单闭环调速系统

合集下载

单闭环直流调速系统

单闭环直流调速系统

单闭环直流调速系统是一种常见的控制系统,用于控制直流电机的转速。

以下是单闭环直流调速系统的基本组成和工作原理:
基本组成:
1. 直流电机:负责将电能转换为机械能。

2. 编码器或传感器:用于测量电机的实际转速。

3. 控制器:通常使用PID控制器,根据实际转速和设定转速之间的误差进行调节。

4. 功率放大器:将控制器输出的信号放大后送至电机,控制电机的转速。

工作原理:
1. 测量阶段:编码器或传感器测量电机的实际转速,并将这个信息反馈给控制器。

2. 比较阶段:控制器将实际转速与设定的目标转速进行比较,计算出误差值。

3. 控制阶段:根据误差值,控制器通过PID算法计算出控制信号,控制电机的转速。

4. 执行阶段:功率放大器根据控制信号控制电机的转速,使实际转速逐渐接近设定转速。

调速过程:
-如果实际转速低于设定转速,控制器会增加电机的供电,使电机加速。

-如果实际转速高于设定转速,控制器会减小电机的供电,使电机减速。

-控制器通过不断地调整电机的供电,使得实际转速稳定在设定的目标转速附近。

通过单闭环直流调速系统,可以实现对直流电机转速的精确控制,广泛应用于工业生产中的传动系统、自动化设备等领域。

(完整版)转速负反馈单闭环直流调速系统.

(完整版)转速负反馈单闭环直流调速系统.

例2.2 对于例2.1所示的开环系统,采用转 速负反馈构成单闭环系统,且已知晶闸管
整流器与触发装置的电压放大系数 Ks = 30,
= 0.015V·min/r,为了满足给定的要求,
计算放大器的电压放大系数KP 。
IdR
U*n +
_
∆Unn
Uct Kp
Ud0 + _ E Kss
1/Ce
n
Un
解:在例2.1中已经求得
IdR
U*n +
_
∆Unn
Uct Kp
Ks
Ud0 + _ E
1/Ce
n
Un
n
开环机械特性
闭环静特性
B
C
A
A’
D
Ud4 Ud3 Ud2 Ud1
O
Id1
Id2
Id3
Id4
Id
图2.19 闭环系统静特性和开环机械特性的关系
由此看来,闭环系统能够减少稳态速 降的实质在于它的自动调节作用,在于它 能随着负载的变化而相应地改变电枢电压, 以补偿电枢回路电阻压降。
运动控制系统
第2 章
直流调速系统
2.3 转速负反馈单闭环直流调速系统
2.3.1 单闭环调速系统的组成及静特性 2.3.2 单闭环调速系统的动态分析 2.3.3 无静差调速系统的积分控制规律 2.3.4 单闭环调速系统的限流保护
2.3.1 单闭环调速系统的组网 功率驱动装置 电动机
3. 开环系统机械特性 和闭环系统静特性的关系
比较一下开环系统的机械特性和闭环系统的静 特性,就能清楚地看出反馈闭环控制的优越性。如
果断开反馈回路,则上述系统的开环机械特性为
n Ud0 IdR Ce

单闭环直流调速系统实验报告

单闭环直流调速系统实验报告

单闭环直流调速系统实验报告单闭环直流调速系统实验报告一、引言直流调速系统是现代工业中常用的一种电机调速方式。

本实验旨在通过搭建单闭环直流调速系统,探究其调速性能以及对电机转速的控制效果。

二、实验原理单闭环直流调速系统由电机、编码器、电流传感器、控制器和功率电路等组成。

电机通过功率电路接受控制器的指令,实现转速调节。

编码器用于测量电机转速,电流传感器用于测量电机电流。

三、实验步骤1. 搭建实验电路:将电机、编码器、电流传感器、控制器和功率电路按照实验原理连接起来。

2. 调试电机:通过控制器设置电机的运行参数,如额定转速、最大转矩等。

3. 运行实验:根据实验要求,设置不同的转速指令,观察电机的响应情况。

4. 记录实验数据:记录电机的转速、电流等数据,并绘制相应的曲线图。

5. 分析实验结果:根据实验数据,分析电机的调速性能和控制效果。

四、实验结果分析1. 转速响应特性:通过设置不同的转速指令,观察电机的转速响应情况。

实验结果显示,电机的转速随着指令的变化而变化,且响应速度较快。

2. 稳态误差分析:通过观察实验数据,计算电机在不同转速下的稳态误差。

实验结果显示,电机的稳态误差较小,说明了系统的控制效果较好。

3. 转速控制精度:通过观察实验数据,计算电机在不同转速下的控制精度。

实验结果显示,电机的转速控制精度较高,且随着转速的增加而提高。

五、实验总结本实验通过搭建单闭环直流调速系统,探究了其调速性能和对电机转速的控制效果。

实验结果表明,该系统具有较好的转速响应特性、稳态误差较小和较高的转速控制精度。

然而,实验中也发现了一些问题,如系统的抗干扰能力较弱等。

因此,在实际应用中,还需要进一步优化和改进。

六、展望基于本实验的结果和问题,未来可以进一步研究和改进单闭环直流调速系统。

例如,可以提高系统的抗干扰能力,提升转速控制的稳定性和精度。

同时,还可以探索其他调速方式,如双闭环调速系统等,以满足不同的工业应用需求。

单闭环调速系统的基本特征

单闭环调速系统的基本特征

单闭环调速系统的基本特征
单闭环调速系统是一种只使用一个闭环控制器来操作过程变量的控制
系统,它主要应用于自动调节控制。

它的基本特征如下:
1、单闭环系统通常采用反馈来达到自动调节的目的。

2、系统的反馈信号是由控制器根据过程变量的变化而产生的,它与
过程变量具有一定的反馈关系,当过程变量发生改变时,控制器也会随之
发生变化,从而使系统自动调整到预定的期望值。

3、反馈控制往往采用PID(比例-积分-微分)控制器,具有相当好
的稳定性和控制性能。

4、单闭环系统一般只能控制一个单变量,即只能控制一个目标参数,而不能控制多个参数的复合控制。

5、单闭环系统的控制精度比双闭环系统要低,因此,不能满足较高
精度控制的要求。

6、单闭环系统一般采用设定值反馈来实现自动控制,可大大减少操
作员操作的复杂程度。

直流调速系统单闭环

直流调速系统单闭环

单闭环直流调速系统 -- 有静差系统
结论: 1. 单闭环有静差晶闸管直流调速系统的动态稳定性
单闭环直流调速系统 -- 一般概念
对主电路微分方程右侧在相同区间积分;有:
1
2
6623EidRLddtiddt
3
式中方括号内;
第一项平均值为:E = Cen = Cen ; 第二项平均值为:IdR ; 第三项平均值为:零;
单闭环直流调速系统 -- 一般概念
因此得到: 1.17U2cosCenIdR n1.17U2cosIdR
(1K) (1K)
1K
单闭环直流调速系统 -- 有静差系统
闭环系统特征方程即为:
T m T T ss3 T m (T T s)s2 T m T ss 1 0 1 K 1 K 1 K
应用劳斯稳定判据可以得到系统的动态稳定条件:
KTm(TTs )Ts2 TTs
式中右侧即为系统临界放大系数 Kcr ;
nminnmin nN(1s)
单闭环直流调速系统 -- 有静差系统
单闭环直流调速系统 -- 有静差系统
在假设忽略各种非线性因素等条件下;系统中各环节 的稳态关系为:
➢ 电压比较器 UnUn *Un
➢ 放大器 UcKpUn
➢ 晶闸管触发整流装置 ➢ 调速系统开环机械特性
➢ 测速发电机
Ud0KsUc nUd0 IdR
Id(s)
1 R (1)
Ud0(s)E(s) Ts1
单闭环直流调速系统 -- 有静差系统
电动机轴上转矩与转速之间的关系符合电气传动系统
运动方程:
GD 2 dn
T e T L C m I d C m I dL 375 dt
GD 2 R 1 dn I d I dL 375 C m R dt

单闭环直流调速工作原理

单闭环直流调速工作原理
为转速反馈系数
电工培训四级——单闭环直流调速工作原理
导入 内容 案例 总结
2、单闭环调速系统的抗干扰性分析
引入转速负反馈的目的在于提高调速系统的抗干扰性,保持转 速的相对稳定,那么,单闭环调速系统是怎样实现抗干扰作用的呢? 以负载电流增大为例分析如下 :
I
↑→
d
n

Ud
Id Ce
R↓→
U
↓→
n
U↑→Uct↑→Ud↑→
n↑
通过这一调节可抑制转速的下降,虽然不能做到完全阻止转速下
降,但同开环相比,转速的下降程度会大大降低,从而保持了转速的 相对稳定 。
同相可分析电网电压下降时,系统的抗干扰性。电网电压下降时, 整流装置输出电压Ud减小,电机转速下降,系统调节过程如下:
Ud↓→
n

Ud
I Ce
单相180V 直流1A 直流180V s<10%
电工培训四级——单闭环直流调速工作原理
导入 内容 案例 总结
通过本节课的学习,我们学到了单闭环直流调速系统的工作原理和 性能,单闭环直流调速系统是在开环直流调速系统的基础之上通过增 加反馈检测环节和比较放大电路,采用闭环控制构成的,是一种非常 重要且比较常见的直流调速系统,同时,学习单闭环直流调速系统的 相关知识是学习双闭环直流调速系统的基础,为以后的学习打下基础。
职业资格培训电工(四级) 单闭环直流调速工作原理
电工培训四级——单闭环直流调速工作原理
闭环直流调速系统就是在开环直流调速系统的基 导入 础上增加了反馈比较环节,系统为了稳定输出,通 内容 常引入负反馈。
案例 总结
图1 闭环调速系统的框图
导入 内容 案例 总结
电工培训四级——单闭环直流调速工作原理

单闭环直流调速系统介绍课件

单闭环直流调速系统介绍课件

智能化:引入 人工智能技术, 实现系统的自 适应控制和自 学习能力
网络化:通过 互联网和物联 网技术,实现 远程监控和故 障诊断
集成化:将多 个子系统集成 为一个整体, 提高系统的集 成度和可靠性
节能和环保的发展趋势
01
提高能源利用率:通过优化控制策略和算法,降低能耗,提高能源利用率
02
减少污染排放:采用环保材料和工艺,减少生产过程中的污染排放
单闭环直流调速 系统介绍课件
目录
01. 单闭环直流调速系统的基本 概念
02. 单闭环直流调速系统的控制 方式
03. 单闭环直流调速系统的应用 领域
04. 单闭环直流调速系统的发展 趋势
1
单闭环直流调速 系统的基本概念
直流调速系统的组成
01
整流器:将交流 电转换为直流电
02
滤波器:去除直 流电中的交流成
04
应用场合:适用于对转速要求不高,但对响应速度要求较高的场合
电流控制方式
STEP1
STEP2
STEP3
STEP4
电压控制方式: 通过控制电压 来调节电流, 实现调速
电流控制方式: 通过控制电流 来调节电压, 实现调速
速度控制方式: 通过控制速度 来调节电流, 实现调速
位置控制方式: 通过控制位置 来调节电流, 实现调速
网络化:实现远程监控 和控制,提高系统的可 维护性和可扩展性
谢谢
速度控制方式
1
电压控制方式:通过调节直流电源的输出电压来控制电机的转速
2
电流控制方式:通过调节直流电源的输出电流来控制电机的转速
3
转速控制方式:通过调节电机的转速来控制电机的转速
4
位置控制方式:通过调节电机的位置来控制电机的转速

单闭环直流调速系统

单闭环直流调速系统

第十七单元 晶闸管直流调速系统第二节单闭环直流调速系统一.转速负反馈宜流调速系统转速负反馈直流调速系统的原理如图17-40所示。

转速负反馈直流调速系统由转速给左、转速调节器ASR 、触发器CF 、晶闸管变流器U 、 测速发电机TG 等组成。

直流测速发电机输出电压与电动机转速成正比。

经分圧器分圧取出与转速n 成正 比的转速反馈电压Ufn 0转速给定电压Ugn 与Ufn 比较,其偏差电压A U=Ugn-Ufn 送转速调节器ASR 输入 端。

ASR 输出电圧作为触发器移相控制电压Uc,从而控制晶闸管变流器输出电压Udo 本闭环调速系统只有一个转速反馈环,故称为单闭环调速系统.1. 转速负反馈调速系统工作原理及其静特性设系统在负载T L 时,电动机以给定转速nl 稳定运行,此时电枢电流为Idl,对应 转速反馈电圧为Ufnl,晶闸管变流器输出电压为Udi 。

当电动机负载T L 增加时,电枢电流Id 也增加,电枢回路压降增加,电动机转速下 降,则Ufn 也相应下降, 而转速给定电压Ugn 不变,A U=Ugn-Ufn 加。

转速调节器ASR 输出电压Uc 增加,使控制角a 减小,晶闸管整流装置输出电压Ud 增加,于是电动机转速便相应自动回升,其调节过程可简述为:T L t — Id t — ld (R 》+Rd ) t I -*Ufn I U t — Uc t -* a | —Ud t -*n t 。

图17-41所示为闭坏系统静特性和开环机械特性的关系。

n亠 =H o + A//图17—41闭环系统静特性和开环机械特性的关系.图中①②③④曲线是不同Ud之下的开环机械特性。

假设当负载电流为Idl时,电动机运行在曲线①机械特性的A点上。

当负载电流增加为Id2时,在开环系统中由于Ugn不变,晶闸管变流器输出电压Ud 也不会变,但由丁•电枢电流Id增加,电枢回路压降增加,电动机转速将由A点沿着曲线①机械特性下降至&点,转速只能相应下降。

实验十三 单闭环直流调速系统

实验十三 单闭环直流调速系统

实验十三单闭环直流调速系统一、实验目的1.掌握用PID控制规律的直流调速系统的调试方法;2.了解PWM调制、直流电机驱动电路的工作原理。

二、实验设备1.THBCC-1型信号与系统•控制理论及计算机控制技术实验平台2.THBXD数据采集卡一块(含37芯通信线、16芯排线和USB电缆线各1根)3.PC机1台(含软件“THBCC-1”)三、实验原理直流电机在应用中有多种控制方式,在直流电机的调速控制系统中,主要采用电枢电压控制电机的转速与方向。

功率放大器是电机调速系统中的重要部件,它的性能及价格对系统都有重要的影响。

过去的功率放大器是采用磁放大器、交磁放大机或可控硅(晶闸管)。

现在基本上采用晶体管功率放大器。

PWM功率放大器与线性功率放大器相比,有功耗低、效率高,有利于克服直流电机的静摩擦等优点。

PWM调制与晶体管功率放大器的工作原理:1.PWM的工作原理图13-1 PWM的控制电路上图所示为SG3525为核心的控制电路,SG3525是美国Silicon General公司生产的专用PWM控制集成芯片,其内部电路结构及各引脚如图13-2所示,它采用恒频脉宽调制控制方案,其内部包含有精密基准源、锯齿波振荡器、误差放大器、比较器、分频器和保护电路等。

调节Ur的大小,在A、B两端可输出两个幅度相等、频率相等、相位相互错开180度、占空比可调的矩形波(即PWM信号)。

它适用于各开关电源、斩波器的控制。

2.功放电路直流电机PWM输出的信号一般比较小,不能直接去驱动直流电机,它必须经过功放后再接到直流电机的两端。

该实验装置中采用直流15V的直流电压功放电路驱动。

3.反馈接口在直流电机控制系统中,在直流电机的轴上贴有一块小磁钢,电机转动带动磁钢转动。

磁钢的下面中有一个霍尔元件,当磁钢转到时霍尔元件感应输出。

4.直流电机控制系统如图13-3所示,由霍耳传感器将电机的速度转换成电信号,经数据采集卡变换成数字量后送到计算机与给定值比较,所得的差值按照一定的规律(通常为PID)运算,然后经数据采集卡输出控制量,供执行器来控制电机的转速和方向。

转速负反馈单闭环直流调速系统的

转速负反馈单闭环直流调速系统的

第三章
单闭环直流调速系统
转速负反馈调速系统的调节过程
第三章
结论:
单闭环直流调速系统
①转速负反馈自动调节过程依靠偏差电压 来进行调节;
②这种系统是以存在偏差为前提的,反馈环节只是检测偏差,减小偏差
,而不能消除偏差,因此它是有静差调速系统; ③经转速负反馈调整稳定后的转速将低于原来的转速。
第三章
单闭环直流调速系统
第三章
单闭环直流调速系统
复习导入:
转速负反馈单闭环直流调速系统的结构电路图
第三章
单闭环直流调速系统
转速负反馈单闭环直流调速系统的工作原理: 通过调节给定电位器RP1,改变给定电压Ug,即可调 节直流电动机的转速。当Ug增大,转速n升高。其具 体调节过程如下:
Ug U Ug Ud n
当负载转矩减小时,闭环系统的自动调节过程又是怎样的?
第三章
单闭环直流调速系统
二、转速负反馈单闭环调速系统的工作原理
1.电动机内部自动调节过程
①此调节过程主要通过电动机内部电动势E的变化来 进行调节; ②调节过程是以转速的改变为前提,当负载发生变化
时,通过转速的改变,使其达到新的稳定状态。
第三章
单闭环直流调速系统
2.转速负反馈自动调节过程

单闭环直流调速系统

单闭环直流调速系统

是 nmax,而对最低速静差率的
要求相同,那么:
率分别为
Dop
nnoms nop(1s)
Dc
l
nnoms nc l(1s)
scl
ncl, no cl
so pnn0oopp
则得 D cl(1K)D op
当 n0opn0c时 l ,则 scl1s oK p
(4)要取得上述三项优势,闭 环系统必须设置放大器。
上述三项优点若要有效,都
(3)当要求的静差率一定 取决于一点,即 K 要足够大,
时,闭环系统可以大大提高 因此必须设置放大器。
调速范围。
结论: 闭环调速系统可以获得比开环调速系统
硬得多的稳态特性,从而在保证一定静差 率的要求下,能够提高调速范围,为此所 需付出的代价是,须增设电压放大器以及 检测与反馈装置。
UdCenUdE
Ra
Ra
当电机起动时,由于存在机械惯性,所以不可能立即转
动起来,即n=0,则其反电动势E=0。这时起动电流为:
它只与电枢电压Ud和Id 电 枢U 电d阻R Ra a有关。由于电枢电阻很 小,所以起动电流是很大的。为了避免起动时的电流冲 击,在电压不可调的场合,可采用电枢串电阻起动,在 电压可调的场合则采用降压起动——在调速系统中如何 处理。
扰动作用与影响
Kp变化
Id变化
电源波动 R
U*n +
∆Un
- Un
Kp Uc
Ks
Ud0 -
+
E
电阻变化 励磁变化
1/Ce
n
闭环调速系统的给定作用和扰动作用 检测误差
Us Ud0 n Un Un Uc Ud0 n
因此,反馈控制系统对前向通道 上的所有扰动都能起抑制作用。

第一讲 单闭环直流调速系统

第一讲 单闭环直流调速系统

Id Id
-
-
Un ∆Un
Un n
+
A Uc
GT
UPE Ud d
-
M
-
+ -
+
n
Utg tg
TG
-
图3-2 采用转速负反馈的闭环调速系统

调节原理
在反馈控制的闭环直流调速系统中,与 电动机同轴安装一台测速发电机 TG ,从 而引出与被调量转速成正比的负反馈电压 Un ,与给定电压 U*n 相比较后,得到转速 偏差电压 Un ,经过放大器 A,产生电力 电子变换器UPE的控制电压Uc ,用以控制 电动机转速 n。
第 一 讲
单闭环直流调速控制系统
内容提要
直流调速方法 直流调速电源 单闭环直流调速控制系统
引 言
直流电动机具有良好的起、制动性能, 宜于在大范围内平滑调速,在许多需要调 速和快速正反向的电力拖动领域中得到了 广泛的应用。 由于直流拖动控制系统在理论上和实 践上都比较成熟,而且从控制的角度来看, 它又是交流拖动控制系统的基础。因此, 应该首先很好地掌握直流拖动控制系统。

UPE的组成
图中,UPE是由电力电子器件组成的变 换器,其输入接三组(或单相)交流电源, 输出为可控的直流电压,控制电压为Uc 。
~
u
AC
DC
Ud0 d0
Uc c

UPE的组成(续)
目前,组成UPE的电力电子器件有如 下几种选择方案: 对于中、小容量系统,多采用由IGBT或 P-MOSFET组成的PWM变换器; 对于较大容量的系统,可采用其他电力 电子开关器件,如GTO、IGCT等; 对于特大容量的系统,则常用晶闸管触 发与整流装置。

单闭环直流调速系统

单闭环直流调速系统

单闭环直流调速系统简介单闭环直流调速系统是一种常见的电气传动系统,广泛应用于工业生产和机械控制领域。

该系统通过调节直流电机的电压和电流来实现对电机转速的精确控制。

本文将介绍单闭环直流调速系统的原理、主要组成部分以及工作原理。

原理单闭环直流调速系统的基本原理是通过调节电机的励磁电流和电压来改变电机的转速。

系统的闭环反馈控制可以实现对电机转速的精确控制。

具体的原理如下:1.转速测量:系统中通过安装转速传感器来测量电机的实时转速,并将测量值反馈给控制器。

2.错误计算:系统将设定的目标转速与实际转速进行比较,计算出误差值。

3.控制信号产生:根据误差值,系统控制器生成相应的调节信号。

4.调节信号传递:调节信号通过控制器输出,传递给电机的调速装置。

5.电机调速:电机的调速装置根据控制信号调整电机的电压和电流,从而实现对电机转速的控制。

组成部分单闭环直流调速系统主要包含以下几个组成部分:1.电机:直流电机是该系统的驱动设备,通过调整电机的电压和电流来实现转速控制。

2.电源:系统需要一个恒定的直流电源供应电机运行,并提供所需的电压和电流。

3.调速装置:调速装置是控制电机电压和电流的关键设备,通过改变输出电压和电流的大小来实现对电机转速的控制。

4.转速传感器:转速传感器用于测量电机的实际转速,并将测量值反馈给控制系统。

5.控制器:控制器是系统的核心部分,负责计算误差值并生成相应的调节信号。

6.显示器:显示器用于实时显示电机的转速和控制参数。

工作原理当系统启动时,电机会按照设定的初始转速开始运行。

转速传感器会实时测量电机的转速,并将测量值传递给控制器。

控制器根据设定的目标转速和实际转速计算出误差值。

控制器通过对误差值进行计算和处理,生成相应的调节信号。

调节信号经过控制器输出,传递给电机的调速装置。

调速装置根据调节信号调整电机的电压和电流,使电机的转速向目标转速靠近。

系统会周期性地重复上述过程,不断进行误差计算和调节信号生成,从而实现对电机转速的精确控制。

单闭环直流调速系统

单闭环直流调速系统

实验一、单闭环直流调速系统实验(注意:本实验为本学期的考核试验,考核时间为第14~15教学周,第14周为1、2班考核时间,第15周为3、4班考核时间。

考核前学生可以到实验室进行实验复习。

实验室开放时间为:每周一、二、三、四下午。

)二、实验所需设备及仪器三、转速单闭环直流电机调速系统原理及实验系统组成以直流电机转速为反馈信号的单闭环系统叫做转速单闭环直流电机调速系统。

在本实验系统中,用以测量电机转速的装置为测速发电机,该装置可将电动机实际转速转换位于电机转速成正比的电压信号反馈到系统输入端。

反映转速变化的电压信号在与期望转速相关的给定电压比较后,其偏差信号送入速度调节器。

速度调节器对偏差进行控制运算后得到的便是控制晶闸管的移相控制电压U ct,整流桥的触发电路产生的触发脉冲经功放后加到晶闸管的门极和阴极之间以改变“三相全控整流”的输出电压,进而改变直流电机的转速,从而构成了速度负反馈闭环系统。

其动态结构框图如图1所示。

单闭环直流电机调速实验系统由被控对象、控制器和执行器三部分组成,它们之间的关系如图2所示。

(1)被控对象被控对象就是直流电动机M,它在主回路直流电压的作用下旋转,其转速为系统的被控参数。

测量直流电动机转速的装置为与直流电动机同轴安装的测速发电机TG,TG的输出电压与直流电机转速成正比,该电压通过速度变换电路反馈到控制器的输入端与给定信号相比较。

本系统使用一台带有负载电阻R的发电机来模拟直流电机的负载,改变可变电阻R的大小也就改变了直流电动机M的负载。

为平滑直流电动机的电流,在供电回路中接有300mH的平滑电抗器。

(2)控制器控制器为本实验的主要内容之一,为使系统为无差系统,本系统采用了PI(比例-积分)调节器,依靠其中的积分作用实现了转速的无差调节。

(3)执行器执行器就是三相整流电路及其触发电路部分,它起着将控制器输出电压转换为电动机两端的直流电压的作用。

四、实验内容(1)基本单元测试。

转速单闭环直流调速系统(45页)

转速单闭环直流调速系统(45页)

3 开环系统机械特性与闭环系统静特性的比较
机械特性比较: n
开环机械特性
闭环静特性
A
B
C
D
A"
U d04 U d03 U d02 U d01
O
Id
1
Id 2
Id3
Id 4
Id
图 4.3.4 闭环系统静特性与开环系统机械特性的关
开环机械特性
n
?
K
pK
s系U
* n
Ce
?
RId Ce
?
n0,op ? ? nop
? 电动机轴上的转矩和转速应服从电力拖动系统的运动方程式 (在忽略粘性摩擦的情况下,即第三章 3.2.1节的转矩平衡方
程式(3.2-4)):
Te -TL =
GD 2 375
dn dt
(4.3-11)
单闭环调速系统的动态数学模型?
考虑到在额定励磁条件下Te ? C m Id ,e ?C en ,定义下列时间常数:
K ? ? nop ? 1= 275 ? 1=103.6
? nc1
2.63
由 K ? K pK s? /C e ,可以求得放大器的放大系数为
Kp
?
KC e
K s?
?
103.6? 0.2? 30 ? 0.015
46
转速负反馈自动调速系统 静态参数的计算?
转速负反馈自动调速系统静态参数的计算(例题4.2-2 )
Un ?
图 4.3.8 转速单闭环调速系统的动态结构图(基于假 ? c ? 1/3Ts )

? 转速负反馈单闭环调速系统的传递函数:
K pK s
W
c1 ?s??
n(s) ?

单闭环pwm直流调速系统分析及校正

单闭环pwm直流调速系统分析及校正
调速稳定性:系统的调速稳定性决定了系统的性能
调速响应速度:系统的调速响应速度决定了系统的性能
调速精度:系统的调速精度决定了系统的性能
系统的动态特性分析
动态特性:系统的响应速度和稳定性
添加标题
响应速度:系统对输入信号的响应速度
添加标题
稳定性:系统在受到干扰后能否保持稳定
添加标题
动态特性分析方法:使用数学模型和仿真软件进行分析
添加标题
驱动电路:设计驱动电路,实现对电机的驱动和控制
添加标题
反馈电路:设计反馈电路,实现对电机转速的实时监测
添加标题
电源电路:设计电源电路,为系统提供稳定的电源供应
添加标题
保护电路:设计保护电路,防止过流、过压等异常情况对系统的损坏
软件实现
软件部署:将软件部署到硬件平台上,实现系统的运行和调速功能
校正效果:提高系统的稳定性和响应速度,降低误差和振荡
校正方法:采用PID控制器进行校正,包括比例、积分、微分三个部分
校正原理:通过调整闭环系统的参数,使系统达到稳定状态
系统的PID校正
PID控制器的设计:根据系统特性选择合适的PID参数
校正方法:采用Ziegler-Nichols方法、Tyreus-Luyben方法等
优化目标:提高系统的稳定性和响应速度
优化方法:采用自适应控制算法,如PID控制、模糊控制等
优化效果:提高系统的动态性能和抗干扰能力
优化参数:根据系统特性和优化目标,调整控制参数,如PID控制器的参数等
优化目标的确定
优化系统的控制参数和算法,提高系统的性能和效率
提高系统的精度和可靠性
降低系统的功耗和发热量
软件测试:对软件进行测试,确保其正确性和稳定性

单闭环直流调速系统的基本工作原理

单闭环直流调速系统的基本工作原理

单闭环直流调速系统的基本工作原理系统的基本原理是根据电机的实际转速和设定转速之间的误差,通过调节电源电压来控制电机的转速,使实际转速与设定转速保持一致。

具体工作过程可以分为以下几个阶段:
1.电源输入:将交流电源转换为直流电源供给电机。

交流电源经过整流电路,将交流电转换为直流电。

2.电流控制:通过变阻器来改变电压,调节电阻的大小,从而控制直流电机的输入电流。

当电阻增大时,电机的输入电流减小,反之亦然。

3.转速检测:通过转速传感器测量电机的实际转速,并将测量值与设定值进行比较,计算出转速的误差。

转速传感器通常是使用光电传感器或霍尔传感器等。

4.控制器:根据转速误差来调节电机输入电压。

控制器可以是模拟控制器或数字控制器,根据系统的要求来选择。

控制器通过与电机控制电路相连,从而控制电机的输出。

5.输出功率:经过调整电源电压后,电机输出的功率与实际负载相匹配。

控制电路会根据设定值和转速误差来调节电机输出的功率,使其尽可能接近设定值。

总结起来,单闭环直流调速系统的基本原理是通过将交流电源转换为直流电源,通过调节电压来控制电机的输入电流,利用转速传感器测量实际转速并与设定值比较,然后通过控制器调节电机的输入电压,使实际转速与设定转速之间的误差尽可能减小。

通过这种方式,可以实现对直流电机的调速控制,适应不同负载要求和工作条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与电动机同轴安装一个测速发电机,从而产生与转速成正比的负反馈电压Un,与给定电压Un*相比较后,得到转速偏差电压,经过放大器,产生电力电子变换器所需的控制电压Uct,用以控制电动机的转速。
电流截止负反馈的作用是在电动机发生超载或堵转的时候电流截止负反馈和给定信号相比较抵消。使电动机处于停止运行状态,以保护电机。
校正后系统的传递函数为
=
校正后的稳定裕量为 (1)
若要求 ,利用式(1)可以求出 ,可以求出 。校正后的系统的开环对数幅频特性绘于下图。
比较开环频率特性,在 处,被校正系统的 =30.9dB,校正后的 。因此,校正环节的 应与 正负相抵,即 =- 。这样确定的校正环节的对数频率特性如曲线3所示。
所以
五、闭环直流调速系统稳态参数的计算
首先考虑比例调节器的电流截止负反馈的单闭环系统,因为稳态时电流截止环节不起作用,故先不考虑电流截止负反馈环节
(1)额定负载时的稳态速降应为: 2.63r/min
(2)闭环系统应有的开环放大系数:
计算电动机的电动势系数:0.2V min/r
闭环系统额定速降为:275r/min
带电流截止负反馈的单闭环系统仿真实验报告
一、课题要求
已知参数:电动机:60KW、220V、305A、1000r/min、0.066Ω,
变流器:Ks = 30,V—M系统电枢回路总电阻R = 0.18Ω
测速发电机:23.1W、110V、0.21A、1900r/min, =78N
要求:D=20,S≤5%
取 。
(5)电流截止环节设计
电流反馈系数为
(6)判断系统的稳定性计算:
系统中各环节的时间常数:
电磁时间常数Tl:0.012s
机电时间常数Tm:0.098s
晶闸管装置的滞后时间常数Ts:0.00167s
计算出开环放大系数应满足的稳定条件为K>103.6,又因为K<67,所以比例调节器
成的系统是不稳定的,必须作动态校正。
输出示波器波形:很明显系统振荡
(由于没加限幅,电流早已过大,电机已毁,实际中是不存在的)
六、动态校正
这里将采用开环对数频率特性设计串联校正调节器。经过静态设计后满足静态性能指标的负反馈闭环系统的开环系统传递函数为
现在我们采用PI调节即比例积分调节器构成串联滞后校正,其传递函数为 。由于系统不稳定,要设法将截止频率减下来,以使系统有足够的稳定裕量,因此将校正环节的转折频率1/ 设置在远小于被校正系统截止频率 处。为了方便起见,通常令 =T1,即在传递函数上使校正装置的比例微分项( )与被校正系统中时间常数大的惯性环节 相对消,以此来确定校正环节的转折频率。
二、设计参数
(1)电动机:额定数据为60kw,220v,305A,1000r/min,电枢电阻RS=0.066Ω,飞轮力矩GD2=78N.m2。
(2)晶闸管装置:三相桥式可控整流电路,整流变压器Y/Y联结,触发整流环节的放大系数Ks=30。
(3)V-M系统主电路总电阻R=0.18Ω,总电感为2.16mH
(4)测速发电机:永磁式,额定数据为23.1w,110v,0.21A,1900r/min
(5)系统静动态指标:调速指标D=20,s≤5%,γ=60
(6)电流截止负反馈环节:要求加入合适的电流截止负反馈动静态指标,并使系统可以在阶跃给定信号下直接启动。
四、实验原理
闭环系统的开环放大系数为:103.6
(3)计算转速负反馈环节的反馈系数和参数
测速发电机的电动势:0.0579V.min/r
转速反馈电压:11.58V(α=α2KTGα2取0.2)
=1000 =11.58V
转速反馈系数为:0.0116 V.min/r
(4) 计算运算放大器的放大系数和参数
运算放大器放大系数Kp为: 59.5
GH =
103.6
----------------------------------------------------------
于是校正环节的传递函数为
又因为被校正系统中的比例系数为 的比例调节器串联。将比例调节器的比例系数综合考虑到比例积分调节器,则调速系统中所串联比例积分调节器的传递函数为
若取调节器输入电阻 ,则调节器反馈网络中的参数为
输入程序:
GH=tf([103.6],conv([0.00167,1],conv([0.014,1],[0.084,1])))//校正前开环传递函数
相关文档
最新文档