵BC=1,DE=1.8,EC=1.2 ∵1 1.21 1.8 1.2AB =++ ∵1.2AB=1.8 ∵AB=1.5m . 故选A . 4.【答案】A【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 【详解】解:从正面看易得主视图为长方形,中间有两条垂直地面的虚线. 故选:A .【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图. 5.【答案】B【分析】直接利用三视图得出几何体的形状,再利用圆柱体积求法得出答案. 【详解】解:由三视图可得,几何体是空心圆柱,其小圆半径是1,大圆半径是2 则大圆面积为:224ππ⨯=,小圆面积为:21ππ⨯= 故这个几何体的体积为:64624618πππππ⨯-⨯=-=. 故选:B .【点睛】此题主要考查了由三视图判断几何体,正确判断出几何体的形状是解题关键. 6.【答案】D【分析】根据题意,正六边形的边长为AG BG 、,过点G 作GE AB ⊥,则GE 垂直平分AB ,根据正六边形的性质求得AG ,进而求得正六棱柱的侧面积.【详解】解:如图,正六边形的边长为AG BG 、,过点G 作GE AB ⊥∵GE 垂直平分AB由正六边形的性质可知11203032AGB A B AE AB ∠=︒∠=∠=︒==,, ∵ 323,cos30AE AG ===︒正六棱柱的侧面积66238963AG AD =⨯=⨯=故选:D .【点睛】本题考查了三视图,正多边形与圆,解直角三角形,掌握以上知识是解题的关键. 7.【答案】9:25【分析】本题考查了相似三角形的应用.先根据相似三角形对应边成比例求出三角尺与影子的相似比,再根据相似三角形面积的比等于相似比的平方解答即可. 【详解】解:∵30cm 20cm OA AA '==, ∵50cm OA '= ∵:30:503:5OA OA '== ∵三角尺与影子是相似三角形∵三角尺的周长与它在墙上形成的影子的面积的比是9:25 故答案为:9:25. 8.【答案】137【分析】本题考查平行投影,根据同一时刻,物高与影长对应成比例,列出比例式进行求解即可. 【详解】解:由题意,得:EF OBFD OA= 即:323274OB =∵137OB =; 故答案为:137. 9.【答案】变小.【分析】可连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长.【详解】连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长,则王涛同学在墙上投影长度随着他离墙的距离变小而变小. 故答案为:变小.【点睛】本题综合考查了中心投影的特点和规律,中心投影的特点是:(1)等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;()2等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.10.【答案】64 15m【分析】利用相似三角形的相似比,列出方程组,通过解方程组求出灯泡与地面的距离即可.【详解】如图:根据题意得:BG=AF=AE=1.6m,AB=1m∵BG//AF//CD∵∵EAF∵∵ECD,∵ABG∵∵ACD∵AE:EC=AF:CD,AB:AC=BG:CD设BC=x m,CD=y m,则CE=(x+2.6)m,AC=(x+1)m∵1.6 1.62.6x y=+1 1.61x y=+解得:x=53,y=6415∵CD=64 15m.∵灯泡与地面的距离为64 15m故答案为:64 15m.11.【答案】4πcm.【分析】根据主视图是等腰三角形,利用等腰三角形的性质,勾股定理求得底边的长,这就是圆锥底面圆的直径,计算周长即可.【详解】如图,根据主视图的意义,得三角形是等腰三角形∵三角形ABC是直角三角形()2222642AB AC--∵底面圆的周长为:2πr=4πcm.故答案为:4πcm.【点睛】本题考查了几何体的三视图,熟练掌握圆锥的三视图及其各视图的意义是解题的关键.12.【答案】4【详解】解:由于是粘上的,故每一层交错拿走对角线位置的两个正方体,可得每一层的每一行每一列都要保留一个立方体,故取走的小立方体最多可以是4个.故答案为:413.【答案】(1)见解析(2)旗杆的高度为22m.【分析】本题考查作图-应用与设计作图,设计平行投影,解题的关键是读懂题意,掌握平行投影的特征.(1)连接AE,过C作CF AE∥交BD于F,线段DF即为所求;(2)根据平行投影特征得:1.760.44 5.5CD=,即可解得答案.【详解】(1)解:连接AE,过C作CF AE∥交BD于F,如图:线段DF即为所求;(2)解:根据题意得:1.760.44 5.5CD=解得22CD=∴旗杆的高度为22m.14.【答案】(1)变短;(2)见详解.【分析】(1)先选取B,O之间一点D,分别作出小亮的影子,比较代表影长的线段长度即可得出变化情况即可;(2)连结线段P A,并延长交底面于点E,得到线段BE即可.【详解】解(1)在小亮由B处沿BO所在的方向行走到达O处的过程取点D通过灯光在B处小亮的影长为BE,当小亮走到D处时,小亮的影长为FDBE>FD∵小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为变短故答案为:变短;(2)如图所示,连结P A,并延长交底面于E,则线段BD为求作小亮的影长.【点睛】本题考查投影知识,从远处向灯光处走去影长的变化,掌握影长变化规律,向灯光走近,影长变短,远离灯光,影长变长,先走近再走远先变短再变长是解题关键.15.【答案】(1)三棱柱(2)见详解(3)272cm【分析】本题考查三视图、几何体的侧面展开图等知识,解题的关键是理解三视图、看懂三视图.(1)根据三视图,即可解决问题;(2)画出正三棱柱的表面展开图即可;(3)侧面展开图是矩形,求出矩形的面积即可.【详解】(1)解:根据三视图可知这个几何体的名称是三棱柱.(2)这个几何体的表面展开图如下:(答案不唯一)(3)这个几何体的侧面积是2⨯⨯=.83372cm16.【答案】(1)见解析(2)108(3)小亮说法正确,图见解析,5,1,3【分析】(1)观察图形可得:从正面看到从左往右依次有小正方形的数量为2、1、3;从左面看到有小正方形的数量为3、1;从上面看到从左往右依次有小正方形的数量为2,2,1,即可求解;(2)先找出每个小正方体所需要涂色的面的个数,再求和即需要涂颜色的面的总数,然后计算出总面积即可;(3)根据从上面和从左面看到的形状相同,添加一个小正方体,可在俯视图中添加,再验证从上面和从左面看到的形状,即可求解.【详解】(1)解∵如图(2)解∵ 2222⨯⨯+⨯⨯+⨯+⨯=6224225222108(3)解∵ 小亮说法正确有5种添加小正方体的方式,如下图其中添加小正方体个数最少可以摆1个,最多可以摆3个.故答案为∵ 5,1,3【点睛】此题主要考查了画三视图,关键是掌握在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档