命题与简单逻辑连接词
考点03 逻辑联结词及数学归纳法(解析版)
考点48 逻辑联结词及数学归纳法一.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词. (2)命题p 且q 、p 或q 、非p 的真假判断二.量词2.全称量词和存在量词(1)全称量词:“所有”、“任意”、“每一个”等表示全体的量词在逻辑中称为全称量词,用符号“∀”表示. (2)存在量词:“有一个”、“有些”、“存在一个”等表示部分的量词在逻辑中称为存在量词,用符号“∃”表示.3.全称命题、存在性命题及含一个量词的命题的否定三.数学归纳法1.由一系列有限的特殊现象得出一般性的结论的推理方法,通常叫做归纳法. 2.用数学归纳法证明一个与正整数有关的命题时,其步骤如下: (1)归纳奠基:证明取第一个自然数n 0时命题成立;(2)归纳递推:假设n =k (k ∈N *,k ≥n 0)时命题成立,证明当n =k +1时,命题成立; (3)由(1)(2)得出结论.知识理解考向一 命题的否定【例1】(2021·四川成都市·高三二模(理))命题“0x ∀>,210x x ++>”的否定为( )A .00x ∃≤,20010x x ++≤ B .0x ∀≤,210x x ++≤ C .00x ∃>,20010x x ++≤D .0x ∀>,210x x ++≤【答案】C【解析】因为全称命题的否定是特称命题,所以,命题“0x ∀>,210x x ++>”的否定是:00x ∃>,20010x x ++≤.故选:C .【举一反三】1.(2021·全国高三月考(理))命题“0x R ∃∈,002ln 0x x +≤”的否定是( ) A .x R ∀∈,2ln 0x x+≥ B .x R ∀∈,2ln 0x x+> C .0x R ∃∈,002ln 0x x +≥ D .0002,0x R lnx x ∃∈+> 【答案】B【解析】命题“0x R ∃∈,002ln 0x x +≤”为特称命题,该命题的否定为“x R ∀∈,2ln 0x x+>”. 故选:B.2.(2021·湖南岳阳市)命题“()1,x ∀∈+∞,21x e x ≥+”的否定是( ) A .()1,x ∃∈+∞,21x e x ≥+ B .()1,x ∀∈+∞,21x e x <+ C .()1,x ∃∈+∞,21x e x <+ D .()1,x ∀∈+∞,21x e x ≥+【答案】C【解析】命题“()1,x ∀∈+∞,21x e x ≥+”为全称命题,该命题的否定为“()1,x ∃∈+∞,21x e x <+”. 故选:C.考向分析3.(2021·泰州市第二中学)巳知命题p :0x ∃>,10x e x --≤,则命题p 的否定为( ) A .0x ∀≤,10x e x --> B .0x ∀>,10x e x --> C .0x ∃>,10x e x --≥ D .0x ∃≤,10x e x -->【答案】B【解析】命题p :0x ∃>,10x e x --≤,则命题p 的否定为0x ∀>,10x e x -->. 故选:B考向二 逻辑连接词求参数【例2】(2021·全国高三专题练习)若命题“200[1,2],2x x a ∃∈--+”是假命题,则实数a 的范围是( ) A .2a > B .2a C .2a >- D .2a -【答案】A【解析】若命题“200[1,2],2x x a ∃∈--+”是假命题,则命题“2[1,2],2x x a ∀∈--+<”是真命题, 当0x =时,()2max22x -+=,所以2a >.故选:A. 【举一反三】1.(2021·天水市第一中学高三月考(理))已知命题():1,3p x ∃∈-,220x a --≤.若p 为假命题,则a 的取值范围为( ) A .(),2-∞- B .(),1-∞-C .(),7-∞D .(),0-∞【答案】A 【解析】p 为假命题,∴():1,3p x ⌝∀∈-,220x a -->为真命题,故22a x <-恒成立,22y x =-在()1,3x ∈-的最小值为2-,∴2a <-. 故选:A.2.(2020·北京人大附中高三月考)若命题“x R ∃∈,使得2210ax x ++<成立”为假命题,则实数a 的取值范围是( ) A .[1,+∞) B .[0,+∞)C .(-∞,1)D .(-∞,0]【答案】A 【解析】命题“x R ∃∈,使得2210ax x ++<成立”为假命题, 则它的否定命题: “x R ∀∈,2210ax x ++≥”为真命题所以0440a a >⎧⎨∆=-≤⎩ 解得1a ≥,所以实数a 的取值范围是[1,)+∞ 故选:A.3.(2020·江西高三期中(文))存在[1,1]x ∈-,使得230x mx m +-≥,则m 的最大值为( ) A .1 B .14C .12D .-1【答案】C【解析】由不等式230x mx m +-≥,可化为23x m x≤-,设()[]2,1,13x f x x x=∈--,则()()()2226(6)33x x x x f x x x ---'==--,当[1,0)x ∈-时,()0f x '<,()f x 单调递减; 当(0,1]x ∈时,()0f x '>,()f x 单调递增,又由()11(1),142f f -==,所以函数()f x 的最大值为()112f =, 要使得存在[1,1]x ∈-,使得230x mx m +-≥,则12m ≤,则m 的最大值为12. 故选:C.考向三 数学归纳法【例3-1】(2020·全国高三专题练习(理))用数学归纳法证明不等式“1+12+13+…+121n -<n (n ∴N *,n ≥2)”时,由n =k (k ≥2)时不等式成立,推证n =k +1时,左边应增加的项数是( ) A .2k -1 B .2k -1 C .2k D .2k +1【答案】C【解析】n k =时,左边=1111 (2321)k ++++-,而n =k +1时,左边=11111111 (232122121)k k k k +++++++++-+-,增加了1111 (22121)k k k +++++-,共(2k +1-1)-(2k -1)=2k 项, 故选:C.【例3-2】.(2020·全国高三专题练习)设等比数列{}n a 满足113,34n n a a a n +==-. (1)计算23,a a ,猜想{}n a 的通项公式并加以证明; (2)求数列{}2nn a 的前n 项和n S .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-+. 【解析】(1)由题意,等比数列{}n a 满足113,34n n a a a n +==-, 可得21345a a =-= ,323427a a =-⨯=,,猜想{}n a 的通项公式为21n a n =+,证明如下:(数学归纳法)当1,2,3n =时,显然成立; ∴ 假设n k =时,即21k a k =+成立;其中*(N )k ∈, 由134k k a a k +=-3(21)4k k =+-2(1)1k =++ ∴故假设成立,综上(1)(2),数列{}n a 的通项公式21n a n =+*()n N ∈.(2)令2(21)2n nn n b a n ==+,则前项和1212...3252...(21)2n n n S b b b n =+++=⨯+⨯+++ ∴由∴两边同乘以2得:23123252...(21)2(21)2n n n S n n +=⨯+⨯++-++ ∴由∴-∴的322112(12)3222...2(21)26(21)212n n n n n S n n -++--=⨯+⨯++-+=+-+-, 化简得1(21)22n n S n +=-+. 【举一反三】1.(2020·全国高三专题练习(理))用数学归纳法证明等式123(21)(1)(21)n n n +++++=++时,从n k=到1n k =+等式左边需增添的项是( ) A .22k + B .[]2(1)1k ++ C .[(22)(23)]k k +++ D .[][](1)12(1)1k k ++++ 【答案】C【解析】当n k =时,左边123(21)k =+++++,共21k +个连续自然数相加,当1n k =+时,左边123(21)(22)(23)k k k =+++++++++,所以从n k =到1n k =+,等式左边需增添的项是[(22)(23)]k k +++. 故选:C.2.(2021·全国高三专题练习)设集合T n ={1,2,3,…,n }(其中n ≥3,n ∴N *),将T n 的所有3元子集(含有3个元素的子集)中的最小元素的和记为S n . (1)求S 3,S 4,S 5的值; (2)试求S n 的表达式.【答案】(1)S 3=1,S 4=5,S 5=15;(2)41n C + .【解析】(1)当n =3时,T 3={1,2,3},3元子集有:{1,2,3},∴S 3=1;当n =4时,T 4={1,2,3,4},3元子集有:{1,2,3},{1,2,4},{1,3,4},{2,3,4},∴S 4=1×3+2=5;当n =5时,T 5={1,2,3,4,5},3元子集有:{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5},222543212315S C C C ∴=⨯+⨯+⨯=.(2)由S 3=1,S 4=5,S 5=15,S 6=35…归纳猜想出41n n S C +=(n ≥3).下面用数学归纳法证明猜想:∴当n =3时,S 3=1=44C ,结论成立;∴假设n =k (k ≥3,k ∴N *)时,结论成立,即S k =41k C +,则当n =k +1时,T k +1={1,2,3,4,…,k ,k +1},()()1111111232123...21k k k k k S S C C C k C k C +---⎡⎤=+++++-+-⎣⎦()()()(){}411111122112...21k k k C k C k C k k C k k C +--=+-+-++--+--⎡⎤⎡⎤⎣⎦⎣⎦ ()(){}4111111111211231...23...1k k k C k C C C C C C k C +--⎡⎤=++++-++++-⎣⎦ ()422311k k k k C kC kC C ++⎡⎤=+--⎣⎦ ()4341111k k k C C C ++++=+=∴当n =k +1时,结论成立. 综上:由∴∴可得()413n n S C n +=≥.1.(2021·涡阳县育萃高级中学)已知命题:p x R ∀∈,2104x x -+,则p ⌝( ) A .21,04x x x ∃∈-+R B .21,04x x x ∃∈-+>R C .21,04x x x ∀∈-+>R D .21,04x x x ∀∈-+<R 【答案】B【解析】命题p 为全称命题,根据全称命题的否定为特称命题,可得:p ⌝: 21,04x x x ∃∈-+>R 故选:B2.(2021·漠河市高级中学高三月考(文))下列说法正确的是( ) A .若p q ∨为真命题,则p q ∧为真命题B .命题“若cos cos x y ≠,则x y ≠”的否命题是“若cos cos x y =,则x y ≠”C .“0x <”是“20x x ->”的充要条件强化练习D .若p :x ∀∈R ,2320x x --<,则p ⌝:0x ∃∈R ,200320x x --.【答案】D【解析】对于A 选项,若p q ∨为真命题,可能p 真q 假,则p q ∧为假,故A 选项错误.对于B 选项,命题“若cos cos x y ≠,则x y ≠”的否命题是“若cos cos x y =,则x y =”,故B 选项错误. 对于C 选项,当2x =时,20x x ->,所以“0x <”不是“20x x ->”的充要条件,C 选项错误. 根据全称量词命题的否定的知识可知,D 选项正确. 故选:D3.(2021·全国高三专题练习)下列关于命题的说法中正确的是( )∴对于命题P :x R ∃∈,使得210x x ++<,则:P x R ⌝∀∈,均有210x x ++≥ ∴“1x =”是“2320x x -+=”的充分不必要条件∴命题“若2320x x -+=,则1x =”的逆否命题是“若1x ≠,则2320x x -+≠” ∴若p q ∧为假命题,则p 、q 均为假命题 A .∴∴∴ B .∴∴∴ C .∴∴∴∴ D .∴∴【答案】A【解析】∴对于命题:p x R ∃∈,使得210x x ++<,则:p x R ⌝∀∈均有210x x ++,故∴正确;∴由“1x =”可推得“2320x x -+=”,反之由“2320x x -+=”可能推出2x =,则“1x =”是“2320x x -+=”的充分不必要条件,故∴正确;∴命题“若2320x x -+=,则1x =”的逆否命题是“若1x ≠,则2320x x -+≠”,故∴正确; ∴若p q ∧为假命题,则p ,q 至少有一个为假命题,故∴错误. 则正确的命题的有∴∴∴. 故选:A4.(2021·河南高三其他模拟(文))命题:p “0,2sin 0x x x ∀≥-≥”的否定为( )A .0,2sin 0x x x ∀≥-<B .0,2sin 0x x x ∀<-<C .0000,2sin 0xx x ∃≥-< D .0000,2sin 0xx x ∃<-<【答案】C【解析】命题:p “0,2sin 0xx x ∀≥-≥”是全称命题,又全称命题的否定是特称命题,故“0x ∀≥,2sin 0x x -≥”的否定是“0000,2sin 0xx x ∃≥-<”.故选:C.5.(2021·山东菏泽市·高三一模)命题“2,0∈≥∀x R x ”的否定是( )A .2,0x R x ∃∈≥B .2,0x R x ∀∈<C .2,0x R x ∃∈<D .2,0x R x ∃∈≤【答案】C【解析】因为全称命题的否定是特称命题,所以命题:x R ∀∈,20x ≥的否定是:x R ∃∈,20x <.故选:C6.(2021·四川成都市·石室中学高三月考(理))设命题:0p x ∀≤x =-,则p ⌝为( ) A .0x ∀≤x ≠- B .00x ∃≤0x =- C .0x ∀>x =- D .00x ∃≤0x ≠-【答案】D【解析】命题p 为全称命题,该命题的否定为0:0p x ⌝∃≤0x ≠-. 故选:D.7.(2020·湖北武汉市·华中师大一附中高三期中)“0m >”是“x R ∃∈,2(1)2(1)30m x m x -+-+≤是假命题”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【解析】由题意,命题“x R ∃∈,2(1)2(1)30m x m x -+-+≤是假命题” 可得命题“x R ∀∈,2(1)2(1)30m x m x -+-+>是真命题” 当10m -=时,即1m =时,不等式30>恒成立;当10m -≠时,即1m ≠时,则满足()()210214130m m m ->⎧⎪⎨⎡⎤---⨯<⎪⎣⎦⎩,解得14m <<,综上可得,实数14m ≤<,即命题“x R ∃∈,2(1)2(1)30m x m x -+-+≤是假命题”时,实数m 的取值范围是[1,4),又由“0m >”是“14m ≤<”的必要不充分条件,所以“0m >”是“x R ∃∈,2(1)2(1)30m x m x -+-+≤是假命题”的必要不充分条件, 故选:B.8.(2021·全国高三专题练习)若命题“∀[]1,4x ∈时,240x x m --≠”是假命题,则m 的取值范围( ) A .[4,3]-- B .()-∞,-4 C .[4,)-+∞ D .[4,0]-【答案】D【解析】若命题“[1x ∀∈,4]时,240x x m --≠”是假命题, 则命题“[1x ∃∈,4]时,240x x m --=”是真命题, 则24m x x =-,设22()4(2)4f x x x x =-=--, 当14x 时,4()0f x -,则40m -. 故选:D .9.(2020·江苏海门市·高三月考)命题“[]21220x x a ∀∈-≤,,”为真命题的一个充分不必要条件是( )A .2a ≤B .2a ≥C .4a ≤D .4a ≥【答案】D【解析】“[]21220x x a ∀∈-≤,,”为真命题,可得2a ≥,因为[)[)4,2,+∞⊂+∞ , 故选:D .10.(2021·全国高三专题练习)已知命题“02x ∃>,20040ax ax --<”是假命题,则a 的取值范围是( )A .[)2,+∞B .()2,+∞C .(],2-∞D .(),2-∞【答案】A【解析】因为命题“02x ∃>,20040ax ax --<”是假命题,所以240ax ax --≥对2x >恒成立, 所以()242a x x x≥>-恒成立.因为2x >, 所以22x x ->,则242x x<-, 故2a ≥. 故选:A11.(2020·全国高三专题练习)用数学归纳法证明“(1)(2)()213(21)nn n n n n ++⋅⋅⋅⋅⋅+=⋅⋅⋅⋅⋅⋅⋅-”,从“k到1k +”左端需增乘的代数式为( ) A .21k + B .2(21)k +C .211k k ++ D .231k k ++ 【答案】B【解析】当n k =时,等式的左边(1)(2)()k k k k =++⋅⋅⋅⋅⋅+,当1n k =+时,等式的左边(11)(12)()(1)(2)k k k k k k k k =++++⋅⋅⋅⋅⋅+++++, 所以当从“k 到1k +”左端增乘的代数式为(1)(2)2(21)1k k k k k k ++++=++.故选:B.12.(多选)(2021·恩施市第一中学)下列命题正确的有( ) A .命题“x R ∀∈,20x ≥”的否定是“x R ∃∈,20x <”. B .函数()cos f x x =向右平移2π个单位得到函数解析式为()sin g x x =. C .函数()21f x x =-的零点为()1,0-,()1,0.D .1弧度角表示:在任意圆中,等于半径长的弦所对的圆心角. 【答案】AB【解析】对A ,根据全称命题的否定性质,A 为正确的; 对B ,()cos f x x =向右平移2π个单位得到函数()cos()sin 2g x x x π=-=;对C ,函数零点是数而不是点,故C 错误;对D ,1弧度角表示为在任意圆中,等于半径长的弧所对的圆心角,故D 错误; 故选:AB.13.(多选)(2021·全国高三专题练习)下列命题中正确的是( ) A .(0,)x ∃∈+∞,23x x >B .(0,1)x ∃∈,23log log x x <C .(0,)x ∀∈+∞,121()log 2xx >D .1(0,)3x ∀∈,131()log 2xx < 【答案】BD【解析】对于选项A :当0x >时,22133xx x ⎛⎫=< ⎪⎝⎭,所以23x x <恒成立,故选项A 不正确;对于选项B :当(0,1)x ∈时,23log lg lg 3lg 31log lg 2lg lg 2x x x x =⨯=>,且3log 0x <,所以23log log x x <,故选项B 正确;对于选项C :当12x =时,1211()()222x ==,11221log log 12x ==,则121log ()2x x >,故选项C 不正确; 对于选项D :当13x =时,131log 13=,由对数函数和指数函数的性质可知,当1(0,)3x ∈时,131()1log 2x x <<,故选项D 正确; 故选:BD14.(多选)(2021·全国高三专题练习)若01,22x ⎡⎤∃∈⎢⎥⎣⎦,使得200210x x λ-+<成立是假命题,则实数λ可能取值是( ) A .32B.C .3 D .92【答案】AB【解析】由条件可知1,22x ⎡⎤∀∈⎢⎥⎣⎦,2210x x λ-+≥是真命题, 即22112x x x xλ+≤=+,即min 112,,22x x x λ⎛⎫⎡⎤≤+∈ ⎪⎢⎥⎝⎭⎣⎦,设()112,22f x x x x ⎡⎤=+≥=∈⎢⎥⎣⎦等号成立的条件是112,222x x x ⎡⎤=⇒=∈⎢⎥⎣⎦,所以()f x的最小值是即λ≤AB. 故选:AB15.(2021·江西高三其他模拟(文))已知命题“存在x ∈R ,使220ax x -+≤”是假命题,则实数a 的取值范围是___________. 【答案】18a >【解析】因为命题“存在x ∈R ,使220ax x -+≤”是假命题, 所以命题“R x ∀∈,使得220ax x -+>”是真命题,当0a =时,得2x <,故命题“R x ∀∈,使得220ax x -+>”是假命题,不合题意;当0a ≠时,得0180a a >⎧⎨∆=-<⎩,解得18a >.故答案为:18a >16.(2021·全国高三专题练习)若“存在x ∴[﹣1,1],3210x x a ⋅++>成立”为真命题,则a 的取值范围是___.【答案】9(,)2-+∞【解析】存在x ∴[﹣1,1],3210xxa ⋅++>成立,即213x xa +-<在[1,1]x ∈-上有解, 设2121()333x xx xf x +⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭,[1,1]x ∈-, 易得y =f (x )在[﹣1,1]为减函数, 所以()[(1),(1)]f x f f ∈-,即213()3332f x +≤≤+,即91()2f x ≤≤, 即92a -<,所以92a >-, 故答案为:9(,)2-+∞.17.(2020·江西高三其他模拟(文))若命题:p x R ∃∈,210x mx -+<为假命题,则m 的取值范围是______. 【答案】[]22-,【解析】命题:p x R ∃∈,210x mx -+<为假命题,p ∴⌝:x R ∀∈,210x mx -+≥为真命题,则240m ∆=-≤,解得22m -≤≤,即m 的取值范围是[]22-,. 故答案为:[]22-,. 18.(2020·北京密云区·高三期中)若“01x ∃>,使得11x a x +<-.”为假命题,则实数a 的最大值为___________. 【答案】3【解析】由“∴x 0>1,使得11x a x +<-.”为假命题,可知,“11,1x x a x ∀>+≥-”为真命题, 11a x x ∴≤+-恒成立,由11111311x x x x +=-++≥=--,当且仅当2x =时取等号, 即a 的最大值为3. 故答案为:3.19.(2021·湖南永州市·高三二模)若对[]1,2x ∀∈,都有20ax x -≤,则实数a 的取值范围是___________. 【答案】1,2⎛⎤-∞ ⎥⎝⎦【解析】解:因为[]1,2x ∀∈,都有20ax x -≤,所以[]1,2x ∀∈,都有1a x≤,令()1g x x =,[]1,2x ∈,因为()1g x x=,在[]1,2x ∈上单调递减,所以()()min 122g x g ==,所以12a ≤,即实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦;故答案为:1,2⎛⎤-∞ ⎥⎝⎦20.(2020·全国高三月考(文))已知命题():0,p x ∀∈+∞,2230x mx -+>,命题:q m a <;若p 是q 的充分不必要条件,则实数a 的取值范围为______.【答案】()+∞【解析】设命题():0,p x ∀∈+∞,2230x mx -+>成立对应的m 的范围为集合A ,{}|B m m a =<若()0,x ∀∈+∞,223x mx +>,则32x m x +>,所以min 32m x x ⎛⎫<+ ⎪⎝⎭而32x x +≥32x x =,即x =时等号成立,所以min32x x ⎛⎫+= ⎪⎝⎭m <{|A m m =<,因为p 是q 的充分不必要条件,所以A B,所以a > 即实数a的取值范围为()+∞.故选答案为:()+∞21.(2020·凌海市第二高级中学高三月考)命题“2,1x R x t ∀∈>+”为真命题,则实数t 的取值范围是__________. 【答案】(),1-∞- 【解析】命题“2,1x R x t ∀∈>+”为真命题,且20x ≥,10t ∴+<,则1t <-,故实数t 的取值范围是(),1-∞-.故答案为:(),1-∞-.22.(2020·上海徐汇区·高三一模)用数学归纳法证明()2511222n n N -*++++∈能被31整除时,从k 到1k +添加的项数共有__________________项(填多少项即可). 【答案】5【解析】当n k =时,原式为:251122...2k -++++,当1n k =+时,原式为251551525354122...222222k k k k k k -+++++++++++++, 比较后可知多了55152535422222k k k k k ++++++++,共5项. 故答案为:523.(2020·浙江高三其他模拟)用数学归纳法证明:111111111234212122n n n n n-+-++-=+++-++,第一步应验证的等式是__________;从“n k =”到“1n k =+”左边需增加的等式是_________.【答案】11122-=()()1121121k k -+-+ 【解析】当1n =时,应当验证的第一个式子是11122-=,从“n k =”到“1n k =+”左边需增加的式子是()()1121121k k -+-+24.(2021·全国高三专题练习)设数列{}n a 满足11a =,12(23)n n a a n +=--. (1)计算2a ,3a .猜想{}n a 的通项公式并利用数学归纳法加以证明; (2)记2n nn b a =⋅,求数列{}n b 的前n 项和n S .【答案】(1)23a =,35a =,21n a n =-;证明见解析;(2)1(23)26n n S n +=-⨯+.【解析】(1)由题意可得2121213a a =+=+=,3221615a a =-=-=, 由数列{}n a 的前三项可猜想数列{}n a 是以1为首项,2为公差的等差数列, 即21n a n =-, 证明如下:当1n =时,12111a =⨯-=成立; 假设n k =时,21k a k =-成立.那么1n k =+时,12(23)2(21)(23)212(1)1k k a a k k k k k +=--=---=+=+-也成立. 则对任意的*n ∈N ,都有21n a n =-成立;(2)因为(21)2n n b n =-.∴23123252(21)2n n S n =⨯+⨯+⨯++-⨯,∴ 23412123252(21)2n n S n +=⨯+⨯+⨯++-⨯,∴∴-∴得:2341222222222(21)2n n n S n +-=+⨯+⨯+⨯++⨯--⨯()211122122(21)26(23)212n n n n n -++⨯-=+--⨯=---⨯-.∴1(23)26n n S n +=-⨯+.25.(2020·全国高三专题练习)已知数列{}n a 满足:11a =,点()()*1,n n a a n +∈N 在直线21y x =+上.(1)求2a ,3a ,4a 的值,并猜想数列{}n a 的通项公式; (2)用数学归纳法证明(1)中你的猜想.【答案】(1)2343,7,15a a a ===,21n n a =-;(2)证明见解析.【解析】(1)因为点()()*1,n n a a n N +∈在直线21y x =+上所以121n n a a +=+, 因为11a =,故22113a =⨯+=,32317a =⨯+=, 427115a =⨯+=,由上述结果,猜想:21nn a =-.(2)1︒,当1n =时,1211a =-=成立,2︒,假设当()1,n k k k N =≥∈时,21kk a =-成立,那么,当1n k =+时,()1121221121kk k k a a ++=+=-+=-成立,由1︒,2︒可得21nn a =-.26.(2020·黑龙江哈尔滨市·高三月考(理))已知数列{}n a 满足1a m =,2n a ≠,11210n n n a a a ++-⋅-=. (1)求2a ,3a ,4a ;(2)猜想{}n a 的通项公式,并用数学归纳法加以证明. 【答案】(1)212a m =-,3232m a m -=-,43243ma m-=-;(2)()()()121n n n m a n n m ---=--;证明见解析.【解析】1)因为11210n n n a a a ++-⋅-=,2n a ≠,所以112n na a +=-,又因为1a m = 211122a a m ==--,3212232m a a m -==--,43132243ma a m-==-- (2)()()()121n n n ma n n m---=--证明:1n =时,()1011ma m --==,结论成立 假设n k =时,结论成立,即()()()121k k k ma k k m---=--当1n k =+时:()()()()()()()()()11111122211221211k kk k m a k k m k k m k k m a k km k k m k k m+--====-------+--+------ 结论成立.综上,数列通项为()()()121n n n m a n n m---=-- 27(2020·云南师大附中高三月考(理))设数列{}n a 满足11a =,23a =,当()11112n n n n n a a a n a a -+-+=+++.(1)计算3a ,4a ,猜想{}n a 的通项公式,并加以证明. (2)求证:()()()2221244474111n a a a +++<+++. 【答案】(1)35a =,47a =,21n a n =-,证明见解析;(2)证明见解析. 【解析】(1)解:由11a =,23a =, 所以()123121225a a a a a +=++=+,()234231327a a a a a +=++=+. 猜想:21n a n =-,证明:当2n =时,由11a =,23a =,故成立;假设n k =(2k ≥)时成立,即21k a k =-, 所以()()1111221211k k k k k a a a k k k a a -+-+=++=+=+-+,即当1n k =+时成立,综上所述,21n a n =-. (2)证明:由(1)知,()22411n n a =+, 所以()()()22212444111n a a a ++++++22222211111111221311n n =+++<++++--- ()()1111132411n n =++++⨯⨯-+111111111111232435211n n n n ⎛⎫=+-+-+-++-+- ⎪--+⎝⎭11117112214n n ⎛⎫=++--< ⎪+⎝⎭,证毕.。
简单的逻辑连接词(很好用)
(2)2是素数且3是素数. (真)
探究(二):逻辑联结词“或”
命题(3)是由命
思考 下列三个命题间有什么关系? 题(1)(2)使用联
(1)27是7的倍数;
结词“或”联 结得到的新命
(2)27是9的倍数;
题.
(3)27是7的倍数 或 是9的倍数。
一般地,用逻辑联结词“ ”把命题p和命题q联结起来,
例2 写出下列命题的否定,并判断
它们的真假:
(1)p:y=sinx是周期函数;
(2)p:3<2; (3)p:空集是集合A的子集.
(1)﹁p:y=sinx不是周期函数.
假命题.
(2)﹁p:3≥2.
真命题.
(3)﹁p:空集不是集合A的子集. 假命题
例3 已知p:函数y=ax在R上是减函 数,q:不等式x+|x-2a|>1的解集为R, 若﹁(p∧q)和p∨q都是真命题,求a的取
p与﹁p必有一个是真命题, 另一个是假命题.
பைடு நூலகம்真假相反
例5 写出下列命题的否定,并判断它们的真假:
(1)p:y=sinx 是周期函数;
解: p : y=sinx不是周期函数。
假
(2)p:3 < 2
解: p : 3≥2.
真
(3) p:空集是集合A的子集
解: p : 空集不是集合A的子集。 假
符号“∧”与“∩”开口都是向下
思考4:在如图所示的串联电路中,开
关p、q处于什么状态时灯泡发亮?
pq
同真为真
其余为假
(一假必假)
思考5:如果把上述电路图中开关p、q 的闭合与断开,分别对应命题p、q的真 与假,那么灯泡发亮与命题p∧q的真假 有什么关系?
高考政治逻辑知识点归纳
高考政治逻辑知识点归纳高考政治逻辑知识点归纳是帮助学生更好地理解和掌握政治学科中逻辑学的应用。
逻辑学是研究推理有效性的学科,它在政治学科中有着广泛的应用。
以下是高考政治逻辑知识点的归纳:一、逻辑学的基本概念逻辑学研究的是思维过程和推理方法,它包括形式逻辑和非形式逻辑。
形式逻辑主要关注推理的形式结构,而非形式逻辑则关注推理的内容和语境。
二、命题逻辑命题逻辑是研究简单命题及其逻辑关系的逻辑分支。
它包括:- 命题的概念:命题是表达判断的语句,它具有真或假的属性。
- 命题的类型:简单命题和复合命题。
- 命题的逻辑连接词:如“与”、“或”、“非”、“如果...则...”等。
三、演绎推理演绎推理是从一般到特殊的推理过程,其结论的有效性依赖于前提的真实性。
演绎推理的典型形式是三段论,包括:- 大前提:普遍性的命题。
- 小前提:特殊性的命题。
- 结论:由大前提和小前提推导出的命题。
四、归纳推理归纳推理是从特殊到一般的推理过程,它基于观察和实验得出一般性的结论。
归纳推理包括:- 完全归纳:基于所有可能情况的观察。
- 不完全归纳:基于部分情况的观察。
五、类比推理类比推理是通过比较两个或多个对象的相似性来推断它们在其他属性上的相似性。
类比推理的有效性取决于比较对象之间的相似度。
六、逻辑谬误逻辑谬误是推理过程中的错误,常见的逻辑谬误包括:- 偷换概念:混淆不同概念的界限。
- 循环论证:用结论来证明前提。
- 非此即彼:错误地将复杂问题简化为只有两种可能性。
七、逻辑证明的方法逻辑证明的方法包括:- 直接证明:直接从已知条件推导出结论。
- 反证法:假设结论的否定,然后通过推理得出矛盾,从而证明结论的正确性。
八、逻辑与政治学科的结合在政治学科中,逻辑学的应用可以帮助学生:- 清晰地表达政治观点。
- 批判性地分析政治现象和政策。
- 构建有说服力的政治论证。
结束语:掌握高考政治逻辑知识点,不仅有助于提高学生的逻辑思维能力,还能在政治学科的学习中形成严谨的推理习惯,提高分析问题和解决问题的能力。
一轮复习简单逻辑连接词全称命题特称命题(含答案)
一轮复习简单逻辑连接词全称命题特称命题(含答案)-CAL-FENGHAI.-(YICAI)-Company One1第3讲简单的逻辑联结词、全称量词与存在量词最新考纲 1.了解逻辑联结词“或”“且”“非”的含义;2.理解全称量词与存在量词的意义;3.能正确地对含有一个量词的命题进行否定.知识梳理1.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词.(2)命题p且q、p或q、非p的真假判断p q p且q p或q非p真真真真假真假假真假假真假真真假假假假真2.(1)全称量词:短语“所有的”“任意一个”在逻辑中通常叫做全称量词,用“”表示;含有全称量词的命题叫做全称命题.(2)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,用“”表示;含有存在量词的命题叫做特称命题.3.含有一个量词的命题的否定命题命题的否定x∈M,p(x)x0∈M,p(x0)x0∈M,p(x0)x∈M,p(x)1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)命题p∧q为假命题,则命题p,q都是假命题.(×)(2)若命题p,q至少有一个是真命题,则p∨q是真命题.(√)(3)已知命题p:n0∈N,2n0>1 000,则p:n0∈N,2n0≤1 000.(×)(4)命题“x∈R,x2≥0”的否定是“x∈R,x2<0”.(×)2.(2014·重庆卷)已知命题p :对任意x ∈R ,总有|x |≥0; q :x =1是方程x +2=0的根.则下列命题为真命题的是( ) A .p ∧q B .p ∧q C .p ∧qD .p ∧q 解析 由题意知,命题p 为真命题,命题q 为假命题,故q 为真命题,所以p ∧q 为真命题.答案 A3.(2014·湖南卷)设命题p :x ∈R ,x 2+1>0,则p 为( ) A .x 0∈R ,x 20+1>0 B .x 0∈R ,x 20+1≤0C .x 0∈R ,x 20+1<0D .x ∈R ,x 2+1≤0解析 “x ∈R ,x 2+1>0”的否定为“x 0∈ R ,x 20+1≤0”,故选B. 答案 B4.若命题“x ∈R ,ax 2-ax -2≤0”是真命题,则实数a 的取值范围是________.解析 当a =0时,不等式显然成立;当a ≠0时,由题意知⎩⎨⎧a <0,Δ=a 2+8a ≤0,得-8≤a <0.综上,-8≤a ≤0. 答案 [-8,0]5.(人教A 选修1-1P26A3改编)给出下列命题: ①x ∈N ,x 3>x 2;②所有可以被5整除的整数,末位数字都是0; ③x 0∈R ,x 20-x 0+1≤0;④存在一个四边形,它的对角线互相垂直. 则以上命题的否定中,真命题的序号为________. 答案 ①②③考点一含有逻辑联结词的命题及其真假判断【例1】(1)(2014·辽宁卷)设a,b,c是非零向量.已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中真命题是()A.p∨q B.p∧qC.(p)∧(q) D.p∨(q)(2)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(p)∨(q) B.p∨(q)C.(p)∧(q) D.p∨q解析(1)由于a,b,c都是非零向量,∵a·b=0,∴a⊥b.∵b·c=0,∴b⊥c.如图,则可能a∥c,∴a·c≠0,∴命题p是假命题,∴p是真命题.命题q中,a∥b,则a与b方向相同或相反;b∥c,则b与c方向相同或相反.故a与c方向相同或相反,∴a∥c,即q是真命题,则q是假命题,故p∨q是真命题,p∧q,(p)∧(q),p∨(q)都是假命题.(2)命题“至少有一位学员没有降落在指定范围”包含以下三种情况:“甲、乙均没有降落在指定范围”“甲降落在指定范围,乙没有降落在指定范围”“乙降落在指定范围,甲没有降落在指定范围”.选 A.或者,命题“至少有一位学员没有降落在指定范围”等价于命题“甲、乙均降落在指定范围”的否命题,即“p∧q”的否定.选A.答案(1)A(2)A规律方法若要判断一个含有逻辑联结词的命题的真假,需先判断构成这个命题的每个简单命题的真假,再依据“或”——一真即真,“且”——一假即假,“非”——真假相反,做出判断即可.【训练1】 (1)若命题p:函数y=x2-2x的单调递增区间是[1,+∞),命题q:函数y=x-1x的单调递增区间是[1,+∞),则()A.p∧q是真命题B.p∨q是假命题C.p是真命题D.q是真命题(2)“p∨q”为真命题是“p∧q”为真命题的________条件.解析(1)因为函数y=x2-2x的单调递增区间是[1,+∞),所以p是真命题;因为函数y=x-1x的单调递增区间(-∞,0)和(0,+∞),所以q是假命题.所以p∧q为假命题,p∨q为真命题,p为假命题,q为真命题,故选D.(2)若命题“p∨q”为真命题,则p,q中至少有一个为真命题.若命题“p∧q”为真命题,则p,q都为真命题,因此“p∨q”为真命题是“p∧q”为真命题的必要不充分条件.答案(1)D(2)必要不充分考点二全(特)称命题的否定及其真假判定【例2】 (1)(2014·安徽卷)命题“x∈R,|x|+x2≥0”的否定是()A.x∈R,|x|+x2<0 B.x∈R,|x|+x2≤0C.x0∈R,|x0|+x20<0 D.x0∈R,|x0|+x20≥0(2)(2014·沈阳质量监测)下列命题中,真命题的是()A.x∈R,x2>0 B.x∈R,-1<sin x<1C.x0∈R,2x0<0 D.x0∈R,tan x0=2解析 (1)全称命题的否定是特称命题,即命题“x ∈R ,|x |+x 2≥0”的否定为“x 0∈R ,|x 0|+x 20<0”.故选C.(2)x ∈R ,x 2≥0,故A 错;x ∈R ,-1≤sin x ≤1,故B 错;x ∈R,2x >0,故C 错,故选D.答案 (1)C (2)D规律方法 (1)对全(特)称命题进行否定的方法有:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“x ∈M ,p (x )”是真命题,需要对集合M 中的每个元素x ,证明p (x )成立;要判断特称命题是真命题,只要在限定集合内至少能找到一个x =x 0,使p (x 0)成立.【训练2】 命题“存在实数x ,使x >1”的否定是( ) A .对任意实数x ,都有x >1 B .不存在实数x ,使x ≤1 C .对任意实数x ,都有x ≤1 D .存在实数x ,使x ≤1解析 “存在实数x ,使x >1”的否定是“对任意实数x ,都有x ≤1”.故选C. 答案 C考点三 与逻辑联结词、全(特)称命题有关的参数问题【例3】 已知p :x ∈R ,mx 2+1≤0,q :x ∈R ,x 2+mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是( )A .[2,+∞)B .(-∞,-2]C .(-∞,-2]∪[2,+∞)D .[-2,2]解析 依题意知,p ,q 均为假命题.当p 是假命题时,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,则有Δ=m 2-4≥0,m ≤-2或m ≥2.因此由p ,q 均为假命题得⎩⎨⎧m ≥0,m ≤-2或m ≥2,即m ≥2.答案 A规律方法 以命题真假为依据求参数的取值范围时,首先要对两个简单命题进行化简,然后依据“p ∨q ”“p ∧q ”“p ”形式命题的真假,列出含有参数的不等式(组)求解即可.【训练3】已知命题p:“x∈[0,1],a≥e x”;命题q:“x∈R,使得x2+4x+a =0”.若命题“p∧q”是真命题,则实数a的取值范围是________.解析若命题“p∧q”是真命题,那么命题p,q都是真命题.由x∈[0,1],a≥e x,得a≥e;由x∈R,使x2+4x+a=0,知Δ=16-4a≥0,a≤4,因此e≤a≤4.答案[e,4]微型专题利用逻辑关系判断命题真假2014年高考试题新课标全国Ⅰ卷中考查了一道实际问题的逻辑推理题,这也是今后高考命题的新趋向,大家应加以重视,解决问题的关键是弄清实际问题的含义,结合数学的逻辑关系进行转化.【例4 (1)(2014·新课标全国Ⅰ卷)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为________.(2)对于中国足球参与的某次大型赛事,有三名观众对结果作如下猜测:甲:中国非第一名,也非第二名;乙:中国非第一名,而是第三名;丙:中国非第三名,而是第一名.竞赛结束后发现,一人全猜对,一人猜对一半,一人全猜错,则中国足球队得了第________名.点拨找出符合命题的形式,根据逻辑分析去判断真假.解析(1)由题意可推断:甲没去过B城市,但比乙去的城市多,而丙说“三人去过同一城市”,说明甲去过A,C城市,而乙“没去过C城市”,说明乙去过城市A,由此可知,乙去过的城市为A.(2)由上可知:甲、乙、丙均为“p且q”形式,所以猜对一半者也说了错误“命题”,即只有一个为真,所以可知丙是真命题,因此中国足球队得了第一名.答案(1)A(2)一点评在一些逻辑问题中,当字面上并未出现“或”“且”“非”字样时,应从语句的陈述中搞清含义,并根据题目进行逻辑分析,找出各个命题之间的内在联系,从而解决问题.[思想方法]1.把握含逻辑联结词的命题的形式,特别是字面上未出现“或”、“且”、“非”字眼,要结合语句的含义理解.2.含有逻辑联结词的命题真假判断口诀:p∨q→见真即真,p∧q→见假即假,p与?p→真假相反.3.要写一个命题的否定,需先分清其是全称命题还是特称命题,对照否定结构去写,否定的规律是“改量词,否结论”.[易错防范]1.命题的否定与否命题“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p 的结论.2.命题的否定包括:(1)对“若p,则q”形式命题的否定;(2)对含有逻辑联结词命题的否定;(3)对全称命题和特称命题的否定,要特别注意下表中常见词语的否定.词语词语的否定等于不等于大于不大于(或小于等于)小于不小于(或大于等于)是不是一定是不一定是都是不都是(至少有一个不是)必有一个一个也没有任意的某一个且或或且至多有一个至少有两个基础巩固题组(建议用时:30分钟)一、选择题1.(2014·湖北卷)命题“?x∈R,x2≠x”的否定是()A.?x?R,x2≠x B.?x∈R,x2=x C.?x?R,x2≠x D.?x∈R,x2=x 解析原命题的否定为“?x∈R,x2=x”.答案D2.(2014·天津卷)已知命题p:?x>0,总有(x+1)e x>1,则?p为()A.?x0≤0,使得(x0+1)e x0≤1B.?x0>0,使得(x0+1)e x0≤1C.?x>0,总有(x+1)e x≤1D.?x≤0,总有(x+1)e x≤1解析命题p为全称命题,所以?p:?x0>0,使得(x0+1)e x0≤1.答案B3.(2015·海淀区模拟)已知命题p:?x∈R,x2+x-1<0,则?p为()A.?x∈R,x2+x-1>0 B.?x∈R,x2+x -1≥0C.?x?R,x2+x-1≥0D.?x?R,x2+x -1>0解析含有存在量词的命题的否定,需将存在量词改为全称量词,并将结论否定,即?p:?x∈R,x2+x-1≥0.答案B4.已知命题p:所有有理数都是实数;命题q:正数的对数都是负数,则下列命题中为真命题的是()A.?p∨q B.p∧qC.?p∧?q D.?p∨?q解析不难判断命题p为真命题,命题q为假命题,从而上面叙述中只有?p∨?q为真命题.答案D5.(2014·湖北七市(州)联考)已知命题p:?x∈R,cos x=54;命题q:?x∈R,x2-x+1>0,则下列结论正确的是()A.命题p∨q是假命题B.命题p∧q是真命题C.命题(?p)∧(?q)是真命题D.命题(?p)∨(?q)是真命题解析易判断p为假命题,q为真命题,从而只有选项D正确.答案D6.下列命题中的假命题是()A.?x0∈R,lg x0=0 B.?x0∈R,tan x0=3C.?x∈R,x3>0 D.?x∈R,2x>0解析当x=1时,lg x=0,故命题“?x0∈R,lg x0=0”是真命题;当x=π3时,tan x=3,故命题“?x0∈R,tan x0=3”是真命题;由于x=-1时,x3<0,故命题“?x∈R,x3>0”是假命题;根据指数函数的性质,对?x∈R,2x>0,故命题“?x∈R,2x>0”是真命题.答案C7.设命题p:函数y=sin 2x的最小正周期为π2;命题q:函数y=cos x的图象关于直线x=π2对称.则下列判断正确的是()A.p为真B.?q为假C.p∧q为假D.p∨q为真解析p是假命题,q是假命题,因此只有C正确.答案C8.(2015·武汉调研测试)已知命题p :?φ∈R ,使f (x )=sin(x +φ)为偶函数;命题q :?x ∈R ,cos 2x +4sin x -3<0,则下列命题中为真命题的是( )A .p ∧qB .(?p )∨qC .p ∨(?q )D .(?p )∧(?q )解析 利用排除法求解.?φ=π2,使f (x )=sin(x +φ)=sin ⎝ ⎛⎭⎪⎫x +π2=cos x 是偶函数,所以p 是真命题,?p 是假命题;?x =π2,使cos 2x +4sin x -3=-1+4-3=0,所以q 是假命题,?q 是真命题.所以p ∧q ,(?p )∨q ,(?p )∧(?q )都是假命题,排除A ,B ,D ,p ∨(?q )是真命题,故选C.答案 C二、填空题9.(2014·合肥质量检测)命题p :?x ≥0,都有x 3-1≥0,则?p 是________. 答案 ?x 0≥0,有x 30-1<0.10.命题“?x 0∈⎝ ⎛⎭⎪⎫0,π2,tan x 0>sin x 0”的否定是________. 答案 ?x ∈⎝ ⎛⎭⎪⎫0,π2,tan x ≤sin x 11.若命题p :关于x 的不等式ax +b >0的解集是{x |x >-b a },命题q :关于x 的不等式(x -a )(x -b )<0的解集是{x |a <x <b },则在命题“p ∧q ”、“p ∨q ”、“?p ”、“?q ”中,是真命题的有________.解析 依题意可知命题p 和q 都是假命题,所以“p ∧q ”为假、“p ∨q ”为假、“?p ”为真、“?q ”为真.答案 ?p 、?q12.下列结论:①若命题p :?x ∈R ,tan x =1;命题q :?x ∈R ,x 2-x +1>0.则命题“p ∧?q ”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是a b=-3;③命题“若x 2-3x +2=0,则x =1”的逆否命题:若“x ≠1,则x 2-3x +2≠0”.其中正确结论的序号为________.解析 ①中命题p 为真命题,命题q 为真命题,所以p ∧?q 为假命题,故①正确;②当b =a =0时,有l 1⊥l 2,故②不正确;③正确.所以正确结论的序号为①③.答案 ①③能力提升题组(建议用时:15分钟)13.(2014·衡水中学调研)给定命题p :函数y =ln[(1-x )(1+x )]为偶函数;命题q :函数y =e x -1e x +1为偶函数.下列说法正确的是( ) A .p ∨q 是假命题B .(?p )∧q 是假命题C .p ∧q 是真命题D .(?p )∨q 是真命题解析 对于命题p :令y =f (x )=ln[(1-x )(1+x )],由(1-x )(1+x )>0,得-1<x <1,∴函数f (x )的定义域为(-1,1),关于原点对称,又∵f (-x )=ln[(1+x )(1-x )]=f (x ),∴函数f (x )为偶函数,∴命题p 为真命题;对于命题q :令y =f (x )=e x -1e x +1,函数f (x )的定义域为R ,关于原点对称,f (-x )=e -x -1e -x +1=1e x -11e x +1=1-e x1+e x=-f (x ),∴函数f (x )为奇函数,∴命题q 为假命题,∴(?p )∧q 是假命题,故选B. 答案 B14.(2014·湖南五市十校联考)下列命题中是假命题的是( )A .?α ,β∈R ,使sin(α+β)=sin α+sin βB .?φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数C .?m ∈R ,使f (x )=(m -1)·xm 2-4m +3是幂函数,且在(0,+∞)上单调递减D .?a >0,函数f (x )=ln 2 x +ln x -a 有零点解析 对于A ,当α=0时,sin(α+β)=sin α+sin β成立;对于B ,当φ=π2时,f (x )=sin(2x +φ)=cos 2x 为偶函数;对于C ,当m =2时,f (x )=(m -1)·xm 2-4m +3=x -1=1x ,满足条件;对于D ,令ln x =t ,?a >0,对于方程t 2+t -a=0,Δ=1-4(-a )>0,方程恒有解,故满足条件.综上可知,选B.答案 B15.(2014·北京海淀区测试)若命题“?x 0∈R ,使得x 20+mx 0+2m -3<0”为假命题,则实数m 的取值范围是________.解析 由已知得“?x ∈R ,x 2+mx +2m -3≥0”为真命题,则Δ=m 2-4×1×(2m -3)=m 2-8m +12≤0,解得2≤m ≤6,即实数m 的取值范围是2≤m ≤6.答案 [2,6]16.已知命题p :“?x ∈R ,?m ∈R,4x -2x +1+m =0”,若命题?p 是假命题,则实数m 的取值范围是__________.解析 若?p 是假命题,则p 是真命题,即关于x 的方程4x -2·2x +m =0有实数解,由于m =-(4x -2·2x )=-(2x -1)2+1≤1,∴m ≤1.答案 (-∞,1]17.已知c >0,设命题p :函数y =c x 为减函数.命题q :当x ∈⎣⎢⎡⎦⎥⎤12,2时,函数f (x )=x +1x >1c 恒成立.如果“p ∨q ”为真命题,“p ∧q ”为假命题,则c的取值范围是________.解析 由命题p 为真知,0<c <1,由命题q 为真知,2≤x +1x ≤52,要使此式恒成立,需1c <2,即c >12,若“p 或q ”为真命题,“p 且q ”为假命题,则p ,q 中必有一真一假,当p 真q 假时,c 的取值范围是0<c ≤12;当p 假q 真时,c 的取值范围是c ≥1.综上可知,c 的取值范围是⎝ ⎛⎦⎥⎤0,12∪[1,+∞). 答案 ⎝ ⎛⎦⎥⎤0,12∪[1,+∞)。
高二数学命题及其关系试题答案及解析
高二数学命题及其关系试题答案及解析1.分别写出下列命题的逆命题、逆否命题,并判断它们的真假:(1)若q<1,则方程x2+2x+q=0有实根;(2)若x2+y2=0,则x,y全为零.【答案】(1)见解析(2)见解析)【解析】逆命题是交换原命题条件和结论,逆否命题是交换原命题条件和结论并否定. (Ⅰ)逆命题:若方程x2+2x+q=0有实根,则q<1。
为假命题.逆否命题:若方程x2+2x+q=0无实根,则q≥1,为真命题.(Ⅱ)逆命题:若x、y全为零,则x2+y2=0,为真命题.逆否命题:若x、y不全为零,则x2+y2≠0,为真命题.试题解析:(Ⅰ)逆命题:若方程x2+2x+q=0有实根,则q<1。
为假命题.逆否命题:若方程x2+2x+q=0无实根,则q≥1,为真命题.(Ⅱ)逆命题:若x、y全为零,则x2+y2=0,为真命题.逆否命题:若x、y不全为零,则x2+y2≠0,为真命题.【考点】四种命题之间的关系2.下列命题正确的个数是( )①命题“”的否定是“”;②函数的最小正周期为”是“”的必要不充分条件;③在上恒成立在上恒成立;④“平面向量与的夹角是钝角”的充分必要条件是“”.A.1B.2C.3D.4【答案】B【解析】(1)把存在量词改为全称量词,同时把结论否定,正确. (2)函数最小正周期为,则;当,函数的周期为,函数的最小正周期为”是“”的必要不充分条件,正确.(3)在上恒成立在上恒成立;(4)“平面向量与的夹角是钝角”的充分必要条件是,且,错误.【考点】命题的真假性.3.命题r:如果则且;若命题r的否命题为p,命题r的否定为q,则A.P真q假B. P假q真C. p,q都真D. p,q都假【答案】A【解析】由已知有命题r:如果则且,是真命题;由于命题r的否命题为p,则命题p为:如果则或,其逆否命题为:如果且则显然是真命题,故知命题P也是真命题;又因为命题r的否定为q,所以命题q是假命题;故选A.【考点】简易逻辑.4.已知命题函数在区间上是单调递增函数;命题不等式对任意实数恒成立.若是真命题,且为假命题,求实数的取值范围.【答案】或.【解析】首先分别求出命题和命题为真命题时实数的取值范围,然后由是真命题,且为假命题知,真假或假真.最后分别求出这两种情况下的实数的取值范围即可.试题解析:若命题为真,则,若命题为真,则或,即.∵是真命题,且为假命题∴真假或假真∴或,即或.【考点】复合命题的真假.5.下列说法中正确的是()A.命题“若,则”的否命题为假命题B.命题“使得”的否定为“,满足”C.设为实数,则“”是“”的充要条件D.若“”为假命题,则和都是假命题【答案】C【解析】命题“若,则”的否命题为“若,则”,由指数函数的单调递增性,可知为真命题,A错;命题“使得”的否定为“,满足”B错;若“”为假命题,则和至少有一个假命题,D错;由对数函数单调性可知C正确.【考点】否命题,特称命题的否定,充要条件,简单的复合命题.6.下列说法中正确的是()A.命题“若,则”的否命题为假命题B.命题“使得”的否定为“,满足”C.设为实数,则“”是“”的充要条件D.若“”为假命题,则和都是假命题【答案】C【解析】(1)原命题:“若,则”。
考研逻辑必考知识点归纳
考研逻辑必考知识点归纳考研逻辑是研究生入学考试中的一个重要组成部分,它考查的是考生的逻辑思维能力。
以下是考研逻辑必考知识点的归纳:一、基本概念逻辑学是一门研究有效推理的学科。
考研逻辑的基本概念包括命题、推理、论证、逻辑形式、逻辑谬误等。
命题是表达判断的语言单位,推理是从已知命题推导出新命题的过程,论证则是用推理来支持或证明某个命题的过程。
二、命题逻辑命题逻辑是研究命题及其逻辑关系的逻辑分支。
它包括简单命题和复合命题。
简单命题只包含一个判断,而复合命题由两个或多个简单命题通过逻辑连接词(如“和”、“或”、“非”、“如果...则...”等)连接而成。
三、谓词逻辑谓词逻辑是研究个体和属性之间关系的逻辑分支。
它使用量词(如“所有”、“存在”等)来表达个体与属性的关系。
谓词逻辑能够表达更为复杂的逻辑关系,是数学和科学领域中常用的逻辑形式。
四、演绎推理演绎推理是一种从一般到特殊的推理方式,其结论在逻辑上必然由前提得出。
演绎推理的典型形式是三段论,它由两个前提和一个结论组成。
五、归纳推理归纳推理是一种从特殊到一般的推理方式,它通过观察个别事实来推断一般规律。
归纳推理的结论不是逻辑上必然的,而是基于概率。
六、类比推理类比推理是通过比较两个或多个对象的相似性来推断它们在其他属性上也可能相似的推理方式。
类比推理的结论也不是逻辑上必然的,而是具有启发性。
七、逻辑谬误逻辑谬误是推理过程中的错误,常见的逻辑谬误包括偷换概念、偷梁换柱、非黑即白、滑坡谬误等。
识别和避免逻辑谬误是提高逻辑思维能力的重要方面。
八、逻辑证明逻辑证明是使用逻辑推理来证明某个命题的正确性。
逻辑证明要求每一步推理都必须是有效的,从而确保结论的正确性。
结束语考研逻辑的知识点非常广泛,掌握这些基础知识点对于提高考生的逻辑思维能力和解决实际问题具有重要意义。
希望以上的归纳能够帮助考生系统地复习和准备考研逻辑部分,最终在考试中取得优异的成绩。
命题及常用逻辑用语
3.给出命题:“已知a、b、c、d是实数,若ab且cd,则
a+cb+d”. 对原命题、逆命题、否命题、逆否命题而言,其中的真命 题有( A.0个 ) B.1个 C.2个 D.4个
解析:ab且cd,可以推出a+c=b+d,从而原命题、逆
否命题均不成立, 又若a=b或c=d,a+c=b+d不一定成立,从而逆命题、否命题 均不成立. 答案:A
D.非p:
解析:命题p是全称命题,全称命题的否定是特 称命题.
• 6.设p、q是两个命题,则复合命题“p∨q为真, p∧q为假”的充要条件是( • ) B.p、q中
A.p、q中至个为真 D.p为真、q为假
•
答案:C
【例1】 已知 p:|5x-2|>3,q:
,非q:B={x|-5≤x≤1},
∴非p是非q的充分不必要条件.
【例2】 已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R, 对命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b)”. (1)写出其逆命题,判断其真假,并证明你的结论; (2)写出其逆否命题,判断其真假,并证明你的结论.
记做:
pq
2、四种命题
条件P的否定,记作“P”。读作“非 P”。
原命题: 则q 若p 逆命题: 则p 若q
否命题:若 p 则 q
逆否命题:若 q 则 p
结论1:要写出一个命题的另外三个命 题关键是分清命题的题设和结论(即 把原命题写成“若P则Q”的形式) 注意:三种命题中最难写 的是否命题。 结论2:(1)“或”的否定为“且”, (2)“且”的否定为“或”, (3)“都”的否定为“不 都”。
集合法与转化法
高中数学:1.2 简单的逻辑联结词2-复合命题 教案苏教版选修2-1
A).U指出下列复合命题的形式及构成它的简单命题:的倍数,也是6的倍数;)李强是篮球运动员或跳高运动员;q的形式,其中复合命题的构成要注意:(1)“p 或q ”、“p 且q ”的两种复合命题中的p和q 可以是毫无关系的两个简单命题(2)“非p ”这种复合命题又叫命题的否定;是对原命题的关键词进行否定;下面给出一些关键词的否定: 正面 语词 或等于大于 小于 是 都是至少一个至多 一个 否定 且 不等于 不大于(小于等于) 不小于(大于等于)不是 不都是一个也 没有至少 两个六、回顾反思本节课讨论了简单命题与复合命题的构成,以及逻辑联结词“或”、“且”、“非”的含义。
需要注意的是否命题的关键词的否定是问题的核心。
七、课后练习1.命题“方程x 2=2的解是x =±2是( )A .简单命题B .含“或”的复合命题C .含“且”的复合命题D .含“非”的复合命题 2.用“或”“且”“非”填空,使命题成为真命题: (1)x ∈A ∪B ,则x ∈A__________x ∈B ; (2)x ∈A ∩B ,则x ∈A__________x ∈B ;(3)a 、b ∈R ,a >0__________b >0,则ab >0. 3.把下列写法改写成复合命题“p 或q ”“p 且q ”或“非p ”的形式: (1)(a -2)(a+2)=0; (2)⎩⎨⎧==21y x ;(3)a >b ≥0.4.已知命题p :a ∈A ,q :a ∈B ,试写出命题“p 或q ”“p 且q ”“┐p ”的形式.5.用否定形式填空:(1)a >0或b ≤0; (2)三条直线两两相交(3)A 是B 的子集.___________________ (4)a ,b 都是正数.___________ (5)x 是自然数.___________________(在Z 内考虑)6.在一次模拟打飞机的游戏中,小李接连射击了两次,设命题p 1是“第一次射击中飞机”,命题p 2是“第二次射击中飞机”试用p 1、p 2以及逻辑联结词或、且、非(∨,∧,┐)表示下列命题:命题S :两次都击中飞机; 命题r :两次都没击中飞机; 命题t :恰有一次击中了飞机; 命题u :至少有一次击中了飞机.。
命题及常用逻辑用语
• 5.命题的否定 • (1)存在性命题:p:∃x∈R , p(x)它的否 定是非p: ∀ x∈A,非p (x) • (2)全称命题:q: ∀ x∈A,q(x),它的否定是 非p:∃x∈A ,非p (x); • (3)p或q的否定为:非p且非q;p且q的否定为: 非p或非q.
6.用p和q分别表示原命题的条件和结论,用 非p和非q分别表示p和q的否定.
(2)逆否命题:若f(a)+f(b)<f(-a)+f(-b),
则a+b<0,为真命题.
因为原命题⇔它的逆否命题,所以证明原命题为真命题即可. ∵a+b≥0,∴a≥-b,b≥-a. 又∵f(x)在(-∞,+∞)上是增函数,∴f(a)≥f(-b),f(b)≥f(-a), ∴f(a)+f(b)≥f(-a)+f(-b).
3.(2011新课标全国卷· 理)已知a与b均为单位向量,其夹角为θ,有 下列四个命题
2π p1:|a+b|>1⇔θ∈ 0, 3 2π p2:|a+b|>1⇔θ∈ ,π 3 π p3:|a-b|>1⇔θ∈ 0, 3 π p4:|a-b|>1⇔θ∈ ,π 3
C.“若一个数不是负数,则它的平方不是正数”
D.“若一个数的平方不是正数,则它不是负数” 答案:B
• 2.设x是实数,则“x>0”是“|x|>0”的( ) • A.充分而不必要条件 B.必要而不 充分条件 • C.充要条件 D.既不 充分也不必要条件 • 解析:∵x>0⇒|x|>0,|x|>0⇒x>0或 x<0. • 答案:A
解:(1)逆命题是:若f(a)+f(b)≥f(-a)+f(-b), 则a+b≥0,真命题.
(完整版)命题及逻辑连接词
命题及逻辑连接词1. 原命题:若p 则q ;逆命题为: ;否命题为: ;逆否命题为:2. 四种命题的真假关系:两个命题互为逆否命题,它们有 的真假性;3. 常见词语的否定:如:“等于、大于、小于、是、都是、至多一个、至少一个、任意的、所有的、至多n 个、任意两个、或、且”的否定分别是: 4.5. 命题的否定与否命题的区别,全称性命题的否定为存在性命题,存在性命题的否定为全称性命题.例题1.把写列命题写成若p 则q 的形式,写出它们的逆命题、否命题与逆否否命题,并判断真假.()1 当2x =时,2320x x -+=;()2 对顶角相等。
例题2.分别写出由写列命题构成的“p 且q ”、“p 或q ”、“非p ”形式的复合命题并判断真假。
()1:p 3是9的约数;:q 3是18的约数;()2:p 菱形的对角线相等;:q 菱形的对角线互相垂直;()3 :{,,}p a a b c ∈;:{}{1,,}q a b c ;()4 :p 不等式2221x x ++>的解集是R ;:q 不等式2221x x ++≤的解集为∅. 例题3.试判断下列命题的真假()12,20x R x ∀∈+>; ()24,1x N x ∀∈≥;()33,1x Z x ∃∈<; ()42,2x R x ∃∈=.例题4.已知命题p :方程210x mx ++=有两个不等的负实根.命题q :方程244(2)10x m x +-+=无实根.若“p 或q ”为真,“p 且q ”为假,求实数m 的范围.高考真题:1. (广东)已知命题:p 所有有理数都是实数,命题:q 正数的对数都是负数,则下列命题中为真命题的是.A ()p ⌝或q .B p 且 q .C ()p ⌝且()q ⌝.D ()p ⌝或()q ⌝2. (宁夏)已知命题p :1sin ,≤∈∀x R x ,则.A 1sin ,:≥∈∃⌝x R x p .B 1sin ,:≥∈∀⌝x R x p.C 1sin ,:>∈∃⌝x R x p .D 1sin ,:>∈∀⌝x R x p3. (重庆)命题:“若12<x ,则11<<-x ”的逆否命题是 .A 若12≥x ,则11-≤≥x x ,或 .B 若11<<-x ,则12<x.C 若11-<>x x ,或,则12>x .D 若11-≤≥x x ,或,则12≥x4. (山东)命题“对任意的01,23≤+-∈x x R x ”的否定是.A 不存在01,23≤+-∈x x R x .B 存在01,23≥+-∈x x R x.C 存在01,23>+-∈x x R x .D 对任意的01,23>+-∈x x R x5. (山东)给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是.A 3.B 2.C 1 .D 0 1. 有下列四个命题:①“若0=+y x ,则y x ,互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1≤q ,则022=++q x x 有实根”的逆命题;④“不等边三角形的三个内角相等”的逆否命题;其中真命题的个数是2. 命题“存在x Z ∈,使22x x m ++≤0”的否定是.A 存在x Z ∈使22x x m ++0> .B 不存在x Z ∈使22x x m ++0> .C 对任意x Z ∈使22x x m ++≤0 .D 对任意x Z ∈使22x x m ++0>3. 已知)0(012:,0208:222>≤-++≤--m m x x q x x p ,且非p 是非q 的必要不充分条件,求实数m 的取值范围.。
简单的逻辑联结词的定义逻辑联结词的意义
一、简单的逻辑联结词的定义
1、逻辑联结词:或、且、非;
2、且:一般地,用连接词“且”把命题p和命题q联结起来,得到一个新命题,记作p∧q,读作p且q;
3、或:一般地,用连接词“或”把命题p和命题q联结起来,得到一个新命题,记作p∨q,读作p或q;
4、非:一般地,对一个命题p全盘否定,就得到一个新命题,记作p,读作“非p”或“p的否定”;
5、简单命题:不含逻辑联结词的命题(常用小写字母p,q,r,s,…表示)
6、复合命题:由简单命题和逻辑联结词构成的命题;
7、复合命题的形式及真值表:(1)“非p”的复合命题的真假与命题“p”的真假相反。
(2)“p且q”形式的复合命题的真假,只有命题“p”与“q”都为真时才为真,否则为假;
(3)“p或q”形式的复合命题的真假,只有命题“p”与“q”都为假时才为假,否则为真。
人教课标版高中数学选修1-1:《简单的逻辑联结词》教案-新版
1.3简单的逻辑联结词一、教学目标 【核心素养】培养学生的数学抽象,构建基本的数学逻辑体系. 【学习目标】(1)通过数学实例,了解简单的逻辑联结词“或”、“且”、“非”的含义; (2)能正确地利用“或”、“且”、“非”表述相关的数学内容; (3)知道命题的否定与否命题的区别. 【学习重点】逻辑联结词“或”、“且”、“非”的含义; 【学习难点】逻辑联结词“或”的含义; 二、教学设计 (一)课前设计 1.预习任务任务1:阅读教材P 14—P 17,,思考:“或”“且”“非”的含义 任务2:“p ∧q ”、“p ∨q ”、“非p ”形式命题的真假如何判断 2.预习自测1.已知复合命题()p q ∧⌝是真命题,则下列命题中也是真命题的是( ) A .()p q ⌝∨ B .p q ∨ C .p q ∧ D .()()p q ⌝∧⌝ 答案:B解析:由已知得命题p 是真命题,命题q ⌝是真命题,所以命题q 是假命题,根据复合命题的真假判断p q ∨是真命题,其他选项都是假命题,故选B . 考点:复合命题真假的判断.2.已知命题:p 若π6α=,则1sin 2α=;命题:q 若1sin 2α=,则π6α=.下面四个结论中正确的是( ) A .p q ∧是真命题 B .p q ∨是真命题 C .p ⌝是真命题 D .q ⌝是假命题 答案:B解析:由题意可知,命题p 为真命题,命题q 为假命题,所以p q ∨是真命题,故选B .考点:复合命题的真假判断. 3.下列说法错误的是( )A .若命题“p q ∧”为真命题,则“p q ∨”为真命题B .若命题“p q ⌝∨”为假命题,则“p q ∧⌝”为真命题C .命题“若a b >,则22ac bc >”的否命题为真命题D .命题“若0m >,则方程20x x m +-=有实根”的逆命题为真命题 答案:D解析:对于A :若“p q ∧”为真命题,则p ,q 都是真命题,所以“p q ∨”为真命题,故A 正确; 对于B :若“p q ⌝∨”为假命题,则,p q ⌝都是假命题,∴p 是真命题,q ⌝是真命题,所以“p q ∧⌝”为真命题,故B 正确;对于C :“若a b >,则22ac bc >”的否命题为“若a b ≤,则22ac bc ≤”,∵c 2≥0,∴由a b ≤可得到22ac bc ≤,故C 正确;对于D :命题“若0m >,则方程20x x m +-=有实根”的逆命题为“若方程20x x m +-=有实根,则0m >”,方程20x x m +-=有实数根只需1140,,4m m ∆=+≥≥-所以不一定得到0m >,所以D 错.故选D .(二)课堂设计1.知识回顾(1)学生自己写两个命题p,q,并判断其真假.(2)再将两个命题用“或、且、非”联结,能否判断真假?2.问题探究问题探究一:逻辑连接词观察与思考:想一想:从串联电路A B C之间的一些关系,我们能得到什么样的启示?阅读与举例:请大家阅读教材中P14所举例的例子,并试着举一些类似的命题.探究:考察下列命题:(1)6可以被2或3整除;(2)6是2的倍数且6是3的倍数;(3不是有理数;想一想:这些命题的构成各有什么特点?1.逻辑连结词命题中的“或”、“且”、“非”这些词叫做逻辑联结词2.三种命题构成形式的表示常用小写拉丁字母p、q、r、s……表示命题1.用联结词“且(and)”联结命题p和命题q,就得到一个新命题,记作__________,读作__________.2.用联结词“或(or)”联结命题p和命题q,就得到一个新命题,记作__________,读作__________.3.对一个命题p全盘否定(not),就得到一个新命题,记作__________,读作_________或__________.问题探究二:三种命题真假判断1.“p且q”形式的复合命题真假:2.“p或q”形式的复合命题真假:3.“非p”形式的复合命题真假:3.课堂总结【知识梳理】1.逻辑联结词与集合的关系“或、且、非”三个逻辑联结词,对应着集合运算中的“并、交、补”,因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题.2.正确区别命题的否定与否命题“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论.命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系.3.“p∧q”“p∨q”“非p”形式命题的真假判断步骤(1)准确判断简单命题p、q的真假;(2)判断“p∧q”“p∨q”“¬p”命题的真假.【重难点突破】含有逻辑联结词的命题的真假判断规律(1)p∨q:当p、q中至少有一个为真时,p或q为真;当p、q都为假时,p或q 为假.(一真必真)(2)p∧q:当p、q为真时,p且q为真;当p、q中至少有一个为假时,p且q 为假.(一假必假)(3)非p:当p为真时,非p为假;当p为假时,非p为真(真假相反)4.随堂检测1.“xy≠0”是指()A.x≠0且y≠0B.x≠0或y≠0C.x,y至少一个不为0D.x,y不都是0解析:【知识点:逻辑联结词】答案:A2.下列命题:①矩形的对角线相等且互相平分;②10的倍数一定是5的倍数;③方程x2=1的解为x=±1;④3∉{1,2}.其中使用逻辑联结词的命题有()A.1个B.2个C.3个D.4个答案:C解析:【知识点:逻辑联结词】①中有“且”;②中没有;③中有“或”;④中有“非”.故选C.3.若条件p:x∈A∩B,则¬p是()A.x∈A且x∉BB.x∉A或x∉BC.x∉A且x∉BD.x∈A∪B答案:B解析:【知识点:逻辑联结词,四种命题】由p:x∈A∩B,得p:x∈A且x∈B,∴¬p是x∉A或x∉B.4.设命题p:函数y=sin2x的最小正周期为π2;命题q:函数y=cos x的图象关于直线x=π2对称.则下列判断正确的是()A.p为真B.¬q为假C.p∧q为假D.p∨q为真答案:C解析:【知识点:逻辑联结词,命题真假的判断】因周期T=2π2=π,故p为假命题.因函数y=cos x的对称轴为x=kπ(k∈Z),故q也为假命题,所以p∧q为假.5.已知P:2+2=5,Q:3>2,则下列判断正确的是()A.“P∨Q”为假,“¬Q”为假B.“P∨Q”为真,“¬Q”为假C.“P∧Q”为假,“¬P”为假D.“P∧Q”为真,“P∨Q”为假答案:B解析:【知识点:逻辑联结词,命题真假的判断】由题意可知,P假、Q真,所以P或Q为真,P且Q为假,非Q为假,非P为真,故选B.(三)课后作业★基础型自主突破1.若p是真命题,q是假命题,则()A.p∧q是真命题B.p∨q是假命题C.⌝p是真命题D.⌝q是真命题答案:D解析:【知识点:逻辑联结词,命题真假的判断】2.若命题“p∧(¬q)”为真命题,则()A.p∨q为假命题B.q为假命题C.q为真命题D.(¬p)∧(¬q)为真命题答案:B解析:【知识点:逻辑联结词,命题真假的判断】p∧(¬q)为真命题,故¬q为真命题,所以q为假命题.3.若p、q是两个简单命题,“p或q”的否定是真命题,则必有()A.p真q真B.p假q假C.p真q假D.p假q真答案:B解析:【知识点:逻辑联结词,命题真假的判断】“p或q”的否定是:“¬p且¬q”是真命题,则¬p、¬q都是真命题,故p、q都是假命题.4.命题p:2不是质数,命题q:2是无理数,在命题“p∧q”、“p∨q”、“¬p”、“¬q”中,假命题是__________________,真命题是__________________.答案:“p∧q”“¬q”;“p∨q”“¬p”解析:【知识点:逻辑联结词,命题真假的判断】因为命题p假,命题q真,所以命题“p∧q”假,命题“p∨q”真,“¬p”真,“¬q”假.5.已知p:x2-x≥6,q:x∈Z.若“p∧q”,“¬q”都是假命题,则x的值组成的集合为_____________.答案:{-1,0,1,2}解析:【知识点:逻辑联结词,命题真假的判断】 因为“p ∧q ”为假,“¬q ”为假,所以q 为真,p 为假.故⎩⎨⎧ x 2-x <6x ∈Z ,即⎩⎨⎧-2<x <3x ∈Z,因此x 的值可以是-1,0,1,2. 6.如果命题“非p 或非q ”是假命题,给出下列四个结论:①命题“p 且q ”是真命题;②命题“p 且q ”是假命题;③命题“p 或q ”是真命题;④命题“p 或q ”是假命题. 其中正确的结论是( ) A .①③ B .②④ C .②③ D .①④解析:【知识点:逻辑联结词,命题真假的判断】 答案:A“非p 或非q ”是假命题⇒“非p ”与“非q ”均为假命题⇒p 与q 均为真命题. 7.分别指出下列各组命题构成的“p ∧q ”、“p ∨q ”形式的命题的真假. (1)p :6<6,q :6=6;(2)p :梯形的对角线相等,q :梯形的对角线互相平分;(3)p :函数y =x 2+x +2的图象与x 轴没有公共点,q :不等式x 2+x +2<0无解; (4)p :函数y =cos x 是周期函数,q :函数y =cos x 是奇函数. 答案:见解析解析:【知识点:逻辑联结词,命题真假的判断】(1)∵p 为假命题,q 为真命题,∴p ∧q 为假命题,p ∨q 为真命题. (2)∵p 为假命题,q 为假命题,∴p ∧q 为假命题,p ∨q 为假命题. (3)∵p 为真命题,q 为真命题,∴p ∧q 为真命题,p ∨q 为真命题. (4)∵p 为真命题,q 为假命题,∴p ∧q 为假命题,p ∨q 为真命题. 8.写出下列命题的否定: (1)若a >b >0,则1a <1b ;(2)a 、b ∈N ,若ab 可被5整除,则a 、b 中至少有一个能被5整除;(3)若x2-x-2=0,则x≠-1且x≠2.答案:见解析解析:【知识点:命题的否定】(1)若a>b>0,若1a≥1b.(2)正方形的四条边不全相等.(2)a、b∈N,若ab可以被5整除,则a、b都不能被5整除;(3)若x2-x-2=0,则x=-1或x=2.★★能力型师生共研9.已知命题p:偶函数的图象关于y轴对称,命题q:正数的对数都是正数,则下列命题中为真命题的是()A.p∧qB.(¬p)∧(¬q)C.(¬p)∧qD.p∧(¬q)答案:D解析:【知识点:逻辑联结词,命题真假的判断】∵p为真命题,q为假命题,∴p∧(¬q)为真命题,故选D.10.已知命题p:x2-4x+3<0与q:x2-6x+8<0;若“p且q”是不等式2x2-9x +a<0成立的充分条件,则实数a的取值范围是()A.(9,+∞)B.{0}C.(-∞,9]D.(0,9]解析:【知识点:逻辑联结词,充分必要条件】答案:C11.设命题p:函数y=sin 2x的最小正周期为π2;命题q:函数y=cos x的图象关于直线x=π2对称.则下列判断正确的是()A.p为真B.q为真C .p ∧q 为假D .p ∨q 为真 答案:C解析:【知识点:逻辑联结词,命题真假的判断】 命题p ,q 均为假命题,故p ∧q 为假命题.12.已知命题p :所有有理数都是实数,命题q :正数的对数都是负数,则下列命题中为真命题的是( ) A .(⌝p )∨q B .p ∧q C .(⌝p )∧(⌝q ) D .(⌝p )∨(⌝q ) 答案:D解析:【知识点:逻辑联结词,命题真假的判断】命题p 为真命题,命题q 为假命题,所以¬p 为假命题,¬q 为真命题,所以(¬p )∨(¬q )为真命题.13.命题p :若a ·b >0,则a 与b 的夹角为锐角;命题q :若函数f (x )在(-∞,0]及(0,+∞)上都是减函数,则f (x )在(-∞,+∞)上是减函数.下列说法中正确的是( )A .“p 或q ”是真命题B .“p 或q ”是假命题C .⌝p 为假命题D .⌝q 为假命题 答案:B解析:【知识点:逻辑联结词,命题真假的判断】∵当a ·b >0时,a 与b 的夹角为锐角或零度角,∴命题p 是假命题;命题q 是假命题,例如f (x )=⎩⎨⎧-x +1,x ≤0,-x +2,x >0,综上可知,“p 或q ”是假命题.14.已知命题p :函数f (x )=|lg x |为偶函数,q :函数g (x )=lg|x |为奇函数,由它们构成的“p ∨q ”“p ∧q ”和“¬p ”形式的新命题中,真命题是________________. 解析:【知识点:逻辑联结词,命题的否定,命题真假的判断】答案:¬p函数f (x )=|lg x |为非奇非偶函数,g (x )=lg|x |为偶函数,故命题p 和q 均为假命题,从而只有“¬p ”为真命题.15.设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满足⎩⎨⎧x 2-x -6≤0,x 2+2x -8>0. (1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2) ⌝p 是⌝q 的充分不必要条件,求实数a 的取值范围.答案:见解析解析:【知识点:逻辑联结词,命题真假的判断】(1)由x 2-4ax +3a 2<0,得(x -3a )(x -a )<0.又a >0,所以a <x <3a ,当a =1时,1<x <3,即p 为真命题时,1<x <3.由⎩⎨⎧ x 2-x -6≤0,x 2+2x -8>0,解得⎩⎨⎧-2≤x ≤3,x <-4或x >2,即2<x ≤3. 所以q 为真时,2<x ≤3. 若p ∧q 为真,则⎩⎨⎧1<x <3,2<x ≤3⇔2<x <3, 所以实数x 的取值范围是(2,3).(2)设A ={x |x ≤a ,或x ≥3a },B ={x |x ≤2,或x >3},因为¬p 是¬q 的充分不必要条件,所以A ⊆B .所以0<a ≤2且3a >3,即1<a ≤2.所以实数a 的取值范围是(1,2].16.已知命题p :方程2x 2+ax -a 2=0在[-1,1]上有解;命题q :只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0,若命题“p ∨q ”是假命题,求a 的取值范围. 答案:见解析解析:【知识点:逻辑联结词,命题真假的判断,一元二次方程解的讨论】 由2x 2+ax -a 2=0,得(2x -a )(x +a )=0,∴x =a 2或x =-a ,∴当命题p 为真命题时, ⎪⎪⎪⎪⎪⎪a 2≤1或|-a |≤1, ∴|a |≤2.又“只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0”,即抛物线y =x 2+2ax +2a 与x 轴只有一个交点,∴Δ=4a 2-8a =0,∴a =0或a =2.∴当命题q 为真命题时,a =0或a =2.∴命题“p∨q”为真命题时,|a|≤2.∵命题“p∨q”为假命题,a>2,或a<-2.∴a>2或a<-2.即a的取值范围为{a|}★★★探究型多维突破17.设a、b、c是非零向量,已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c,则下列命题中真命题是()A.p∨qB.p∧qC.(¬p)∧(¬q)D.p∨(¬q)解析:【知识点:逻辑联结词,命题真假的判断】答案:A取a=c=(1,0),b=(0,1)知,a·b=0,b·c=0,但a·c≠0,∴命题p为假命题;∵a∥b,b∥c,∴存在λ,μ∈R,使a=λb,b=μc,∴a=λμc,∴a∥c,∴命题q是真命题.∴p∨q为真命题.18.在一次篮球投篮比赛中,甲、乙两球员各投篮一次.设命题p:“甲球员投篮命中”;q:“乙球员投篮命中”,则命题“至少有一名球员投中”可表示为()A.p∨qB.p∧(¬q)C.(¬p)∧(¬q)D.(¬p)∨(¬q)解析:【知识点:逻辑联结词,命题的否定】答案:A至少有一名球员投中为p∨q.19.已知a>0,设命题p:函数y=a x在R上单调递增;命题q:不等式x2-ax +1>0对x∈R恒成立.若p∨q为真命题,p∧q为假命题,求实数a的取值范围.答案:见解析解析:【知识点:逻辑联结词,命题真假的判断】∵函数y=a x在R上单调递增,∴a>1,∴p :a >1.∵不等式x 2-ax +1>0时x ∈R 恒成立,∴Δ=a 2-4<0,∴-2<a <2. ∴q :0<a <2.又∵p ∨q 为真,p ∧q 为假,∴p 、q 一真一假.当p 真q 假时,⎩⎪⎨⎪⎧ a >1a ≥2,∴a ≥2.当p 假q 真时,⎩⎪⎨⎪⎧ 0<a ≤10<a <2,∴0<a ≤1,综上可知,实数a 的取值范围是(0,1]∪[2,+∞)20.已知p :方程x 2+mx +1=0有两个不等的负根;q :方程4x 2+4(m -2)x +1=0无实根.若p 或q 为真,p 且q 为假,求m 的取值范围.答案:见解析解析:【知识点:逻辑联结词,命题真假的判断】若方程x 2+mx +1=0有两个不等的负根x 1,x 2,则⎩⎨⎧ Δ>0,x 1+x 2<0,x 1x 2>0,即⎩⎨⎧Δ=m 2-4>0,m >0. 解得m >2,即p :m >2.若方程4x 2+4(m -2)x +1=0无实根,则Δ=16(m -2)2-16=16(m 2-4m +3)<0.解得1<m <3,即q :1<m <3. ∵p 或q 为真,p 且q 为假,∴p 、q 两命题应一真一假,即p 为真、q 为假或p 为假、q 为真.∴⎩⎨⎧ m >2,m ≤1或m ≥3或⎩⎨⎧m ≤2,1<m <3.解得m ≥3或1<m ≤2. ∴m 的取值范围是(1,2]∪[3,+∞).(四)自助餐1.已知命题p :1∈{x |(x +2)(x -3)<0},命题q :∅={0},则下列判断正确的是( )A .p 假q 假B .“p 或q ”为真C .“p 且q ”为真D .p 假q 真答案:B解析:【知识点:逻辑联结词,命题真假的判断】∵{x|(x+2)(x-3)<0}={x|-2<x<3},∴1∈{x|(x+2)(x-3)<0},∴p真.∵∅≠{0},∴q假.故“p或q”为真,“p且q”为假,故选B.2.若命题p:0是偶数,命题q:2是3的约数,则下列结论中正确的是()A.“p∨q”为假B.“p∨q”为真C.“p∧q”为真D.以上都不对.答案:B解析:【知识点:逻辑联结词,命题真假的判断】命题p为真命题,命题q为假命题,故“p∨q”为真命题.3.已知命题p、q,则命题“p∨q为真”是命题“p∧q为真”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:B解析:【知识点:逻辑联结词,命题真假的判断,充分必要条件】p∧q为真⇒p真且q真⇒p∨q为真;p∨q为真⇒p真或q真⇒/p∧q为真.4.命题p:“方程x2+2x+a=0有实数根”;命题q:“函数f(x)=(a2-a)x是增函数”,若“p∧q”为假命题,且“p∨q”为真命题,则实数a的取值范围是()A.a>0B.a≥0C.a>1D.a≥1解析:【知识点:逻辑联结词,命题真假的判断】答案:B当p真时,Δ=4-4a≥0,解得a≤1.当q真时a2-a>0,解得a<0或a>1.∵p ∧q 为假命题,p ∨q 为真命题,∴p,q 中一真一假.(1)当p 真q 假时,得0≤a ≤1.(2)当p 假q 真时得a>1,由(1)(2)得所求a 的取值范围是a ≥0.故选B .5.命题p :函数y =log a (ax +2a )(a >0且a ≠1)的图象必过定点(-1,1);命题q :如果函数y =f (x )的图象关于(3,0)对称,那么函数y =f (x -3)的图象关于原点对称,则有( )A .“p 且q ”为真B .“p 或q ”为假C .p 真q 假D .p 假q 真答案:C【知识点:逻辑联结词,命题真假判断】y =log a (ax +2a )=log a a (x +2)=1+log a (x +2),当x =-1时,log a (x +2)=0, ∴函数y =log a (ax +2a )(a >0且a ≠1)的图象过定点(-1,1),故p 真;如果函数y =f (x )的图象关于点(3,0)对称,则函数y =f (x -3)的图象关于点(6,0)对称,故q 假,∴选C .6.p :函数f (x )=lg x +1有零点;q :存在α、β,使sin(α-β)=sin α-sin β,在p ∨q ,p ∧q ,¬p ,¬q 中真命题有( )A .1个B .2个C .3个D .4个答案:B解析:【知识点:逻辑联结词,命题真假的判断】∵f ⎝ ⎛⎭⎪⎫110=0,∴p 真;∵α=β时,sin(α-β)=0=sin α-sin β,∴q 真,故p ∨q 为真,p ∧q 为真,¬p 为假,¬q 为假.7.分别用“p ∧q ”、“p ∨q ”填空.(1)命题“0是自然数且是偶数”是__________________形式;(2)命题“5小于或等于7”是__________________形式;(3)命题“正数或0的平方根是实数”是__________________形式.答案: p ∧q ;p ∨q ;p ∨q解析:【知识点:逻辑联结词】8.设命题p :a 2<a ,命题q :对任何x ∈R ,都有x 2+4ax +1>0,命题p ∧q 为假,p ∨q 为真,则实数a 的取值范围是__________________.答案:-12<a ≤0或12≤a <1解析:【知识点:逻辑联结词】由a 2<a 得0<a <1,∴p :0<a <1;由x 2+4ax +1>0恒成立知Δ=16a 2-4<0,∴-12<a <12,∴q :-12<a <12,∵p ∧q 为假,p ∨q 为真,∴p 与q 一真一假,p 假q 真时,-12<a ≤0,p 真q 假时,12≤a <1,∴实数a 的取值范围是-12<a ≤0或12≤a <1.9.已知命题p :不等式x 2+x +1≤0的解集为R ,命题q :不等式x -2x -1≤0的解集为{x |1<x ≤2},则命题“p ∨q ”“p ∧q ”“¬p ”“¬q ”中为真命题是__________________. 解析:【知识点:逻辑联结词,命题真假的判断】答案:p ∨q ,¬p∴∀x ∈R ,x 2+x +1>0,∴命题p 为假,¬p 为真;∵x -2x -1≤0⇔⎩⎨⎧(x -2)(x -1)≤0x -1≠0⇔1<x ≤2.∴命题q 为真,p ∨q 为真,p ∧q 为假,¬q 为假.10.已知命题p :1x -1<1,命题q :x 2+(a -1)x -a >0,若¬p 是¬q 的充分不必要条件,则实数a 的取值范围是__________________.答案:(-∞,-2)解析:【知识点:逻辑联结词,充分必要条件】命题p :1x -1<1,∴x >2或x <1. 命题q :x 2+(a -1)x -a >0,∴(x +a )(x -1)>0.∵¬p 是¬q 的充分不必要条件,∴q 是p 的充分不必要条件.∴-a >2,∴a <-2.11.已知命题p :关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立;命题q :函数f (x )=-(5-2a )x 是减函数,若p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围.答案:见解析解析:【知识点:逻辑联结词,命题真假的判断】设g (x )=x 2+2ax +4,由于关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,所以函数g (x )的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0. 所以-2<a <2,所以命题p :-2<a <2;又f (x )=-(5-2a )x 是减函数,则有5-2a >1,即a <2.所以命题q :a <2. ∵p ∨q 为真命题,p ∧q 为假命题,∴p 和q 一真一假.(1)若p 为真命题,q 为假命题,则⎩⎨⎧ -2<a <2a ≥2,此不等式组无解. (2)若p 为假命题,q 为真命题,则⎩⎨⎧a ≤-2或a ≥2a <2,解得a ≤-2. 综上,实数a 的取值范围是(-∞,-2].12.已知p :|3x -4|>2;q :1x 2-x -2>0;r :(x -a )(x -a -1)<0. (1)¬p 是¬q 的什么条件;(2)若¬r 是¬p 的必要不充分条件,求实数a 的取值范围.答案:见解析解析:【知识点:逻辑联结词,充分必要条件】(1)p :|3x -4|>2⇒x >2或x <23,q :1x 2-x -2>0⇒x >2或x <-1, ¬p :23≤x ≤2,¬q :-1≤x ≤2,∴¬p ⇒¬q ,¬q ⇒/ ¬p ,∴¬p 是¬q 的充分不必要条件.(2)r :a <x <a +1,¬r :x ≥a +1或x ≤a .∵¬r 是¬p 的必要不充分条件,∴a ≥2或a +1≤23,即a ≥2或a ≤-13.数学视野建立逻辑的语言,使逻辑学象数学那样也有一套完美的、通用的符号,其思想也可以追溯到莱布尼茨.他认为,我们可以建立一种普遍的、没有歧义的语言,通过这种语言,就可以把推理转变为演算.一旦发生争论,我们只要坐下来,拿出纸和笔算一算就行了.这里,他实际上提出了数理逻辑的两个基本思想:构造形式语言和建立演算.但是,对于他所设想的语言,他要求:“它能这样地形成和排列符号,使得它能表达一些思想,或者说使得它们之间具有和这些思想之间的关系相同的关系.一个表达式是一些符号的组合,这些符号能表象被表示的事物,表达式的规律如下:如果被表示的那个事物的观念是由一些事物的一些观念组成的,那么那个事物的表达式也是由这些事物的符号组成的.”(张家龙,第46-47 页)莱布尼茨的这些论述,实际上就是要将逻辑形式化.不过莱布尼茨没有实现他的两个设想.1879年,逻辑学家弗雷格发表了名著的《概念文字——一种模仿算术语言构造的纯思维的形式语言》.在这本书中,弗雷格借鉴了两种语言,一种是传统逻辑使用的语言,另一种是算术的语言.从而成功地构造了一种逻辑的形式语言,即:一种表意的符号语言,并且用这种语言建立了一个一阶谓词演算系统,实现了莱布尼茨提出建立一种普遍语言的思想.其实,在莱布尼茨之前,从亚里士多德开始,对逻辑学的研究所使用的语言就是一种半形式化的语言.这种半形式化的语言就是用字母表达一般概念.。
[选修2-1]·[2命题与基本逻辑连接词] · [基础] · [知识点+典型例题]·[教师版]
命题与基本逻辑连接词知识讲解一、命题及其关系1.命题的定义定义:我们把用语言、符号或式子表达的,可以判断真假的语句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫假命题.注意:并不是任何语句都是命题,只有能判断真假的语句才是命题.一般来说,疑问句,祈使句,感叹句都不是命题,但是反义疑问句是命题.如:a.“这是一棵大树”;b.“2x<”;c.“三角函数是周期函数吗?”,“但愿每一个三次方程都有三个根”,“指数函数的图像真漂亮!”d.125>“”,“6=2”,“π”是无理数;e.“每一个不小于6的偶数都是两个奇素数之和”(歌德巴赫猜想);“在2010年前,将有人登上火星”2.命题的结构结构:数学中,具有“若p,则q”这种形式的命题是常见的,我们把这种命题中的p称为命题的条件,q称为命题的结论.3.命题的四种形式形式:一般地,用p和q分别表示原命题的条件和结论,用p⌝和q⌝来表示p和q的否定,⌝,于是四种命题的形式就是:原命题:若p,则q;逆命题:若q,则p;否命题:如果p⌝.则q⌝;逆否命题:如果q⌝,则p注意:关于逆命题、否命题与逆否命题,也可以如下表述:(1)交换原命题的条件和结论,所得的命题是逆命题.如:同位角相等,两直线平行.它的逆命题就是:两条直线平行,同位角相等.(2) 同时否定原命题的条件和结论,所得的命题是否命题如上例的否命题是:同位角不相等,两直线补平行.(3) 交换原命题的条件个结论,并同时否定,所得的命题是逆否命题.如上例:两条直线不平行,同位角不相等.4.四种命题的相互关系(1).四种命题以及它们之间的关系1).原命题为真,它的逆命题不一定为真;如:原命题“若0a=,则0ab=”是真命题,它的逆命题“若0a=”是假命题.ab=,则02) .原命题为真,它的否命题不一定为真;如:原命题“若0a=,则0ab=”是真命题,它的否命题“若0ab≠”是假命题.a≠,则03) .原命题为真,它的逆否命题一定为真;如:原命题“若0a=,则0ab=”是真命题,它的否命题“若0ab≠,则0a≠”是假命题.4) .互为逆否的命题是等价命题,它们同真同假,综上所述:在一个命题的四种命题中,真命题的个数要么是0个,要么是2个,要么是4个.四种情况:(2)四种命题它们之间的等价关系关系:互为逆否命题是互为等价命题(即真假相同),而其它的命题不是互为等价命题(即真假不一定相等).这一等价性,可以从集合的角度来解释:设{}=,即使命题p为A x p x()真的对象所组成的集合,{}B=()x q x ,因此由p q ⇒可知A B ⊆, U U C A C B ∴⊆,即p q ⌝⌝⇒,反过来,若p q ⌝⌝⇒,即U U C A C B ⊆,∴A B ⊆,即p q ⇒5.命题的否定与否命题的区别(1) 若命题为“若p ,则q ”,则其命题的否定:“若p ,则q ⌝”,而其否命题是:“若p ⌝,则q ⌝”.(2) 常见的一些词语和它的否定词语对照表二、基本逻辑连接词1. “且”“或”“非”的概念(1) 且定义:一般地,用逻辑联结词“且”把命题p 和q 联结起来,就得到一个新命题,记作p q ∧,读作“p 且q ”.逻辑联结词“且”与日常语言中的“并且”、“及”、“和”相当.可以用“且”定义集合的交集:{|()()}A B x x A x B =∈∧∈. 判断命题p q ∧的真假:当p q 、都为真命题,p q ∧就为真命题;当p q 、两个命题中只要有一个命题为假命题,p q ∧ 就为假命题. (2) 或定义:一般地,用逻辑联结词“或”把命题p 或q 联结起来,就得到一个新命题,记作p q ∨,读作“p 或q ”.逻辑联结词“或”的意义和日常语言中的“或者”相当.可以用“或”定义集合的并集:{|()()}A B x x A x B =∈∨∈. 判断命题p q ∨的真假:当p q 、两个命题中,只要有一个命题为真命题时,p q ∨为真命题;当p q 、两个命题都为假命题,p q ∨为假命题 (3) 非定义:一般地,对命题p 加以否定,得到一个新的命题,记作p ⌝,读作“非p ”或“p 的否定”.逻辑联结词“非”(也称为“否定”)的意义是由日常语言中的“不是”“全盘否定”“问题的反面”等抽象而来.有()p p ⌝⌝=成立.可以用“非”来定义集合A 在全集U 中的补集:{|()}{|}U A x U x A x U x A =∈⌝∈=∈∉ð.判断p ⌝命题的真假: p ⌝和p 不能同真同假,其中一个为真,另一个必定为假.2.复合问题的真值表:三、量词1、全称量词定义:短语“对所有的”“任意一个”在逻辑中通常叫做全称量词,用符号“∀”表示,含有全称量词的命题,叫做全称命题.全称命题的否定:全称命题 q :x A ∀∈,()q x ;它的否定是 q ⌝:x A ∃∈,()q x ⌝.将全称量词变为存在量词,再否定它的性质.2、存在量词定义:短语“存在一个”“至少有一个”在逻辑中通常用叫做参在量词,用符号“∃”表示,含有存在量词的命题,叫做特称命题.存在性命题的否定:存在性命题 p :x A ∃∈,()p x ;它的否定是 p ⌝:x A ∀∈,()p x ⌝. 将存在量词变为全称量词,再否定它的性质.3、全称命题与存在性命题不同的表达方法典型例题一.选择题(共9小题)1.(2018•马鞍山三模)命题p:若a>b,则a﹣1>b﹣1,则命题p的否命题为()A.若a>b,则a﹣1≤b﹣1 B.若a≥b,则a﹣1<b﹣1C.若a≤b,则a﹣1≤b﹣1 D.若a<b,则a﹣1<b﹣1【解答】解:根据否命题的定义:若原命题为:若p,则q.否命题为:若┐p,则┐q.∵原命题为“若a>b,则a﹣1>b﹣1”∴否命题为:若a≤b,则a﹣1≤b﹣1故选:C.2.(2018•郑州二模)命题“∀x∈[1,2],x2﹣3x+2≤0”的否定是()A.∀x∈[1,2],x2﹣3x+2>0 B.∀x∉[1,2],x2﹣3x+2>0C.,,> D.,,>【解答】解:命题:“∀x∈[1,2],x2﹣3x+2≤0的否定是,,>,故选:C.3.(2018•河西区一模)命题p:“∀x∈R,x2+2x+1>0”的否定是()A.∀x∈R,x2+2x+1≤0 B.x0∈R,使得x02+2x0+1≤0C.x0∈R,使得x02+2x0+1>0 D.x0∈R,使得x02+2x0+1<0【解答】解:由全称命题的否定为特称命题,可得命题p:“∀x∈R,x2+2x+1>0”的否定是“x0∈R,使得x02+2x0+1≤0”,故选:B.4.(2018•成都模拟)设有下面四个命题P1:若z满足z∈C,则z∈R;P2:若虚数a+bi(a∈R,b∈R)是方程x3+x2+x+1=0的根,则a﹣bi也是方程的根:P3:已知复数z1,z2则z1=的充要条件是z1z2∈R:P4;若复数z1>z2,则z1,z2∈R.其中真命题的个数为()A.1 B.2 C.3 D.4【解答】解:P1:若z满足z∈C,设z=a+bi,a,b∈R,则z=(a+bi)(a﹣bi)=a2﹣(bi)2=a2+b2∈R;故命题为真命题,P2:由x3+x2+x+1=0得x2(x+1)+x+1=(1+x2)(x+1)=0,则x=﹣1或x=±i,若虚数a+bi(a∈R,b∈R)是方程x3+x2+x+1=0的根,则a﹣bi也是方程的根正确:P3:已知复数z1,z2,则设z1==a+bi,a,b∈R,则z2=a﹣bi,a,b∈R,则z1z2=(a+bi)(a﹣bi)=a2﹣(bi)2=a2+b2∈R成立,即充分性成立,设z1=2i,z2=i,满足:z1z2=2i•i=﹣2∈R,但z1=不成立,即必要性不成立,故此命题为假命题.P4;若复数z1>z2,则z1,z2∈R.正确.其中真命题的个数为3个,故选:C.5.(2017春•邹平县校级期中)已知命题p:x∈A∪B,则非p是()A.x不属于A∩B B.x不属于A或x不属于BC.x不属于A且x不属于B D.x∈A∩B【解答】解:由x∈A∪B知x∈A或x∈B.非p是:x不属于A且x不属于B.故选:C.6.(2017春•历城区校级期中)命题“方程x2﹣4=0的解是x=±2”中,使用的逻辑联结词的情况是()A.没有使用联结词 B.使用了逻辑联结词“或”C.使用了逻辑联结词“且”D.使用了逻辑联结词“非”【解答】解:x=±2是指x=2或x=﹣2.∴使用了使用了逻辑联结词“或”,故选:B.7.(2012秋•临夏市校级期末)命题:“方程X2﹣2=0的解是X=”中使用逻辑联系词的情况是()A.没有使用逻辑连接词B.使用了逻辑连接词“且”C.使用了逻辑连接词“或”D.使用了逻辑连接词“非”【解答】解:命题:“方程X2﹣2=0的解是X=”可以化为:“方程X2﹣2=0的解是X=,或X=﹣”故命题:“方程X2﹣2=0的解是X=”中使用逻辑联系词为:或故选:C.8.(2010秋•景洪市校级期末)命题“方程x2=1的解是x=±1”中,使用逻辑词的情况是()A.没有使用逻辑联结词B.使用了逻辑联结词“或”C.使用了逻辑联结词“且”D.使用了逻辑联结词“或”与“且”【解答】解:命题的等价条件是方程x2=1的解是x=1或x=﹣1,使用了逻辑连接词“或”,故选:B.9.(2018•商丘三模)直三棱柱ABC﹣A1B1C1的直观图及三视图如图所示,D为AC的中点,则下列命题是假命题的是()A.AB1∥平面BDC1B.A1C⊥平面BDC1C.直三棱柱的体积V=4D.直三棱柱的外接球的表面积为4π【解答】解:取A1C1中点O,连接OB1,AO,∵D为AC的中点,∴四边形DAOC1为平行四边形,∴AO∥C1D,又四边形BDOB1为平行四边形,∴BD∥OB1,∴平面AOB1∥平面BDC1,AB1⊂平面AOB1,∴AB1∥平面BDC1.∵由三视图知A1B1⊥平面BCC1B1,BC1⊂平面BCC1B1,∴A1B1⊥BC1,CB1⊥BC1∴BC1⊥平面A1B1C,∴BC1⊥A1C;∵由侧视图知△ABC为等腰直角三角形,D为AC的中点,∴BD⊥AC,∴BD⊥平面ACC1A1,∴A1C⊥BD,又BD∩BC1=B,∴A1C⊥平面BDC1.故B正确;由三视图知:直三棱柱的高为2,底面是直角边长为2的等边三角形,∴体积V=×2×2×2=4,∴C正确;由直三棱柱的结构特征知,直三棱柱为正方体的一半,∴外接球的半径R==,∴外接球的表面积S=4π×3=12π,∴D错误;故选:D.二.填空题(共5小题)10.(2017春•启东市期末)命题:∀x∈A,均有x∈B的否定是x∈A,则x ∉B.【解答】解:全称命题的否定是特称命题,对于集合A,B,命题:“∀x∈A,则x∈B”的否定形式为:命题:“x∈A,则x ∉B”.故答案为:x∈A,则x∉B.11.(2017•南京一模)已知命题p:x∈R,x2+2x+a≤0是真命题,则实数a的取值范围是(﹣∞,1] .【解答】解:若命题p:x∈R,x2+2x+a≤0是真命题,则判别式△=4﹣4a≥0,即a≤1,故答案为:(﹣∞,1].12.(2016春•泰兴市校级期中)“∀x∈[1,2],x2﹣a≤0”为真命题,则a的取值范围是a≥4.【解答】解:“∀x∈[1,2],x2﹣a≤0”为真命题,故a≥(x2)max=4在x∈[1,2]恒成立,则a的取值范围是a≥4,故答案为;a≥4.13.(2015•宿豫区校级模拟)若命题“x∈R,有x2﹣mx﹣m≤0”是假命题,则实数m的取值范围是(﹣4,0).【解答】解:命题“x∈R,有x2﹣mx﹣m≤0”是假命题,它的否定命题是“∀x∈R,有x2﹣mx﹣m>0”,是真命题,即m2+4m<0;解得﹣4<m<0,∴m的取值范围是(﹣4,0).故答案为:(﹣4,0).14.(2013•江阴市校级模拟)命题“∀x∈R,有x2+1≥x”的否定是x∈R,使x2+1<x.【解答】解:∵原命题“∀x∈R,有x2+1≥x”∴命题“∀x∈R,有x2+1≥x”的否定是:x∈R,使x2+1<x.故答案为:x∈R,使x2+1<x.三.解答题(共3小题)15.(2017秋•林芝县校级期末)写出下列命题的否定.(1)命题“存在一个三角形,内角和不等于180°”(2)命题“∀x∈R,|x|+x2≥0”【解答】(本小题(10分),每小题5分)解:(1)特称命题的否定是全称命题,所以,命题“存在一个三角形,内角和不等于180°”的否定是所有三角形,内角和都等于180°.(2)全称命题的否定是特称命题,所以,命题“∀x∈R,|x|+x2≥0”的否定是:x∈R,|x|+x2<0.16.(2017秋•湖北期中)已知p:“实数m满足:(m﹣2a)(m﹣3a)<0(a>0)”;q:“实数m满足:方程表示双曲线”;若p是q的充分不必要条件,求实数a的取值范围.【解答】解:p真则2a<m<3a,q真则(m﹣1)(4﹣m)<0,解得m>4或m<1,p是q的充分不必要条件,则p⇒q,而q不能推出p,或<或的取值范围是,,17.判断下列命题的真假:(1)已知a,b,c,d∈R,若a≠c,或b≠d,则a+b≠c+d.(2)∀x∈N,x3>x2(3)若m>1,则方程x2﹣2x+m=0无实数根.(4)存在一个三角形没有外接圆.【解答】解:(1)为假命题,反例:1≠4,或5≠2,而1+5=4+2(2)为假命题,反例:x=0,x3>x2不成立(3)为真命题,因为m>1⇒△=4﹣4m<0⇒无实数根(4)为假命题,因为每个三角形都有唯一的外接圆.。
命题的知识点总结
命题的知识点总结命题是数学、逻辑学等领域中的重要概念,对于我们理解和解决各种问题具有关键作用。
下面就来对命题的相关知识点进行一个较为全面的总结。
首先,我们要明白什么是命题。
简单来说,命题就是一个能够判断真假的陈述句。
比如说,“2 加 3 等于5”,这就是一个真命题;而“月亮是由奶酪组成的”,这显然是一个假命题。
需要注意的是,疑问句、祈使句和感叹句一般都不是命题,因为它们无法明确地判断真假。
命题通常可以分为简单命题和复合命题。
简单命题就是不能再分解为更简单命题的命题,比如“今天是晴天”。
而复合命题则是由简单命题通过逻辑连接词组合而成的,常见的逻辑连接词有“且”“或”“非”等。
例如,“今天是晴天且明天会下雨”就是一个复合命题。
在判断一个命题的真假时,需要依据一定的定义、定理和实际情况。
比如,对于数学中的命题,就要根据数学的规则和定理来判断。
对于一些与现实生活相关的命题,则要结合实际情况和常识来确定其真假。
命题之间还有着各种关系。
等价命题就是指两个命题在任何情况下真假性都相同。
比如,“如果一个三角形是等边三角形,那么它的三个内角相等”和“如果一个三角形的三个内角相等,那么它是等边三角形”就是等价命题。
还有逆命题和否命题。
对于原命题“若 p 则q”,它的逆命题就是“若q 则p”,否命题则是“若¬p 则¬q”。
这里的“¬”表示否定。
需要注意的是,原命题为真,其逆命题和否命题不一定为真,但原命题和它的逆否命题同真同假。
命题的推理也是一个重要的方面。
推理就是根据已知的命题和逻辑规则得出新的命题。
常见的推理方法有演绎推理和归纳推理。
演绎推理是从一般到特殊的推理,比如根据“所有的三角形内角和为180 度”,推出某个具体三角形的内角和为 180 度。
归纳推理则是从特殊到一般的推理,通过观察多个具体的例子,总结出一般性的结论。
在数学中,命题常常用于证明定理和解决问题。
证明一个命题的过程需要严谨的逻辑和清晰的思路。
2命题与基本逻辑连接词-简单难度-讲义
命题与基本逻辑连接词知识讲解一、命题及其关系1.命题的定义定义:我们把用语言、符号或式子表达的,可以判断真假的语句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫假命题.注意:并不是任何语句都是命题,只有能判断真假的语句才是命题.一般来说,疑问句,祈使句,感叹句都不是命题,但是反义疑问句是命题.如:a.“这是一棵大树”;b.“2x<”;c.“三角函数是周期函数吗?”,“但愿每一个三次方程都有三个根”,“指数函数的图像真漂亮!”d.125“”,“6=2”,“π”是无理数;e.“每一个不小于6的偶数都是两个奇素数之>和”(歌德巴赫猜想);“在2010年前,将有人登上火星”2.命题的结构结构:数学中,具有“若p,则q”这种形式的命题是常见的,我们把这种命题中的p称为命题的条件,q称为命题的结论.3.命题的四种形式形式:一般地,用p和q分别表示原命题的条件和结论,用p⌝和q⌝来表示p和q的否定,⌝,于是四种命题的形式就是:原命题:若p,则q;逆命题:若q,则p;否命题:如果p⌝.则q⌝;逆否命题:如果q⌝,则p注意:关于逆命题、否命题与逆否命题,也可以如下表述:(1)交换原命题的条件和结论,所得的命题是逆命题.如:同位角相等,两直线平行.它的逆命题就是:两条直线平行,同位角相等.(2) 同时否定原命题的条件和结论,所得的命题是否命题如上例的否命题是:同位角不相等,两直线补平行.(3) 交换原命题的条件个结论,并同时否定,所得的命题是逆否命题.如上例:两条直线不平行,同位角不相等.4.四种命题的相互关系(1).四种命题以及它们之间的关系1).原命题为真,它的逆命题不一定为真;如:原命题“若0a=,则0ab=”是真命题,它的逆命题“若0ab=,则0a=”是假命题.2) .原命题为真,它的否命题不一定为真;如:原命题“若0a=,则0ab=”是真命题,它的否命题“若0a≠,则0ab≠”是假命题.3) .原命题为真,它的逆否命题一定为真;如:原命题“若0a=,则0ab=”是真命题,它的否命题“若0ab≠,则0a≠”是假命题.4) .互为逆否的命题是等价命题,它们同真同假,综上所述:在一个命题的四种命题中,真命题的个数要么是0个,要么是2个,要么是4个.四种情况:(2)四种命题它们之间的等价关系关系:互为逆否命题是互为等价命题(即真假相同),而其它的命题不是互为等价命题(即真假不一定相等).这一等价性,可以从集合的角度来解释:设{}()A x p x =,即使命题p 为真的对象所组成的集合,{}B=()x q x ,因此由p q ⇒可知A B ⊆, U U C A C B ∴⊆,即p q ⌝⌝⇒,反过来,若p q ⌝⌝⇒,即U U C A C B ⊆,∴A B ⊆,即p q ⇒5.命题的否定与否命题的区别(1) 若命题为“若p ,则q ”,则其命题的否定:“若p ,则q ⌝”,而其否命题是:“若p ⌝,则q ⌝”.(2) 常见的一些词语和它的否定词语对照表二、基本逻辑连接词1. “且”“或”“非”的概念(1) 且定义:一般地,用逻辑联结词“且”把命题p 和q 联结起来,就得到一个新命题,记作p q ∧,读作“p 且q ”.逻辑联结词“且”与日常语言中的“并且”、“及”、“和”相当.可以用“且”定义集合的交集:{|()()}A B x x A x B =∈∧∈I . 判断命题p q ∧的真假:当p q 、都为真命题,p q ∧就为真命题;当p q 、两个命题中只要有一个命题为假命题,p q ∧ 就为假命题. (2) 或定义:一般地,用逻辑联结词“或”把命题p 或q 联结起来,就得到一个新命题,记作p q ∨,读作“p 或q ”.逻辑联结词“或”的意义和日常语言中的“或者”相当.可以用“或”定义集合的并集:{|()()}A B x x A x B =∈∨∈U . 判断命题p q ∨的真假:当p q 、两个命题中,只要有一个命题为真命题时,p q ∨为真命题;当p q 、两个命题都为假命题,p q ∨为假命题 (3) 非定义:一般地,对命题p 加以否定,得到一个新的命题,记作p ⌝,读作“非p ”或“p 的否定”.逻辑联结词“非”(也称为“否定”)的意义是由日常语言中的“不是”“全盘否定”“问题的反面”等抽象而来.有()p p ⌝⌝=成立.可以用“非”来定义集合A 在全集U 中的补集:{|()}{|}U A x U x A x U x A =∈⌝∈=∈∉ð.判断p ⌝命题的真假: p ⌝和p 不能同真同假,其中一个为真,另一个必定为假.2.复合问题的真值表:三、量词1、全称量词定义:短语“对所有的”“任意一个”在逻辑中通常叫做全称量词,用符号“∀”表示,含有全称量词的命题,叫做全称命题.全称命题的否定:全称命题 q :x A ∀∈,()q x ;它的否定是 q ⌝:x A ∃∈,()q x ⌝.将全称量词变为存在量词,再否定它的性质.2、存在量词定义:短语“存在一个”“至少有一个”在逻辑中通常用叫做参在量词,用符号“∃”表示,含有存在量词的命题,叫做特称命题.存在性命题的否定:存在性命题 p :x A ∃∈,()p x ;它的否定是 p ⌝:x A ∀∈,()p x ⌝. 将存在量词变为全称量词,再否定它的性质.3、全称命题与存在性命题不同的表达方法述方法①对一切x A∈,()p x成立①至少有一个x A∈,使()p x成立①对每一个x A∈,()p x成立①对有些x A∈,使()p x成立①任选一个x A∈,使()p x成立①对某个x A∈,使()p x成立①凡x A∈,都有()p x成立①有一个x A∈,使()p x成立典型例题一.选择题(共9小题)1.(2018•马鞍山三模)命题p:若a>b,则a﹣1>b﹣1,则命题p的否命题为()A.若a>b,则a﹣1≤b﹣1B.若a≥b,则a﹣1<b﹣1C.若a≤b,则a﹣1≤b﹣1D.若a<b,则a﹣1<b﹣1【解答】解:根据否命题的定义:若原命题为:若p,则q.否命题为:若┐p,则┐q.∵原命题为“若a>b,则a﹣1>b﹣1”∴否命题为:若a≤b,则a﹣1≤b﹣1故选:C.2.(2018•郑州二模)命题“∀x∈[1,2],x2﹣3x+2≤0”的否定是()A.∀x∈[1,2],x2﹣3x+2>0B.∀x∉[1,2],x2﹣3x+2>0C.∃x0∈[1,2],x02−3x0+2>0D.∃x0∉[1,2],x02−3x0+2>0【解答】解:命题:“∀x∈[1,2],x2﹣3x+2≤0的否定是∃x0∈[1,2],x02−3x0+ 2>0,故选:C.3.(2018•河西区一模)命题p:“∀x∈R,x2+2x+1>0”的否定是()A.∀x∈R,x2+2x+1≤0B.∃x0∈R,使得x02+2x0+1≤0C.∃x0∈R,使得x02+2x0+1>0D.∃x0∈R,使得x02+2x0+1<0【解答】解:由全称命题的否定为特称命题,可得命题p:“∀x∈R,x2+2x+1>0”的否定是“∃x0∈R,使得x02+2x0+1≤0”,故选:B.4.(2018•成都模拟)设有下面四个命题P1:若z满足z∈C,则z⋅z∈R;P2:若虚数a+bi(a∈R,b∈R)是方程x3+x2+x+1=0的根,则a﹣bi也是方程的根:P3:已知复数z1,z2则z1=z2→的充要条件是z1z2∈R:P4;若复数z1>z2,则z1,z2∈R.其中真命题的个数为()A.1B.2C.3D.4【解答】解:P1:若z满足z∈C,设z=a+bi,a,b∈R,则z⋅z=(a+bi)(a﹣bi)=a2﹣(bi)2=a2+b2∈R;故命题为真命题,P2:由x3+x2+x+1=0得x2(x+1)+x+1=(1+x2)(x+1)=0,则x=﹣1或x=±i,若虚数a+bi(a∈R,b∈R)是方程x3+x2+x+1=0的根,则a﹣bi也是方程的根正确:P3:已知复数z1,z2,则设z1=z2→=a+bi,a,b∈R,则z2=a﹣bi,a,b∈R,则z1z2=(a+bi)(a﹣bi)=a2﹣(bi)2=a2+b2∈R成立,即充分性成立,设z1=2i,z2=i,满足:z1z2=2i•i=﹣2∈R,但z1=z2→不成立,即必要性不成立,故此命题为假命题.P4;若复数z1>z2,则z1,z2∈R.正确.其中真命题的个数为3个,故选:C.5.(2017春•邹平县校级期中)已知命题p:x∈A∪B,则非p是()A.x不属于A∩B B.x不属于A或x不属于BC.x不属于A且x不属于B D.x∈A∩B【解答】解:由x∈A∪B知x∈A或x∈B.非p是:x不属于A且x不属于B.故选:C.6.(2017春•历城区校级期中)命题“方程x2﹣4=0的解是x=±2”中,使用的逻辑联结词的情况是()A.没有使用联结词B.使用了逻辑联结词“或”C.使用了逻辑联结词“且”D.使用了逻辑联结词“非”【解答】解:x=±2是指x=2或x=﹣2.∴使用了使用了逻辑联结词“或”,故选:B.7.(2012秋•临夏市校级期末)命题:“方程X2﹣2=0的解是X=±√2”中使用逻辑联系词的情况是()A.没有使用逻辑连接词B.使用了逻辑连接词“且”C.使用了逻辑连接词“或”D.使用了逻辑连接词“非”【解答】解:命题:“方程X2﹣2=0的解是X=±√2”可以化为:“方程X2﹣2=0的解是X=√2,或X=﹣√2”故命题:“方程X2﹣2=0的解是X=±√2”中使用逻辑联系词为:或故选:C.8.(2010秋•景洪市校级期末)命题“方程x2=1的解是x=±1”中,使用逻辑词的情况是()A.没有使用逻辑联结词B.使用了逻辑联结词“或”C.使用了逻辑联结词“且”D.使用了逻辑联结词“或”与“且”【解答】解:命题的等价条件是方程x2=1的解是x=1或x=﹣1,使用了逻辑连接词“或”,故选:B.9.(2018•商丘三模)直三棱柱ABC﹣A1B1C1的直观图及三视图如图所示,D为AC的中点,则下列命题是假命题的是()A.AB1∥平面BDC1B.A1C⊥平面BDC1C.直三棱柱的体积V=4D.直三棱柱的外接球的表面积为4√3π【解答】解:取A1C1中点O,连接OB1,AO,∵D为AC的中点,∴四边形DAOC1为平行四边形,∴AO ∥C 1D ,又四边形BDOB 1为平行四边形,∴BD ∥OB 1,∴平面AOB 1∥平面BDC 1,AB 1⊂平面AOB 1, ∴AB 1∥平面BDC 1.∵由三视图知A 1B 1⊥平面BCC 1B 1,BC 1⊂平面BCC 1B 1,∴A 1B 1⊥BC 1,CB 1⊥BC 1 ∴BC 1⊥平面A 1B 1C ,∴BC 1⊥A 1C ;∵由侧视图知△ABC 为等腰直角三角形,D 为AC 的中点,∴BD ⊥AC ,∴BD ⊥平面ACC 1A 1,∴A 1C ⊥BD ,又BD ∩BC 1=B , ∴A 1C ⊥平面BDC 1.故B 正确;由三视图知:直三棱柱的高为2,底面是直角边长为2的等边三角形,∴体积V=12×2×2×2=4,∴C 正确;由直三棱柱的结构特征知,直三棱柱为正方体的一半,∴外接球的半径R=√3×222=√3,∴外接球的表面积S=4π×3=12π,∴D 错误; 故选:D .二.填空题(共5小题)10.(2017春•启东市期末)命题:∀x∈A,均有x∈B的否定是∃x∈A,则x ∉B.【解答】解:全称命题的否定是特称命题,对于集合A,B,命题:“∀x∈A,则x∈B”的否定形式为:命题:“∃x∈A,则x ∉B”.故答案为:∃x∈A,则x∉B.11.(2017•南京一模)已知命题p:∃x∈R,x2+2x+a≤0是真命题,则实数a的取值范围是(﹣∞,1] .【解答】解:若命题p:∃x∈R,x2+2x+a≤0是真命题,则判别式△=4﹣4a≥0,即a≤1,故答案为:(﹣∞,1].12.(2016春•泰兴市校级期中)“∀x∈[1,2],x2﹣a≤0”为真命题,则a的取值范围是a≥4.【解答】解:“∀x∈[1,2],x2﹣a≤0”为真命题,故a≥(x2)max=4在x∈[1,2]恒成立,则a的取值范围是a≥4,故答案为;a≥4.13.(2015•宿豫区校级模拟)若命题“∃x∈R,有x2﹣mx﹣m≤0”是假命题,则实数m的取值范围是(﹣4,0).【解答】解:命题“∃x∈R,有x2﹣mx﹣m≤0”是假命题,它的否定命题是“∀x∈R,有x2﹣mx﹣m>0”,是真命题,即m2+4m<0;解得﹣4<m<0,∴m的取值范围是(﹣4,0).故答案为:(﹣4,0).14.(2013•江阴市校级模拟)命题“∀x∈R,有x2+1≥x”的否定是∃x∈R,使x2+1<x.【解答】解:∵原命题“∀x∈R,有x2+1≥x”∴命题“∀x∈R,有x2+1≥x”的否定是:∃x∈R,使x2+1<x.故答案为:∃x∈R,使x2+1<x.三.解答题(共3小题)15.(2017秋•林芝县校级期末)写出下列命题的否定.(1)命题“存在一个三角形,内角和不等于180°”(2)命题“∀x∈R,|x|+x2≥0”【解答】(本小题(10分),每小题5分)解:(1)特称命题的否定是全称命题,所以,命题“存在一个三角形,内角和不等于180°”的否定是所有三角形,内角和都等于180°.(2)全称命题的否定是特称命题,所以,命题“∀x∈R,|x|+x2≥0”的否定是:∃x∈R,|x|+x2<0.16.(2017秋•湖北期中)已知p:“实数m满足:(m﹣2a)(m﹣3a)<0(a>0)”;q:“实数m满足:方程x2m−1+y24−m=1表示双曲线”;若p是q的充分不必要条件,求实数a的取值范围.【解答】解:p真则2a<m<3a,q真则(m﹣1)(4﹣m)<0,解得m>4或m<1,p是q的充分不必要条件,则p⇒q,而q不能推出p,∴3a ≤1或2a ≥4∴0<a ≤13或a ≥2∴a 的取值范围是(0,13]∪[2,+∞)17.判断下列命题的真假:(1)已知a ,b ,c ,d ∈R ,若a ≠c ,或b ≠d ,则a +b ≠c +d .(2)∀x ∈N ,x 3>x 2(3)若m >1,则方程x 2﹣2x +m=0无实数根.(4)存在一个三角形没有外接圆.【解答】解:(1)为假命题,反例:1≠4,或5≠2,而1+5=4+2(2)为假命题,反例:x=0,x 3>x 2不成立(3)为真命题,因为m >1⇒△=4﹣4m <0⇒无实数根(4)为假命题,因为每个三角形都有唯一的外接圆.。
1-3简单逻辑连接词,全称特称命题
必考部分
必考部分
进入导航
系列丛书
第一章
集合与常用逻辑用语
必考部分
进入导航
系列丛书
第三节
简单的逻辑联结词、全称量词与存在量词
高三总复习 ·北师大版 ·数学(理)
进入导航
第一章
第三节
系列丛书
考 纲 解 读
1 .了 解 逻 辑 联 结 词
“或”、“且”、“非”的 含 义 . . .
2 .理 解 全 称 量 词 与 存 在 量 词 的 意 义 3 .能 正 确 地 对 含 有 一 个 量 词 的 命 题 进 行 否 定
进入导航
第一章
第三节
系列丛书
突破考点·速通关02
互动探究·各个击破
高三总复习 ·北师大版 ·数学(理)
进入导航
第一章
第三节
系列丛书
含 有 逻 辑 联 结 词 的 命 题 的 真 假 判 断
[例1]
( 2 0 1 4 · 湖南理)已 知 命 题 p:若x>y,则-x<-
y;命题q:若x>y,则x2>y2.在命题①p且q;②p或q;③ p且(綈q);④(綈p)或q中,真命题是( )
范 围 ”可 表 示 为 ( A.(綈p)或(綈q) C.(綈p)且(綈q)
答案:A
高三总复习 ·北师大版 ·数学(理)
进入导航
第一章
第三节
系列丛书
解 析 : 本 题 考 查 命 题 的 否 定 与 命 题 的 并 的 含 义 . 甲 没 有 落 在 指 定 区 域 , 可 用 綈p表 示 ; 乙 没 有 落 在 指 定 区 域 , 可 用
∃x∈M,p(x)
∀x∈M,綈p(x)
8.1 命题与逻辑连接词
(3)只有有限步使用规则(1),(2) 所组成的符号串是命题公式。 一个命题公式就是一个合法的 符号串:(P∨R),( (P→(Q∧R)) (QP)都是命题公式,
但(PQ), P→∧R很明显都不合法,
因而都不是命题公式。
约定: (1)公式最外层括号一律可省略 (2)联结词运算优先级依次为: ,(∧,∨),→, 例:P→Q∨(R∧QS) 所表示的 是公式((P)→(Q∨((R∧Q) S))) 定义 B称为公式A的子公式, 如果B是公式A的一部分,
其真值状况 P Q P∧Q 0 0 0 0 1 0 1 0 0 1 1 1
他去了教室,也去了实验室 设P:他去了教室, Q:他去了实验室, 则该命题可表示为P∧Q。 你作硬件,我作软件。 设A:你作硬件, B:我作软件, 则该命题可表示为A∧B
析取词(disjunction)“或”(or) 用符号∨表示 设P,Q表示两命题, 那么P∨Q表示P和Q的析取, 当P和Q有一为真时,P∨Q为真, 只有当P和Q均假时P∨Q为假。 P∨Q读作 “P或Q”。
个质数的和(哥德巴赫猜想)。
(6)第29届奥林匹克运动会开幕 时北京天晴。 (7)好过瘾啊! (8)你去上机吗? (9)请随手关门! (10)我希望有一台笔记本电脑。
(11)我只给那些不给自己刮胡
子的人刮胡子。 解: (1),(2),(3)都是命题, (1),(3)真值为真, (2)真值为假。 (4),(5),(6)也是命题, (7)是感叹句 (8)是疑问句
符合事实的判断其命题真值为真 记为“T”或“1”; 不符合事实的判断其命题真值为 假,记为“F”或“0”。 因此一个命题的真值一定为“真、 假”其中的一个(也有其他的逻辑 不这样定义,如第10章的多值逻 辑和模糊逻辑)。
形式逻辑简明教程
形式逻辑简明教程一、引言形式逻辑是一门研究命题和谓词之间关系的学科,它帮助我们理解和分析逻辑结构,提高我们的推理能力。
本文将为您介绍形式逻辑的基本概念和常见推理规则,帮助您快速入门。
二、命题逻辑命题逻辑是形式逻辑的基础,它研究命题之间的逻辑关系。
命题是陈述句,可以判断为真或假。
在命题逻辑中,我们用符号表示命题,如P、Q、R等。
逻辑连接词用来连接命题,如与、或、非等。
三、命题逻辑的逻辑连接词1. 与:用符号∧表示,表示两个命题都为真时,整个命题才为真。
2. 或:用符号∨表示,表示两个命题中至少有一个为真时,整个命题为真。
3. 非:用符号¬表示,表示命题的否定。
4. 条件:用符号→表示,表示如果前提为真,则结论也为真。
5. 反条件:用符号←表示,表示如果结论为真,则前提也为真。
6. 双条件:用符号↔表示,表示前提和结论相互依赖,要么都为真,要么都为假。
四、命题逻辑的推理规则1. 假言推理:如果前提为真,则结论也为真。
2. 拒取式:如果前提为假,则结论也为假。
3. 假言拒取式:如果结论为假,则前提也为假。
4. 析取三段论:如果两个命题中至少有一个为真,而另一个为假,则整个命题为真。
5. 假言三段论:如果前提和结论相互依赖,且前提为真,则结论也为真。
五、谓词逻辑谓词逻辑是形式逻辑的扩展,它研究谓词之间的逻辑关系。
谓词是描述性的陈述,可以用变量表示。
在谓词逻辑中,我们用量词来描述变量的范围,如∀(全称量词)和∃(存在量词)。
六、谓词逻辑的量词1. 全称量词∀:表示变量的所有值都满足命题。
2. 存在量词∃:表示变量存在一个值使命题为真。
七、谓词逻辑的推理规则1. 全称引入:从一个实例推出一个全称命题。
2. 全称消去:从一个全称命题推出一个实例。
3. 存在引入:从一个实例推出一个存在命题。
4. 存在消去:从一个存在命题推出一个实例。
八、结论形式逻辑是一门重要的学科,它帮助我们理解和分析逻辑结构,提高我们的推理能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12月1日(命题与简单逻辑连接词)
一、选择题:
1. "0"≤a 是函数()()"1"x ax x f -=在区间()+∞,1内单调递增的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
2. 给定命题:p 函数()()[]x x y +-=11ln 为偶函数;命题:q 函数1
1+-=x x e e y 偶函数,下列说法正确的是( )
A. q p ∨为假命题
B.()q p ∧⌝为假命题
C.q p ∧为真命题
D.()q p ∨⌝为真命题
3. 已知命题:p 若()2,1=与()λ,2-=共线,则4-=λ;命题:q R k ∈∀,直线1+=kx y 与圆0222=-+y y x 相交。
则下列结论正确的是( )
B. q p ∨为假命题 B.()q p ∧⌝为真命题
C.q p ∧为假命题
D.()q p ∨⌝为真命题
4.命题:p 若,0,0>>b a 则1=ab 是2≥+b a 的必要不充分条件,命题:q 函数2
3log 2+-=x x y 的定义域是()()+∞-∞-,32, ,则( ) A.q p ∨为假命题 B.p 真q 假
C.q p ∧为真命题
D.p 假q 真
5.""πϕ=是“曲线()ϕ+=x y 2sin 过坐标原点”的( )
A. 充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
6.设{}n a 是等比数列,则“321a a a <<”是“数列{}n a 是递增数列”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
7.一元二次方程()00122≠=++a x ax 有一个正根和一个负根的充分不必要条件是( )
A. 0<a
B.0>a
C.1-<a
D.1<a
8.命题:p “0>x ”是“02>x ”的必要不充分条件,命题:q ABC ∆中,“B A >”是“B A sin sin >”的充要条件,则_______.
A.q p ∨为假命题
B.p 真q 假
C.q p ∧为真命题
D.p 假q 真
二、填空题:
9.关于x 的不等式a x >-32的解集为R 的充要条件是____________.
10.已知命题:p 函数x x y --=22在R 上为增函数;命题:q 函数x x y -+=22在R 上为奇函数.则在命题(1)q p ∨;(2)q p ∧;(3)q p ∨⌝)(;(4))(q p ⌝∧中为真命题的是_________.
11.若命题:p 不等式0>+b ax 的解集为⎭⎬⎫⎩
⎨⎧->a b x x |,命题:q 关于x 的不等式()()0<--b x a x 的解集为{}b x a x <<|,则“q p ∨”,“q p ∧”,“p ⌝”中真命题的是______________.
三、应用题:
12.求证:方程()01222=+-+k x k x 的两个根均大于1的充要条件是.2-<k
13.已知命题:p 方程0122=++ax x 有两个大于1-的实数根,命题:q 关于x 的不等式012>+-ax ax 的解集为R ,若“q p ∨”与“q ⌝”同时为真命题,求实数a 的取值范围。
14.已知命题:p 关于x 的不等式0422>++ax x 对一切R x ∈恒成立,命题:q 函数()()x
a x f 23-=是增函数.若q p ∨为真,q p ∧为假,求实数a 的取值范围。
15.已知0>c ,设:p 函数x c y =在R 上单调递减,:q 曲线
1214422++⎪⎭⎫ ⎝
⎛+-=c x c x y 与x 轴交于不同的两点,若“q p ∨”为真命题,“q p ∧”为假命题,求实数c 的取值范围。
16.已知0>c ,设命题:p 函数x c y =为减函数,命题:q 当⎥⎦
⎤⎢⎣⎡∈2,21x 时,函数()c
x x x f 11>+
=恒成立.如果“q p ∨”为真命题,“q p ∧”为假命题,求实数c 的取值范围。
17.已知命题:p 方程0222=-+ax x a 在[]1,1-上有解;命题:q 只有一个实数x 满足不等式0222≤++a ax x ,若“q p ∨”为假命题,求实数a 的取值范围。
18.已知:p 实数x 满足03422<+-a ax x ,其中,0<a :q 实数x 满足062≤--x x 或0822>-+x x ,若p ⌝是q ⌝的必要不充分条件,求实数a 的取值范围。