表观遗传学知识讲解
2024年表观遗传学(研究生课件)
表观遗传学(研究生课件)一、表观遗传学的基本概念表观遗传学(Epigenetics)一词最早由英国生物学家康韦·里德(ConradWaddington)于1942年提出,意为“基因表达调控的研究”。
表观遗传学关注的是基因表达的可遗传变化,这种变化不涉及DNA序列的改变,而是通过染色质重塑、DNA甲基化、组蛋白修饰等机制实现。
二、表观遗传学的调控机制1.染色质重塑:染色质重塑是指染色质结构发生变化,使DNA 暴露或隐藏于核小体中,从而影响基因表达。
染色质重塑主要通过ATP依赖的染色质重塑复合体实现。
2.DNA甲基化:DNA甲基化是指在DNA甲基转移酶的作用下,将甲基基团转移至DNA上的过程。
DNA甲基化通常发生在CpG岛上,高甲基化状态往往与基因沉默相关,而低甲基化状态与基因活化相关。
3.组蛋白修饰:组蛋白修饰是指组蛋白上的氨基酸残基发生甲基化、乙酰化、磷酸化等修饰。
这些修饰可以改变组蛋白与DNA的相互作用,进而影响基因表达。
4.非编码RNA:非编码RNA包括微小RNA(miRNA)、长链非编码RNA(lncRNA)等,它们在基因表达调控中发挥重要作用。
例如,miRNA可以通过与目标mRNA结合,抑制其翻译过程。
三、表观遗传学与疾病表观遗传学异常与多种疾病的发生密切相关。
例如,肿瘤的发生往往伴随着表观遗传学调控机制的紊乱,如DNA甲基化异常、组蛋白修饰异常等。
表观遗传学还与心血管疾病、神经系统疾病、代谢性疾病等密切相关。
四、表观遗传学的应用1.肿瘤诊断与治疗:表观遗传学在肿瘤诊断和治疗方面具有重要应用价值。
例如,通过检测肿瘤相关基因的DNA甲基化状态,可以早期发现肿瘤;同时,针对表观遗传学调控机制的药物研发,为肿瘤治疗提供了新策略。
2.农业育种:表观遗传学在农业育种领域也具有广泛应用。
通过改变植物表观遗传状态,可以提高作物产量、抗病性和适应环境能力。
3.神经科学与心理学:表观遗传学研究为揭示神经系统疾病和心理学问题的发生机制提供了新视角。
表观遗传学教学课件
04
表观遗传学研究方法
基因组学技术
基因组测序
通过全基因组测序技术,可以检测基因组中的变异和表观遗传修饰,了解基因表达的调 控机制。
甲基化测序
甲基化测序技术可以检测基因组中DNA甲基化的水平,研究甲基化与基因表达的关系。
生物信息学分析
数据挖掘
利用生物信息学方法对大规模基因组 数据进行挖掘,寻找表观遗传修饰与 基因表达之间的关联。
详细描述
非编码RNA在表观遗传学中发挥重要作用, 它们通过与mRNA相互作用,影响基因表达 的转录和转录后水平。非编码RNA的异常表 达与多种疾病的发生和发展密切相关。
组蛋白修饰
总结词
组蛋白修饰是指组蛋白上的化学基团, 如乙酰化、甲基化和磷酸化等。
VS
详细描述
组蛋白修饰能够影响染色质的结构和基因 表达,与细胞分化、发育和肿瘤形成等生 物学过程密切相关。组蛋白修饰的异常与 多种疾病的发生和发展密切相关。
80%
药物研发
表观遗传学研究有助于发现新型 药物靶点,推动药物研发的创新 和进步。
表观遗传学面临的挑战与问题
技术难题
表观遗传学研究涉及多种复杂技 术,如高通量测序、染色质免疫 沉淀等,技术难度较大,需要专 业人员操作。
数据解读与分析
表观遗传学研究产生大量数据, 如何准确解读和分析这些数据是 一个挑战。需要发展新的数据分 析方法和算法。
个体化治疗
表观遗传学研究有助于实现个 体化治疗,即根据患者的表观 遗传学特征,制定个性化的治 疗方案。例如,针对特定基因 的靶向治疗等。
疾病预防
表观遗传学研究还有助于疾病 的预防。例如,通过调整饮食 和生活方式等,可以改变个体 的表观遗传学特征,从而预防 某些疾病的发生。
遗传学第十二章表观遗传学精选课件.ppt
Y
X
XX
X-染色体失活
24
(一)X失活中心
• 2019年G.D.Penny等发现X染色体的Xq13.3区 段有一个X失活中心( X-inactivation center,Xic),X失活中心有“记数”和“选 择”的功能。
• 长1Mb,4个已知基因:Xist;Xce;Tsix;
(三)DNA去甲基化作用(不讲)
13
二、组蛋白修饰
14
15
❖组蛋白密码 ❖组蛋白中被修饰氨基酸的种类、位置和修饰
类型被称为组蛋白密码(histone code)。 ❖组蛋白通过乙酰化、甲基化和磷酸化等共价
修饰,使染色质处于转录活性状态或非转录活 性状态,为其他蛋白与DNA的结合产生协同 或拮抗效应,属于一种动态的转录调控成分。 ❖类型:乙酰化,甲基化,磷酸化,泛素化, SUMO化,ADP核糖化,脱氨基化,脯氨酸异 构化。
16
• (一)组蛋白乙酰化作用 组蛋白N末端 Lys 上,组蛋白乙酰化能选择 性的使某些染色质区域的结构从紧密变得松散, 开放某些基因的转录,增强其表达水平 。
• 组蛋白乙酰化转移酶(histone acetyltransferase,HAT) • 组蛋白去乙酰化酶(histone deacetylase,HDAC)
• 第一节 表观遗传学的分子机制
• 1. 遗传编码信息:提供生命必需蛋白质的编码模 板。
• 2. 表观遗传学信息:何时、何地、以何种方式去 应用遗传编码信息。
• DNA和染色质上的表观遗传修饰: • DNA甲基化;组蛋白修饰;RNA相关沉默(非编码
RNA);染色质重塑。
7
生物高三表观遗传知识点
生物高三表观遗传知识点在遗传学领域中,表观遗传学是指通过非DNA序列变化来影响基因表达和细胞功能的遗传变化。
表观遗传是细胞和生物体发育过程中的一个重要因素,也在许多疾病的发生和发展中起着关键作用。
本文将介绍生物高三中常见的表观遗传知识点,以帮助读者更好地理解这一领域的重要性。
I. DNA甲基化DNA甲基化是表观遗传学中最常见的一种现象,它通过在DNA分子上添加甲基基团来影响基因表达。
甲基化通常发生在CpG二核苷酸的胞嘧啶上,可以促进或抑制基因的转录。
在高三生物课程中,学生需要理解DNA甲基化对基因组稳定性和个体发育的重要性。
II.组蛋白修饰组蛋白是染色质的主要组成部分,其修饰可以影响基因的可及性和转录水平。
组蛋白修饰包括乙酰化、甲基化、磷酸化等多种类型,不同修饰方式对基因表达起到不同的调控作用。
生物高三学生需要了解组蛋白修饰对基因表达和细胞分化的重要影响,以及它们在细胞功能和发育过程中的作用机制。
III.非编码RNA除了编码蛋白质的基因,人类基因组中还包含大量非编码RNA 基因。
这些非编码RNA在表观遗传中扮演重要角色,例如长链非编码RNA(lncRNA)可以通过与DNA、RNA或蛋白质相互作用,调控基因表达和信号传导。
生物高三学生需要对不同类型的非编码RNA及其调控机制有所了解。
IV.环境因素的影响表观遗传学中另一个重要的方面是环境因素对基因表达的影响。
环境因素包括营养、化学物质、毒素、温度等,它们可以通过改变DNA甲基化或组蛋白修饰等方式,对基因表达起到调控作用。
生物高三学生需要了解环境因素对表观遗传的重要性,并理解环境对基因表达多样性和细胞功能的影响机制。
V.表观遗传与多种疾病之间的关系表观遗传与多种疾病之间存在着紧密的联系。
许多疾病,如癌症、心血管疾病和神经系统疾病,都与表观遗传异常有关。
生物高三学生需要理解表观遗传与疾病之间的关联性,并对相关的研究方法和治疗策略有所了解。
总结:以上是生物高三中常见的表观遗传知识点的简要介绍。
遗传学——表观遗传学
• 1879年德国生物学家弗莱明(F1eming· ) w 把细胞核中的丝状和粒状的物质,用染料染红, 观察发现这些物质平时散漫地分布在细胞核中, 当细胞分裂时,散漫的染色物体便浓缩,形成 一定数目和一定形状的条状物,到分裂完成时, 条状物又疏松为散漫状 。 • 1883年美国学者提出了遗传基因在染色体上 的学说。 • 1888年正式被命名为染色体。
2、二级结构:由核小体连接起来的纤维状结构 经螺旋化形成中空的螺线管。螺旋管的每一圈 包括6个核小体,外径约为30 nm。DNA的长 度在一级结构的基础上又被压缩了6倍。 3、三级结构:即由螺线管形成超螺线管,DNA 的长度在二级结构的基础上被压缩了40倍, 4、四级结构:在由三级到四级结构,即形成染 色单体后,DNA的长度在三级结构的基础上被 压缩了5倍。 因此由一条DNA长链,经过多级螺旋化,可以 使几厘米长的DNA与组蛋白等物质共同形成几 微米长的染色体,其长度总共被压缩了8 000 倍~10 000倍。
遗传学和表观遗传学的关系
● 传统遗传学认为遗传信息储存于DNA 的序列中, 它主要研究基因序列改变所致的基因表达水平的 变化,是基因质的变化; ● 表观遗传学则认为遗传信息是DNA甲基化形式 和组蛋白密码、RNA干涉等,是以基因表达水平 为主的量变遗传学。 ● 表观遗传变异也能遗传,并具重要的表型效应, 但其不同于基因突. ▲ 首先,表观遗传学是渐变的遗传过程而非突变 的过程; ▲第二,表观遗传变异常常是可逆的; ▲第三,表观遗传改变多发生在启动子区,而遗 传突变多发生在编码区等。
• 通常,DNA 甲基化与染色体的压缩状态、 DNA 的不可接近性以及与基因处于抑制和 沉默状态相关; 而DNA 去甲基化、组蛋白 的乙酰化和染色质去压缩状态,则与转录 的启动、基因活化和行使功能有关。 • 这意味着,不改变基因本身的结构,而改 变基因转录的微环境条件就可以左右基因 的活性,或令其沉默,或使其激活。
表观遗传学专业知识讲座课件
一种结论:个体在发育和 生长过程中获得的环境影 响,被遗传给了后代。 什么决定基因?大自然(环 境)如此丰富多彩、如此变 化不停,很难想象,对于 一个开放的复杂生命系统, 不会打上它的烙印。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系网站或本人删除。
人类同卵双生的孪生子:具有完全相同的基因组,在同样的环境下成 长,俩人的气质和体质应该非常相似。 实际情形:一些孪生子的情况并不符合预期的理论。往往在长大成人 后出现性格、健康方面的很大差异。这种反常现象长期困扰着遗传学 家。 现在科学家们发现:可以在不影响DNA序列的情况下改变基因组的修 饰.这种改变不仅可以影响个体的发育,而且还可以遗传下去。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系网站或本人删除。
表观遗传修饰
1. DNA甲基化(DNA methylation)
通 过 甲 基 供 体 ——S- 腺 苷 甲 硫 氨 酸 , 并 在 DNA 甲 基 转 移 酶 (DNA methyltransferase,DNMT)的催化下,CpG二核苷酸中的胞嘧啶环上5’位置 的氢被活性甲基所取代,从而转变成5-甲基胞嘧啶(5-mC) 。
• 表观遗传学(epigenetic):DNA的序列不发生变化、基因表达改变、并且这种
改变可稳定遗传。
• 表观遗传学研究的内容: 基因选择性转录、表达的调控。
1. 基因转录后调控。 2. 基因转录后调控。
表观遗传修饰从多个水平上调控基因表达:
1. DNA水平:DNA甲基化
基因表达的变 化(或性状的 变化)一定是 DNA序列变异 的结果吗?
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系网站或本人删除。
《遗传学》表观遗传学
表观遗传:指在没有DNA序列变化的 基础上,基因表达和调控状态的可遗传 性改变。
表观遗传学:研究不涉及DNA序列改 变的基因表达和调控的可遗传性变化的 科学。
特征:可遗传;可逆性;DNA不变
表观遗传学 vs 遗传学
• DNA is not ‘naked’ • Reversible modifications • Transitory marks in response to
表观遗传学
提纲
1. 表观遗传学介绍 2. 表观遗传学物质基础 3. 等位基因表达不平衡现象
➢ 遗传:龙生龙,凤生凤,老鼠孩子会打洞
➢ 变异:一母生九子九子各不同
➢ 中心法则:基因型决定表型
基因是遗传的基本单位。 DNA通过自身复制传递遗传信息 DNA转录成RNA RNA自身能否复制(RNA病毒) RNA逆转录成DNA RNA翻译成蛋白 DNA基因的序列变化可能导致功能和表型的改变
• Transition from ‘non-mendelian oddity’ to mainstream ‘epigenetic field’ 实现了从”非孟德尔遗传怪像”转变到”表观遗传学领域”的主流
表观遗传学内容
• 物质基础
– DNA甲基化修饰 – 组蛋白修饰 – 染色质构象 – 非编码RNA
DNA甲基化的进化被认为是防御机制的主宰者
表观遗传修饰的重编程: 甲基化与去甲基化
两个阶段 生殖细胞(配子)形成阶段 胚胎植入前的发育
去甲基化-再甲基化 (active demethylation)
de novo methylases are very active in these stage!!!
基因型相同,表型不同
新高考表观遗传知识点
新高考表观遗传知识点表观遗传是指通过改变基因的表达而不改变基因序列本身来传递信息的现象。
在新高考生物考试中,表观遗传是一个重要的知识点。
本文将介绍新高考中与表观遗传相关的知识点,帮助同学们更好地理解和掌握这一内容。
一、表观遗传的概念与原理表观遗传是指在基因表达过程中,由于各种因素的调控,使得同一基因在不同细胞或组织中表现出不同的表达状态。
表观遗传的原理主要包括DNA甲基化、组蛋白修饰、非编码RNA等。
这些修饰会改变基因的可读性和可访问性,从而影响基因的表达。
二、DNA甲基化与表观遗传DNA甲基化是DNA分子上甲基(CH3)基团的添加,通过DNA甲基转移酶催化反应完成。
DNA甲基化是表观遗传调控的一种重要方式,可以在基因组水平上调节基因的表达。
DNA甲基化的模式遵循组织特异性和遗传记忆的原则,对于维持基因的沉默状态以及胚胎发育、细胞分化等过程发挥重要作用。
三、组蛋白修饰与表观遗传组蛋白是染色质的基本组成部分,通过与DNA相互作用,调节基因的表达。
组蛋白修饰是指通过改变组蛋白上特定氨基酸残基的化学结构来调控基因的表达。
这些化学修饰包括乙酰化、磷酸化、甲基化等等。
组蛋白修饰可以改变染色质结构的紧密程度,从而影响基因的转录和表达。
四、非编码RNA与表观遗传非编码RNA是一类不具有编码蛋白质的功能RNA分子。
在表观遗传中,非编码RNA可以通过多种方式参与基因表达的调控。
例如,某些长链非编码RNA可以直接与DNA靶序列结合,改变染色质的构象,从而影响基因的表达。
五、环境因素对表观遗传的影响环境因素可以通过改变表观遗传修饰方式来影响基因表达。
例如,饮食结构、生活方式、暴露在毒物中等都可能导致表观遗传修饰的改变,从而影响个体的健康和疾病的风险。
这也是为什么后天环境因素对基因表达的调控具有重要作用的原因之一。
六、表观遗传与细胞分化细胞分化是胚胎发育过程中的关键步骤,也是表观遗传的重要应用场景。
通过对细胞特定的基因组区域进行表观遗传修饰的改变,细胞可以在基因组水平上实现差异化。
表观遗传学(研究生课件)
表观遗传学异常常见于各种癌症中,影响肿瘤的发生、发展和治疗。
心血管疾病
表观遗传学变化与心血管疾病的发生和进展密切相关,可能成为治疗的潜在靶点。
自闭症
表观遗传学异常在自闭症等神经发育障碍的发生过程中发挥重要作用。
未来发展方向
1 技术进步带来的机遇
高通量测序技术和新一代表观遗传学研究方法的发展为表观遗传学的深入研究提供了更 多机遇。
3 非编码RNA
是一类不编码蛋白质的RNA分子,参与到各种调控过程中,并影响基因表达。
DNA甲基化
1
定义
DNA甲基化是一种通过给DNA分子添加
影响因素
2
甲基基团的化学修饰,影响基因的表达 活性和继承方式。
DNA甲基化受到遗传和环境等多种因素
的影响,包括DNA序列、细胞类型和外
部刺激。
3
检测方法
通过特定的实验技术,可以检测和分析
DNA甲基化的状态和分布。
功能
4
DNA甲基化在细胞和生物的发育、基因 表达调控、遗传稳定性等方面发挥重要
作用。
色素质体结合蛋白
定义
色素质体结合蛋白是一类与 DNA结合,并调控染色质的结 构和功能的蛋白质。
分类
目前已发现多种不同类型的色 素质体结合蛋白,包括组蛋白 修饰酶和染色质重塑蛋白。
功能
色素质体结合蛋白参与基因的 表达调控、染色质的结构和动 态变化,对细胞功能和生物发 育起重要作用。
表观遗传学(研究生课件)
表观遗传学是研究基因表达调控的一门学科,本课程介绍了表观遗传学的定 义、研究对象以及在疾病中的作用。一起探索这个神秘领域吧!
什么是表观遗传学
表观遗传学是研究基因表达调控的学科,通过对基因组及其相关分子的化学修改和三维结构的调控,影响基因 表达的方式和水平。
分子遗传学表观遗传学知识讲稿
DNA的突变与变异
突变的种类
点突变、插入缺失、基因重排等多种类型。
突变的原因
化学物质致突变、放射线突变等内部因素和基因重组、突变位点等外部因素。
基因变异的重要性
基因变异是物种进化和个体不同性状产生的重要原因。
基因调控及其机制
1
表观遗传调控
2
通过DNA甲基化和组蛋白修饰等调控机
制,影响基因表达。
3
除了编码氨基酸,也可以表示启 动、终止信号等附加含义。
基因组的结构与功能
基因组组成
包含所有生物体的全部DNA序列,可以分为编码和非编码区域。
基因库和基因家族
基因库指一个组织或个体所拥有的所有基因,而基因家族是指多个基因在演化过程中产生的 相关基因。
基因组学分析
包括序列分析、比较基因组学、功能基因组学和系统生物学等多个层面和方向。
人类基因组计划
20世纪90年代,人类基因组计划 启动,促进了分子遗传学和基因 组学的快速发展。
DNA的结构与功能
碱基配对原则
腺嘌呤-胸腺嘧啶,鸟嘌呤-鸟嘌呤,胞嘧啶-鸟 嘌呤,胸腺嘧啶-腺嘌呤。
RNA的不同类型
三种主要类型是mRNA、tRNA、rRNA,分别在 基因表达的不同过程中发挥作用。
双链结构
分子遗传学表观遗传学知 识讲稿
分子遗传学是研究生物基因组结构、功能、表达和调控的分子水平的遗传学 分支。它对于深入理解生命科学及其应用具有重要意义。
分子遗传学的历史与发展
孟德尔定律
19世纪末,孟德尔通过豌豆杂交 研究提出了遗传基本规律。
双螺旋结构
1953年,沃森和克里克发表“关 于分子结构的一种可能的模型“, 证明了DNA的双螺旋结构。
(2024年)表观遗传学完整版
表观遗传调控参与突触可塑性的形成和维持,影响学习记忆等认知 功能。
神经退行性疾病治疗
针对神经退行性疾病中的表观遗传调控异常,开发潜在的治疗策略 。
15
其他疾病中表观遗传影响
心血管疾病
表观遗传调控在心血管疾病如 动脉粥样硬化、高血压等的发
生发展中具有潜在作用。
2024/3/26
代谢性疾病
表观遗传变化与肥胖、糖尿病 等代谢性疾病的发生和发展密 切相关。
20
非编码RNA研究技术
2024/3/26
非编码RNA测序技术
通过对特定细胞或组织中的非编码RNA进行高通量测序,从而鉴定新的非编码RNA分子 并研究其表达模式和功能。
微小RNA(microRNA)靶基因预测和验证
利用生物信息学方法预测microRNA的靶基因,并通过实验手段验证其调控关系,从而揭 示microRNA在生物过程中的作用。
与疾病关联
非编码RNA异常表达与多种疾病相 关,如心血管疾病、代谢性疾病和 癌症等。
10
其他类型表观遗传变异
2024/3/26
染色质可及性
01
染色质结构的开放或关闭状态可以影响基因表达,这种变化可
以通过高通量测序技术进行检测和分析。
拷贝数变异
02
基因组中特定区域的拷贝数增加或减少也可以导致表观遗传变
DNA甲基化异常与多种疾 病的发生和发展密切相关 ,如癌症、神经退行性疾 病等。
8
组蛋白修饰与染色质重塑
组蛋白修饰类型
包括乙酰化、甲基化、磷 酸化等多种共价修饰方式 ,影响组蛋白与DNA的相 互作用。
2024/3/26
染色质重塑
通过改变核小体位置和组 蛋白修饰状态来调控染色 质结构和基因表达。
第4讲表观遗传学
传的变化。
(2)果蝇位置效应花斑(position effect variegation, PEV)
显然,果蝇眼睛 颜色的这种改变 并未涉及基因自 身的变化,只是 基因位置的改变, 而且基因整合的 位置与异染色质 的距离愈近,则 基因失活的可能 性愈高,并随异 染色质扩展使邻 近基因也失活
果蝇中染色质重排产生位置效应花斑。由于染色体区 段倒位而使野生型等位基因靠近异染色质,并随异染色质 的扩展而失活,导致产生红白小眼嵌合复眼
非编码RNA的调控作用:基因转录后的调控
组蛋白修饰:蛋白质的翻译后修饰
重点介绍:
DNA甲 基 化(DNA methylation) 染色质重塑(chromatin remodeling) 基因组印记(genomic imprinting) 组蛋白修饰(histon modification) 与组蛋白密码 ( histon code) RNA编辑(RNA editing) 重编程
记忆表观遗传学(memigenetics): “可遗传”的表观遗 传变异研究。
例 人体从一个受精卵分化后产生200多种细胞: 基因型相同,基因数相同:27000多个基因 不同:细胞的基因表达模式(gene expression pattern) 不相同,每种细胞只有数千个基因有活性。 因此,维持细胞正常功能是取决于一组基因表达而不是 全部基因。 在胚胎和个体发育过程中一个基因组可以衍生出许多不 同类型的表观基因组(epigenome),而且在各自后代中可稳 定遗传——子代细胞形态和功能的改变——细胞分化。已分 化的同一类细胞其表达模式是一致的,保留着相同的细胞记 忆(cellular memory),并通过细胞有丝分裂或减数分裂传 递。
② 不改变DNA序列,通过改变染色质的结构与活性改变基因的但并未强调是“可遗传”的。
《表观遗传学》PPT课件
研发高通量、高灵敏度的表观遗传学检测技术,提高检测效率和准确 性。
推动表观遗传学在临床应用中的转化
加强表观遗传学与临床医学的交叉融合,推动表观遗传学研究成果在 临床应用中的转化。
关注表观遗传学的伦理和社会问题
在推动表观遗传学发展的同时,关注相关的伦理和社会问题,确保技 术的合理应用和社会责任。
03
神经系统发育与表 观遗传
表观遗传调控在神经系统发育过 程中发挥关键作用,影响神经细 胞的分化和功能。
代谢性疾病与表观遗传关联
肥胖与表观遗传
肥胖的发生和发展与DNA甲基化、组蛋白修饰等表观遗传调控密 切相关。
糖尿病与表观遗传
糖尿病及其并发症的发病机制涉及多种表观遗传调控异常。
心血管疾病与表观遗传
揭示生物多样性的本质
生物多样性的形成不仅与基因序列的 变异有关,还与基因表达的调控密切 相关。
解析复杂疾病的发生机制
许多复杂疾病如癌症、神经退行性疾 病等的发生与表观遗传调控异常密切 相关。
指导个体化医疗和精准治疗
通过解析患者的表观遗传特征,可以 为个体化医疗和精准治疗提供指导。
推动生物技术的发展
表观遗传学的研究为基因编辑、细胞 重编程等生物技术的发展提供了新的 思路和方法。
3
亚硫酸氢盐测序PCR
结合重亚硫酸盐处理和PCR技术,对特定区域的 DNA甲基化进行高灵敏度检测。
组蛋白修饰检测技术
染色质免疫沉淀技术
利用特异性抗体与组蛋白修饰结合,通过沉淀和洗脱步骤富集特 定修饰的组蛋白,进而研究其功能。
质谱分析技术
通过质谱仪对组蛋白修饰进行定性和定量分析,揭示修饰的种类 和程度。
《表观遗传学》PPT 课件
遗传学知识:表观遗传学的遗传基础
遗传学知识:表观遗传学的遗传基础表观遗传学的遗传基础表观遗传学是研究表观遗传现象和表观遗传机制的学科,是基因表达调控和发育分化等生命科学的重要分支。
在表观遗传学中,研究对象是基因表达和调控过程中不涉及DNA序列的遗传信息,主要包括DNA甲基化、组蛋白修饰和非编码RNA等遗传标记和机制。
DNA甲基化是表观遗传学研究的重要内容之一。
它是生物体内一种常见的DNA化学修饰方式,包括在DNA链上加入甲基基团,从而改变某些基因的表达。
常见的DNA甲基化位置是CpG二核苷酸富集区域,这些区域也被称为CpG岛。
DNA甲基化通常被认为是一种基因的沉默状态,因为DNA甲基化会阻止转录因子与DNA结合,并从而阻止基因的转录和表达。
同时,DNA甲基化在胚胎发育和稳态维持等过程中,也发挥着重要的调控作用。
组蛋白修饰是表观遗传学另一个重要的研究方向。
组蛋白是染色质中的主要组成部分之一,它决定了染色质在细胞生命周期中的结构和状态,并且对基因的表达调控起重要作用。
组蛋白修饰包括甲基化、酰化、泛素化和磷酸化等多种方式,这些修饰可以改变组蛋白的结构和亲和性,从而影响基因的转录和表达。
组蛋白修饰不仅在基因表达调控中发挥着作用,同时在胚胎发育和细胞分化等生物学过程中也发挥着重要的调控作用。
非编码RNA也是表观遗传学研究的重要内容之一。
它包括多种形态,如miRNA、lncRNA、siRNA等,具有不同的功能和寿命。
非编码RNA可以通过不同的机制,影响基因的转录和表达,从而参与到基因的表达调控和发育分化等过程中。
例如,miRNA可以与靶基因的mRNA结合,从而降解或抑制其转录和表达;lncRNA则可以通过调节基因底物的转录、剪切、折叠和定位等方式,参与到基因表达调控的不同层次中。
表观遗传学的遗传基础不仅涉及到基因表达调控和发育分化等生命科学领域,还涉及到多种疾病的发生和发展。
例如,肿瘤细胞中存在大量的DNA甲基化异常和组蛋白修饰异常,从而导致肿瘤相关基因的异常表达和功能失调;同时,许多遗传性疾病也与表观遗传学的异常相关,如PWS、AS和Rett综合征等。
2024年度-表观遗传学课件教学课件
表观遗传学的研究意义
揭示生物多样性的本质
表观遗传学可以解释生物体在相同遗传背景下表现出的多样性,有助 于深入理解生物进化的机制。
解析复杂疾病的发生机制
许多复杂疾病如癌症、神经退行性疾病等都与表观遗传学异常有关, 研究表观遗传学有助于揭示这些疾病的发生和发展机制。
指导个体化医疗和精准治疗
表观遗传学可以为个体化医疗和精准治疗提供理论支持和实践指导, 如针对患者的基因表达谱制定个性化治疗方案。
单细胞测序技术
通过单细胞测序技术对单个细胞的表观遗传信息进行检测和分析, 揭示细胞间的异质性和表观遗传信息的动态变化。
生物信息学分析技术
利用生物信息学方法对表观遗传学数据进行整合和分析,挖掘其中的 关键信息和调控网络。
21
05 表观遗传学的应 用前景与挑战 22
表观遗传学在医学领域的应用前景
疾病诊断
13
神经退行性疾病与表观遗传学
1 2
DNA甲基化与神经退行性疾病
DNA甲基化异常可导致神经元功能障碍和死亡, 进而参与神经退行性疾病的发生和发展。
组蛋白修饰与神经退行性疾病
组蛋白修饰异常可影响神经元功能和存活,与神 经退行性疾病的发生和发展密切相关。
3
非编码RNA与神经退行性疾病
非编码RNA可通过调控基因表达和表观遗传修饰 等方式参与神经退行性疾病的发生和发展。
解,从而调控基因表达。
长非编码RNA(lncRNA)
02
通过与DNA、RNA或蛋白质相互作用,在多个层面调控基因表
达,如染色质修饰、转录和转录后调控等。
环状RNA(circRNA)
03
作为miRNA海绵或参与蛋白质翻译调控等方式,影响基因表达
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表观遗传学摘要:表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因表达了可遗传的变化的一门遗传学分支学科。
表观遗传的现象很多,已知的有DNA甲基化(DNA methylation),基因组印记(genomic impriting),母体效应(maternal effects),基因沉默(gene silencing),核仁显性,休眠转座子激活和RNA编辑(RNA editing)等。
表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因表达了可遗传的变化的一门遗传学分支学科。
表观遗传的现象很多,已知的有DNA甲基化(DNA methylation),基因组印记(genomic impriting),母体效应(maternal effects),基因沉默(gene silencing),核仁显性,休眠转座子激活和RNA编辑(RNA editing)等。
目录[隐藏]• 1 简介• 2 染色质重塑• 3 基因组印记• 4 染色体失活• 5 非编码RNA表观遗传学简介表观遗传学表观遗传学是与遗传学(genetic) 相对应的概念。
遗传学是指基于基因序列改变所致基因表达水平变化,如基因突变、基因杂合丢失和微卫星不稳定等;而表观遗传学则是指基于非基因序列改变所致基因表达水平变化,如DNA甲基化和染色质构象变化等;表观基因组学(epigenomics)则是在基因组水平上对表观遗传学改变的研究。
所谓DNA甲基化是指在DNA甲基化转移酶的作用下,在基因组CpG二核苷酸的胞嘧啶5'碳位共价键结合一个甲基基团。
正常情况下,人类基因组“垃圾”序列的CpG二核苷酸相对稀少,并且总是处于甲基化状态,与之相反,人类基因组中大小为100—1000 bp左右且富含CpG二核苷酸的CpG岛则总是处于未甲基化状态,并且与56%的人类基因组编码基因相关。
人类基因组序列草图分析结果表明,人类基因组CpG岛约为28890个,大部分染色体每1 Mb就有5—15个CpG 岛,平均值为每Mb含10.5个CpG岛,CpG岛的数目与基因密度有良好的对应关系[9]。
由于DNA甲基化与人类发育和肿瘤疾病的密切关系,特别是CpG岛甲基化所致抑癌基因转录失活问题,DNA甲基化已经成为表观遗传学和表观基因组学的重要研究内容。
表观遗传学染色质重塑依赖的染色质重塑与人类疾病表观遗传学重塑染色质重塑复合物依靠水解ATP提供能量来完成染色质结构的改变,根据水解ATP的亚基不同,可将复合物分为SWI/SNF复合物、ISW复合物以及其它类型的复合物。
这些复合物及相关的蛋白均与转录的激活和抑制、DNA的甲基化、DNA 修复以及细胞周期相关。
ATRX、ERCC6、SMARCAL1均编码与SWI/SNF复合物相关的ATP酶。
ATRX突变引起DNA甲基化异常导致数种遗传性的智力迟钝疾病如:X连锁α-地中海贫血综合征、Juberg-Marsidi综合征、Carpenter- Waziri综合征、Sutherland-Haan综合征和Smith-Fineman-Myers综合征,这些疾病与核小体重新定位的异常引起的基因表达抑制有关。
ERCC6的突变将导致Cerebro-Oculo-Facio-Skeletal综合征和B型Cockayne综合征。
前者表现为出生后发育异常、神经退行性变、进行性关节挛缩、夭折;后者表现出紫外线敏感、骨骼畸形、侏儒、神经退行性变等症状。
这两种病对紫外诱导的DNA损伤缺乏修复能力,表明ERCC6蛋白在DNA 修复中有重要的作用。
SMARCAL1的突变导致Schimke免疫性骨质发育异常,表现为多向性T细胞免疫缺陷,临床症状表明SMARCAL1蛋白可能调控和细胞增殖相关的基因的表达。
BRG1、SMARCB1和BRM编码SWI/SNF复合物特异的ATP酶,这些酶通过改变染色质的结构使成细胞纤维瘤蛋白(Retinoblastoma protein, RB蛋白)顺利的行使调节细胞周期、抑制生长发育以及维持基因失活状态的功能,这三个基因的突变可导致肿瘤形成。
组蛋白乙酰化、去乙酰化与人类疾病组蛋白乙酰化与基因活化以及DNA复制相关,组蛋白的去乙酰化和基因的失活相关。
乙酰化转移酶(HATs)主要是在组蛋白H3、H4的N端尾上的赖氨酸加上乙酰基,去乙酰化酶(HDACs) 则相反,不同位置的修饰均需要特定的酶来完成。
乙酰化酶家族可作为辅激活因子调控转录,调节细胞周期,参与DNA损伤修复,还可作为DNA结合蛋白。
去乙酰化酶家族则和染色体易位、转录调控、基因沉默、细胞周期、细胞分化和增殖以及细胞凋亡相关。
CREB 结合蛋白(CREB binding protein,CBP)、E1A结合蛋白p300(E1A binding protein p300,EP300)和锌指蛋白220(zinc finger 220,ZNF220)均为乙酰化转移酶。
CBP是cAMP应答元件结合蛋白的辅激活蛋白,通过乙酰化组蛋白使和cAMP 应答元件作用的启动子开始转录,它的突变导致Rubinstein Taybi综合征,患者智力低下、面部畸形、姆指和拇趾粗大、身材矮小。
CBP和EP300均可抑制肿瘤的形成,在小鼠瘤细胞中确定了CBP的突变,在结肠和乳房瘤细胞系中确定了EP300的突变,另外ZNF220异常和人的急性进行性髓性白血病相关。
如果突变导致错误的激活去乙酰化酶或错误的和去乙酰化酶相互作用,将可能导致疾病的发生。
甲基化CpG-结合蛋白-2(methyl cytosine bindingprotein-2,MeCP2)可募集去乙酰化酶到甲基化的DNA区域,使组蛋白去乙酰化导致染色质浓缩,MeCP2的突变导致Rett综合征,患者出生即发病、智力发育迟缓、伴孤独症。
若阻碍去乙酰化酶的功能,则可抑制癌细胞的增殖和分化,可用于急性早幼粒细胞性白血病, 急性淋巴细胞性白血病和非何杰金氏淋巴瘤的治疗。
染色质重塑异常引发的人类疾病是由于重塑复合物中的关键蛋白发生突变,导致染色质重塑失败,即核小体不能正确定位,并使修复DNA损伤的复合物,基础转录装置等不能接近 DNA,从而影响基因的正常表达。
如果突变导致抑癌基因或调节细胞周期的蛋白出现异常将导致癌症的发生。
乙酰化酶的突变导致正常基因不能表达,去乙酰化酶的突变或一些和去乙酰化酶相关的蛋白的突变使去乙酰化酶错误募集将引发肿瘤等疾病。
表观遗传学基因组印记表观遗传学基因组印记是指来自父方和母方的等位基因在通过精子和卵子传递给子代时发生了修饰,使带有亲代印记的等位基因具有不同的表达特性,这种修饰常为DNA 甲基化修饰,也包括组蛋白乙酰化、甲基化等修饰。
在生殖细胞形成早期,来自父方和母方的印记将全部被消除,父方等位基因在精母细胞形成精子时产生新的甲基化模式,但在受精时这种甲基化模式还将发生改变;母方等位基因甲基化模式在卵子发生时形成,因此在受精前来自父方和母方的等位基因具有不同的甲基化模式。
目前发现的印记基因大约80%成簇,这些成簇的基因被位于同一条链上的顺式作用位点所调控,该位点被称做印记中心(imprinting center, IC)。
印记基因的存在反映了性别的竞争,从目前发现的印记基因来看,父方对胚胎的贡献是加速其发育,而母方则是限制胚胎发育速度,亲代通过印记基因来影响其下一代,使它们具有性别行为特异性以保证本方基因在遗传中的优势。
印记基因的异常表达引发伴有复杂突变和表型缺陷的多种人类疾病。
研究发现许多印记基因对胚胎和胎儿出生后的生长发育有重要的调节作用,对行为和大脑的功能也有很大的影响,印记基因的异常同样可诱发癌症。
基因组印记与脐疝-巨舌-巨人症综合征(BWS )BWS患者表现为胚胎和胎盘过度增生,巨舌,巨大发育,儿童期易发生肿瘤。
该病主要是由11号染色体上的IGF2和CDKN1C两个印记基因的错误表达引发,IGF2为父本表达的等位基因,CDKN1C为母本表达的等位基因。
父本单亲二体型(uniparental disomies, UPDs)是引发BWS的主要原因,即IGF2基因双倍表达,CDKN1C基因不表达;次要原因是母本的CDKN1C等位基因发生突变[22];极少数病例是由于母本的染色体发生移位造成CDKN1C基因失活和(或)造成母本的IGF2基因表达。
其它一些印记基因在胚胎发育过程中的过量或缺失表达也可导致类似于BWS的综合征,如原来母本表达的IPL基因的不表达或母本的ASCL2基因逃避印记都将导致胚胎的过度发育。
这表明父本表达的等位基因对胚胎的生长有促进作用,而母本表达的等位基因对胚胎的发育起到限制作用。
基因组印记与Prader-Willi/Angelman综合征(PWS/AS)PWS 表现为肥胖、身材矮小和轻度智力发育迟缓;AS表现为共济失调、过度活跃、严重智障、少语、表情愉悦,这两种疾病都和神经功能失调相关。
PWS是由于突变导致父本印记基因在大脑中高表达所致,如SNPNP基因高表达;AS是由于母本的UBE3A基因的缺失或受到抑制所致,该基因编码泛素蛋白连接酶并在脑中表达。
父本表达的SNRNP基因的微缺失可导致PWS,而在其上游进一步缺失则可导致AS,这说明这两个区域就是印记中心所在的位置。
如果缺失父本染色体上的PWS印记中心将导致SNRNP基因以及附近的父本表达的等位基因被抑制,而缺失父本染色体上的AS印记中心则没什么变化,但若缺失母本染色体上的AS印记中心将导致UBE3A被抑制而导致AS。
基因组印记与癌症印记丢失不仅影响胚胎发育并可诱发出生后的发育异常,从而导致癌症发生。
如果抑癌基因有活性的等位基因失活便提高了发生癌症的几率,例如IGF2基因印记丢失将导致多种肿瘤,如Wilm’s 瘤。
和印记丢失相关的疾病还有成神经细胞瘤,急性早幼粒细胞性白血病,横纹肌肉瘤和散发的骨肉瘤等。
与基因组印记相关的疾病常常是由于印记丢失导致两个等位基因同时表达,或突变导致有活性的等位基因失活所致。
调控基因簇的印记中心发生突变将导致一系列基因不表达,引发复杂综合征。
基因组印记的本质仍为DNA修饰和蛋白修饰,所以和印记相关的蛋白发生突变也将导致表观遗传疾病。
表观遗传学染色体失活X染色体失活X染色体失活女性有两条X染色体,而男性只有一条X染色体,为了保持平衡,女性的一条X 染色体被永久失活,这便是“剂量补偿”效应。
哺乳动物雌性个体的X染色体失活遵循n-1法则,不论有多少条X染色体,最终只能随机保留一条的活性。
对有多条X染色体的个体研究发现有活性的染色体比无活性的染色体提前复制,复制的异步性和LINE-1元件的非随机分布有可能揭示染色体失活的本质[27]。
哺乳动物受精以后,X染色体发生系统变化。
首先父本X染色体(paternal X chromosome, Xp)在所有的早期胚胎细胞中失活,表现为整个染色体的组蛋白被修饰和对细胞分裂有抑制作用的Pc-G蛋白(Polycomb group proteins, Pc-G)表达,然后Xp在内细胞群又选择性恢复活性,最后父本或母本X染色体再随机失活。