1 运动控制系统及其组成

合集下载

运动控制系统概述

运动控制系统概述

性能测试与评价:研究控制系统或控制元件在不同负载工况下的静动态 特性试验测试方法,以及性能评价与故障诊断等。
1.2、运动控制系统基本组成原理
系统静动态性能测试、 故障诊断和性能评价

控制器与控 制方法
驱动器
电力驱动元件、 驱动技术
扰动 执行机构
电动、液压、气动
负载
反馈元件
二、运动控制系统分类及特点
2.2 运动控制系统特点
运动控制系统运动规律复杂、速度响应快(大约在几~ 几十毫秒内)、负载变化大等。 对于电机驱动的运动控制系统特点:传输方便、速度高。 低速性能差、滞回和非线性较大。 对于液动伺服系统的特点:功率密度大、负载能力强、响 应快、低速平稳。泄漏、传输不方便。 对于气动伺服系统的特点:便于实现直线运动、比液压系 统传输方便。负载能力差、精度低、响应慢。
三、运动控制系统的应用与发展
3.1 应用 运动控制系统应用非常广泛:武器装备、机器人、工业
加工机床、冶金轧钢、交通工具、民用等各个领域。 3.2 发展 特种执行器(压电、人工肌肉、热敏、超音速电机、DDR 直驱电机、直线电机) 高功率密度执行机构(新材料,新结构、体积小、重量轻、 功率大) 非线性、滞回、死区控制方法 强耦合、过驱动复杂运动控制 超大功率驱动控制
传感器采集与 信号处理
二、运动控制系统分类及特点
2.1 运动控制系统分类 (1)按照执行机构的类型分:
电动、液动和气动
(2)按照被控物理量分: 位置(角位置)、速度(角速度)、力(力矩、压力)
(3)按照运动规律分:
点位控制系统、轨迹控制控制系统、随动控制系统
(4)按照控制器类型分:
模拟控制系统、数字控制系统

运动控制系统(第4版)第1章 绪论

运动控制系统(第4版)第1章  绪论

第1章 绪论
• 信号转换和处理包括电压匹配、极性转换、脉冲整形等,对 于计算机数字控制系统而言,必须将传感器输出的模拟或数 字信号变换为可用于计算机运算的数字量。数据处理的另一 个重要作用是去伪存真,即从带有随机扰动的信号中筛选出 反映被测量的真实信号,去掉随机的扰动信号,以满足控制 系统的需要。 • 常用的数据处理方法是信号滤波,模拟控制系统常采用模拟 器件构成的滤波电路,而计算机数字控制系统往往采用模拟 滤波电路和计算机软件数字滤波相结合的方法。
GD2 4gJ ;
n——转子的机械转速(r/min),
60 m n . 2
第1章 绪论
• 运动控制系统的任务就是控制电动机的转速和转角,对于直 线电动机来说就是控制速度和位移。由式(1-1)和式(1-2) 可知,要控制转速和转角,唯一的途径就是控制电动机的电 磁转矩Te,使转速变化率按人们期望的规律变化。因此,转矩 控制是运动控制的根本问题。 • 为了有效地控制电磁转矩,充分利用电机铁心,在一定的电 流作用下进可能产生最大的电磁转矩,以加快系统的过渡过 程,必须在控制转矩的同时也控制磁通(或磁链)。因为当 磁通(或磁链)很小时,即使电枢电流(或交流电机定子电 流的转矩分量)很大,实际转矩仍然很小。何况由于物理条 件限制,电枢电流(或定子电流)总是有限的。因此,磁链 控制与转矩控制同样重要,不可偏废。通常在基速(额定转 速)以下采用恒磁通(或磁链)控制,而在基速以上采用弱 磁控制。
第1章 绪论
• 1.2 运动控制系统的历史与发展
• 直流电动机电力拖动与交流电动机电力拖动在19世纪中叶先后诞 生(1866年德国人西门子制成了自激式的直流发电机;1890年 美国西屋电气公司利用尼古拉· 特斯拉的专利研制出第一台交流 同步电机;1898年第一台异步电动机诞生),在20世纪前半叶, 约占整个电力拖动容量80%的不可调速拖动系统采用交流电动机, 只有20%的高性能可调速拖动系统采用直流电动机。20世纪后半 叶,电力电子技术和微电子技术带动了带动了新一代的交流调速 系统的兴起与发展,逐步打破了直流调速系统一统高性能拖动天 下的格局。进入21世纪后,用交流调速系统取代直流调速系统已 成为不争的事实。 • 直流电动机的数学模型简单,转矩易于控制。其换向器与电刷

《运动控制系统》复习题

《运动控制系统》复习题

图 异步电动机的机械特性
有特性或自然特性。
异步电动机

异步电动机的调速方法
所谓调速,就是人为地改变机械特性的参数,
使电动机的稳定工作点偏离固有特性,工作在
人为机械特性上,以达到调速的目的。 能够改变的参数可分为3类: 电动机参数、电源电压和电源频率(或角频率)
异步电动机
调压调速:

保持电源频率为额定频率,只改变定子电压的调 速方法称作调压调速。

最大转矩,又称临界转矩
Tem

21 Rs Rs2 12 ( Lls L'lr ) 2

3n pU s2

临界转差率:对应最大转矩的转差率
sm
' Rr 2 Rs

2 1 ( Lls

' 2 Llr )
异步电动机
当s很小时,忽略分母中含s各项
Te

3npU s
1R
2 s ' r
异步电动机
交-直-交变频器主回路结构图
异步电动机
变压变频调速系统—转速开环变压变频调速系统
图5-40 转速开环变压变频调速系统
异步电动机
交流电动机工作在发电制动状态时,能量
从电动机侧回馈至直流侧,导致直流电压 上升,称为泵升电压。 电动机储存的动能较大、制动时间较短或 电动机长时间工作在发电制动状态时,泵 升电压很高,严重时将损坏变频器。
异步电动机调压调速的机械特性
异步电动机
变压变频调速

变压变频调速是改变异步电动机同步转速的一种 调速方法,同步转速随频率而变化
60 f1 601 n1 np 2n p
异步电动机
变压变频调速

《运动控制系统》教案

《运动控制系统》教案

《运动控制系统》教案一、教学目标1. 理解运动控制系统的概念和组成2. 掌握运动控制系统的分类和原理3. 了解运动控制系统在实际应用中的重要性二、教学内容1. 运动控制系统的概念和组成1.1 运动控制系统的定义1.2 运动控制系统的组成要素2. 运动控制系统的分类和原理2.1 模拟运动控制系统2.2 数字运动控制系统2.3 位置控制、速度控制和加速度控制3. 运动控制系统在实际应用中的重要性3.1 运动控制系统在工业生产中的应用3.2 运动控制系统在技术中的应用3.3 运动控制系统在自动驾驶技术中的应用三、教学方法1. 讲授法:讲解运动控制系统的概念、分类和原理,引导学生理解并掌握相关知识。

2. 案例分析法:分析运动控制系统在实际应用中的重要性,帮助学生了解运动控制系统的应用价值。

3. 讨论法:组织学生探讨运动控制系统的发展趋势和挑战,培养学生的创新思维和问题解决能力。

四、教学资源1. 教材:《运动控制系统》2. 多媒体课件:PPT、动画、视频等3. 网络资源:相关论文、案例、新闻报道等五、教学评价1. 课堂参与度:评估学生在课堂讨论、提问等方面的积极性。

2. 课后作业:布置相关练习题,评估学生对运动控制系统知识的理解和掌握程度。

3. 小组项目:组织学生团队合作完成一个运动控制系统的应用案例,评估学生的实践能力和问题解决能力。

六、教学安排1. 课时:共计32课时,每课时45分钟2. 教学计划:第1-4课时:运动控制系统的概念和组成第5-8课时:运动控制系统的分类和原理第9-12课时:运动控制系统在实际应用中的重要性第13-16课时:运动控制系统的的发展趋势和挑战七、教学步骤1. 引入:通过一个实际应用案例,引出运动控制系统的重要性,激发学生的学习兴趣。

2. 讲解:讲解运动控制系统的概念、分类和原理,引导学生理解并掌握相关知识。

3. 案例分析:分析运动控制系统在实际应用中的重要性,帮助学生了解运动控制系统的应用价值。

运动控制系统的组成

运动控制系统的组成

运动控制系统的组成运动控制系统是指通过控制电机、伺服电机、步进电机等执行器,实现机械运动的系统。

它由多个组成部分构成,下面将逐一介绍。

1. 控制器控制器是运动控制系统的核心部分,它负责接收来自传感器的反馈信号,计算出控制信号,再将信号发送给执行器。

控制器的种类有很多,常见的有PLC、单片机、DSP等。

2. 传感器传感器是用来感知机械运动状态的装置,它可以将机械运动转化为电信号,再通过控制器进行处理。

常见的传感器有编码器、光电开关、压力传感器等。

3. 电机电机是运动控制系统中最常用的执行器,它可以将电能转化为机械能,实现机械运动。

常见的电机有直流电机、交流电机、步进电机、伺服电机等。

4. 驱动器驱动器是用来控制电机运动的装置,它可以将控制信号转化为电能,再通过电机实现机械运动。

常见的驱动器有直流电机驱动器、交流电机驱动器、步进电机驱动器、伺服电机驱动器等。

5. 机械结构机械结构是运动控制系统中最基础的部分,它由各种机械零件组成,用来实现机械运动。

常见的机械结构有滑动轨道、旋转轴、传动装置等。

6. 人机界面人机界面是用来与运动控制系统进行交互的装置,它可以显示机械运动状态、控制参数等信息,同时也可以接收操作者的指令。

常见的人机界面有触摸屏、键盘、鼠标等。

7. 通信接口通信接口是用来与其他设备进行数据交换的装置,它可以将控制信号、反馈信号等信息传输给其他设备,同时也可以接收其他设备的指令。

常见的通信接口有串口、以太网口、CAN总线等。

运动控制系统由控制器、传感器、电机、驱动器、机械结构、人机界面和通信接口等多个组成部分构成。

每个部分都有其独特的功能和作用,只有将它们合理地组合起来,才能实现高效、稳定的机械运动。

1 运动控制系统及其组成

1 运动控制系统及其组成

21
传感技术:检测技术
对电机中涉及的电流、电压、转速、
磁感应强度、电涡流等信号进行提取 和放大 滤波器的实现
22
控制算法实现平台:微电子技术
模拟控制器和滤波器:模拟电子技术 数字控制器滤波器:信号与系统、
数字信号处理、计算机控制、嵌入式 系统(单片机、DSP、FPGA)、C 语言

30
思考
对磁场进行测量可以采用什么原理的
传感器 DSP与普通单片机的区别
31
电力拖动自动控制系统 —运动控制系统
第1章
绪论
1
1 运动控制系统及其 组成
2
1.1 现代运动控制系统实例
直流电机调速系统
3

无刷直流电机控制系统
4

交流电机变频调速系统
5

超声电机控制系统
6

超声电机控制器
7

相机用超声电机
8

直线型超声电机
9

大功率异步电机控制系统
10
1.2 运动控制系统及其组成
电力拖动自动控制系统运动控制系统第1章绪论11运动控制系统及其组成211现代运动控制系统实例直流电机调速系统3?无刷直流电机控制系统4?交流电机变频调速系统5?超声电机控制系统6?超声电机控制器7?相机用超声电机8?直线型超声电机9?大功率异步电机控制系统1012运动控制系统及其组成图12运动控制系统及其组成11现代运动控制技术电机学电力电子技术微电子技术计算机控制技术控制理论信号检测与处理技术等多门学科相互交叉的综合性学科
以matlab中的simulink为主
要仿真工具
29
主要参考资料
电机学:《电机及拖动基础》顾绳谷第四 版 自动控制:自动控制原理(胡寿松5版) 电力电子:电力电子技术(王兆安第4版) 《电力电子应用技术的MAtlab仿真》 林飞 《电力电子和电力拖动控制系统的 MATLAB仿真》 洪乃刚 2006年

电力拖动运动控制系统平时作业答案

电力拖动运动控制系统平时作业答案

电⼒拖动运动控制系统平时作业答案第⼀章1、请画出运动控制系统及其组成的框图。

答:运动控制系统由电动机、功率放⼤与变换装置、控制器及相应的传感器等构成,其框图如下:2、如果请你设计⼀辆电动滑板车,请问这个电动滑板车的构成?答:由刹车开关、电池电压取样、限流保护、驱动电路、直流有刷电机、霍尔调速⼿柄等===================================================================== 第⼆章1、请写出直流电动机的稳态转速公式,并分析转速与电枢电压的关系。

答:直流电机的稳态转速公式转速n=U-(IR+L*di/dt)/Kφ,I是电枢电流,R是电枢回路的电阻φ是励磁磁通,k是感应电动势常数所以从公式可以看出,要想对直流电机进⾏调速,⼀般的⽅法有两种:⼀种是对励磁磁通φ进⾏控制的励磁控制法,⼀种是对电枢电压U进⾏控制的电枢电压控制法。

2、什么是调速范围和静差率?调速范围、静态速降和最⼩静差率之间有什么关系?为什么说“脱离了调速范围,要满⾜给定的静差率也就容易多了”?3、某⼀直流调速系统,测得的最⾼转速特性为=1500 r/min, 最低转速特性为=150 r/min。

电动机额定转速为,带额定负载时的速度速降 =15r/min,且在转速下额定速降如不变,试问系统能够达到的调速范围D是多少?系统允许的静差率s是多少?解:4、转速单闭环调速系统有那些特点?改变给定电压能否改变电动机的转速,为什么?如果给定电压不变,调节测速反馈电压的分压⽐是否能够改变转速,为什么?如果测速发电机的励磁发⽣了变化,系统还有克服什么⼲扰的能⼒?答:1)转速单闭环调速系统有以下三个基本特征①只⽤⽐例放⼤器的反馈控制系统,其被被调量仍是有静差的。

②反馈控制系统的作⽤是:抵抗扰动,服从给定。

扰动性能是反馈控制系统最突出的特征之⼀。

③系统的精度依赖于给定和反馈检测的精度。

2)改变给定电压会改变电动机的转速,因为反馈控制系统完全服从给定作⽤。

《运动控制系统》课程教学大纲

《运动控制系统》课程教学大纲

《运动控制系统》课程教学大纲一、教学内容本节课的教学内容来自于《运动控制系统》课程的第五章,主要讲述运动控制系统的组成、原理及其应用。

具体内容包括:1. 运动控制系统的组成:包括控制器、执行器和传感器等基本组成部分,以及它们之间的相互作用。

2. 运动控制系统的原理:包括控制算法、反馈控制和开环控制等基本原理。

3. 运动控制系统的应用:包括在工业、数控机床和电动汽车等领域的应用实例。

二、教学目标1. 使学生了解运动控制系统的组成、原理及其应用,掌握基本概念和知识点。

2. 培养学生运用运动控制系统的基本原理解决实际问题的能力。

3. 提高学生对运动控制技术在现代工业和科技领域的重要性的认识。

三、教学难点与重点1. 教学难点:运动控制系统的原理和应用。

2. 教学重点:运动控制系统的组成及其在工作中的应用。

四、教具与学具准备1. 教具:多媒体教学设备、投影仪、白板等。

2. 学具:教材、笔记本、彩色笔等。

五、教学过程1. 实践情景引入:以工业为例,介绍运动控制系统在实际工作中的应用。

2. 知识点讲解:讲解运动控制系统的组成、原理及其应用。

3. 例题讲解:分析运动控制系统在实际工作中的应用案例,引导学生理解并掌握运动控制系统的原理。

4. 随堂练习:让学生结合所学内容,分析并解决实际问题。

5. 课堂讨论:引导学生探讨运动控制系统在现代工业和科技领域的重要性。

6. 板书设计:对本节课的主要知识点进行板书,方便学生复习和巩固。

7. 作业布置:布置相关练习题,巩固所学知识。

六、作业设计1. 题目:分析下列运动控制系统的应用案例,并说明其工作原理。

(1)数控机床;(2)电动汽车;(3)工业。

2. 答案:(1)数控机床:数控机床是一种采用数字控制技术进行运动的机床。

通过控制器预设机床的运动轨迹,执行器按照控制器的指令进行运动,实现对工件的加工。

(2)电动汽车:电动汽车采用电动机作为动力来源,通过控制器调节电动机的转速和扭矩,实现车辆的运动控制。

运动控制

运动控制

1.运动控制系统是以电动机及其拖动的机械设备为控制对象,以控制器为核心,以电力电子功率变换装置为执行机构,在自动控制理论的指导下组成的电气传动自动控制系统。

2.运动控制不同的分类方法:(1)被控物理量:转速被控的系统叫调速系统,以角位移或直线位移叫伺服系统(位置随动系统);(2)驱动电机类型:直流电动机叫直流传动系统,交流电机叫交流传动系统;(3)控制器:模拟电路叫模拟控制系统,数字电路叫数字控制系统。

3.运动控制三要素:控制器、功率驱动装置、电动机。

4.运动控制发展趋势:(1)运动控制的交流化(2)功率变换装置高频化(3)功率系统的高速、超小和超大化(4)系统实现的集成化(5)控制的数字化、智能化和网络化5.直流电机的种类:他励,幷励,串励,复励,永磁。

6.直流电机启动方法:直接启动、电枢回路串电阻启动、降压启动7.他励直流电机的调速方法:(1)改变电枢电阻,即串电阻调速(2)改变电枢电压U (3)减弱电机励磁磁通φ8.调速系统的静态及动态指标:(1)静态指标:1.调速范围D(可调速度的范围,即D=;2.静差率S指负载变化时转速的稳定程度,即s==X100%。

(2)动态指标:1.跟随性指标。

1)上升时间2)超调量3)调节时间;2.抗扰性指标。

9.直流电机调压调速:旋转变流机组;晶闸管相控静止整流;直流脉宽调制。

10.晶闸管相控静止整流的缺点:功率因数低,谐波大,是造成电力公害的主要原因之一11.(1)在相同负载下,闭环系统的转降速只是开环系统的1/(1+K);(2)在相同负载下,闭环系统的静差率只是开环系统的1/(1+K);(3)静差率相同时,闭环系统的调速范围是开环系统的(1+K)倍。

(4) 当给定电压相同时,闭环系统的空载转速是开环系统的1/(1+K),也就是说闭环系统的理想空载转速大大降低,如果希望闭环系统和开环系统的理想空载转速相同,则闭环系统的给定电压必须是开环系统的(1+K)倍,如果希望两者给定电压相同、理想空载转的理想空载转速相同,则闭环系统必须设置放大器。

运动控制技术课程

运动控制技术课程

运动控制技术课程一、课程简介运动控制技术课程是一门涉及机械、电气、电子等多个领域的综合性学科,主要研究如何利用各种控制技术实现机械设备的精确运动控制。

本课程旨在培养学生对运动控制系统的设计、调试和维护能力,使其具备在工业自动化领域从事运动控制相关工作所必需的基础知识和技能。

二、课程内容1. 运动控制系统概述2. 传感器与执行器3. 机械传动系统4. 运动控制算法5. 运动控制器硬件设计与实现6. 运动控制器软件设计与实现7. 运动控制系统调试及故障排除三、课程详解1. 运动控制系统概述:本章主要介绍运动控制系统的基本组成部分和功能模块,包括传感器、执行器以及运动控制器等。

同时还会讲解不同类型的运动控制系统以及其应用领域。

2. 传感器与执行器:本章主要介绍各种类型的传感器和执行器,包括光电传感器、压力传感器、温度传感器、电机、气缸等。

同时还会讲解其原理和应用场景。

3. 机械传动系统:本章主要介绍机械传动系统的基本原理和构成部分,包括齿轮传动、皮带传动、链条传动等。

同时还会讲解不同类型的机械传动系统的优缺点以及其应用场景。

4. 运动控制算法:本章主要介绍运动控制算法的基础知识,包括PID控制算法、模糊控制算法以及神经网络控制算法等。

同时还会讲解不同类型的运动控制算法的优缺点以及其应用场景。

5. 运动控制器硬件设计与实现:本章主要介绍运动控制器的硬件设计和实现过程,包括电路设计、PCB设计以及样机制作等。

同时还会讲解不同类型的运动控制器的优缺点以及其应用场景。

6. 运动控制器软件设计与实现:本章主要介绍运动控制器的软件设计和实现过程,包括编程语言选择、程序架构设计以及编码实现等。

同时还会讲解不同类型的运动控制器的优缺点以及其应用场景。

7. 运动控制系统调试及故障排除:本章主要介绍运动控制系统的调试和故障排除方法,包括硬件调试、软件调试以及故障诊断等。

同时还会讲解不同类型的运动控制系统的常见故障及其解决方法。

运动控制系统

运动控制系统
2.功率放大与变换装置--执行手段
电力电子器件组成电力电子装置。
电力电子器件:
第一代:半控型器件,如SCR,方便地应用于相控整流器 (AC→DC)和有源逆变器(DC→AC) ,但用于无源逆变 (DC→AC)或直流PWM方式调压(DC→DC)时,必须 增加强迫换流回路,使电路结构复杂。
第二代:全控型器件,如GTO、BJT、IGBT、MOSFET等 。 此类器件用于无源逆变(DC→AC) 和直流调压 (DC→DC)时,无须强迫换流回路,主回路结构简单。 另一个特点是可以大大提高开关频率,用脉宽调制 (PWM)技术控制功率器件的开通与关断,可大大提高 可控电源的质量。
3.微电子技术--控制基础
微电子技术的快速发展,各种高性能的大规模或超大规 模的集成电路层出不穷,方便和简化了运动控制系统的 硬件电路设计及调试工作,提高了运动控制系统的可靠 性。高速、大内存容量、多功能的微处理器或单片微机 的问世,使各种复杂的控制算法在运动控制系统中的应 用成为可能,并大大提高了控制精度。
4.计算机控制技术--系统控制核心
(1) 计算机控制
(2) 计算机仿真
(3) 计算机辅助设计
计算机具有强大的逻辑判断、数据计算和处理、信息传 输等能力,能进行各种复杂的运算,可以实现不同于一 般线性调节的控制规律,达到模拟控制系统难以实现的 控制功能和效果。计算机控制技术的应用使对象参数辨 识、控制系统的参数自整定和自学习、智能控制、故障 诊断等成为可能,大大提高了运动控制系统的智能化和 系统的可靠性。
计方法和运行性能,新型电机的发明就会带出新的运 动控制系统。 2.电力电子技术--以电力电子器件为基础的功率 放大与变换装置是弱电控制强电的媒介,是运动控制 系统的执行手段。在运动控制系统中作为电动机的可 控电源,其输出电源质量直接影响运动控制系统的运 行状态和性能。新型电力电子器件的诞生必将产生新 型的功率放大与变换装置,对改善电动机供电电源质 量,提高系统运行性能,起到积极的推进作用。

第1章电力拖动自动控制系统运动控制系统第5版

第1章电力拖动自动控制系统运动控制系统第5版

1.4 生产机械的负载转矩特性
生产机械的负载转矩是一个必然存 在的不可控扰动输入。
归纳出几种典型的生产机械负载转 矩特性,实际负载可能是多个典型 负载的组合,应根据实际负载的具 体情况加以分析。
恒转矩负载
负载转矩的大小 恒定,称作恒转 矩负载
a)位能性恒 转矩负载
b) 反抗性恒转 矩负载
TL 常数
1.3 运动控制系统转矩控制规律
运动控制系统的基本运动方程式
d
( J m
dt
)
Te
TL
Dm
Km
dm
dt
m
1.3 运动控制系统转矩控制规律
当J为常数时,运动控制系统的基本 运动方程式
J
d m
dt
Te
TL
Dm
K m
d m
dt
m
1.3 运动控制系统转矩控制规律
忽略阻尼转矩和扭转弹性转矩,运 动控制系统的简化运动方比。
1.2 运动控制系统的历史与发展
交流调速系统 交流电动机(尤其是笼型感应电
动机)结构简单 交流电动机动态数学模型具有非
线性多变量强耦合的性质,比直流电 动机复杂得多。
交流调速系统
基于稳态模型的交流调速系统 转速开环的变压变频调速 转速闭环的转差频率控制系统
内容提要
运动控制系统及其组成 运动控制系统的历史与发展 运动控制系统转矩控制规律 生产机械的负载转矩特性
现代运动控制技术
电机学、电力电子 技术、微电子技 术、计算机控制 技术、控制理论、 信号检测与处理 技术等多门学科 相互交叉的综合 性学科 。
图1-1运动控制及其相关学科
1.1 运动控制系统及其组成
图1-3 恒转矩负载

运动控制或者电力拖动自动控制知识点整理

运动控制或者电力拖动自动控制知识点整理

33、开环调速系统的机械特性
n U d 0 RI d KsUc RI d
Ce
Ce
Ce
34、开环调速系统稳态结构图
35、采用反馈控制技术构成转
速闭环的控制系统。转速闭环 控制可以减小转速降落,降低 静差率,扩大调速范围 36、反馈控制的基本作用。 根据自动控制原理,将系统的 被调节量作为反馈量引入系 统,与给定量进行比较,用比 较后的偏差值对系统进行控 制,可以有效地抑制甚至消除 扰动造成的影响,而维持被调 节量很少变化或不变,这就是 反馈控制的基本作用。 37、在负反馈基础上的“检测误 差,用以纠正误差”这一原理组 成的系统,其输出量反馈的传 递途径构成一个闭合的环路, 因此被称作闭环控制系统。在 直流调速系统中,被调节量是 转速,所构成的是转速反馈控 制的直流调速系统。 38、带转速负反馈的闭环直流 调速系统原理框图
速系统(V-M 系统)原理 图
VT 是晶闸管整流器,通过调节 触发装置 GT 的控制电压 Uc 来 移动触发脉冲的相位,改变可 控整流器平均输出直流电压 Ud,事先平滑调速。 14、V-M 系统有点 门极电流可以直接用电子控 制;有快速的控制作用;效率 高 15、 触发装置 GT 的作用 把控制电压 Uc 转换成触发脉 冲的触发延迟角α,用以控制 整流电压,达到变压调速的目 的。 16、带负载单相全控桥式整流 电路的输出电压和电流波形 由于电压波形的脉动,造成了
1、电力拖动实现了电能与机械 能之间的能量转变。 2、电力拖动自动控制系统—— 运动控制系统的任务是什么? 通过控制电动机电压、电流、 频率等输入量,来改变工作机 械的转矩、速度、位移等机械 量,是各种工作机械按人们期 望的要求运行,以满足生产工 艺及其他应用的需要。 3、运动控制系统及其组成 运动控制系统由电动机及负 载、功率放大与变换装置、控 制器及相应传感器构成

运动控制系统总结

运动控制系统总结
• 再按照控制对象确定电流调节器的类型,按动态 性能指标要求确定电流调节器的参数。
• 电流环设计完成后,把电流环等效成转速环(外 环)中的一个环节,再用同样的方法设计转速环 为典型II型系统。
图3-26 双闭环调速系统内环和外环的开环对数幅频特性 I——电流内环 n——转速外环
(3)内、外环开环对数幅频特性的比较 • 外环的响应比内环慢,这是按上述工程设计方法设计多环控
• 准确的测速时间是用所得的高频时钟脉冲个数M2 计算出来的,即 Tt M2/ f0,
• 电动机转速为
n 60 60 f0 ZTt ZM2
(2-80)
• T(M法2-测1)速时的转分速辨的率变定化义量为,时钟脉冲个数由M2变成
Q 6f0 0 6f0 0 6f0 0 Z(M 21 ) Z2 MZ2 M (M 21 )
h
3
4
5
6
7
Hale Waihona Puke 89 1052.6% 43.6% 37.6% 33.2% 29.8% 27.2% 25.0% 23.3%
tr / T 2.4 2.65 2.85 3.0 3.1 3.2 3.3 3.35
ts / T 12.15 11.65 9.55 10.45 11.30 12.25 13.25 14.20
异步电动机传递的电磁功率
Pm
3I
'2 r
Rr'
s
机械同步角速度
m1
1
np
异步电动机的机械特性
异步电动机的电磁转矩(机械特性方程式 )
Te
Pm
m1
3np
1
Ir'2
Rr' s
1Rs
3npUs2Rr' /s

单闭环直流调速系统(10)

单闭环直流调速系统(10)

N 1 2 3
Te
三种调速方法的性能与比较
对于要求在一定范围内无级平滑调速的系统 来说,以调节电枢供电电压的方式为最好。
改变电阻只能有级调速; 减弱磁通虽然能够平滑调速,但调速范围不 大,往往只是配合调压方案,在基速(即电机 额定转速)以上作小范围的弱磁升速。 因此,自动控制的直流调速系统往往以调压 调速为主。
版社 陈国呈《新型电力电子变换技术》中国电力出版社 孙汉林、林煜慧:《电力电子器件应用》机械工业出
版社 张燕宾:《变频调速460问》机械工业出版社 张燕宾:《变频的安装、使用与维修340问》中国电
力出版社 龚仲华:《变频器从原理到完全应用—三菱、安川》
人民邮电出版社
电力拖动自动控制系统
、转速和转角,将电能转换为机械能,实现运动 机械的运动要求
电力拖动系统的分类
按被控物理量分:以转速为被控量的系统叫调速系统;以角位 移或直线位移为被控量的系统叫位置随动系统或伺服系统
按驱动电动机的类型分:用直流电动机带动生产机械的为直流 传动系统;用交流电动机带动生产机械的为交流传动系统
按控制器的类型:以模拟电路构成控制器的系统成为模拟控制 系统;以数字电路构成控制的系统成为数字控制系统
绪论
电力拖动实现:电能与机械能间变换 电力拖动自动控制系统—运动控制系统 运动控制系统任务:通过控制电动机:电
压、电流、频率等输入量→改变工作机械: 转矩、速度、位移,按要求运行
现代运动控制技术: 控制对象—各类电动机; 控制手段—计算机和其它电子装置; 弱电控制强电纽带—电力电子装置; 理论基础—自动控制理论和信息处理理论; 研究和开发工具—计算机数字仿真和计算机辅助
这样的调速系统简称G-M系统,国际上通称 Ward-Leonard系统。

运动控制系统的结构及其特点

运动控制系统的结构及其特点

运动控制系统的结构及其特点1.引言1.1 概述概述是文章的开头部分,用于介绍运动控制系统的基本概念和背景信息。

在运动控制系统中,传感器和执行器通过控制器和算法来实现对运动过程的监测和控制。

本文将详细介绍运动控制系统的结构和特点。

首先,我们将介绍运动控制系统的基本结构。

该系统由传感器、执行器、控制器和算法组成。

传感器负责采集运动系统的状态信息,例如位置、速度、加速度等。

执行器根据控制信号将运动系统带到期望的位置、速度或加速度。

控制器负责接收传感器采集到的数据,经过算法处理后产生控制信号,控制执行器的动作实现运动目标。

其次,我们将探讨运动控制系统的特点。

实时性是运动控制系统的重要要求之一。

在许多应用场景中,运动控制系统需要快速响应传感器数据,并产生相应的控制信号,以实现精确控制。

此外,运动控制系统还需要具备精确性。

精确性要求系统能够准确控制运动过程中的位置、速度和加速度等参数,以满足特定的运动需求。

通过对运动控制系统的结构和特点的介绍,我们可以更好地理解和应用这一技术。

在接下来的章节中,我们将详细讨论运动控制系统的各个组成部分,并深入探讨其工作原理和应用场景。

通过深入研究运动控制系统,我们可以更好地应用这一技术,推动工业自动化和智能化的发展。

1.2 文章结构文章结构本文主要介绍了运动控制系统的结构及其特点。

文章分为引言、正文和结论三个部分。

引言部分概述了运动控制系统的基本概念,并对文章的结构和目的进行了说明。

正文部分分为两个小节,分别介绍了运动控制系统的结构和特点。

2.1 运动控制系统的结构部分详细介绍了运动控制系统的组成部分。

其中包括传感器和执行器以及控制器和算法两个方面。

传感器和执行器是实现运动控制系统的关键部分,传感器用于感知物体或系统的状态变化,而执行器则用于实现对物体或系统的控制。

控制器和算法负责对传感器获取的数据进行处理和分析,并产生相应的控制信号,控制物体或系统的运动。

2.2 运动控制系统的特点部分主要介绍了运动控制系统具有的特点。

《运动控制系统》教案

《运动控制系统》教案

《运动控制系统》教案一、教学目标1. 了解运动控制系统的概念、组成和作用。

2. 掌握运动控制系统的分类及其特点。

3. 熟悉运动控制系统的主要组成部分及其功能。

4. 理解运动控制系统在实际应用中的重要性。

二、教学内容1. 运动控制系统的概念与组成1.1 运动控制系统的定义1.2 运动控制系统的组成要素2. 运动控制系统的分类与特点2.1 模拟运动控制系统2.2 数字运动控制系统2.3 现代运动控制系统3. 运动控制系统的主要组成部分及其功能3.1 控制器3.2 执行器3.3 传感器3.4 反馈环节4. 运动控制系统在实际应用中的重要性4.1 运动控制系统在工业生产中的应用4.2 运动控制系统在交通运输中的应用4.3 运动控制系统在生物医学中的应用三、教学方法1. 讲授法:讲解运动控制系统的概念、组成、分类、特点及应用。

2. 案例分析法:分析实际应用中的运动控制系统案例,加深学生对运动控制系统的理解。

3. 讨论法:组织学生就运动控制系统相关问题进行讨论,提高学生的思考能力。

四、教学准备1. 教材:《运动控制系统》相关章节。

2. 课件:制作涵盖教学内容的课件。

3. 案例材料:收集运动控制系统在实际应用中的案例。

五、教学过程1. 导入:简要介绍运动控制系统的基本概念,激发学生兴趣。

2. 讲解:详细讲解运动控制系统的组成、分类、特点及应用。

3. 案例分析:分析实际应用中的运动控制系统案例,让学生理解运动控制系统的作用。

4. 讨论:组织学生就运动控制系统相关问题进行讨论,提高学生的思考能力。

6. 作业布置:布置相关练习题,巩固所学知识。

六、教学评估1. 课堂问答:通过提问方式检查学生对运动控制系统概念、组成、分类和应用的理解。

2. 练习题:布置课后练习题,评估学生对运动控制系统知识的掌握程度。

3. 案例分析报告:评估学生在案例分析环节的思考深度和分析能力。

七、教学拓展1. 介绍运动控制系统领域的最新研究成果和技术发展动态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

30
思考
对磁场进行测量可以采用什么原理的
传感器 DSP与普通单片机的区别
31

21
传感技术:检测技术
对电机中涉及的电流、电压、转速、
磁感应强度、电涡流等信号进行提取 和放大 滤波器的实现
22
控制算法实现平台:微电子技术
模拟控制器和滤波器:模拟电子技术 数字控制器和滤波器:信号与系统、
数字信号处理、计算机控制、嵌入式 系统(单片机、DSP、FPGA)、C 语言
14

直流电机
15

交流异步电机
16

同步电机
17
驱动技术:电力电子
直流电机:晶闸管整流电路 交流电机:PWM技术 三相桥式全控整流电路、各种PWM
逆变器
18

交-直-交变频器主回路结构图
19

变频器结构
20
控制和建模方法:自动控制原理
直流电机:经典控制理论(传递函数的频 域表达、稳定性分析、系统校正) 交流电机:现代控制理论(状态空间的表 达和变换) 典型环节的频率特性、稳定性分析的频域 法、PID控制器实现、微分方程组的变换
23

51单片机
24

DSP
25

fpga
26

Arm核的嵌入式芯片
27
1.3 运动控制系统的历史与发展
直流调速(转速控制)->交流调速(
转矩和 磁链控制) 基于稳态模型的交流调速系统-> 基于动态模型的交流调速系统 矢量控制系统 直接转矩控制系统
28
本课程学习方法
理论—>仿真—>实践
图1-2 运动控制系统及其组成
11
现代运动控制技术
电机学、电力电子 技术、微电子技 术、计算机控制 技术、控制理论、 信号检测与处理 技术等多门学科 相互交叉的综合 性学科 。
图1-1运动控制及其相关学科
12
本课程的特点

自动化学科知识体系
13
控制对象:电机
直流电机建模和控制
(第二章,第三章) 三相交流异步电机建模和控制 (第五章,第六章) 直流电机原理及微分方程模型、交流 电机原理及等效电路模型
电力拖动自动控制系统 —运动控制系统
第1章
绪论
1
1 运动控制系统及其 组成
2
1.1 现代运动控制系统实例
直流电机调速系统
3

无刷直流电机控制系统
4

交流电机变频调速系统
5

超声电机控制系统
6

超声电机控制器
7ቤተ መጻሕፍቲ ባይዱ

相机用超声电机
8

直线型超声电机
9

大功率异步电机控制系统
10
1.2 运动控制系统及其组成
以matlab中的simulink为主
要仿真工具
29
主要参考资料
电机学:《电机及拖动基础》顾绳谷第四 版 自动控制:自动控制原理(胡寿松5版) 电力电子:电力电子技术(王兆安第4版) 《电力电子应用技术的MAtlab仿真》 林飞 《电力电子和电力拖动控制系统的 MATLAB仿真》 洪乃刚 2006年
相关文档
最新文档