第七章化学动力学

合集下载

第七章 化学动力学-2

第七章 化学动力学-2

速率方程为: r
1 dcHCl 1/ 2 kcH 2 cCl 2 2 dt
,其反应机理及
相应元反应活化能如下:
反 应 (1) Cl2 + M → 2Cl· +M (2) Cl· + H2 → HCl + H· (3) H· + Cl2 → HCl + Cl· (4) 2Cl· + M → Cl2 + M Ea/kJ· mol-1 243 25 12.6 0 工科大学化学
教材P384以范特霍夫规则为例,取T1 = 300K,
T2 = 310K,γ1= 2 , γ2= 4 代入下式
T1T2 R kT2 Ea ln T2 T1 kT1
解得:Ea,1 = 53.6kJ· mol-1, Ea,2 = 107.2kJ· mol-1
工科大学化学
四、简单碰撞理论(SCT)
链引发 链传递 链终止
由反应机理导出的表观速率常数为:
k1 k k2 k4
1 2
则其表观活化能为:
Ea =Ea,2 + 0.5(Ea,1 - Ea,4) = 146.5kJ· mol-1
如果从反应机理导出的速率方程和表观活
化能与实验值相符,说明反应机理是正确的。
工科大学化学
1. 双分子碰撞理论
设双分子反应A+ F→产物
理论要点:
⑴ 反应物分子无内部结构和内部自由度的刚性
球,相互无作用,碰撞完全弹性;
⑵ 反应分子必须通过碰撞才可能发生反应,反应
速率与碰撞频率成正比;
工科大学化学
⑶ 碰撞未必反应,活化碰撞才有效; 活化碰撞——碰撞分子对的能量达到或超过某 一定值ε0(称为阈能)时,反应才能发生

化工-第七章 化学反应动力学基础

化工-第七章 化学反应动力学基础

反应速率与转化率:
设A组分:n A0 初始量、t反应时间、n At时刻瞬时量 x At时刻瞬时转化率 反应消耗的A的量 n A0 n A xA 反应初始时A的量 n A0 即: n A n A0 (1 x A ) 若反应前后体积变化不大:c A c A0 (1 xA ) 1 dnA 1 nA0 dx A 则: rA V dt V dt nA0 x A
转化为目的产物的反应物的物质的量 选择性()= 反应物被转化掉的物质的量 收率:
收率()= 转化为目的产物的反应物的物质的量 进入反应器的反应物的物质的量
二、复杂反应的速率方程式
1、平行反应:
k2 A B S dcS dcP a1 b1 a b 则:rp k1c A cB rS k2c A2 cB2 dt dt rp k1 a1 a2 b1 b2 平行反应速率之比为: = c A cB rS k2 k1 A B P
第七章 化学反应动力学基础

内容: 2、简单反应的速率方程式 4、本征动力学和宏观动力学
1、化学动力学基本概念 3、简单反应和复杂反应

重点: 2、简单反应和复杂反应
1、简单反应的速率方程式
§7-1 化学动力学基本概念
一、化学计量方程式
复杂的化学计量方程式: 0= i Bi
n
i : 为组分Bi的计量系数。反应物为负、产物为正。
r f (c, T ) r f (T ) (c) f (T ):反应速率的温度效应、 (c):反应速率的浓度效应 f (T )常表示为反应速率常数k : k A exp( E 对于均相反应:aA bB sS
( c) c cB A

物理化学(王海荣主编)第七章化学动力学解答

物理化学(王海荣主编)第七章化学动力学解答

上一内容 下一内容 回主目录
返回
2019/8/24
(4)有效碰撞的概率P(probability factor)
(1)从理论计算认为分子已被活化,但由于有 的分子只有在某一方向相撞才有效;
(2)有的分子从相撞到反应中间有一个能量传
递过程,若这时又与另外的分子相撞而失去能量,
则反应仍不会发生;
反应的速率由活化络合物转化成产物的速率决定。
上一内容 下一内容 回主目录
返回
2019/8/24
过渡态理论
图6.3 过渡状态理论和活化能示意图
上一内容 下一内容 回主目录
返回
2019/8/24
过渡态理论
活化络合物所具有的能量和反应物分子平均能量之差即 为反应活化能。
活化络合物不稳定 ,化学键会断裂,可能 生成产物使反应向正方 向进行,也可能生成反 应物向逆向进行。
(2)有效碰撞的能量因子
分子互碰并不是每次都发生反应,只有相 对平动能在连心线上的分量大于阈能的碰撞才 是有效的,所以绝大部分的碰撞是无效的。
要在碰撞频率项上乘以有效碰撞分数q。
q exp( Ec ) 或q exp( Ea )
RT
RT
上一内容 下一内容 回主目录
返回
2019/8/24
上一内容 下一内容 回主目录
返回
2019/8/24
有效碰撞
运动着的A分子和B分子,两者质心的投影落
在直径为 d AB 的圆截面之内,都有可能发生碰撞。
d AB称为有效碰撞直径。
d AB
BA
分子间的碰撞和有效直径
上一内容 下一内容 回主目录
返回
2019/8/24
(1)有效碰撞的碰撞频率

第七章 化学动力学 章末习题

第七章 化学动力学 章末习题

第七章 化学动力学章末总结一、内容提要1. 基本概念(1)化学动力学的研究对象研究化学反应的速率和机理以及影响速率的各种因素,如温度、浓度、压力、催化剂、介质和分子结构等。

(2)动力学曲线动力学曲线即反应物或生成物的浓度随时间的变化曲线。

(3)转化速率对应于指明的化学计量方程,反应进度ξ在t 时刻的变化率称为该反应的转化速率,用d dtξ表示,单位为1mol s - 。

(4)化学反应速率 单位体积内的转化率称为反应速率,1d r V dt ξ=。

(5)基元反应与非基元反应① 基元反应:反应物分子一经碰撞直接变成产物。

② 非基元反应:若反应物到产物,必须经过中间步骤称为非基元反应或复杂反应。

(6)反应的速率方程表示反应速率与浓度等参数之间的关系,或表示浓度等参数与时间的关系的方程称为反应的速率方程。

(7)速率系数速率方程中的比例系数称为速率系数或速率常数,用k 表示。

①k 的物理意义:数值上相当于反应物均为单位浓度时的反应速率。

②特点:A. k 数值与反应物的浓度无关。

在催化剂等其他条件确定时,k 的数值仅是温度的函数;B. k 的单位随着反应级数的不同而不同;C. k 的数值直接反映了反应速率的快慢。

(8)质量作用定律基元反应的速率与各反应物浓度的幂乘积成正比,其中各浓度项的方次即为反应方程中各物质的系数,这就是质量作用定律,它只适用于基元反应。

(9)反应级数在反应的速率方程中,所有浓度项方次的代数和称为该反应的级数,用n 表示。

n 可以是正数、负数、整数、分数或零,也有的反应无法说出其反应级数。

(10)反应分子数在基元反应中,反应物分子数之和称为反应分子数,其数值为1,2或3。

2. 具有简单级数反应的特点(1)零级反应定义:反应速率与反应物浓度的零次方成正比,即与反应物的浓度无关。

特点:微分式 0dx k dt= 积分式 0x k t = 线性关系 ~x t半衰期 1022a t k =0k 的单位 3m o l d m - 或 [ -1浓度][时间] (2)一级反应定义:反应速率与反应物浓度的一次方成正比。

第七章 化学动力学习题

第七章 化学动力学习题

第七章化学动力学习题一、填空题1. 基元反应A+2B =2C, 反应物的消耗速度率和产物的生成速率的速率常数分别为k 、k 和k ,则三者之间的关系为k = .2. 已知反应2A --> P, A 的半衰期与其初始浓度成正比,此反应为 级.3. 催化剂可加快反应速率的主要原因是降低活化能或 .4. 质量作用定律表述为: .5. 某一级反应,在20 ℃时反应物浓度减少为原来的一半需要用10分钟, 此反应的速率常数为 .6. 催化剂只能改变 而不能改变 .7. 反应aA →产物, 若为一级反应,以 对时间t 作图可得直线;若为二级反应,以 对t 作图可得直线.8. 某对行反应在室温下的正、逆反应速率常数和平衡常数分别为k、k'和K;加入催化剂后,正、逆反应的速率常数和平衡常数分别为k 、k '和K .已知k =10k,则k '= k'及K = K.9. 基元反应2Br·───> Br , k 为用Br·浓度表示的反应速率常数. Br 的生成速率d[Br ]/dt = .10. 某一级反应的半衰期t = 0.01 s,则其反应速率常数k = .二、选择题1. 下列反应中有可能是基元反应的是反应 .A. 2NH ─────-> N + 3HB. CH I + HI───> CH + IC. Pb( C H ) ──> Pb + 4C H ·D. 2H + 2O ────> H O2. 某反应速率常数为0.099 min ,反应物初浓度为0.2 mol.dm , 则反应物的半衰期为 .A. 1.01 min;B. 4.04 min;C. 7.0 min;D. 50.5 min.3. 某反应 a A ──> P, 分别以A 的初浓度[A] = 0.05 mol/L 和[A] = 0.10 mol/L 进行反应, 测得半衰期分别为15 min和30 min, 此反应为 级反应.A. 零,B. 一,C. 1.5,D. 二4. 某反应 a A ──> P, 分别以A 的初浓度[A] = 1.0 mol/L 和[A] = 0.10 mol/L 进行反应, 测得半衰期分别为 1 min 和10 min, 此反应为 级反应.A. 零,B. 一,C. 二,D. 三5. 反应A ─-> P 的速率常数为k =6.93 min . 反应物浓度由0.50 mol/L降到0.25mol/L 所需的时间为 min.A. 0.1,B. 0.2,C. 1.0,D. 106. 反应A + 2 B ─-> P, 以A 的浓度变化和B 的浓度变化表示的速率常数分别为k 和k , 则 .A. 2 k = k ,B. k = 2 k ,C. k = k ,D. k = k7. 反应A + 2 B ─-> P, 以A 的浓度变化和B 的浓度变化表示的反应速率分别为v 和v , 则 .A. v = 2 v ,B. v = 2 v ,C. v = v ,D. v = v8. 某反应的速率常数k = 3.0 mol .dm .min , 此反应为 级反应.A. 零,B. 0.5,C. 1.5,D. 二9. 反应a A ─-> P 的速率常数为0.02 min , 反应物A 的初浓度[A] =1.0 mol.dm .反应的半衰期为 min.A. 25,B. 34.7,C. 41,D. 5010. 某化学反应方程式2A ─> P, 则表明该反应为 .A. 二级反应,B. 双分子反应,C. 基元反应,D. 以上都无法确定三、计算题1. 在恒容容器中发生一级反应4A ─> B+6C (各组分可视为理想气体),反应开始时只有A,压力为13.3 kPa,在1000 K时, 反应40分钟, 测得压力为20 kPa.(1)求反应速率常数k(1000K);(2)若800K时, k(800K) =3.5×10 min ,求活化能Ea.2.某温度下物质A 与等量物质B 混合,反应到1000秒时, A 已反应掉一半.计算反应2000秒后, A 的转化率:(1) 按零级反应计算;(2) 按对A 为一级,对B 为零级计算;(3) 按对A 及B 均为一级计算.3. 反应A+B→P. A 与B 按等摩尔比混合,反应10分钟后, A 反应掉75 %.计算15分钟后, A 反应掉多少?(1)按一级反应; (2)按二级反应; (3)按零级反应.4. 某反应的速率常数为:温度25 ℃35 ℃k 3.46×10 s 1.35×10 s计算该反应的活化能与指前因子.5. 某物质A 的分解反应为一级反应,当初浓度为0.1 mol.dm 时, 经50分钟分解20 %.求:(1) 反应速率常数k;(2) 半衰期t ;(3) 起始浓度为0.02 mol.dm 时,分解20 %所需时间.。

无机化学练习题(含答案)第七章 化学动力学基础

无机化学练习题(含答案)第七章 化学动力学基础

第七章化学动力学基础7-1:区别下列概念:(a) 碰撞理论和过渡态理论;(b) 有效碰撞与无效碰撞;(c) 活化能与反应热;(d) 均相催化剂与多相催化剂;(e) 催化剂、助催化剂与阻化剂;(f) 物理吸附与化学吸附;(g) 反应分子数与反应级数;(h) 单分子过程和双分子过程。

答:(a) 碰撞理论和过渡态理论是描述反应速率理论的两个不同理论:碰撞理论:1918 年Lewis 运用气体分子运动论的成果提出的一种反应速率理论。

它假设:①原子、分子或离子只有相互碰撞才能发生反应,即碰撞是反应的先决条件;②只有少部分碰撞能导致化学反应,大多数反应物微粒碰撞后发生反弹而与化学反应无缘。

过渡状态理论:20 世纪30 年代,在量子力学和统计力学发展基础上,由Eyring等提出的另一种反应速率理论。

它认为反应物并不只是通过简单碰撞就能变成生成物,而是要经过一个中间过渡状态,即反应物分子首先形成活化络合物,通常它是一种短暂的高能态的“过渡区物种”,既能与原来的反应物建立热力学的平衡,又能进一步解离变为产物。

(b) 在碰撞理论中,能导致化学反应的碰撞为有效碰撞,反之则为无效碰撞。

(c) 为使反应得以进行,外界必需提供的最低能量叫反应的活化能;反应热是反应过程(从始态至终态)的热效应(放出或吸收的热量)。

(d) 决定于是否与反应物同处一相。

(e) 催化剂是一类能改变化学反应速率而本身在反应前后质量和化学组成都没有变化的物质;助催化剂是能够大大提高催化剂催化效率的一类物质;阻化剂则是严重降低甚至完全破坏催化剂催化活性的一类杂质。

(f) 两者的区别在于催化剂与被吸附物之间作用力的本质不同。

如果被吸附物与催化剂表面之间的作用力为范德华力, 这种吸附叫物理吸附;如果被吸附物与催化剂表面之间的作用力达到化学键的数量级, 则叫化学吸附。

(g) 反应级数是描述速率方程的一个术语,不必考虑方程所描述的反应是否为元反应,它等于速率方程中浓度项指数的和;而只是元反应才能按反应分子数分类,参与元过程的分子的数目叫该元过程的分子数;(h) 单分子过程和双分子过程是元反应设计的术语,单分子过程前者涉及单个分子的解离;双分子过程则涉及两个分子的碰撞。

第七章化学动力学

第七章化学动力学

第七章化学动力学主要内容1.化学动力学的任务和目的2.化学反应速率的定义3.化学反应的速率方程4.具有简单级数的反应5.几种典型的复杂反应6.温度对反应速率的影响7.链反应 重点1.重点掌握化学反应速率、反应速率常数及反应级数的概念2.重点掌握一级和二级反应的速率方程及其应用3.重点掌握复杂反应的特征,了解处理对行反应、平行反应和连串反应的动力学方法。

4.重点理解阿罗尼乌斯方程的意义并会应用。

明确活化能及指前因子的定义 难点1.通过实验建立速率方程的方法2.稳态近似法、平衡近似法及控制步骤的概念及其运用3.复杂反应的特征及其有关计算 教学方式1.采用CAI 课件与黑板讲授相结合的教学方式。

2.合理运用问题教学或项目教学的教学方法。

教学过程第7.1节化学动力学研究的内容和方法热力学讨论了化学反应的方向和限度,从而解决了化学反应的可能性问题,但实践经验告诉我们,在热力学上判断极有可能发生的化学反应,实际上却不一定发生。

例如合成氨的反应,223()3()2()N g H g NH g ,在298.15K 时,按热力学的结论,在标准状态下此反应是可以自发进行的,然而人们却无法在常温常压下合成氨。

但这并不说明热力学的讨论是错误泊,实际上豆科植物就能在常温常压下合成氨,只是目前还不能按工业化的方式实现,这说明化学反应还存在一个可行性的问题。

因此,要全面了解化学反应的问题,就必须了解化学变化的反应途径----反应机理,必须引入时间变量。

研究化学反应的速率和各种影响反应速率的因素,这就是化学动力学要讨论的主要内容。

一、化学热力学的研究对象和局限性:研究化学变化的方向、能达到的最大限度以及外界条件对平衡的影响。

化学热力学只能预测反应的可能性,但无法预料反应能否发生?反应的速率如何?反应的机理如何?例如:热力学只能判断这两个反应都能发生,但如何使它发生,热力学无法回答。

二、化学动力学的研究对象 化学动力学研究化学反应的速率和反应的机理以及温度、压力、催化剂、溶剂和光照等外界因素对反应速率的影响,把热力学的反应可能性变为现实性。

5 第七章 化学反应动力学基础

5 第七章 化学反应动力学基础

A P S
k1 k2
假设每一步反应都是一级反应,则
dc rA k1 c A dt dcP rP k1 c A k 2 c P dt dcS rS k2c P dt
反应开始时
c A c A,0
cP 0
k1t
cS 0
c A c A, 0 e

E愈大,反应速率对温度就愈敏感。
k A exp E RT
E 1 ln k ln A R T
lnk
E1 1 ln k1 ln A1 R T
2
1
E2 1 ln k2 ln A2 R T
E1>E2
o
1 T
例如, E=4l.87 J/mol 0℃时,为使反应速率提高一倍,需将反应温度提高11℃。 E=167,500 J/mol 0℃,提高3℃,反应速率提高一倍。 (3)E一定,同一反应,温度越低,反应速度对温度就 越敏感 例如,E=4l.87 J/mol 0℃ 为使反应速率提高一倍需将反应温度提高11℃ 1000℃ 提高273℃
dnA
A

dnB
B

dnS
S

dnR
R
ni ni 0 ξ νi
dnA=dξ· A,
1 d A V dt rA
r 1 d V dt
(3)反应转化率
组 份A反 应 掉 的 摩 尔 数 xA 组 份A的 起 始 摩 尔 数
xA
n A, 0 n A n A, 0

有机物的二聚反应:如乙烯、丙稀、异丁烯及环戊二烯的 二聚反应等; 加成反应:烯烃的加成反应等; NaClO3的分解,乙酸乙酯的皂化,碘化氢、甲醛的热分解 等。

化学反应动力学

化学反应动力学

7.1.6 反应的速率方程和速率系数
何谓速率方程?
速率方程又称动力学方程。它表明了反应速
率与浓度等参数之间的关系或浓度等参数与时间
的关系。速率方程可表示为微分式或积分式。 速率方程必须由实验来确定
例如:
r dx / dt r k[A]
a ln k1t ax
是非基元反应。

反应机理(reaction mechanism)
反应机理又称为反应历程。在总反应中,连续 或同时发生的所有基元反应称为反应机理,在有些
情况下,反应机理还要给出所经历的每一步的立体
化学结构图。 同一反应在不同的条件下,可有不同的反应机 理。了解反应机理可以掌握反应的内在规律,从而 更好的驾驭反应。

7.1.7 反应分子数和质量作用定律 在基元反应中,实际参加反应的分子数目称为 反应分子数。反应分子数可区分为单分子反应、双 分子反应和三分子反应,四分子反应目前尚未发现 反应分子数属于微观范畴,通常与反应的级数 一致,但有时单分子反应也可能表现为二级反应
基元反应
反应分子数
准级反应(pseudo order reaction) 在速率方程中,若某一物质的浓度远远大于其 他反应物的浓度,或是出现在速率方程中的催化 剂浓度项,在反应过程中可以认为没有变化,可 并入速率常数项,这时反应总级数可相应下降, 下降后的级数称为准级反应。例如:
(1)
(2)
r k[A][B] r k ' [B]

t
R P
d[R] rR dt d[P] rp dt
在浓度随时间变化的图上,在时间t 时,作交 点的切线,就得到 t 时刻的瞬时速率。
显然,反应刚开始,速率大,然后不断减小,

第七章化学动力学主要内容1.化学动力学的任务和目的2.化学反应

第七章化学动力学主要内容1.化学动力学的任务和目的2.化学反应

第七章化学动力学主要内容1. 化学动力学的任务和目的2. 化学反应速率的定义3. 化学反应的速率方程4. 具有简单级数的反应5. 几种典型的复杂反应6. 温度对反应速率的影响7. 链反应重点1. 重点掌握化学反应速率、反应速率常数及反应级数的概念2. 重点掌握一级和二级反应的速率方程及其应用3. 重点掌握复杂反应的特征,了解处理对行反应、平行反应和连串反应的动力学方法。

4. 重点理解阿罗尼乌斯方程的意义并会应用。

明确活化能及指前因子的定义难点1. 通过实验建立速率方程的方法2. 稳态近似法、平衡近似法及控制步骤的概念及其运用3. 复杂反应的特征及其有关计算教学方式1. 采用CAI课件与黑板讲授相结合的教学方式。

2. 合理运用问题教学或项目教学的教学方法。

教学过程第7.1节 化学动力学研究的内容和方法热力学讨论了化学反应的方向和限度,从而解决了化学反应的可能性问题,但实践经验告诉我们,在热力学上判断极有可能发生的化学反应,实际上却不一定发生。

例如合成氨的反应,223()3()2()N g H g NH g + ,在298.15K 时,按热力学的结论,在标准状态下此反应是可以自发进行的,然而人们却无法在常温常压下合成氨。

但这并不说明热力学的讨论是错误泊,实际上豆科植物就能在常温常压下合成氨,只是目前还不能按工业化的方式实现,这说明化学反应还存在一个可行性的问题。

因此,要全面了解化学反应的问题,就必须了解化学变化的反应途径----反应机理,必须引入时间变量。

研究化学反应的速率和各种影响反应速率的因素,这就是化学动力学要讨论的主要内容。

一、化学热力学的研究对象和局限性:研究化学变化的方向、能达到的最大限度以及外界条件对平衡的影响。

化学热力学只能预测反应的可能性,但无法预料反应能否发生?反应的速率如何?反应的机理如何?例如:热力学只能判断这两个反应都能发生,但如何使它发生,热力学无法回答。

二、化学动力学的研究对象化学动力学研究化学反应的速率和反应的机理以及温度、压力、催化剂、溶剂和光照等外界因素对反应速率的影响,把热力学的反应可能性变为现实性。

南方医科大学药学院基础化学第七章化学动力学8-01

南方医科大学药学院基础化学第七章化学动力学8-01
t 1 ln c0 1 ln 100% 5.0h k c 0.46 1 90%
26
aA+ dD gG +hH
反应速率可写作:
vA
dnA Vdt
dcA dt
vG
dnG Vdt
dcG dt
它们之间有如下的关系:
vA vD vG vH v ad g h
vD
dnD Vdt
dcD dt
vH
dnH Vdt
dcH dt
3
二、反应速率的表示方法二
反应速率可用单位时间、单位体积内反应进度的
第七章 化学动力学
化学反应的 两个基本问题
在指定条件下 反应进行的方向和限度
——化学热力学
反应进行的速率和 具体步骤(即反应机理)
——化学动力学
第一节 反应速率的表示方法
一、以产物或反应物浓度随时间的变化定义反应速率 二、以反应进度随时间的变化定义反应速率 三、化学反应的平均速率与瞬时速率
一、反应速率的表示方法一
反应的总级数: n=+++……
17
四、 简单级数反应的速率方程
1、一级反应 2、 二级反应 3、 零级反应
一. 一级反应
反应速率只与物质浓度的一次方成正比的反应称为一级反
应(first order reaction) 。对一级反应
A
G
t = 0 cA,0
0
t = t cA=cA,0-x cG
微分速率方程为:
解:(1)∵氯乙烷的分解为一级反应,则
lg c0 kt
c 2.303
kt
2.5 103 24 60
lg c lg c0 2.303 lg 0.200

无机化学第七章化学动力学基础

无机化学第七章化学动力学基础
反应历程
反应历程
H2O2+2Br-+2H+2H2O+Br2是下列基元反应构成 H++H2O2H3O2+ H3O2+H++H2O2 H3O2++Br-H2O+HOBr(慢反应) HOBr+H++Br-H2O+Br2 因速度决定步骤为慢反应,即v=k[H3O2+][Br-] 但初态时并没有H3O2+只有H2O2、Br-、H+,我们需要变换一下H3O2+ 因H++H2O2H3O2+为快反应,在溶液中立刻就达到了平衡
求该反应的反应级数m+n和速度常数k?
浓度对化学反应速率的影响
浓度对化学反应速率的影响
解:由速度方程v=k[CO]m·[Cl2]n 得:v1=k[CO]m·[Cl2]1n v2=k[CO]m·[Cl2]2n
v=k[CO]·[Cl2]3/2 m+n=2.5 即 对CO为一级
对Cl2为1.5级
基元反应的速度方程
恒温下,基元反应的反应速度与各反应物浓度系数次方的乘积成正比。也称为质量作用定律
对: aA + bB dD+eE
则: v=k[A]a·[B]b
如:
对于反应 H2O2+2Br-+2H+2H2O+Br2的速度方程不能写成v=k[H2O2][H+]2[Br-]2,因其不是一个五元反应。
一步完成的化学反应称基元反应,由一个基元反应构成的化学反应称为简单反应;由两个或三个基元反应构成的化学反应称为非基元反应或复杂反应。
7-4 反应历程
反应历程
如:H2O2+2Br-+2H+2H2O+Br2 是由下列一系列基元反应构成

化学反应动力学

化学反应动力学

=- 1 3
dC H 2 dt
=1 2
dC NH 3 dt
为了克服因选用不同物质而造成反应速率不一致的缺陷,国际理论与应用化学协会规定用反应进度对 时间的变化率来表示反应速度。
1 定义:r= V 1 ξ =V
dξ dt
(7-1-1)
ξ=
n B − n B0
νB
dξ = r=
dn B
νB
1 dn B V ν B dt
=-1 3
dPH 2
r=- dt == ' r =RTr (7-1-4) 对于多相催化反应
1 r= Q
dξ dt
dt 1 dC H 2 3 dt
=1 2
dPNH 3
dt 1 dC NH 3 2 dt
(7-1-5)
称给定条件下的比活性,Q 为催化剂的量。 表示催化剂的量,可以用质量 m 表示,也可以用堆体积 V 表示,也可用表面积 A 表示。 三 反应速率的测定(determination of reaction rate) 从原则上看,只要测定不同时刻反应物或产物的浓度,便可以求出反应速率,测定方法一般有化学法 和物理法。 1.化学法 在化学反应的某一时刻取出部分样品后,必须使反应停止不再继续进行,并尽可能快地测定某物质的 浓度,停止的方法有骤冷、冲稀、加阻化剂或移走催化剂等,然后用化学方法进行分析测定。 关键:取出样品立即冻结 优点:能直接得到不同时刻的绝对值,所用仪器简单。 缺点:分析操作繁杂。 2.物理法 利用一些物理性质与浓度成单值函数的关系,测定反应体系物理量随时间的变化,然后折算成不同时 刻反应物的浓度值,通常可利用的物理量有 P,V,L, α .A 等。这种方法优点是迅速方便,不终止反应。可在 反应器内连续监测,便于自动记录。所要注意的是:这种方法测的是整个反应体系的物理量,而我们一般需 要的是某一时刻某种反应物或产物的浓度, 所以用物理方法测定反应速度,首先要找出体系的物理量与某种 物质浓度的关系。 一般用 λ 表示体系的某种物理量(P,V,L, α )等, λ 0 λ t λ ∞ 分别表示t=0, t=t, t= ∞ 时刻体系的物理 性质,C0,Ct表示t=0, t=t,时刻某种物质的浓度,它们之间有下列关系 C0 ∝ ( λ ∞ - λ 0 ) Ct ∝ ( λ ∞ - λ t) 且比例系数相同。

第七章 化学动力学基础B

第七章 化学动力学基础B

例1:反应N2O5→N2O4+1/2O2的Ea=1.03×105 J· mol-1,当温度由 283K升高到293K时,速度常数增大多少倍?
解:根据lnk2/k1=Ea/R(1/T1-1/T2)
k2/k1=4.48
例 2 : 2NOCl(g) = 2NO(g) + Cl2(g) , 实 验 测 得 300K 时 k1=2.8×10-5L· mol-1· s-1,400K时k2=7.0×10-1L· mol-1· s-1,求反应 的活化能。 解: 根据lnk1/k2=Ea/R(1/T2-1/T1)
间间隔内,过氧化氢的浓度每 减少一半,平均速率也减少一 半,反应速率与过氧化氢浓度 成正比,故有: –c(H2O2) / t = kc(H2O2) 该反应为一级反应。
初速法
例2:2NO + 2H2 = 2H2O + N2 实验标号 1 2 3 4 5 6
初始浓度 / mol· L-1 C(NO)
在基元反应中,实际参加反应的分子数目称为反应分子数。
按反应分子数可区分为单分子反应、双分子反应和三分子反应。
反应分子数等于反应级数。 如基元反应:CO(g) + NO2 (g) = CO2 (g) + NO (g) ,可以
直接写出速率方程为:r = kc(CO) c(NO2),2级反应,双分子
反应,反应分子数为2。 练习:(1)SO2Cl2 = SO2 + Cl2; (2)2NO2 = 2NO + O2 ; (3)NO2 + CO = NO + CO2
︱ cC / t ︱ / c = ︱ cD / t ︱ / d
为了避免因方程式中系数不同,导致用不同物质的浓度变 化表示的反应速率不同,定义:r ≡ (1/B )cB / t。

第七章 化学动力学

第七章 化学动力学

例:基元反应 NO2 + CO = NO + CO2
c NO cCO kc NO cCO
2
2
任一基元反应: a A + d D = g G + h H
kc c
a A
d D
速率方程
速率常数
k 的物理意义:在一定的条件下(温度、 催化剂),反应物浓度均为单位浓度时的 反应速率。 1. 反应不同,k值不同。 2. 同一反应,温度不同k值不同。 3. 同一反应,温度一定时,有无催 化剂k也是不同的。
率常数4.1×10-3,计算该反应的活化能。 解:根据
Ea 4.1 10 293 273 ln ( ) 4 3 8.2 10 8.314 10 273 293
Ea = 53.5 (kJ· mol-1)
c0 t1 2k 2
(3 - 15) (3 - 16)
小结
一级反应的特征:一级反应半衰期与反应 物起始浓度无关。
零级反应的特征:零级反应半衰期与反应 物起始浓度有关,起始浓度越大,半衰期 越长。
例 3-10
某水剂药物的水解反应是一级反应。配
成溶液30天后分析测定,发现其有效成分只有原来
的62.5%。问: (1)该水解反应的速率常数。 (2)若以药物有效成分保持在80%以上为有效期, 则该药物的有效期为多长?
2. 瞬时反应速率
时间间隔Δt 趋于无限小(Δt →0)时的 平均速率的极限。
c A dc A A lim △t→0 t dt
一般瞬时速率可表示为:
1 dc A 1 dcD 1 dcG 1 dcH a dt d dt g dt h dt
对于气体反应,可以用气体分压来代替浓度 N2O5 (g) → N2O4 + ½ O

考研物化 第七章化学动力学答案

考研物化 第七章化学动力学答案

(B) rA = k1cA - k-1cB , (C) rA = k1cA2 + k-1cB , (D) rA = - k1cA2 + k-1cB,
rB = k-1cB + k2cC ; rB = k-1cB - k2cC ; rB = k1cA2 - k-1cB - k2cC 。
20.反应 A + B → C + D 的速率方程为 r = k[A][B] ,则反应:
(A) 是二分子反应 ; (C) 不是二分子反应 ;
(B) 是二级反应但不一定是二分子反应 ; (D) 是对 A、B 各为一级的二分子反应 。
21.基元反应 A + B 2D,A 与 B 的起始浓度分别为 a 和 2a,D 为 0,则体系各物 质浓度(c)随时间变化示意曲线为:
A k1 B,B+D ⎯⎯k2 → J
度有利于生成更多的产物。
12.若反应(1)的活化能为 E1,反应(2)的活化能为 E2,且 E1 > E2,则在同一温度下 k1 一 定小于 k2。
13.若某化学反应的 ΔrUm < 0,则该化学反应的活化能小于零。 14.对平衡反应 A Y,在一定温度下反应达平衡时,正逆反应速率常数相等。
15.平行反应
度有何关系?
(A) 无关 ; (B) 成正比 ;
(C) 成反比 ;
(D) 平方成反比 。
2A k1 B ⎯⎯k2 → C
19.恒容下某复杂反应(取单位体积)的反应机理为:
k−1
,分别以 A
和 B 反应物的浓度变化来计算反应速率,其中完全正确的一组是:
(A) rA = k1cA2
, rB = k2cB ;
25.某温度时,平行反应
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化学动力学
一、选择题
1. 某化学反应的动力学方程式为2A →P ,则动力学中表明该反应为( )。

(A )二级反应 (B )基元反应 (C )双分子反应 (D )无确切意义
2. 某化学反应的计量方程式为A+2B C+D k −−
→,实验测定到其速率系数为k =0.25(mol ·L -1)-1·s -1,则该反应的级数为( )。

(A )零级 (B )一级 (C )二级 (D )三级
3. 某化学反应,已知反应的转化率分数59y =所用时间是13y =所用时间的2倍,则反应是( )。

(A )32
级反应 (B )二级反应 (C )一级反应 (D )零级反应 4. 当一反应物的初始浓度为 0.04 mol ·dm -3
时,反应的半衰期为 360 s ,初始浓度 为 0.024 mol ·dm -3时,半衰期为 600 s ,此反应为( )。

(A )零级 (B )1.5 级 (C )2级 (D )1 级
5. 有一放射性元素,其质量等于8g ,已知它的半衰期1/210d t =,则经过40d 后,其剩余的重量为( )。

(A )4g (B )2g (C )1g (D )0.5g
6. 对于反应A C+D k −−
→,如果使起始浓度减小一半,其半衰期便缩短一半,则反应 级数为( )。

(A )1级 (B )2级 (C )零级 (D )1.5级反应
7. 某基元反应,在等容的条件下反应,当反应进度为1mol 时,吸热50kJ ,则该反应的实验活化能E a 值的大小范围为( )。

(A )E a ≥50kJ ·mol -1 (B )E a <50kJ ·mol -1 (C )E a =-50kJ ·mol -1 (D )无法确定
8. 对于一般化学反应,当温度升高时,下列说法正确的是( )。

(A )活化能明显降低 (B )平衡常数一定变大
(C )正、逆反应的速率系数成正比 (D )反应到达平衡的时间变短
9. 有一平行反应(1)1a 1A B k E −−−→,,,(2)2a A D k E −−−−
→,2,,已知反应(1) 的活化能 E a,1大于反应(2)的活化能 E a,2,以下措施中哪一种不能改变获得 B 和 D 的比例( )。

(A )提高反应温度 (B )延长反应时间
(C )加入适当催化剂
(D )降低反应温度 10. 有两个都是一级的平行反应1a 1A B k E −−−
→,,,2a A C k E −−−−→,2,, 设开始反应时的浓度都等于零。

下列哪个结论是不正确的( )。

(A )k 总 = k 1+ k 2 (B )k 1/k 2= [B]/[C]
(C )E 总 = E a,1 + E a,2 (D ) t 12=
12
ln 2k k + 11. 汽车尾气中的氮氧化物在平流层中破坏奇数氧(O 3和O )的反应机理为:
NO + O 3 → NO 2+ O 2 NO 2+ O → NO + O 2
在此机理中,NO 是( )。

(A ) 总反应的产物 (B )总反应的反应物
(C )催化剂 (D )上述都不是
12. 某一反应在一定条件下的平衡转化率为25.3%,当有催化剂存在时,其转化率应当是()。

(A )大于 25.3% (B )小于 25.3% (C )等于 25.3% (D )不确定。

相关文档
最新文档