培优易错试卷锐角三角函数辅导专题训练附详细答案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、锐角三角函数真题与模拟题分类汇编(难题易错题)

1.已知在平面直角坐标系中,点()()()3,0,3,0,3,8A B C --,以线段BC 为直径作圆,圆心为E ,直线AC 交E 于点D ,连接OD . (1)求证:直线OD 是E 的切线;

(2)点F 为x 轴上任意一动点,连接CF 交E 于点G ,连接BG : ①当1an 7t ACF ∠=时,求所有F 点的坐标 (直接写出); ②求BG CF

的最大值. 【答案】(1)见解析;(2)①143,031F ⎛⎫

⎪⎝⎭,2(5,0)F ;② BG CF 的最大值为12. 【解析】

【分析】

(1)连接DE ,证明∠EDO=90°即可;

(2)①分“F 位于AB 上”和“F 位于BA 的延长线上”结合相似三角形进行求解即可; ②作GM BC ⊥于点M ,证明1~ANF ABC ∆∆,得

12

BG CF ≤,从而得解. 【详解】

(1)证明:连接DE ,则:

∵BC 为直径

∴90BDC ∠=︒

∴90BDA ∠=︒

∵OA OB =

∴OD OB OA ==

∴OBD ODB ∠=∠

EB ED =

∴EBD EDB ∠=∠

∴EBD OBD EDB ODB ∠+∠=∠+∠

即:EBO EDO ∠=∠

∵CB x ⊥轴

∴90EBO ∠=︒

∴90EDO ∠=︒

∴直线OD 为E 的切线.

(2)①如图1,当F 位于AB 上时:

∵1~ANF ABC ∆∆ ∴11NF AF AN AB BC AC == ∴设3AN x =,则114,5NF x AF x == ∴103CN CA AN x =-=-

∴141tan 1037F N x ACF CN x ∠===-,解得:1031x = ∴150531

AF x == 1504333131

OF =-= 即143,031F ⎛⎫

⎪⎝⎭

如图2,当F 位于BA 的延长线上时:

∵2~AMF ABC ∆∆

∴设3AM x =,则224,5MF x AF x ==

∴103CM CA AM x =+=+

∴241tan 1037F M x ACF CM x ∠=

==+ 解得:25

x =

∴252AF x ==

2325OF =+=

即2(5,0)F

②如图,作GM BC ⊥于点M ,

∵BC 是直径

∴90CGB CBF ∠=∠=︒

∴~CBF CGB ∆∆ ∴8BG MG MG CF BC == ∵MG ≤半径4= ∴

41882

BG MG CF =≤= ∴BG CF 的最大值为12.

【点睛】

本题考查了圆的综合题:熟练掌握切线的判定定理、解直角三角形;相似三角形的判定和性质和相似比计算线段的长;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.

2.如图(1),在平面直角坐标系中,点A(0,﹣6),点B(6,0).Rt△CDE中,

∠CDE=90°,CD=4,DE=4,直角边CD在y轴上,且点C与点A重合.Rt△CDE沿y轴正方向平行移动,当点C运动到点O时停止运动.解答下列问题:

(1)如图(2),当Rt△CDE运动到点D与点O重合时,设CE交AB于点M,求∠BME 的度数.

(2)如图(3),在Rt△CDE的运动过程中,当CE经过点B时,求BC的长.

(3)在Rt△CDE的运动过程中,设AC=h,△OAB与△CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.

【答案】(1)∠BME=15°;

(2BC=4;

(3)h≤2时,S=﹣h2+4h+8,

当h≥2时,S=18﹣3h.

【解析】

试题分析:(1)如图2,由对顶角的定义知,∠BME=∠CMA,要求∠BME的度数,需先求出∠CMA的度数.根据三角形外角的定理进行解答即可;

(2)如图3,由已知可知∠OBC=∠DEC=30°,又OB=6,通过解直角△BOC就可求出BC的长度;

(3)需要分类讨论:①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,S=S△EDC﹣S△EFM;②当h≥2时,如图3,S=S△OBC.

试题解析:解:(1)如图2,

∵在平面直角坐标系中,点A(0,﹣6),点B(6,0).

∴OA=OB,

∴∠OAB=45°,

∵∠CDE=90°,CD=4,DE=4,

∴∠OCE=60°,

∴∠CMA=∠OCE﹣∠OAB=60°﹣45°=15°,

∴∠BME=∠CMA=15°;

如图3,

∵∠CDE=90°,CD=4,DE=4,

∴∠OBC=∠DEC=30°,

∵OB=6,

∴BC=4;

(3)①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,

∵CD=4,DE=4,AC=h,AN=NM,

∴CN=4﹣FM,AN=MN=4+h﹣FM,

∵△CMN∽△CED,

∴,

∴,

解得FM=4﹣,

∴S=S△EDC﹣S△EFM=×4×4﹣(44﹣h)×(4﹣)=﹣h2+4h+8,②如图3,当h≥2时,

S=S△OBC=OC×OB=(6﹣h)×6=18﹣3h.

考点:1、三角形的外角定理;2、相似;3、解直角三角形

相关文档
最新文档