八年级下数学竞赛试题

合集下载

初二下学期数学竞赛试题

初二下学期数学竞赛试题

初二下学期数学竞赛试题一、选择题(每题2分,共10分)1. 若a,b,c为正整数,且满足a^2 + b^2 = c^2,那么a,b,c称为勾股数。

下列哪组数不是勾股数?A. 3, 4, 5B. 5, 12, 13C. 7, 24, 25D. 9, 12, 152. 已知x^2 - 5x + 6 = 0,求x的值。

A. x = 2B. x = 3C. x = 1 或 x = 6D. 无解3. 一个圆的半径为r,其面积的公式为S = πr^2。

若半径增加1,则新的面积与原面积的比值是多少?A. πB. 1 + πC. 1 + 2πD. 1 + 2πr4. 一个长方体的长、宽、高分别为a、b、c,其体积为V = abc。

若长增加1,宽和高不变,新的体积与原体积的比值是多少?A. 1 + 1/aB. 1 + 1/bC. 1 + 1/cD. 1 + a/b + a/c5. 一个数列的前三项为1, 1, 2,从第四项开始,每一项都是前三项的和。

这个数列的第五项是多少?A. 4B. 5C. 6D. 7二、填空题(每题3分,共15分)6. 一个分数的分子与分母之和为21,分子比分母小8,该分数是________。

7. 若一个等差数列的首项为a,公差为d,且前n项和为S_n,已知S_5 = 25,S_10 = 100,求a的值。

8. 一个正六边形的内角为120°,边长为1,求其外接圆的半径。

9. 一个函数f(x) = 2x - 3,求f(2)的值。

10. 一个直角三角形的两直角边分别为3和4,求斜边的长度。

三、解答题(每题10分,共30分)11. 证明:若a,b,c为正整数,且a^3 + b^3 = c^3,则a + b = c。

12. 解不等式:2x + 5 > 3x - 2。

13. 一个班级有30名学生,其中15名男生和15名女生。

如果从班级中随机选择3名学生,求至少有1名女生的概率。

四、综合题(每题15分,共30分)14. 在平面直角坐标系中,点A(2,3),点B(-1,-2),求直线AB的方程,并求出与x轴平行且经过点A的直线方程。

八年级下数学竞赛题试卷

八年级下数学竞赛题试卷

一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √9B. √-9C. πD. √02. 如果 a > b > 0,那么下列不等式中正确的是()A. a^2 > b^2B. a^3 > b^3C. a^4 > b^4D. a^5 > b^53. 已知二次函数 y = ax^2 + bx + c(a ≠ 0),如果 a > 0,那么函数图像的开口方向是()A. 向上B. 向下C. 向左D. 向右4. 在直角坐标系中,点A(-2,3)关于x轴的对称点是()A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,-3)5. 如果等差数列 {an} 的公差 d = 3,首项 a1 = 2,那么第10项 an = ()A. 28B. 31C. 34D. 376. 在△ABC中,∠A = 45°,∠B = 90°,∠C = 45°,那么△ABC是()A. 等腰直角三角形B. 等边三角形C. 等腰三角形D. 直角三角形7. 若 x + y = 5,x - y = 1,那么 x^2 - y^2 的值是()A. 24B. 16C. 9D. 48. 下列函数中,定义域为全体实数的是()A. y = √xB. y = 1/xC. y = x^2D. y = log2x9. 如果一个正方形的边长扩大到原来的2倍,那么它的面积扩大到原来的()A. 2倍B. 4倍C. 8倍D. 16倍10. 在△ABC中,若∠A = 60°,∠B = 30°,则sinC的值是()A. 1/2B. √3/2C. 1/√2D. √2/2二、填空题(每题5分,共50分)11. 若 x^2 - 5x + 6 = 0,则 x 的值是 ________。

12. 已知sinθ = 1/2,且θ在第二象限,那么cosθ 的值是 ________。

数学初二竞赛试题及答案

数学初二竞赛试题及答案

数学初二竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列表达式的结果:\[ \frac{3}{4} + \frac{2}{5} \]A. 1B. 0.75C. 0.9D. 1.25答案:C3. 一个数的平方等于9,这个数是:A. 3B. -3C. 3或-3D. 以上都不是答案:C4. 一个长方体的长、宽、高分别为2cm、3cm和4cm,其体积是:A. 24立方厘米B. 26立方厘米C. 12立方厘米D. 8立方厘米答案:A5. 一个圆的直径是14cm,那么它的半径是:A. 7cmB. 14cmC. 2cmD. 28cm答案:A6. 一个等腰三角形的两边长分别为5cm和5cm,底边长为6cm,那么它的周长是:A. 16cmB. 21cmC. 11cmD. 17cm答案:B7. 下列哪个选项表示的是奇数?A. 2B. 4C. 5D. 6答案:C8. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 以上都不是答案:C9. 计算下列表达式的结果:\[ 2^3 - 2^2 \]A. 2B. 4C. 6D. 8答案:A10. 一个直角三角形的两直角边长分别为3cm和4cm,那么它的斜边长是:A. 5cmB. 7cmC. 6cmD. 8cm答案:A二、填空题(每题4分,共20分)11. 一个数的立方等于-8,这个数是______。

答案:-212. 一个数的平方根是4,那么这个数是______。

答案:1613. 一个数的倒数是\[ \frac{1}{3} \],那么这个数是______。

答案:314. 一个数的绝对值是7,那么这个数可以是______。

答案:7或-715. 一个圆的半径是5cm,那么它的周长是______。

答案:31.4cm三、解答题(每题10分,共50分)16. 计算下列表达式的值:\[ (-3)^2 - 4 \times (-2) \]答案:2317. 一个长方体的长、宽、高分别为5cm、4cm和3cm,求它的表面积。

八年级下册数学知识竞赛试题

八年级下册数学知识竞赛试题

八年级下册数学知识竞赛试题一、选择题(共10小题;每小题3分,共30分)1.下列函数中,是一次函数但不是正比例函数的为( ).A. y=-B. y=-C. y=-D. y=2.如图,AD 是△ABC 的角平分线,若AB=10,AC=8,则S △ABD :S △ADC =( ) A. 1:1 B. 4:5 C. 5:4 D. 16:253.在某台风多影响地区,有互相垂直的两条主干线,以这两条主干线为轴建立直角坐标系,单位长为1万米。

最近一次台风的中心位置是P (-1,0),其影响范围的半径是4万米,则下列四个位置中受到了台风影响的是( )A. (4,0)B. (-4,0)C. (2,4)D. (0,4)4.已知正比例函数y=kx 的函数值y 随x 的增大而增大,则一次函数y=kx ﹣k 的图象可能是( )A.B.C.D.5.已知,如图,某人驱车在离A 地10千米的P 地出发,向B 地匀速行驶,30分钟后离P 地50千米,设出发x 小时后,汽车离A 地y 千米(未到达B 地前),则y 与x 的函数关系式为( )A. y=50xB. y=100xC. y=50x-10D. y=100x+106.如图,在矩形ABCD 中,AB=2,AD=3,点E 是BC 边上靠近点B 的三等分点,动点P 从点A 出发,沿路径A→D→C→E 运动,则△APE 的面积y 与点P 经过的路径长x 之间的函数关系用图象表示大致是( )A.B.C.D.7.当-1≤x≤2时,函数y=ax+6满足y <10,则常数a 的取值范围是( ). A. -4<a <0 B. 0<a <2 C. -4<a <2且a≠0 D. -4<a <28.如图,点E 、G 分别是正方形ABCD 的边CD 、BC 上的点,连接AE 、AG 分别交对角线BD 于点P 、Q .若∠EAG=45°,BQ=4,PD=3,则正方形ABCD 的边长为( )(第8题图) (第9题图) (第10题图)A. 6B. 7C. 7D. 59.药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药后时间x(时)之间的函数关系如图所示,则当1≤x≤6时,y 的取值范围是( ) A. ≤y≤ B. ≤y≤8 C. ≤y≤8 D. 8≤y≤1610.如图,E 是边长为4的正方形ABCD 的对角线BD 上一点,且BE=BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BR 于点R ,则PQ+PR 的值是( )A. 2B. 2C. 2D.二、填空题(每小题3分;共21分)11.若函数y=kx+b (k , b 为常数)的图象如下图所示,那么当y >0时,x 的取值范围是________.12.如上右图,已知A 1(1,0),A 2(﹣1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1),…则点A 2017的坐标为________.13.如图,已知A (0,1),B (2,0),把线段AB 平移后得到线段CD ,其中C (1,a ),D (b , 1)则a +b =________.14.一次函数y=kx+b (k 、b 为常数,且k≠0)的图象如上右图所示.根据图象信息可求得关于x 的方程kx+b=﹣3的解为________15. 如图,在矩形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于点F,取EF的中点G,连接CG,BG,BD,DG,下列结论:其中正确的结论是 ________(写所有正确结论的序号).①BE=CD;②∠DGF=135°;③∠ABG+∠ADG=180°;④若=,则3S△BDG=13S△DGF.(第15题图)(第16题图)(第17题图)16.如图,射线OA、BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s、t分别表示行驶距离和时间,则这两人骑自行车的速度相差________km/h.17.如图,已知四边形ABCD中,∠C=72°,∠D=81°.沿EF折叠四边形,使点A、B分别落在四边形内部的点A′、B′处,则∠1+∠2=________°.三、解答题(共2小题;共19分)18.如图,已知直线y=x+3的图象与x、y轴交于A、B两点.直线l经过原点,与线段AB交于点C,把△AOB的面积分为2:1的两部分.求直线l的解析式.19.如图,在平面直角坐标系中,点A(﹣3b,0)为x轴负半轴上一点,点B(0,4b)为y轴正半轴上一点,其中b满足方程:3(b+1)=6.(1)求点A、B的坐标;(2)点C为y轴负半轴上一点,且△ABC的面积为12,求点C的坐标;(3)在x轴上是否存在点P,使得△PBC的面积等于△ABC的面积的一半?若存在,求出相应的点P的坐标;若不存在,请说明理由.四、综合题(共2题;共30分)20.如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.(1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明;(2)判断四边形ABDF是怎样的四边形,并说明理由;(3)若AB=6,BD=2DC,求四边形ABEF的面积.21.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠ACB的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)求证:OE=OF;(2)当点O运动到何处时,四边形AECF是矩形,并证明你的结论;(3)在(2)的条件下,试猜想当△ABC满足什么条件时使四边形AECF是正方形,请直接写出你的结论.。

初二下期数学竞赛试题

初二下期数学竞赛试题

初二下期数学竞赛试题一、选择题(每题3分,共30分)1. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定2. 下列哪个数是无理数?A. 3.14B. πC. 0.33333…(3无限循环)D. √23. 已知一个数列的前三项为1, 2, 4,若此数列是等比数列,那么第5项是:A. 8B. 16C. 32D. 644. 一个圆的半径为r,圆心到圆上任意一点的距离是:A. rB. 2rC. 3rD. 无法确定5. 一个长方体的长、宽、高分别是a、b、c,其体积是:A. abcB. a + b + cC. a/b + b/c + c/aD. a^2 + b^2 + c^26. 一个多项式f(x) = ax^3 + bx^2 + cx + d,若f(1) = 8,f(-1) = -8,那么a + d的值是:A. 0B. 2C. 4D. 87. 一个正整数n,如果它既是3的倍数,又是5的倍数,那么它一定是:A. 15的倍数B. 15或30的倍数C. 15的倍数或30的倍数D. 15的倍数且30的倍数8. 一个等腰三角形的底边长为10,若腰长为x,根据三角形不等式,x的最小值是:A. 5B. 10C. 15D. 209. 若一个二次方程ax^2 + bx + c = 0(a ≠ 0)有实数根,那么判别式Δ = b^2 - 4ac必须:A. 大于0B. 等于0C. 大于等于0D. 小于等于010. 一个函数f(x) = kx + b,若f(0) = 3,且f(1) = 5,那么k的值是:A. 2B. 3C. 4D. 5二、填空题(每题4分,共20分)11. 若一个数的平方根是2,那么这个数是_________。

12. 一个数的相反数是-4,那么这个数是_________。

13. 一个数的绝对值是5,那么这个数可以是_________或_________。

下学期八年级数学竞赛试题

下学期八年级数学竞赛试题

八年级数学竞赛试题一.精心选一选(本题共10小题,每题3分,共30分.请把你认为正确结论的代号填入下面表格中)1.16的算术平方根是 ( )A . 2B . ±2C .4D . ±42.在实数23-,0,34,π,9中,无理数有 ( )A .1个B .2个C .3个D .4个3.下列图形中,是轴对称图形并且对称轴条数最多的是( )4.如图,△ABC 与△A ′B ′C ′关于直线l 对称,则∠B 的度数为 ( )A .30oB .50oC .90oD .100o5.如果实数y 、x 满足y=111+-+-x x ,那么3y x +的值是( )A .0B .1C .2D .-2 6.与三角形三个顶点的距离相等的点是 ( ) A .三条角平分线的交点 B .三边中线的点C .三边上高所在直线的交点D .三边的垂直平分线的交点7.如图,已知∠1=∠2,AC=AD ,增加下列条件:①AB=AE ;②BC=ED ;③∠C=∠D ;④∠B=∠E .其中能使 △AB C ≌△AED 的条件有 ( ) A .1个 B .2个 C .3个 D .4个8.以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A 处,则点A 表示的数是( )题号1 2 3 4 5 6 7 8 9 10答案A . B. C. D.A CA ′B ′′ (第4题) 50o30ol 第7题图12C AE DA .211 B .1.4 C .3 D .29.如图,在直角坐标系xoy 中,△ABC 关于直线y =1成轴对称,已知点A 坐标是(4,4),则点B 的坐标是 ( )A .(4,-4)B .(4,-2)C .(-2,4)D .(-4,2)10.一个正方体的体积是99,估计它的棱长的大小在 ( ) A .2与3之间 B .3与4之间 C .4与5之间 D .5与6之间二.耐心填一填(每题3分,共18分,直接写出结果) 11.计算︱2-3︱+22的结果是 .12.若25x 2=36,则x = ;若23-=y ,则y = .13.点P 关于x 轴对称的点是(3,–4),则点P 关于y 轴对称的点的坐标是 .14.如图,BAC ABD ∠=∠,请你添加一个条件:,使OC OD =(只添一个即可). 15.等腰三角形的一个外角等于110︒,则这个三角形的顶角应该为 .16.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:n =(用含三.计算题(计算要认真仔细,善于思考!本大题有3个小题,共24分) 17.(8分)计算 ()32281442⨯+--)(第16题DO CBA第14题图18.(8分)如图,实数a 、b 在数轴上的位置,化简222)(b a b a -+-19.(8分)如图, AD ∥BC ,BD 平分∠ABC ,∠A=120°,∠C=60°,AB=CD=4cm ,求四边形ABCD 的周长.四.解答题(本大题有3个小题,共26分) 20.(8分)某居民小区搞绿化,要在一块长方形空地上建花坛,要求设计的图案由等腰三角形和正方形组成(个数不限),并且使整个长方形场地成轴对称图形,你有好的设计方案吗?请在如图的长方形中画出你的设计方案。

(word完整版)八年级数学竞赛题及答案解析

(word完整版)八年级数学竞赛题及答案解析

八年级数学竞赛题(本检测题满分:120分,时间:120分钟) 班级: 姓名: 得分: 一、选择题(每小题3分,共30分)1.下列四个实数中,绝对值最小的数是( )A .-5B .-2C .1D .42.下列各式中计算正确的是( )A .9)9(2-=-B .525±=C .3311()-=- D .2)2(2-=- 3.若901k k <<+ (k 是整数),则k =( )A . 6B . 7C .8D . 94.下列计算正确的是( )A.ab ·ab =2ab 错误!未找到引用源。

C.3错误!未找到引用源。

-错误!未找到引用源。

=3(a ≥0) D.错误!未找到引用源。

·错误!未找到引用源。

=错误!未找到引用源。

(a ≥0,b ≥0)5.满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶56.已知直角三角形两边的长分别为3和4,则此三角形的周长为( )A .12B .7+7C .12或7+7D .以上都不对7.将一根24 cm 的筷子置于底面直径为15 cm ,高为8 cm 的圆柱形水杯中,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是( )A .h ≤17B .h ≥8C .15≤h ≤16D .7≤h ≤168.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A .(4, -3)B .(-4, 3)C .(0, -3)D .(0, 3)9.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (4,5),B (1,2),C (4,2), 将△ABC 向左平移5个单位长度后,A 的对应点A 1的坐标是( )A .(0,5)B .(-1,5)C .(9,5)D .(-1,0)10.平面直角坐标系中,过点(-2,3)的直线l 经过第一、二、三象限,若点(0,a ),(-1,b ),(c ,-1)都在直线l 上,则下列判断正确的是( ) A . b a < B . 3<a C . 3<b D . 2-<c 二、填空题(每小题3分,共24分)11.函数y =错误!未找到引用源。

八年级下数学竞赛试题浙

八年级下数学竞赛试题浙

八年级下数学竞赛试题浙八年级下数学竞赛试题浙版一、选择题(每题3分,共30分)1. 已知一个直角三角形的两个直角边分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 82. 一个数的立方根等于它本身,这个数可以是:A. 1B. -1C. 0D. 1和-13. 一个圆的半径为5,求圆的面积。

A. 25πB. 50πC. 75πD. 100π4. 下列哪个数是无理数?A. 3.14B. 0.333...C. πD. √25. 一个长方体的长、宽、高分别是2、3和4,求其体积。

A. 24B. 12C. 36D. 486. 如果一个数的相反数是-7,那么这个数是:A. 7B. -7C. 0D. 147. 一个数的绝对值是5,这个数可以是:A. 5B. -5C. 5或-5D. 08. 一个等腰三角形的两个底角相等,如果顶角为60°,求底角的大小。

A. 60°B. 45°C. 30°D. 90°9. 一个正六边形的内角是:A. 120°B. 108°C. 90°D. 60°10. 已知一个二次方程 \( ax^2 + bx + c = 0 \) 的解是2和-3,求\( b \) 的值。

A. -7B. -5C. 7D. 5二、填空题(每题4分,共20分)11. 一个数的平方根是4,这个数是________。

12. 一个数的绝对值是8,这个数可以是________。

13. 一个直角三角形的两个直角边分别是6和8,斜边的长度是________。

14. 一个数的立方是-27,这个数是________。

15. 一个圆的直径是10,这个圆的周长是________。

三、解答题(每题10分,共50分)16. 证明勾股定理:在一个直角三角形中,斜边的平方等于两直角边的平方和。

17. 解方程 \( 2x^2 - 7x + 3 = 0 \) 并求出解。

初中八年级数学竞赛试题

初中八年级数学竞赛试题

初中八年级数学竞赛试题一、选择题(每题3分,共30分)1. 已知一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 82. 一个数的平方根是4,这个数是:A. 16B. -16C. 4D. -43. 一个圆的半径是5厘米,那么它的面积是:A. 25π cm²B. 50π cm²C. 75π cm²D. 100π cm²4. 如果一个数的绝对值是3,那么这个数可能是:A. 3B. -3C. 3或-3D. 05. 下列哪个分数是最简分数:A. 4/8B. 5/10C. 3/4D. 6/96. 一个正整数n,如果n²+n+1是质数,那么n的取值范围是:A. n=0B. n=1C. n=2D. n=-17. 一个长方体的长、宽、高分别是6厘米、4厘米和3厘米,它的体积是:A. 72 cm³B. 144 cm³C. 216 cm³D. 432 cm³8. 一个数列的前三项是2, 4, 6,如果这是一个等差数列,那么第四项是:A. 8B. 9C. 10D. 119. 一个数的立方根是2,这个数是:A. 6B. 8C. 4D. 210. 一个数的相反数是-7,那么这个数是:A. 7B. -7C. 0D. 14二、填空题(每题4分,共20分)11. 一个数的平方是36,这个数是_________。

12. 一个直角三角形的两个锐角的度数之和是_________。

13. 如果一个数的立方是-8,那么这个数是_________。

14. 一个数的倒数是1/4,那么这个数是_________。

15. 一个圆的直径是10厘米,那么它的周长是_________厘米。

三、解答题(共50分)16. (10分)解方程:2x + 5 = 1717. (15分)证明:在一个直角三角形中,如果一条直角边是另一条直角边的两倍,那么斜边是这条直角边的根号3倍。

八年级下数学竞赛真题试卷

八年级下数学竞赛真题试卷

一、选择题(每题5分,共25分)1. 下列各数中,是正数的是()A. -3/2B. 0C. -√4D. 3/42. 若a、b是实数,且a+b=0,则下列等式中正确的是()A. a^2+b^2=0B. a^2+b^2>0C. a^2+b^2<0D. a^2+b^2≥03. 已知a=√2,b=√3,则a^2+b^2的值是()A. 5B. 4C. 3D. 24. 下列各式中,正确的是()A. √9=3B. √16=4C. √25=5D. √36=65. 已知x=√2+√3,则x^2的值是()A. 5B. 6C. 7D. 8二、填空题(每题5分,共25分)6. 若x^2=1,则x的值为______。

7. 若√(a^2+b^2)=5,且a+b=0,则a和b的值分别为______。

8. 若x=√(3+2√2),则x^2的值为______。

9. 若a、b是实数,且a^2+b^2=0,则a和b的值分别为______。

10. 若x=√(a^2+b^2),则x^2的值为______。

三、解答题(每题10分,共30分)11. (10分)已知a、b是实数,且a+b=0,求证:a^2+b^2=0。

12. (10分)已知x=√(3+2√2),求x^2的值。

13. (10分)已知a、b是实数,且a^2+b^2=5,求证:a+b=0。

四、附加题(每题10分,共20分)14. (10分)已知x=√(a^2+b^2),且a+b=0,求证:x=√2。

15. (10分)已知x=√(3a^2+4b^2),且a+b=0,求证:x=√(3a^2+4b^2)。

注意事项:1. 本试卷共15题,满分100分。

2. 考生在规定时间内完成试卷,不得抄袭、作弊。

3. 答题时,请将答案填写在答题卡上,不得在试卷上直接填写。

4. 考试结束后,请将试卷和答题卡一并交回。

祝各位考生考试顺利!。

八年级下册数学竞赛试题

八年级下册数学竞赛试题

八年级下册数学竞赛试题一、选择题(每题3分,共15分)1. 下列哪个数不是整数?A. -2B. 0C. 3.14D. 52. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 83. 以下哪个表达式的结果不是整数?A. \( \sqrt{16} \)B. \( 4^2 \)C. \( \sqrt{2} \)D. \( 3^3 \)4. 一个数的平方根是4,那么这个数是多少?A. 16B. -16C. 8D. -85. 如果一个数的立方是27,那么这个数是多少?A. 3B. -3C. 9D. -9二、填空题(每题2分,共10分)6. 一个数的相反数是-5,那么这个数是______。

7. 一个数的绝对值是其本身,那么这个数是______或______。

8. 一个数的倒数是\( \frac{1}{2} \),那么这个数是______。

9. 一个圆的半径是5cm,那么它的面积是______平方厘米。

10. 如果\( a \)和\( b \)互为倒数,那么\( ab \)的值是______。

三、解答题(每题10分,共30分)11. 已知一个长方体的长、宽、高分别为2米、3米和4米,求它的体积。

12. 一个圆的直径是14厘米,求它的周长和面积。

13. 一个直角三角形的两条直角边分别是6厘米和8厘米,求斜边的长度。

四、应用题(每题15分,共30分)14. 一个班级有40名学生,其中男生占全班的60%,女生占全班的40%。

如果班级要组织一次郊游,需要租用大巴车,每辆大巴车可以坐30人。

请问至少需要租用多少辆大巴车?15. 一个工厂生产一批零件,原计划每天生产100个零件,30天完成。

但实际上工厂每天生产了120个零件,请问提前了多少天完成?五、附加题(每题20分,共20分)16. 一个数列的前三项为2,3,5,从第四项开始,每一项都是前三项的和。

求这个数列的前10项。

八年级数学下竞赛试卷

八年级数学下竞赛试卷

八年级数学下竞赛试卷八年级数学竞赛试卷选择题(3`824`?=) 1、式子2322214221,,,,,335721x a m x x x b m n x x -+++--+中,分式共有() A 3个 B 4个 C 5个 D 6个2、下列四个点,在反比例函数5y x =图像上的是()A (1,5)-B (1,5)- C(5,1)- D (5,1)3、分别以下列四组数为一个三角形的边长(1)1,2,3:(2)3,4,5:(3)5,12,13:(4)6,8,10其中能组成直角三角形的有()A 4组B 3组C 2组D 1组 4.下列命题中,其真命题个数有() A 有一组对边平行,另一组对边相等的四边形是平行四边形B 依次连结任意一个矩形各边中点所得的四边形是菱形C 有一组对边平行,对角线相等的四边形是矩形 D 菱形的对角线相互垂直平分,且相等A 4个B 3个C 2个D 1个5.刘翔的伤病已稳定,现正在进行恢复训练,若对他20次训练成绩进行统计分析,判断他的成绩是否稳定,则需要知道刘翔这20次成绩的() A 众数 B 中位数 C 平均数 D 方差6.如图,梯形ABCD 中AD//BC ,AD=AB, BD=BC,0120A ∠=,则C ∠=()A 060 B 070 C 075 D 0807.某同学用一瓶子(如图)去接水,若水龙头以固定的流量流出下面图像能大致表示水的深度h 和接水时间t 之间的关系是()8.如图,正方形ABCD 中,E 、F 分别为AB 、CD 的中点,连接DE 、BF 、CE 、AF ,正方形ABCD 的面积为1,则阴影面积为 ( )A 12B 13C 14D 15二、填空题(3`824`?=)9.1纳米=0.000000001米,则5纳米可以用科学计数法表示为________10.化简:(11x -)÷= _____________________11.方程153x x =+的解是:________________12.如图,已知O 是平行四边形ABCD 的对角线的交点,AB=20cm ,BC=12cm ,则AOB ?的周长比AOD ?的周长多_______________13.菱形周长为60,一对角线为15,则相邻两脚的度数分别为________ 14.已知一组数据,3,2,6,7,2,3,5,4,这组数据的中位数是___________________15.矩形ABCD 中,AE BD ⊥于E ,2DAE BAE ∠=∠,则∠ADB =_______________16、直线y 1=ax+3和直线y 2=kx 的交点D (1,2),若y 1﹤y 2,则x 的取值范围是________________ 三、(本大题4小题,每小题6分,共24分)17. 222()a b a ab b a a --+÷,其中a=3,b=2。

初中八年级下数学竞赛试卷

初中八年级下数学竞赛试卷

一、选择题(每题5分,共25分)1. 下列各组数中,能组成等差数列的是()A. 1, 3, 5, 7, 9B. 2, 4, 6, 8, 10C. 3, 6, 9, 12, 15D. 5, 10, 15, 20, 252. 若二次函数y=ax^2+bx+c的图象开口向上,且顶点坐标为(1,-2),则a的取值范围是()A. a>0B. a<0C. a≥0D. a≤03. 在直角坐标系中,点A(2,3)关于直线y=x的对称点为B,则点B的坐标是()A.(3,2)B.(2,3)C.(-3,-2)D.(-2,-3)4. 下列命题中,正确的是()A. 等腰三角形的底角相等B. 所有平行四边形都是矩形C. 相似三角形的对应边成比例D. 对顶角相等且互补5. 已知等比数列{an}的首项为2,公比为q,若q≠1,且第5项与第8项的和为20,则q的值为()A. 2B. 1/2C. 4D. 1/4二、填空题(每题5分,共25分)6. 若函数y=kx+b(k≠0)的图象经过点(2,-1)和(-3,5),则k的值为______,b的值为______。

7. 已知等差数列{an}的首项为3,公差为2,则第10项an的值为______。

8. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数为______。

9. 若二次方程x^2-4x+3=0的两个根分别为x1和x2,则x1+x2的值为______。

10. 若一个正方形的对角线长为10cm,则该正方形的面积为______cm^2。

三、解答题(每题10分,共40分)11. 已知函数y=2x-3,求函数图象与x轴、y轴的交点坐标。

12. 已知等比数列{an}的首项为4,公比为1/2,求该数列的前5项。

13. 在△ABC中,∠A=45°,∠B=60°,AB=6cm,求△ABC的周长。

14. 已知二次函数y=ax^2+bx+c(a≠0)的图象开口向下,且顶点坐标为(-1,2),求该函数的解析式。

下八年级数学竞赛试题及答案

下八年级数学竞赛试题及答案

八年级数学竞赛试题1. 一辆汽车从湄江出发开往娄底.如果汽车每小时行使a 千米,则t 小时可以到达,如果汽车每小时行使b ()b a >千米,那么可以提前到达娄底的时间是( )小时..A at a b + B.bt a b + C.abt a b+ D.bt atb -2. 分式方程()()1112x mx x x -=--+有增根,则m 的值为( ) A.0和3 B.1 C.1和2- D.33. 由下列条件可以作出唯一的等腰三角形的是( )A.已知等腰三角形的两腰B.已知一腰和一腰上的高C.已知底角的度数和顶角的度数 D .已知底边长和底边上的中线的长4. )A.(1x -B.(1x -C.(1x -+D.(1x -5. 当12x +=()20033420052001x x --的值是( ) A.0 B.1- C.1 D.20032-6. 若34x -<<45x -=的x 值为( )A.2B.3C.4D.5 7. 设0a b <<,224a b ab +=,则a ba b+-的值为( )C.2D.3 8. 若不等式组211x a x a >-⎧⎨<+⎩无解,则a 的取值范围是( )A.2a <B.2a =C.2a >D.2a ≥9. 已知a 、b 为常数,若0ax b +>的解集是13x <,则0bx a -<的解集是( ) A.3x >- B.3x <- C.3x > D.3x <10. 在等腰ABC △中,AB AC =,中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )A.7B.11C.7或11D.7或10二.填空题(共8小题,每小题5分,共40分)11. 如图ABC △中,AD 平分BAC ∠,且AB BD AC +=,若64B ∠=︒,则C ∠= .12. 若22013a x +=,22014b x +=,22015c x +=,且24abc =,则111a b c b c a c a b a b c++---的值为 .13. 一条线段的长为a ,若要使31a -,41a +,12a -这三条线段组成一个三角形,则a 的取值范围是 .14. 的整数解有 组.15. 如图BD 是ABC △的一条角平分线,8AB =,4BC =,且24ABC S =△,则DBC △的面积是 .16. 若关于x 的方程212x ax +=--的解为正数,则a 的取值范围是 . 17. 关于x 的不等式332x m m -≤-的正整数解为1,2,3,4,则m 的取值范围是 . 18. 如果21a -和5a -是一个数m 的平方根,则m 的值为 .三.解答题(共5小题,每小题8分,共40分)19. 已知:在ABC △中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,若AF EF =,求证:BE AC =.20. 若关于x 的分式方程311x m x x--=-无解,求m 的值.21. 已知有理数a ,b ,c 满足0a b c ++-=,求()2015a cb +-的值.22. 某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)23. 如图,已知在ABC △中,AB AC =,CE 是AB 边上的中线,延长AB 到D ,使BD AB =,连接CD .求证:12CE CD =.参考答案二.填空题(共8小题)11、 32︒ 12、18 13、352a << 14、 4 15、 816、 a <2且a ≠﹣4 17、12≤m <15 18、 81或9三.解答题(共5小题,每小题10分,共40分)19、证明:如图,延长AD 到点G ,使得AD=DG ,连接BG .∵AD 是BC 边上的中线(已知),∴DC=DB ,在△ADC 和△GDB 中,∴△ADC ≌△GDB (SAS ), ∴CAD G ∠=∠,BG AC =,∵AF EF =,∴CAD AEF ∠=∠, 又∠BED=∠AEF (对顶角相等),∴∠BED=∠G ∴BE=BG ,又BG AC =, ∴BE=AC .20、解:去分母得x (x ﹣m )﹣3(x ﹣1)=x (x ﹣1),﹣mx ﹣3x+3=﹣x ,整理得(2+m )x ﹣3=0,∵关于x 的分式方程﹣=1无解,分两种情况:(1)当此方程的解为增根时,则x=1或0, 当x=1时,2+m ﹣3=0,解得m=1, 当x=0时,﹣3=0,无解;(2)当整式方程无解时,即当2+m=0时,方程(2+m )x ﹣3=0无解,即m=﹣2. 综上所述,m=1或﹣2.21.解:将等式整理配方,得)))2221210++=,10=20=10=,∴2a =,6b =,4c =,∴()()20152015201524600.a c b +-=+-==22、解:(1)设购进甲种商品x 件,购进乙商品y 件,根据题意得:,解得:,答:商店购进甲种商品40件,购进乙种商品60件;(2)设商店购进甲种商品a 件,则购进乙种商品(100﹣a )件, 根据题意列得:,解得:20≤a ≤22,∵a 为整数,故20a =,21,22.当20a =时,利润为:()()201520453580900-⨯+-⨯=元 当21a =时,利润为:()()201521453579895-⨯+-⨯=元 当22a =时,利润为:()()201522453578890-⨯+-⨯=元∴当a=20时,利润最大,最大利润为900元,此时乙种商品应购进数量为100﹣20=80, 答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.23、证明:如图,延长CE 到F ,使EF=CE ,连接FB ,∵CE 是AB 边上的中线,∴AE=BE , 又∵∠BEF=∠AEC ,∴△AEC ≌△BEF , ∴FB=AC ,∠1=∠A , ∵BD=AB ,∴FB=BD ,∵∠3=∠A+∠ACB=∠1+∠2,即∠CBD=∠CBF ,又∵BC 为公共边,∴△CDB ≌△CFB ,∴CD=CF=2CE ,即CE=CD .。

八年级下数学竞赛试题(含答案)

八年级下数学竞赛试题(含答案)

八年级(下)数学期末竞赛测试卷一、选择题(每小题3分,共30分)1、下列多项式中能用完全平方公式分解的是( ) A.x 2-x +1 B.1-2xy +x 2y 2 C.a 2+a +21D.-a 2+b 2-2ab2、不等式组⎩⎨⎧>-≥-04012x x 的整数解为( )A.1个B.2个C.3个D.4个3、下列各分式中,与分式ba a--的值相等的是 ( )A 、b a a --B 、b a a +C 、a b a -D 、-ab a-4、.若分式34922+--x x x 的值为0,则x 的值为( )A . 3-B .3或3-C .3D .无法确定5、某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为82=甲x 分,82=乙x 分;2452=甲s ,1902=乙s ,那么成绩较为整齐的是( ) A .甲班 B .乙班 C .两班一样整齐 D .无法确定6、某天同时同地,甲同学测得1 m 的测竿在地面上影长为0.8 m ,乙同学测得国旗旗杆在地面上的影长为9.6 m ,则国旗旗杆的长为( )A .10 mB .12 mC .13 mD .15 m 7、如图,△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,DE =1,BC =3,AB =6,则AD 的长为( )A .1B .1.5C .2D .2.5(第7题图) (第9题图)8、赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( ) A .1421140140=-+x x B .1421280280=++x x C .1421140140=++x x D .1211010=++x x9、如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2米,桌面距离地面1米.若灯泡距离地面3米,则地面上阴影部分的面积为( )A .0.36π平方米B .0.81π平方米C .2π平方米D .3.24π平方米10.下列从左到右的变形是因式分解的是( ) A.(x+1)(x-1)=x 2-1 B. a 2b =a ·abC.ab-a-b+1=(a-1)(b-1)D.m 2-2m-3=m(m-2-m3)二、填空题(每小题3分,共24分)11、已知:线段AB=10cm ,C 为AB 有黄金分割点,AC>BC ,则AC=_________. 12、不等式(a -b )x>a -b 的解集是x <1,则a 与b 的大小关系是________.13、已知x 1,x 2,x 3的标准差是2,则数据2x 1+3,2x 2+3,2x 3+3的方差是 ..14、计算机生产车间制造a 个零件,原计划每天造x 个,后为了供货需要,每天多造了b 个,则可提前______________天完成。

初二数竞赛试题及答案

初二数竞赛试题及答案

初二数竞赛试题及答案初二数学竞赛试题一、选择题(每题3分,共15分)1. 下列哪个数不是有理数?A. πB. √2C. 0.33333(无限循环)D. 1/32. 如果一个数的平方等于81,那么这个数是:A. 9B. -9C. 9 或 -9D. 813. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长是:A. 5B. 6C. 7D. 84. 一个数列的前三项为2, 4, 6,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法判断5. 以下哪个是二次方程的解:A. x = 1/2B. x = 2C. x = -3D. x = 0二、填空题(每题2分,共10分)6. 一个数的立方等于-27,这个数是_________。

7. 如果一个数的绝对值是5,那么这个数可以是_________。

8. 一个数的倒数是1/4,那么这个数是_________。

9. 一个数的平方根是4,那么这个数是_________。

10. 一个数的平方根是-4,那么这个数是_________。

三、解答题(每题5分,共20分)11. 解方程:2x + 3 = 11。

12. 证明:如果一个三角形的两边分别为a和b,且a < b,那么这个三角形的周长不可能是偶数。

13. 计算:(2x + 3)(x - 4)。

14. 一个圆的半径是5厘米,求它的面积。

四、证明题(每题5分,共10分)15. 证明:直角三角形的斜边的平方等于两直角边的平方和。

16. 证明:如果一个数的平方是正数,那么这个数本身是正数或负数。

五、综合题(每题10分,共10分)17. 一个班级有40名学生,其中20名男生和20名女生。

如果随机抽取一名学生,求以下概率:A. 抽到男生的概率。

B. 抽到女生的概率。

C. 如果已经知道抽到的是男生,那么这名男生是班长的概率。

答案:一、选择题1. A2. C3. A4. A5. D二、填空题6. -37. ±58. 49. 1610. 无实数解三、解答题11. 解:2x + 3 = 11,2x = 8,x = 4。

八年级下数学竞赛题

八年级下数学竞赛题

四师一中2022-2023第二学期八年级数学竞赛试题 1.(10分)计算题(1)()10123.1422322π-⎛⎫---+-- ⎪+⎝⎭ (2)12124348528⎛⎫-+⨯ ⎪ ⎪⎝⎭2.(12分)如图,把长方形纸片ABCD 沿EF 折叠后.点D 与点B 重合,点C 落在点'C 的位置上.若160∠=︒,2AE =.(1)求2∠、3∠的度数;(2)求长方形纸片ABCD 的面积S .3.(12分)如图,在ABC 中,AB AC =,点D 在AC 边上(不与点A ,点C 重合),连接BD ,BD AB =.(1)设50C ∠=︒时,求ABD ∠的度数;(2)若56AB BC ==,,求AD 的长.4.(12分)如图,在四边形ABCD 中,AD BC ,90ABC BCD ∠=∠=︒.对角线,AC BD 交于点,O DE 平分ADC ∠交BC 于点E ,连接OE .(1)求证:四边形ABCD 是矩形;(2)若2CD =,DBC ∠=30︒,求△BED 的面积.5.(15分)某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示,其中BA 是线段,且BA //x 轴,AC 是射线.(1)当x ≥30,求y 与x 之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?6.(10分)如图,ABC ∆中,42AB =,=45ABC ∠︒,D 是BC 边上一点,且AD AC =,若1BD DC -=.求DC 的长.7.(15分)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地,两人之间的距离y (米)与时间t (分钟)之间的函数关系如图所示.(1)甲、乙何时相遇?相遇时甲的速度为多少?(2)求乙到达目的地时,两人之间的距离;(3)求出线段AB 所表示的函数关系式.8.(14分)如图,平面直角坐标系中,一次函数152y x =-+的图象与x 轴、y 轴分别交于A 、B 两点,点()F x y ,是线段AB 上的一个动点(不与A ,B 重合),连接OF .(1)求A ,B 两点的坐标;(2)求AOF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)当AOF 的面积12AOB S S =△时,第一象限内是否存在一点P ,使PAF △是以AF 为直角边的等腰直角三角形,若存在,请求出点P 的坐标,若不存在,请说明理由.。

八年级(下)数学竞赛试卷(含解析)

八年级(下)数学竞赛试卷(含解析)

八年级(下)数学竞赛试卷一、选择题(共40分,每题4分)1.在277,355,544,633这四个数中,最大的数是()A.277B.355C.544D.6332.若(ax+3y)2=4x2﹣12xy+by2,则a,b的值分别为()A.2,9 B.2,﹣9 C.﹣2,9 D.﹣4,93.一次函数y=(m2﹣4)x+(1﹣m)和y=(m+2)x+(m2﹣3)的图象分别与y轴交于点P 和Q,这两点关于x轴对称,则m的值是()A.2 B.2或﹣1 C.1或﹣1 D.﹣14.如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A.280 B.140 C.70 D.1965.化简(a﹣1)的结果是()A.B.C.﹣D.﹣6.方程组的解的个数是()A.1 B.2 C.3 D.47.已知关于x的不等式组恰有3个整数解,则a的取值范围是()A.B.C.D.8.若a,b,c都是负数,并且,则a、b、c中()A.a最大B.b最大C.c最大D.c最小9.如图,一个凸六边形的六个内角都是120°,六条边的长分别为a,b,c,d,e,f,则下列等式中成立的是()A.a+b+c=d+e+f B.a+c+e=b+d+f C.a+b=d+e D.a+c=b+d10.10个人围成一圈做游戏.游戏的规则是:每个人心里都想一个数,并把目己想的数告许与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报出来的数是3的人心里想的数是()A.2 B.﹣2 C.4 D.﹣4二、填空题(共40分,每题5分)11.若n是正整数,且x2n=5,则(2x3n)2÷(4x2n)=.12.若关于x的分式方程有整数解,m的值是.13.如图,已知点A(a,b),0是原点,OA=OA1,OA⊥OA1,则点A1的坐标是.14.设x1,x2是方程x2+x﹣3=0的两个根,那么x13﹣4x22+19的值为.15.已知:a2﹣4ab+5b2﹣2b+1=0,则以a,b为根的一元二次方程为.16.如图1是一个正三角形,分别连接这个正三角形各边上的中点得到图2,再连接图2中间的小三角形各边上的中点得到图3,按此方法继续下去.前三个图形中三角形的个数分别是1个,5个,9个,那么第5个图形中三角形的个数是个;第n个图形中三角形的个数是个.17.在一个圆形时钟的表面,OA表示秒针,OB表示分针(O为两针的旋转中心)若现在时间恰好是12点整,则经过秒钟后,△OAB的面积第一次达到最大.18.已知a1•a2•a3•…•a2007是彼此互不相等的负数,且M=(a1+a2+…+a2006)(a2+a3+…+a2007),N=(a1+a2+…+a2007)(a2+a3+…+a2006),那么M与N的大小关系是M N.三、解答题(共20分,每题10分)19.解方程:|x﹣2|+|x﹣3|=2.20.甲、乙两车分别从A地将一批物品运往B地,再返回A地,图6表示两车离A地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回.请根据图象中的数据回答:(1)甲车出发多长时间后被乙车追上?(2)甲车与乙车在距离A地多远处迎面相遇?(3)甲车从B地返回的速度多大时,才能比乙车先回到A地?参考答案与试题解析一、选择题(共40分,每题4分)1.在277,355,544,633这四个数中,最大的数是()A.277B.355C.544D.633【考点】幂的乘方与积的乘方.【分析】分别把277,355,544,633这四个数变为(27)11,(35)11,(54)11,(63)11,比较它们的底数的大小即可求解.【解答】解:∵277,355,544,633这四个数变为(27)11,(35)11,(54)11,(63)11,而27=128,35=243,54=625,63=216,∴最大的数是544.故选C.2.若(ax+3y)2=4x2﹣12xy+by2,则a,b的值分别为()A.2,9 B.2,﹣9 C.﹣2,9 D.﹣4,9【考点】完全平方公式.【分析】根据完全平方公式把(ax+3y)2展开,再根据对应项系数相等列出方程求解即可.【解答】解:∵(ax+3y)2=a2x2+6axy+9y2,∴a2x2+6axy+9y2=4x2﹣12xy+by2,∴6a=﹣12,b=9,解得a=﹣2,b=9.故选C.3.一次函数y=(m2﹣4)x+(1﹣m)和y=(m+2)x+(m2﹣3)的图象分别与y轴交于点P 和Q,这两点关于x轴对称,则m的值是()A.2 B.2或﹣1 C.1或﹣1 D.﹣1【考点】一次函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.【分析】根据函数解析式求出P、Q的坐标,再由P点和Q点关于x轴对称列出等式解得m 的值.【解答】解:由两函数解析式可得出:P(0,1﹣m),Q(0,m2﹣3),又∵P点和Q点关于x轴对称,∴可得:1﹣m=﹣(m2﹣3),解得:m=2或m=﹣1.∵y=(m2﹣4)x+(1﹣m)是一次函数,∴m2﹣4≠0,∴m≠±2,∴m=﹣1.故选D.4.如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A.280 B.140 C.70 D.196【考点】二元一次方程组的应用.【分析】等量关系为:5个小矩形的宽等于2个小矩形的长;6个小矩形的宽加一个小矩形的长等于大长方形周长的一半.【解答】解:设小长方形的长、宽分别为x、y,依题意得:,解得:,则矩形ABCD的面积为7×2×5=70.故选C.5.化简(a﹣1)的结果是()A.B.C.﹣ D.﹣【考点】二次根式的性质与化简.【分析】代数式(a﹣1)有意义,必有1﹣a>0,由a﹣1=﹣(1﹣a),把正数(1﹣a)移到根号里面.【解答】解:原式=﹣=﹣.故选D.6.方程组的解的个数是()A.1 B.2 C.3 D.4【考点】解二元一次方程组.【分析】分类讨论x与y的正负,利用绝对值的代数意义化简,求出方程组的解,即可作出判断.【解答】解:当x>0,y>0时,方程组变形得:,无解;当x>0,y<0时,方程组变形得:,①+②得:2x=14,即x=7,②﹣①得:2y=﹣6,即y=﹣3,则方程组的解为;当x<0,y>0时,方程组变形得:,①+②得:﹣2y=14,即y=﹣7<0,不合题意,舍去,把y=﹣7代入②得:x=﹣3,此时方程组无解;当x<0,y<0时,方程组变形得:,无解,综上,方程组的解个数是1,故选A7.已知关于x的不等式组恰有3个整数解,则a的取值范围是()A.B.C.D.【考点】一元一次不等式组的整数解.【分析】先求出不等式组的解集(含字母a),因为不等式组有3个整数解,可逆推出a的值.【解答】解:由于不等式组有解,则,必定有整数解0,∵,∴三个整数解不可能是﹣2,﹣1,0.若三个整数解为﹣1,0,1,则不等式组无解;若三个整数解为0,1,2,则;解得.故选B.8.若a,b,c都是负数,并且,则a、b、c中()A.a最大B.b最大C.c最大D.c最小【考点】分式的混合运算.【分析】根据不等式的性质,在不等式两边同时加上同一个数,不等号的方向不变和分式的加法法则计算即可.【解答】解:∵,∴,∴<<,又a、b、c都是负数,∴a+b<b+c<c+a,∴b<a<c,故选:C.9.如图,一个凸六边形的六个内角都是120°,六条边的长分别为a,b,c,d,e,f,则下列等式中成立的是()A.a+b+c=d+e+f B.a+c+e=b+d+f C.a+b=d+e D.a+c=b+d【考点】三角形的面积.【分析】分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.可得△APF、△BGC、△DHE、△GHP都是等边三角形,求得答案.【解答】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△APF、△BGC、△DHE、△GHP都是等边三角形.∴P A=PF=AF=b,BG=CG=BC=f,DH=EH=DE=d,∴a+b+f=f+e+d=d+c+b,∴a+b=e+d,f+e=c+b,a+f=d+c.故选C.10.10个人围成一圈做游戏.游戏的规则是:每个人心里都想一个数,并把目己想的数告许与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报出来的数是3的人心里想的数是()A.2 B.﹣2 C.4 D.﹣4【考点】规律型:数字的变化类.【分析】先设报3的人心里想的数,利用平均数的定义表示报5的人心里想的数;报7的人心里想的数;抱9的人心里想的数;报1的人心里想的数,最后建立方程,解方程即可.【解答】解:设报3的人心里想的数是x,则报5的人心里想的数应是8﹣x,于是报7的人心里想的数是12﹣(8﹣x)=4+x,报9的人心里想的数是16﹣(4+x)=12﹣x,报1的人心里想的数是20﹣(12﹣x)=8+x,报3的人心里想的数是4﹣(8+x)=﹣4﹣x,所以得x=﹣4﹣x,解得x=﹣2.故选B.二、填空题(共40分,每题5分)11.若n是正整数,且x2n=5,则(2x3n)2÷(4x2n)=25.【考点】整式的除法;幂的乘方与积的乘方.【分析】根据积的乘方得出4x6n÷(4x2n),根据单项式除以单项式法则得出x4n,根据幂的乘方得出(x2n)2,代入求出即可.【解答】解:∵n是正整数,且x2n=5,∴(2x3n)2÷(4x2n)=4x6n÷(4x2n)=(4÷4)x6n﹣2n=x4n=(x2n)2=52=25.故答案为:25.12.若关于x的分式方程有整数解,m的值是4或3或0.【考点】解分式方程.【分析】首先化分式方程为整式方程,然后解整式方程,最后讨论整数解即可求解.【解答】解:,∴mx﹣1﹣1=2(x﹣2),∴x=﹣,而分式方程有整数解,∴m﹣2=1,m﹣2=﹣1,m﹣2=2,m﹣2=﹣2,但是m﹣2=﹣1时,x=2,是分式方程的增根,不合题意,舍去∴m﹣2=1,m﹣2=2,m﹣2=﹣2,∴m=4,m=3,m=0.故答案为:m=4,m=3,m=0.13.如图,已知点A(a,b),0是原点,OA=OA1,OA⊥OA1,则点A1的坐标是(﹣b,a).【考点】坐标与图形性质.【分析】本题用三角函数解答,由A和A1向坐标轴作垂线即可得解.【解答】解:如图,从A、A1向x轴作垂线,设A1的坐标为(x,y),设∠AOX=α,∠A1OD=β,A1坐标(x,y)则α+β=90°sinα=cosβcosα=sinβsinα==cosβ=同理cosα==sinβ=所以x=﹣b,y=a,故A1坐标为(﹣b,a).14.设x1,x2是方程x2+x﹣3=0的两个根,那么x13﹣4x22+19的值为0.【考点】根与系数的关系;一元二次方程的解.【分析】因为x13=x1•x12=x1•(3﹣x1)=3x1﹣x12=3x1﹣3+x1=4x1﹣3,x22=3﹣x2,所以x13﹣4x22+19=4x1﹣3﹣12+4x2+19=4(x1+x2)﹣15+19.【解答】解:∵x1,x2是方程x2+x﹣3=0的两个实数根,∴x1+x2=﹣1;又∵x13=x1x12=x1(3﹣x1)=3x1﹣x12=3x1﹣3+x1=4x1﹣3,x22=3﹣x2,∴x13﹣4x22+19=4x1﹣3﹣12+4x2+19=4(x1+x2)﹣15+19=﹣4﹣15+19=0.故答案为:0.15.已知:a2﹣4ab+5b2﹣2b+1=0,则以a,b为根的一元二次方程为x2﹣3x+2=0.【考点】根与系数的关系;非负数的性质:偶次方;配方法的应用.【分析】根据非负数的性质,求出a+b、ab的值,再由根与系数的关系,写出以a,b为根的一元二次方程即可.【解答】解:∵a2﹣4ab+5b2﹣2b+1=0,∴a2﹣4ab+4b2+b2﹣2b+1=0,∴(a﹣2b)2+(b﹣1)2=0,∴a=2,b=1,∴a+b=2,ab=1,∴以a,b为根的一元二次方程为x2﹣3x+2=0.故答案为:x2﹣3x+2=0.16.如图1是一个正三角形,分别连接这个正三角形各边上的中点得到图2,再连接图2中间的小三角形各边上的中点得到图3,按此方法继续下去.前三个图形中三角形的个数分别是1个,5个,9个,那么第5个图形中三角形的个数是17个;第n个图形中三角形的个数是4n﹣3个.【考点】规律型:图形的变化类.【分析】把前面一个图形当成后一个图形的中间部分,就会发现后面的图形比前一个图形多4个三角形,从而得出变化规律,根据变换规律找出第n个图形中三角形的个数,套入数据即可得出结论.【解答】解:观察图形发现规律:后一个图形比前一个图形多4个三角形,∵第一个图形中只有一个三角形,∴第n个图形中有4(n﹣1)+1=4n﹣3个三角形.令n=5,则4×5﹣3=17(个).故答案为:17;4n﹣3.17.在一个圆形时钟的表面,OA表示秒针,OB表示分针(O为两针的旋转中心)若现在时间恰好是12点整,则经过秒钟后,△OAB的面积第一次达到最大.【考点】三角形的面积;钟面角.【分析】设OA边上的高为h,则h≤OB,所以,当OA⊥OB 时,等号成立,此时△OAB的面积最大.【解答】解:设经过t秒时,OA与OB第一次垂直,又因为秒针1秒钟旋转6度,分针1秒钟旋转0.1度,于是(6﹣0.1)t=90,解得t=.故经过秒钟后,△OAB的面积第一次达到最大.故答案为:.18.已知a1•a2•a3•…•a2007是彼此互不相等的负数,且M=(a1+a2+…+a2006)(a2+a3+…+a2007),N=(a1+a2+…+a2007)(a2+a3+…+a2006),那么M与N的大小关系是M>N.【考点】整式的混合运算.【分析】利用M﹣N与0大小的比较来比较M、N的大小.【解答】解:M﹣N=(a1+a2+…+a2006)(a2+a3+…+a2007)﹣(a1+a2+…+a2007)(a2+a3+…+a2006)=(a1+a2+…+a2006)(a2+a3+…+a2006)+(a1+a2+…+a2006)a2007﹣(a1+a2+…+a2006)(a2+a3+…+a2006)﹣a2007(a2+a3+…+a2006)=(a1+a2+…+a2006)a2007﹣a2007(a2+a3+…+a2006)=a1a2007>0∴M>N三、解答题(共20分,每题10分)19.解方程:|x﹣2|+|x﹣3|=2.【考点】含绝对值符号的一元一次方程.【分析】根据分类讨论:x<2,2≤x<3,x≥3,可化简绝对值,根据解方程,可得答案.【解答】解:①当x<2时,原方程等价于2﹣x+3﹣x=2,解得;②当2≤x≤3时,原方程等价于x﹣2+3﹣x=2无解;③当x≥3时,原方程等价于x﹣2+x﹣3=2,解得,综上所述:方程的解是x=,x=.20.甲、乙两车分别从A地将一批物品运往B地,再返回A地,图6表示两车离A地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回.请根据图象中的数据回答:(1)甲车出发多长时间后被乙车追上?(2)甲车与乙车在距离A地多远处迎面相遇?(3)甲车从B地返回的速度多大时,才能比乙车先回到A地?【考点】一次函数的应用.【分析】(1)由图知,可设甲车由A地前往B地的函数解析式为s=kt,把将(2.4,48)代入即可求出此一次函数的表达式,再根据图中S=30即可求出t的值;(2)可设乙车由A地前往B地函数的解析式为s=pt+m,将(1.0,0)和(1.5,30)代入即可求出此表达式,进而可求出t的值,同理设乙车由B地返回A地的函数的解析式为s=﹣30t+n,把将(1.8,48)代入即可求解;(3)求出乙车返回到A地时所需的时间及乙车的速度即可.【解答】解:(1)由图知,可设甲车由A地前往B地的函数解析式为s=kt,将(2.4,48)代入,解得k=20,所以s=20t,由图可知,在距A地30千米处,乙车追上甲车,所以当s=30千米时,(小时).即甲车出发1.5小时后被乙车追上,(2)由图知,可设乙车由A地前往B地函数的解析式为s=pt+m,将(1.0,0)和(1.5,30)代入,得,解得,所以s=60t﹣60,当乙车到达B地时,s=48千米.代入s=60t﹣60,得t=1.8小时,又设乙车由B地返回A地的函数的解析式为s=﹣30t+n,将(1.8,48)代入,得48=﹣30×1.8+n,解得n=102,所以s=﹣30t+102,当甲车与乙车迎面相遇时,有﹣30t+102=20t解得t=2.04小时代入s=20t,得s=40.8千米,即甲车与乙车在距离A地40.8千米处迎面相遇;(3)当乙车返回到A地时,有﹣30t+102=0,解得t=3.4小时,甲车要比乙车先回到A地,速度应大于(千米/小时).。

新人教版八年级(下)数学竞赛试卷及答案

新人教版八年级(下)数学竞赛试卷及答案

八年级第二学期数学科竞赛试题(考试时间:100分钟 试卷总分:120分)一、选择题(本小题共12小题,每小题3分,共36分)下列各题给出的四个选项中,1、如果分式x-1有意义,那么x 的取值范围是 A 、x >1 B 、x <1 C 、x ≠1 D 、x =12、己知反比例数xky =的图象过点(2,4),则下面也在反比例函数图象上的点是A 、(2,-4)B 、(4,-2)C 、(-1,8)D 、(16,21)3、一直角三角形两边分别为3和5,则第三边为A 、4B 、34C 、4或34D 、24、用两个全等的等边三角形,可以拼成下列哪种图形A 、矩形B 、菱形C 、正方形D 、等腰梯形 5、菱形的面积为2,其对角线分别为x 、y ,则y 与x 的图象大致为A BC D6、△ABC 的三边长分别为a 、b 、c ,下列条件:①∠A=∠B -∠C ;②∠A :∠B :∠C=3:4:5;③))((2c b c b a -+=;④13:12:5::=c b a ,其中能判断△ABC 是直角三角形的个数有 A .1个 B .2个 C .3个 D .4个7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为A 、120cmB 、360cmC 、60cmD 、cm 320学校: 班级: 姓名: 座号:第7题图 第8题图 第9题图8、如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为A 、16B 、14C 、12D 、109、如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC 的大小为A 、100B 、150C 、200D 、300 10、下列命题正确的是A 、同一边上两个角相等的梯形是等腰梯形;B 、一组对边平行,一组对边相等的四边形是平行四边形;C 、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级(下)数学竞赛
班级 姓名 ___
一.选择题(每题5分,共30分)
1.已知四边形ABCD ,从下列条件中:(1)AB ∠CD ,(2)BC ∥AD ;(3)AB=CD ;(4)BC=AD ; (5)∠A=∠C ;(6)∠B=∠D .任取其中两个,可以得出“四边形ABCD 是平行四边形”这 一结论的情况有( )
A .4种
B .9种
C .13种
D . 15种
2、把一张形状是多边形的纸片剪去其中一个角,剩下的部分是一个四边形,那么这张纸片原来的形状不可能是( )
A.三角形 B.四边形 C.五边形 D.六边形 3、关于的两个方程x 2+4mx+4m 2+2m+3=0,x 2+(2m+1)x+m 2=0中至少有一个方程有实根, m 的取值范围是( )
(A )-<m<- (B )m ≤-或m ≥- (C )-<m< (D )m ≤-或m ≥ 4.观察以下命题 ①如果x 2
=9那么x=3
②已知a>b>c ,且a+b+c=0,则一元二次方程ax 2
+bx+c=0有两个不相等的实数根 ③如果a,b,k 为正实数,a>b 那么
k
a k
b a b ++< ④一组对边相等且一条对角线平分另一条对角线的凸四边形是平行四边形。

在以上命题中,是真命题的是( )
A .①④ B.②④ C.②③ D.②③④ 5.已知1
7x x +
=(01x <<)
的值为( ).
A.
B.
6. 用三种正多边形的地砖铺地,其顶点拼在一起时,各边完全吻合覆盖地面,设这三种正多边形的
地砖的边数分别为l 、m 、n ,则有 ( ) A .1111=++
n m l B .21111=++n m l C .n m l 111=+ D .n
m l 211=+ 二.填空题(每题5分,共30分)
7.已知a 是方程0133
=++x x 的一个实数根,则实数a 的平方根是_____
8.为了了解高中学生的体能情况,对100•名学生进行了引体向上次数测试,将所得的数据整理后,画出频率分布直方图如图,图中从左到右依次为第1,2,3,4,5组.则这100名学生引体向上次数的平均数约为_________, 中位数一定落在第________组, 众数落在第______________________组.
9.若正整数a ,b 使等式20092
)
1)((=-+++
b a b a a 成立,则=a ,=b
10.如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点, AD 是∠BAC 的平分
线,MF ∥AD ,则FC 的长为 .
11.如图是正n 角星的一部分,正n 角星是一个简单的封闭多边形,它的全部2n 条边都相等,
∠A 1, ∠A 2, ∠A 3……∠A n 都相等, ∠B 1, ∠B 2, ∠B 3……∠B n 相等,如果A 1处的锐角比B 1处的锐角小10度,侧n 的值是_____________
12.如图所示的四边形ABCD 是一片沙漠地的示意图,点A ,B 在x 轴上,E (2,6), F (3,4),折线OFE 是流过这片沙漠的水沟,水沟东边的沙漠由小明绿化,水沟西边的沙漠由小亮绿化,现两人协商:在绿化规划中需将流经沙漠中的水沟取直,并且要保持两人绿化的沙漠地的面积不变,若准备在AB 上找一点P ,使得水沟取直为EP ,则点P 的坐标为__________
二.解答题(每题15分,共60分)
13.已知t 是一元二次方程x 2-x-1=0的一个根,对任意的有理数a ,有理数b,c 满足(at+1)(bt+c)=1(1)判断t 是有理数还是无理数。

(2) 求b 和c(用a 的代数式表示) (3)是否存在这样的有理数a , 使得b 或c 中至少有一个等于
2008
1
?若存在,求出这样的a 的值;若不存在,请说明理由。

14.一个批发与零售兼营的文具店,凡一次购买2B铅笔301枝以上(包括301枝),可以按批发价付款; 购买300枝以下(包括300枝)只能按零售价付款,现有学生来购买2B铅笔,如果给学校八所级学生每人买1枝, 只能按零售价付款,需用(m2-1)元(m为正整数,且m2-1>100),如果多买60枝,则可按批发价付款,同样需用(m2-1)元.
(1)设这个学校八所级共有x名学生,则x有取值范围是_______________.2B铅笔的零售价每枝
应为_________元, 批发价每枝应为_________元.(用含x,m的代数式表示)
(2)若按批发价购买15枝比零售价购买15枝少付款1元,试求这个学校八所级共有多少学生并确
定m的值.
15.如图,已知线段DE过△ABC的顶点C,且CD=CE,点F为AD的中点,点G为BE的中点,当线段DE绕点C旋转过程中,线段FG是否有经过一定点?若没有,请说明理由;若有请求出这个定点。

D
16.在
9
87654321
的小方格中填一“+”“-”号,如果可以使其代数式和为n ,就称数n 是“可被表出的数”,否则,就称数n 是“不可被表出的数”(如1是可被表出的数,这是因为986754321+-++--++ 是1的一种可被表出的方法)
(1) 求证:7是可被表出的数,而8是不可被表出的数, (2) 求25可被表出的不同方法种数。

2 .D 6. B 9. 56, 7
8.显然,次数出现最多的数不能确定在哪一组,故众数不一定在第三组.又因为引体向上次数由小到大排列,第一组有10个数据,第二组有25个数据,•第三小组有35个数据,前三组共计有70个数据,∴可以断定,中位数一定在第三组内.
10.【答】9.解:如图,设点N 是AC 的中点,连接MN ,则MN ∥AB .
又//MF AD ,
所以 FMN BAD DAC MFN ∠=∠=∠=∠,
所以 1
2
FN MN AB ==
. 因此 11
22
FC FN NC AB AC =+=+=9.。

相关文档
最新文档