聚合物的化学反应
聚合物的化学反应
聚合物的化学反应第九章聚合物的化学反应聚合物化学反应的特征大分子基团的活性大分子上的基团的活性一般小于低分子,并且受到基团所处的宏观(物理)、微观(化学)因素的影响。
物理因素对基团活性的影响1、结晶度药剂难以渗入晶区,反应多限于表面。
反应多在非晶区进行。
必要时可溶胀破坏晶区。
2、相态在均相溶液,非均相气固态下的反应的结果差别很大。
3、溶解度无规线团中,局部的高分子基团浓度大。
化学因素对基团活性的影响1、几率效应当聚合物相邻侧基作无规成对反应时,由于相邻基团按几率反应,中间往往留有未反应的孤立单个基团,最高转化程度因而受到限制。
2、邻近基团效应高分子中原有基团或反应后形成的新基团的位阻效应和电子效应,以及试剂的静电作用,均可能影响到邻近基团的活性和基团的转化程度。
位阻效应——影响转化率静电相斥——令反应减速静电相吸——令反应增速有利于形成5、6元环中间体——反应加速聚合物的基团反应聚二烯烃的加成反应二烯类橡胶中含有双键,可以进行加成。
1、加氢能提高橡胶的耐候性。
2、氯化和氢氯化在四氯化碳溶液中与氯反应。
能提高耐溶剂性、提高对水气的阻透性聚烯烃和聚氯乙烯的氯化氯化聚乙稀属于连锁机理。
氯气吸收紫外光光子后,均裂形成氯自由基。
向高分子链进攻,夺取氢后,留下链自由基。
氯形成氯化氢。
链自由基成为活性种,引发氯分子,连锁机理。
氯化聚乙烯CPE可是弹性体,阻燃,可用作聚氯乙烯抗冲击改性剂。
聚丙烯也可氯化。
聚氯乙烯也可氯化,提高耐热性、耐候、耐腐蚀、阻燃。
可用于热水管、化工设备等。
聚醋酸乙烯酯的醇解聚醋酸乙烯酯用甲醇醇解生成聚乙烯醇。
不同用途对醇解度DH 有要求。
若分子内缩醛,形成六元环,由于几率效应,不能完全转化。
聚丙烯酸酯类的基团反应丙烯腈——水解——丙烯酰胺——水解——丙烯酸可用于锅炉水的防垢,和水处理的絮凝。
可经霍夫曼反应生成聚乙烯胺。
苯环侧基的取代反应烷基化、氯化、磺化、氯甲基化、硝化。
苯乙烯——发烟硫酸——阳离子交换树脂苯乙烯——氯代二甲基醚——氯甲基——季铵基团——阴离子交换树脂环化反应提高聚合物的刚性,丙烯腈——200~300℃预氧化——800~1900℃炭化——2500℃石墨化——碳纤维聚二烯烃环氧化,用作涂料和增强塑料。
第九章 聚合物的化学反应(2012)
丙烯腈、聚丙烯酰胺经水解,最终均能形成聚丙烯酸。
CH 2 CH CO OC H 3 OH CH 2 CH C OO H
聚丙烯酸或部分水解的聚丙烯酰胺可用于锅炉水的
防垢和水处理的絮凝剂,水中有铝离子时,聚丙烯酸成
絮状,与杂质一起沉降除去。
9 聚合物的化学反应
22
9.2
聚合物的基团反应
9.2.5 苯环侧基的取代反应
聚乙烯醇缩醛化反应可得到重要的高分子产品。
CH 2 C H CH 2 C H OH OH + RCH O H CH O CH CH O
缩甲醛:维尼纶 缩丁醛:良好的玻璃粘合剂 9 聚合物的化学反应
R
21
9.2
聚合物的基团反应
9.2.4 聚丙烯酸酯类的基团反应
与丙烯腈、丙烯酰胺的水解相似,聚丙烯酸甲酯、聚
9 聚合物的化学反应
23
9.2.5 苯环侧基的取代反应
H 2 C CH + H 2 C CH 悬浮共聚合 体型共聚物小珠
H 2C C H 浓硫酸磺化 (阳离子交换树脂) SO 3 H
+
NR 3 氯甲基化
+
(阴离子交换树脂) C H 2 Cl CH 2 N R 3 Cl
-
P
SO 3 H
-
+
Na 交 换 P H C l, 再 生
聚苯乙烯及其共聚物,带有苯环侧基,苯环上的氢原子
容易进行取代反应。几乎可进行芳烃的一切反应。
如:以苯乙烯-二乙烯苯共聚物为母体制备离子交换树脂。 离子交换树脂由三部分组成:不溶不熔的三维网状骨架 、固定在骨架上的官能团和官能团所带的可交换离子。 如PS类的是由苯乙烯与二乙烯基苯的悬浮共聚得到体型
聚合物的化学反应-2010
二。 聚合度变大的反应
包括:交联、接枝、嵌段、扩链
交联反应:线型高分子链之间进行化学反应,成为 网状高分子,这就是交联反应
聚烯烃(聚乙烯、乙丙橡胶)在过氧化物、高能 幅射作用下可发生交联。过氧化物交联如下:
CH2CH2CH2CH2 CH2CHCH2CH2
CH2CHCH2CH2 CH2CHCH2CH2
粘胶纤维的制造
CH2OH O OH OH
10~15% H2SO4 喷丝 30~45 ℃ -CS2
O
20% NaOH 浸渍 1~2 h
O
CH2ONa O OH ONa
碱 纤 维 素
CS2
20 ~ 30 ℃ 2h
O
S CH2OC-SNa O OH ONa
18 ℃ 30 ~40 h
O
S CH2OC-SNa O OH
邻基效应还与高分子的构型有关,如
全同PMMA比无规、间同水解快,原因是
全同基结构的基团位置易于形成环酐中间体。
(3)位阻效应
O CH2 CHCH2CHCH2 CH CH2 OH OH OH + C C Cl
CH2 CHCH2CHCH2 CH CH2 O O C C O C C Cl OH O C O C
2
CHCH=CHCH Sm CH 2CH CHCH 2
接枝反应
通过化学反应,在某一聚合物主链接上结构、组成 不同的支链,这一过程称为接枝 接枝方法大致分为两类:
聚合法 偶联法 在高分子主链的引发点上, 将预先制好的支链 单体聚合长出支链 偶联到高分子主链 上去 引发剂法 链转移法 辐射聚合法 光聚合法 机械法
• 聚合度变小的反应:降解,解聚
聚合物化学反应的特点及影响因素
第七章聚合物化学反应
第七章聚合物化学反应一、名称解释1. 聚合物化学反应:研究聚合物分子链上或分子链间官能团相互转化的化学反应过程。
聚合物的化学反应根据聚合物的聚合度和基团的变化(侧基和端基)可分为相似转变、聚合物变大的反应及聚合物变小的反应。
2. 功能高分子:是指具有传递、转换或储存物质、能量可信息的高分子,其结构特征是聚合物上带有特殊功能基团,其中聚合物部份起着载体的作用,不参与化学反应。
按功能的不同,可分为化学功能高分子、物理功能高分子和生物功能高分子。
3. 高分子试剂:也叫反应性高分子,即高分子试剂上的基团起着化学试剂的作用,它是各类高分子的化学试剂的总称。
4. 高分子催化剂:将能起催化剂作用的基团接到高分子母体上,高分子本身不发生变化,但能起催化低分子反应。
这种催化剂称作高分子催化剂,5. 低分子基质:低分子反应物中的特定基团与保护试剂作用后受到保护不再参与主反应,这种受到保护的低分子反应物称作低分子基质。
6. 高分子基质:将要准备反应的低分子化合物以共价键形式结合到聚合物载体上,得到高分子基质。
7. 接枝:通过化学反应,在某些聚合物主链上接上结构、组成不同的支链,这一过程称为接枝,形成的产物称为接枝共聚物。
8. 嵌段:形成嵌段共聚物的过程。
9. 扩链:分子量不高的聚合物,通过适当的方法,使多个大分子连接在一起,分子量因而增大的过程称为扩链。
10. 交联:聚合物在光、热、辐射、或交联剂作用下,分子链间形成共价键,产生凝胶或不溶物,这一过程称为交联。
交联有化学交联和物理交联。
交联的最终目的是提高聚合物的性能。
如橡胶的硫化等。
11. 交联剂:使聚合物交联的试剂。
12. 降解:降解是聚合度分子量变小的化学反应的总称。
它是高分子链在机械力、热、超声波、光、氧、水、化学药品、微生物等作用下,发生解聚、无规断链及低分子物脱除等反应。
13. 老化:聚合物及其制品在加工、贮存及使用过程中,物理化学性质及力学性能逐步变坏,这种现象称老化。
第八章聚合物的化学反应
第八章聚合物的化学反应重点、难点指导一、重要术语和概念概率效应、功能高分子、离子交换树脂、高分子试剂、接枝、嵌段、扩链、遥爪聚合物、老化、降解、解聚、燃烧性能、氧化指数二、难点概率效应、邻近基团效应1、聚合物化学反应的特点及影晌因素聚合物化学反应系指以聚合物为反应的化学反应。
聚合物化学反应可分为三类:聚合度不变的反应(如侧基反应);聚合度增加的反应(如接枝、扩链、嵌段和交联等);聚合度减小的反应(如降解、解聚、分解和文化等)。
(1)特点:反应复杂,产物多样.不均匀。
(2)影响因素①聚合韧聚集态的影响:处于结晶态的聚合物几乎不能参加化学反应,因为结晶区聚合物分子链间作用力强,链段堆砌十分致密,化学试剂不易扩散进去,难于产生化学反应。
②邻近基团位阻的影响:聚合物分子镊上参加化学反应的基团邻近体积较大的基团时由于位阻效应而使低分子反应物难于接近反应部位,而无法继续进行反应。
③邻近基团的静电效应:当聚合物化学反应涉及酸碱催化过程,或者有离子态反应物参与反应,或者有离子态基团生成时,在化学反应进行到后朗,未反应基团的进一步反应往往会受到邻近带电荷基因的静电作用而改变速率。
④构型的影响:具有不同立构异构体的聚合物参加的化学反应中,反应速率不相同。
⑤基团的隔离作用或“孤立化”:在聚合物化学反应中.如果参加反应的聚合物官能团必须是两个或两个以上.当反应进行到后期,当一个官能团的周围已经没有能够与之协同反应的第二个官能团,则这个官能团就好做“隔离”或“孤立”起来而无法继续进行反应。
⑥相容性的影响。
总之,影响聚合物化学反应的因素多种多样。
研究聚合物肋化学反应需综合考虑。
2、聚合废不变的反应—聚合物侧基反应聚合物侧基反应是大分子链上除端基以外的原子或原子团所进行的化学反应。
侧基反应是对聚合物进行化学改性的重要手段,同时也是制备那些无法由单体直接聚合得到或者对应单体无法稳定存在的聚合物的唯一方法。
3、聚合度增大的化学反应—接枝、扩链、交联(1)接枝:即在聚合物主链上引入一定数量与主链结构相同或不同文链的过程。
第9章-聚合物的化学反应(2016)
9 聚合物的化学反应
4
9.1 聚合物化学反应的特征
9.1.1 大分子基团的活性
虽然高分子的官能团能与小分子的官能团发生类似的化 学反应,但由于高分子与小分子具有不同的结构特性,因 而其化学反应也有不同于小分子的特征:
(1)高分子链上可带有大量的官能团,但并非所有官能团 都能参与反应。
例如结晶度60~70%的PVA纤维,与甲醛反应,只能进 行20~40%的缩醛化。
玻璃态:在玻璃态,链段被冻结,低分子不易扩散,最 好在玻璃化温度以上或溶胀状态进行反应。
例如苯乙烯和二乙烯基苯的共聚物在进行磺化和氯甲基 化反应时必须先溶胀。
9 聚合物的化学反应
8
9.1 聚合物化学反应的特征
9.1.3 化学因素对基团活性的影响 (1) 邻近基团效应 高分子原有基团或反应后新生成的官能团的电子效应 和位阻效应以及静电作用,均可影响到邻近基团的活性和 基团的转化程度。 a. 位阻效应:如PVA的三苯乙酰化反应。
(2)探讨性能变坏或老化的原因,提出防老化措施。
聚合物的化学反应种类繁多,选择聚合物的基团反 应、嵌段和接枝、交联、降解和老化介绍。
9 聚合物的化学反应
1
第9章 聚合物的化学反应
主要内容 了解聚合物化学反应的特点; 了解聚合物的主要化学反应的原理; 掌握影响聚合物化学反应的因素; 掌握聚合物的降解反应; 了解聚合物的老化机理。
CH2CH
OH-
CO
OHNH2
CH2CH CH2CH CH2CH CO CO CO
O
NH2 O
OH-
9 聚合物的化学反应
12
9.1.3 化学因素对基团活性的影响
第八章 聚合物的化学反应总结
第八章聚合物的化学反应一、课程主要内容本章研究聚合物化学反应的意义和聚合物的化学反应。
聚合物的化学反应包括:聚合度相似的化学反应;聚合度变大的化学反应和聚合度变小的化学反应。
通过学习第八章,掌握聚合物可能发生的聚合反应,以便对聚合物进行改性;了解聚合物老化的原因和防止聚合物老化的方法。
二、试题与答案本章有基本概念题、填空题、选择填空题和简答题。
㈠基本概念题1.聚合物的化学反应:天然聚合物或由单体经聚合反应合成的聚合物为一级聚合物,若其侧基或端基为反应性基团,则在适当的条件下可发生化学反应,从而形成新的聚合物(为二级聚合物),由一级聚合物变为二级聚合物的化学反应,谓之。
2.聚合度相似的化学反应:如果聚合物的化学反应是发生在侧基官能团上,很显然这种化学反应不涉及聚合物的聚合度,反应前后聚合度不变(或相似),将这种聚合物的化学反应称为聚合度相似的化学反应。
3.聚合度变大的化学反应:如果聚合物的化学反应是交联、嵌段或接枝等,使聚合物的聚合度变大,将这种聚合物的化学反应称为聚合度变大的化学反应。
4.聚合度变小的化学反应:如果聚合物的化学反应是降解(热降解、化学降解等)很显然这种化学反应使聚合物的聚合度变小,将这种聚合物的化学反应称为聚合度变小的化学反应。
5.聚合物的老化:聚合物在使用或贮存过程中,由于环境的影响,性能变坏、强度和弹性降低、颜色变暗、发脆或发粘等现象叫聚合物的老化。
6.聚合物的无规降解:聚合物在热的作用下,大分子链发生任意断裂,使聚合度降低,形成低聚体,但单体收率很低(一般小于3%),这种热降解称为无规降解。
7.聚合物的解聚:聚合物在热的作用下发生热降解,但降解反应是从链的末端开始,降解结果变为单体,单体收率可达90%~100%,这种热降解叫解聚。
8.聚合物的侧链断裂:聚氯乙烯和聚偏二氯乙烯加热时易着色,起初变黄,然后变棕,最后变为暗棕或黑色,同时有氯化氢放出。
这一过程是链锁反应,连续脱氯化氢的结果使分子链形成大n键或交联,这种热降解称为侧链断裂。
第六章聚合物化学反应
8
高分子化学反应的分类
聚合度基本不变的反应,侧基和端基发生变化 聚合度变大的反应:交联、接枝、嵌段、扩链 聚合度变小的反应:降解,解聚
6.1 聚合物化学反应的特征及影响因素
6.1.1 聚合物化学反应特征
虽然高分子的功能基能与小分子的功能基发生类似的化学应, 由于高分子的链结构、聚集态结构与小分子差异很大,因而其化 学反应也有不同于小分子的特性:
如聚乙烯醇的三苯乙酰化反应,由于新引入的庞大的 三苯乙酰基的位阻效应,使其邻近的-OH难以再与三苯乙 酰氯反应:
H 2 C CH CH + OC - CO O NH 2 H CH CH 2 CH + N H 3 OC OC OH OH
+ H , H O 2
6.1 聚合物化学反应的特征及影响因素
6.2 聚合物的官能团反应
聚乙烯醇缩醛化反应可得到重要的高分子产品
H S O 2 4
S O H 3
C lC H O C H 2 3 Z n C l2 N R 3 N a O H
缩甲醛:维尼纶(其性能接近棉花,有“合成棉花”之称,是现有合成
纤维中吸湿性最大的品种。主要用于制作外衣、棉毛衫裤、运动衫等针织物, 还可用于帆布、渔网、外科手术缝线、自行车轮胎帘子线、过滤材料等。)
S CH 2 + H CH OC-SNa 2 CH 2CH CH + CH RCHO 2 CH CH O O O OH OH OH CH O ONa
R
6.2 聚合物的官能团反应
b. 纤维素乙酸酯
常称醋酸纤维素,物性稳定,不燃,除火药外已全部取代硝 化纤维素。由乙酸酐和乙酸在硫酸催化下与纤维素反应而得。
立基团,最高转化率受到限制,称为概率效应。
高分子物理化学-聚合物化学反应
聚合物的交联 聚烯烃的辐射交联工业上一般采用过氧化物进行交 联。其反应过程如下: R-O-O-R 2RO
RO + ~CH2-CH2~
2 ~CH2-CH~
ROH + ~CH2-CH~
~CH2-CH~ ~CH2-CH~
辐射交联后的PE,流动温度由110℃升至250℃,拉伸 强度可提高4倍,弹性模量和热变形温度也有较大幅度 的提高。
一)交联 橡胶的硫化 饱和链高分子的过氧化物交联 不饱和聚酯的固化--玻璃钢
RO-OR RO 2 + CH2CH
2RO CH2CH2 ROH +
CH2CH CH2CH
CH2CH
副反应多:链的断裂、与自由基偶合、脱氢
不饱和聚酯的固化 不饱和聚酯是由顺丁烯二酸酐、邻苯二甲酸 和乙二醇缩聚反应得到的线性聚合物,通常是液 体无实用价值,交联后固化成热固性高分子,是 制备玻璃钢的重要原料。
异氰酸端基聚合物(OCN ~ NCO) ~ NCO + H2O ~ NCO ~ NH C=O + CO2↑ ~ NH
异氰酸端基聚合物(OCN ~ NCO) ~ NCO ~ NHCOO
+ HO-R-OH
~ NCO ~ NCO ~ NHCOO
R
~ NHCONH
+ H2N-R-NH2
~ NCO ~ NHCONH
~CH2-CH ~ + CH3COOCH3 OH
PVA经缩醛化后可制得聚乙烯醇缩甲醛,其纤维状产 品称维尼纶: CH
2
~CH2-CH-CH2-CH~ OH OH
~CH2-CH O CH
CH ~ O
缩甲醛——维尼纶、涂料、粘合剂
H 缩丁醛——粘合剂,和玻璃有极强的粘合力
聚合物化学反应
3)醋酸纤维——纤维素醋酸酯
~[C6H7O2(OH)3]n ~ + (CH3CO)2O H2SO4 ~[C6H7O2(OH)2(Ac)]n ~ + ~[C6H7O2(OH)(Ac)2]n ~ + ~[C6H7O2(Ac)3]n ~
醋酸纤维物性稳定,且不燃,可用作制造电影胶 片的片基材料、制漆和各种塑料制品,最大用途是制 造人造丝。
4)纤维素醚类
纤维素与烷基化剂反应即成纤维素醚类可作织物上胶 剂、乳化剂、墨水增稠剂等。
甲基纤维素: ~[C6H7O2(OH)3]n ~ + (CH3O)2SO2
~[C6H7O2(OH)2(OCH3)3]n ~ 羟乙基纤维素: ~[C6H7O2(OH)3]n ~ + CHO2_ CH2
聚合物化学反应可以分为以下三类:
聚合度不变的反应,如侧基反应等; 聚合度增加的反应,接枝、扩链、嵌段和交联等; 聚合度减小的反应降解、解聚、分解和老化等。
6.1 聚合物化学反应的特点及影响因素
6.1.1 聚合物化学反应的特点
反应的复杂性、产物的多样和不均匀、以及影响因素的
多样性是聚合物化学反应的主要特点。
高分子材料。
功能类 别
化学 功能
物理功 能
生命功 能
功能特 性
反应性 催化 离子交换 物理吸附
光化学 光传导 光色、偏光 导电 导磁 热电、热光 声电、力电 形态记忆
机体功能 药理功能 仿生功能 生命功能
小类
高分子试剂 催化剂、固定化酶 离子交换树脂及膜
吸附树脂、絮凝
剂
光敏树脂 光传导光缆 光色、液晶高分子 导电高分子 磁性高分子 热电、热释光高分子 压电、压敏高分子 形态记忆高分子
第2章2节 聚合物的化学反应
二、聚合物的相似转变(聚合物的基团反应)
聚合物与低分子化合物作用,仅限于基团(侧基和/或 端基)转变而聚合度基本不变的反应,称做聚合物相似转变 。这是制备改性聚合物的常用方法,许多天然药用高分子材 料的改性就是采取这种方法来制备。 1 引入新基团 聚合物经过适当的化学处理在分子链上引入新功能基, 重要的实际应用如聚乙烯的氯化与氯磺化:
H2 C CH + O C - C O O NH 2 H CH H+, H2O CH2 CH CH O C O C OH OH
+ NH3
再如丙烯酸与甲基丙烯酸对硝基苯酯共聚物的碱催化水解 反应,其中的对硝基苯酯的水解反应速率比甲基丙烯酸对硝基 苯酯均聚物快,这是由于邻近的羧酸根离子参与形成酸酐环状 过渡态促进水解反应的进行:
CH2 CH OH + C COCl CH2 CH CH2 CH CH2 CH OH O OH CO
b. 静电效应:邻近基团的静电效应可降低或提高功能基的反 应活性。
如聚丙烯酰胺的水解反应速率随反应的进行而增大,其原 因是水解生成的羧基与邻近的未水解的酰胺基反应生成酸酐环 状过渡态,从而促进了酰胺基中-NH2的离去加速水解。
Contents
1
聚合物化学反应的分类、特性及其影响因素
2
3 4 5
聚合物的相似转变 聚合度变大的化学反应 聚合物的降解反应 聚合物的老化与防老化
一、聚合物化学反应的分类、特性及其影响因素
(一)聚合物化学反应的分类
1、聚合度基本不变而仅限于侧基和/或端基变化的反 应 :反应仅发生在聚合物分子的侧基和端基上,并不 会引起聚合度的明显改变。 2、聚合物的聚合度发生根本改变的反应,包括: 聚合度变大的化学反应,如扩链(嵌段、接枝等) 和交联; 聚合度变小的化学反应,如降解与解聚
八章聚合物的化学反应
C2H 2 CH
C2C H2C HH
C2H
H C2H
分子内“回咬”
CH2 C2H
CH2 CH2CH
CH2
CH3
CH2 + CH2 CHCH2CH2CH2CH2
CH2CH2CH CH2 +
CH2CH2CH3
(4)基团的脱除
聚氯乙烯、聚醋酸乙烯酯、聚丙烯腈等受热时, 将脱除取代基。自由基机理。
C H 2 C H C l C H 2 C H C l
第八章 聚合物的化学反应
(1) 活性阴离子聚合:依顺序加入单体。
SBS的合成: S段分子量1~1.5万,B段约
5~10万。常温下,SBS反应出B段 弹性体的性质, S段处于玻璃态微 区,起到物理交联的作用。温度升 到聚苯乙烯Tg以上,SBS具有流动 性,可以模塑。因此,SBS称作热 塑性弹性体,且无须硫化。
(3)淬灭剂 这类稳定剂能与被激发的聚合物分子作用,把激发能
转移给自身并无损害地耗散能量,使被激发的聚合物分子 回复原来的基态。
常用的有过渡金属的络合物。
6. 老化和耐候性
聚合物的老化:是指聚合物在加工、贮存及使用过程中, 其物理化学性能及力学性能发生不可逆坏变的现象。
热、光、电、高能辐射和机械应力等物理因素以及氧化、 酸碱、水等化学作用,以及生物霉菌等都可导致聚合物的老化。 因此聚合物的老化是多种因素综合的结果,并无单一的防老化 方法。
(3)根据具体聚合物材料的主要老化机理和制品的 使用环境条件添加各种稳定剂,如热、氧、光 稳定剂以及防霉剂等;
(4)采用可能的适当物理保护措施,如表面涂层等。
8. 8 反应功能高分子
功能高分子按应用功能分:
反应功能高分子:高分子试剂、高分子药 物
聚合物的化学反应名词解释
聚合物的化学反应名词解释聚合物是由许多重复单元通过化学反应相互连接而成的大分子化合物。
在聚合物的化学反应中,涉及到许多特定的名词和概念。
本文将对这些名词进行解释,以帮助读者更好地理解聚合物的化学反应过程。
一、聚合反应聚合反应是多个单体分子通过特定的化学反应,生成一个或多个高分子聚合物的过程。
常见的聚合反应包括加聚反应和缩聚反应。
加聚反应是指单体分子中的双键或三键被打开,并与其他单体分子发生共价键形成,生成聚合物。
缩聚反应则是通过两个或多个单体分子的反应失去一个小分子,例如水,形成聚合物。
二、单体单体是参与聚合反应的分子单位,是聚合物合成的基本构成单元。
单体可以是有机化合物,也可以是无机化合物。
在聚合反应中,单体通过共价键的形成与其他单体连接在一起,形成聚合物的主链。
单体的选择对聚合物的性质和用途有很大的影响。
三、引发剂在聚合反应中,引发剂被用来引发聚合过程。
引发剂可以是热能、光能、电能或化学物质。
引发剂的选择取决于所需的聚合反应速度和条件。
引发剂通过引发聚合反应中的自由基形成,从而提高反应速率。
四、聚合度聚合度是指聚合物中重复单元的数量,也可理解为聚合物链的长度。
聚合度的大小直接影响到聚合物的物理和化学性质。
一般来说,聚合度越大,聚合物的分子量越高,性质越稳定。
五、共聚物共聚物是由两种或更多种不同单体按一定比例混合聚合而成的聚合物。
共聚物的存在可以调节聚合物的性质,使其具有更多样的特性。
常见的共聚物有嵌段共聚物、交替共聚物和无规共聚物等。
六、交联聚合交联聚合是指通过化学反应或物理作用将两个或多个线性聚合物或共聚物的链连接在一起,形成一个具有高度网络结构的聚合物。
交联聚合可以提高聚合物的力学性能和热稳定性。
常见的交联方式包括辐射交联、热交联和化学交联等。
七、配位聚合配位聚合是指通过配位键的形成将金属离子和有机配体连接在一起形成聚合物的反应过程。
配位聚合可以得到具有特殊性质的聚合物,如电学性能和光学性能等。
高分子化学-第七章 聚合物的化学反应
(6)可回收单体和综合利用聚合物废料
(7)有助于了解聚合物的分子结构以及结 构与性能的关系。
(8)在高分子化学反应的基础上发展了功 能高分子 (9)聚合物的化学反应和缩聚、加聚反应 密切相关。
5
二、 聚合物化学反应的分类
根据聚合度和基团(侧基和端基)的变化,聚合物的 化学反应可分成:
• (1)聚合度相似的化学反应
OCOCH3
OCOCH3
控制合适条件,制备聚合度适当的产物
26
• 2.醇解 ]n [ CH2-CH- -
OCOCH3
CH3OH,OH–CH3COOCH3
~~CH2-CH~~ OH
制备维尼纶纤维,醇解度要大于99% 悬浮聚合分散剂,醇解度大约为80%
27
• 3.缩醛化
~~CH2– CH–CH2–CH–CH2 –CH~~ OH OH OH
15
二、 化学因素
• 1. 几率因素
大分子链上相邻基团作无规成对反应时,往往有一 些孤立的基团残留下来,反应不能进行到底。 ~~CH-CH2-CH-CH2-CH-CH2-CH-CH2-CH-CH2~~ O -CH2- O OH O -CH2- O 按反应的几率,羟基的最高转化率86.5%,实验 测得为85~87%。 若反应是可逆的,只要时间足够长,可以打破几 率的限制。 16
• 2. 邻近基团效应
由于大分子链上反应基团多,邻近基团相距很 近,因此,静电和位阻效应可使聚合物链上官能 团反应能力上升或下降。
~~CH2-CH-CH2-CH-CH2-CH~~ C=O C=O C=O O-• • • • • • H-N-H • • • • • • O-
OH-
17
18
一、聚二烯烃的加成与取代
_聚合物的化学反应
1. 化学反应方程式的局限性
在低分子有机化学反应中,用化学反应方程式 就可以表示反应物和产物之间的变化及其定量关系。 但是,聚合物的化学反应虽也可用反应式来表示, 其意义却有很大的局限性。如聚丙烯腈的水解
CH 2 CH n CN H2O H CH 2 CH n C O OH
许多反应中,大分子链中一种官能团转化为离 子后,如果它带的电荷与进攻试剂相同,由于静电 相斥效应,会显著阻碍邻近基团受试剂的进攻。 实例1:阻碍效应
甲基丙烯酰胺碱性水解程度不超过72%。
解释方法有两种:一是静电排斥,一是氢键限制。
CH 3 CH 2 C O C CH 2 O 排斥
CH 3 C CH 2 O
RCHO CH 2 CH CH 2 CH CH 2 CH OH OH OH CH 2 CH O CH R CH 2 CH CH 2 CH O OH
+
H2O
当缩醛化反应随机进行反应到转化率较高时, 大分子链上总有一部分孤立的未反应的羟基残留下 来。
O R
O
OH O R
O
O R
O
OH O R
O
OH O R
k
温度
100 120 129 名称
k 温度 30
4.4 3.1 4.8 聚乙酸乙烯酯
H2 C H C O C CH 3 O
4.8 2.7 4.7 乙酸异丙酯
H3C H C CH 3 O C CH 3 O
0.37
0.57
3. 邻近基团的静电和立体位阻
大分子链上反应基团甚多,邻近基团相距很近, 因此,基团之间的静电和立体位阻会增加或降低大 分子链上官能团的反应能力。 静电效应
聚合物的化学反应
2.溶解度的影响
聚合物在反应过程中,溶解度会发生变化。
起始聚合物不溶,产物可溶。
由于聚乙烯醇的单体无法制备,要想直接从 单体来制备聚合物有很大困难 ,就想法通过其 它方法制备一高聚物后 再通过化学反应得到我 们所需要的高聚物。生产上聚乙烯醇是由单体醋 酸乙烯酯经自由基溶液聚合得到聚醋酸乙烯酯, 再由NAOH的甲醇溶液醇解为聚乙烯醇,最后在纺 丝过程中加入甲醛进行缩醛化反应得到聚乙烯醇 缩甲醛纤维(即商品名称为维纶)。
2、除了正反应外,常伴随着许多副反应。
如分子内相邻的官能团的相互环化,分子之间 的交联等。 在化学反应时,还常常产生分子链的降解、裂 解,形成氧化物。
3、产物的不均一性
大分子链中有大量的具有反应能力的官能团, 当进行化学反应时,并不能使每个分子中所有的基 团都起反应。因为试剂的扩散速度和可及程度不一 样。这样在产物中,在同一个大分子链上就包含有 未反应的和反应后的多种不同基团,形成类似共聚 物的产物。
将三醋酯纤维素皂化为乙酰基,取代度约 2.4 即得到二醋酯纤维素。以丙酮为溶剂经纺丝 做成二醋酯纤维,可用于纺织、卷烟滤嘴丝束、 薄膜等。 纤维素醚是天然纤维素经化学改性得到的最 重要的水溶性聚合物之一。 如:羧甲基纤维素(CMC) 羟乙基纤维素(HEC) 甲基纤维素 ( MC ) 等等, 主要用于分散剂、乳化剂、增稠剂等。
第一节 研究聚合物化学反应的意义
一、合成一些不能由单体直接制备的高聚物 1. 有的单体不稳定或不能聚合,其聚合物不 能用相应单体的聚合方法制备,只能通过制 备另一种高聚物,然后通过高聚物的化学反 应来合成 。 例如:聚乙烯醇 由于乙烯醇 CH2= CHOH 是不稳定的化 合物,它要重排, 转化为乙醛 CH3--CHO。
聚合反应聚合物的化学反应
• 聚合单体有利于活性种的进攻(内因) 与单体的结构有关
活性种的产生-化合物共价键的断裂形式
• 均裂(homolysis)
共价键上一对电子分属两个基团,带独电子的基团 呈中性,称为自由基
RR
2R
• 异裂(heterolysis)
共价键上一对电子全部归属于某一基团,形成阴离 子,另一缺电子的基团,称做阳离子
合成聚合物 机理分 的化学反应
按反应活性中 心性质不同分
连锁聚合
自由基聚合
离子 聚 合
按有无小 分子生成
逐步聚合
缩聚反应 逐步加聚
其它聚合反应
链锁聚合
❖ 整个聚合反应是由链引发,链增长,链终止等基元 反应组成。
❖ 特征 1、瞬间形成分子量很高的聚合物 2、分子量随反应时间变化不大 3、反应需要活性中心。
氧化还原引发体系组份可以是无机和有机化合物 可以是水溶性(water soluble)和油溶性(oil soluble)
1) 水溶性氧化—还原体系 • 氧化剂:过氧化氢、过硫酸盐、氢过氧化物等 • 还原剂:无机还原剂和有机还原剂(醇、胺、草酸、葡 萄糖等) 主要有过氧化氢体系和过硫酸盐体系
2 ) 油溶性氧化—还原体系
无机 典型代表:水溶性的过硫酸钾和过硫酸铵 一般用于乳液聚合和水溶液聚合
O
O
O
KO S O O S OK
O
O
2KO S O O
氧化—还原体系引发剂(redox initiator)
由氧化剂与还原剂组合在一起,通过电子转移反 应(氧化—还原反应),产生自由基而引发单体进行 聚合的引发体系叫氧化—还原体系 特点: • 活化能低,可以在室温或更低的温下引发聚合 • 引发速率快,即活性大 • 诱导期短(Rp=0) • 只产生一个自由基
高分子化学第六章 聚合物的化学反应
Cl
(4) 氯化反应
饱和烃聚合物的氯化
聚乙烯、聚丙烯、聚异丁烯、聚氯乙烯及其他 饱和聚合物及其共聚物均可氯化。
反应系自由基链式机理,热、自由基聚合引发 剂及紫外光等都可引发反应。
反应可在固相或溶液中进行。
非均相时,反应仅在聚合物表面进行,得
到低含氯量产物,这对于改善表面性能又 不影响主体机械性能是很有利的。
• 二醋酸纤维素的丙酮溶液可纺丝制人造丝,也可 作塑料和绝缘漆等。
生成纤维素衍生物的反应
(3)纤维素黄原酸钠
Cell OH NaOH + CS2 粘胶纤维 Cell OH + CS2 + Na+
S
Cell O C SNa + H2O
纺丝 H+, 酸 化
水解
生成纤维素衍生物的反应
(4)纤维素的甲基和乙基醚化物
O
O
O
OCH2CH2O
C
C
CH=CH
x
OCH2CH2
OSt St
C
S. t
St
. .
St
O
St St
CSt O
St
S. t
.
+
. RSt
St
St
St
.
+ R St St
St
PSt
St St
若以
St
St
St
St
代表UP,以St代表苯乙烯
St
St
St
St
St
St
St
St
改变单体的种类及比例,调S节t 产物的St 组成与结构,以
接枝也是聚合物改性的重要手段之一。
(2)接枝反应
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
26
3.反应功能高分子
(4)高分子催化剂 定义:由高分子母体和催化基团A组成,催化基团不 参与反应,只起催化作用,或参与反应后恢复原 状:
制备方法: 化学结合法:将具有催化作用的基团以化学结 合形式接到高分子上。 吸附法:利用正、负离子的吸附作用,将催化 基团吸附在高分子载体上。 内包藏法:反应基团包在高分子载体内。
25
3.反应功能高分子
(3)高分子底物和固相合成
1963年,美国的生物学家Merrifield,发明了多肽固相合成方法。 成功的将氯甲基化聚苯乙烯珠粒用于合成多肽和蛋白质。这是目前合成 蛋白质、核酸和DNA等生命物质的首选方法。 固相合成是选用在反应体系中不会溶解的高分子材料作为反应试剂的 载体,中间产物始终与高分子载体相连接,高分子上的活性基团只参与 初始反应或最后一步反应。含有双官能团或多官能团的低分子有机化合 物以共价键的形式与作为载体的高分子试剂相结合,然后与低分子试剂 或其溶液进行单步或多步的反应,过量使用的小分子试剂或载体可以过 滤除去后进行下一步反应直至在高分子载体上形成预定的产物,最后将 合成好的有机化合物从载体上分离下来。 这种高分子固相合成广泛用于多肽、寡糖、低聚核苷酸以及光学异构 体、大环化合物的定向合成。固相合成具有快速、、简便、收率高的特 点,但聚合物作为固相合成的载体,要求聚合物在反应体系中不溶解, 在溶剂中适度溶胀,聚合物高度功能化,功能基在载体上分布均匀,反 应后可以用简单的方法使载体再生使用。
27
4.接枝共聚
◆ 聚合物的接枝反应是指在高分子主链上连接不同组成的支 链得到接枝共聚物 ◆ 接枝共聚物
◆ 嵌段共聚物
◆ 扩链共聚物
28
4.接枝共聚
按照接枝点产生方式,分成(1)长出支链;(2) 嫁接;(3)大单体共聚。
(1)长出支链
◆
在高分子主链上引入引发活性中心引发第二单 体聚合形成支链,根据引发活性中心引入方法的不 同,包括(i)链转移反应法;(ii)大分子引发 剂法;(iii)辐射接枝法。
◆ (1)合成具有特定结构和功能的新型高分子
◆ 利用高分子的化学反应对高分子进行改性从而赋予聚合 物新的性能和用途:离子交换树脂;高分子试剂及高分子 固载催化剂;在医药、农业及环境保护方面具有重要意义 的可降解高分子;阻燃高分子等等。
◆ (2)有助于了解和验证高分子的结构。
3
1.聚合物化学反应的特征
1.聚合物化学反应的特征
◆ 1.3 化学因素对基团活性的影响
(i) 邻基效应
a. 位阻效应:由于新生成的官能团的立体阻碍,导致其 邻近官能团难以继续参与反应。 如聚乙烯醇的三苯乙酰化反应,由于新引入的庞大的三 苯乙酰基的位阻效应,使其邻近的-OH难以再与三苯乙酰氯 反应:
CH2 CH OH + C COCl CH2 CH CH2 CH CH2 CH OH O OH CO
7
1.3 化学因素对基团活性的影响
◆ b. 静电效应:邻近基团的静电效应可降低或提高官能团 的反应活性。 如聚丙烯酰胺的水解反应速率随反应的进行而增大,其原 因是水解生成的羧基与邻近的未水解的酰胺基反应生成酸酐 环状过渡态,从而促进了酰胺基中-NH2的离去, 加速了水解。
H2 C CH + O C - C O O NH2 H CH
4
如聚丙烯腈(PAN)的水解:
反应不能用小分子的“产率”一词来描述 只能用基团转化率来表征:即指起始基团生成各种基团 的百分数。 基团转化率不能达到百分之百,是由高分子反应的不 均匀性和复杂性造成的。
5
1.聚合物化学反应的特征
◆ 1.2 物理因素对基团活性的影响:
如聚合物的结晶度、溶解性、温度等。 结晶性:对于部分结晶的聚合物而言,由于在其结晶区域 (即晶区)分子链排列规整,分子链间相互作用强,链与链 之间结合紧密,小分子不易扩散进晶区,因此反应只能发生 在非晶区; 溶解性:聚合物的溶解性随化学反应的进行可能不断发生变 化,一般溶解性好对反应有利,但假若沉淀的聚合物对反应 试剂有吸附作用,由于使聚合物上的反应试剂浓度增大,反 而使反应速率增大; 温度:一般温度提高有利于反应速率的提高,但温度太高可 能导致不期望发生的氧化、裂解等副反应。 6
2.聚合物的基团反应
◆ 其反应历程跟小分子饱和烃的氯化反应相同,是 一个自由基链式反应:
光 Cl2 或有机过氧化物 +Cl + Cl2 2 Cl CH2CH CH2CH Cl + HCl + Cl
CH2CH2 CH2CH
13
(2)聚氯乙烯(PVC)的氯化
PVC的氯化可以水作介质在悬浮状态下50℃进行,亚甲 基氢被取代。
22
3.1反应功能高分子的分类
功能高分子,按应用功能可分: 反应功能高分子,如高分子试剂、高分子药物、 高分子催化剂等; 分离功能高分子,如吸油、吸水树脂、离子交换 树脂、螯合树脂等; 电功能高分子,如导电、光致导电、压电等高分 子; 光功能高分子,如光固化涂料、光致抗蚀剂,光 致变色、光能转换等高分子; 液晶高分子
18
2.7纤维素的化学改性
(i)粘胶纤维的合成
CH2OH O O OH OH CH2OH O O OH ONa CS2 CH2OH O O OH O C SNa S 纤维素黄原酸酯 H2SO4 纺丝 纤维素 + Na2SO4 + CS2
NaOH
19
(ii)纤维素酯的合成
◆ 纤维素与酸反应酯化可获得多种具有重要用途的纤维素酯。 重要的有: ◆ a. 硝化纤维素:纤维素经硝酸和浓硫酸的混合酸处理可 制得硝化纤维素:
聚乙烯醇缩醛化反应可得到重要的高分子产品
缩甲醛:维尼纶 缩丁醛:良好的玻璃粘合剂
15
2.4聚丙烯酸酯类的基团反应
与丙烯腈、丙烯酰胺的水解相似,聚丙烯酸甲酯、聚丙 烯腈、聚丙烯酰胺经水解,最终均能形成聚丙烯酸。
聚丙烯酸或部分水解的聚丙烯酰胺可用于锅炉水的防 垢和水处理的絮凝剂,水中有铝离子时,聚丙烯酸成絮状, 与杂质一起沉降除去。
高分子科学
聚合物的化学反应
聚合物的化学反应
◆ 1.聚合物化学反应的特征 ◆ 2.聚合物的基团反应 ◆ 3.反应功能高分子 ◆ 4.接枝共聚 ◆ 5.嵌段共聚 ◆ 6.扩链 ◆ 7.交联 ◆ 8.降解与老化
2
概述
◆ 聚合物的化学反应的定义:聚合物分子链上或分子链间官 能团相互转化的化学反应过程。 ◆ 意义:研究和利用聚合物分子内或聚合物分子间所发生的 各种化学转变, 具有重要的意义:
16
2.5苯环侧基的取代反应
聚苯乙烯及其共聚物,带有苯环侧基,苯环上的氢原子 容易进行取代反应。几乎可进行芳烃的一切反应。 如:以苯乙烯-二乙烯苯共聚物为母体制备离子交换树 脂。
阴离子交换树脂
17
2.6环化反应
有多种反应可在大分子链中引入环状结构,如聚氯乙烯 与锌粉共热、聚乙烯醇缩醛等的环化。环的引入,使聚合 物刚性增加,耐热性提高。有些聚合物,如聚丙烯腈或粘 胶纤维,经热解后,还可能环化成梯形结构,甚至稠环结 构,制备碳纤维。
◆ 1.1 大分子基团活性:
聚合物和低分子同系物可以进行相似的基团反应,例如纤维 素和乙醇中的羟基都可以酯化,聚乙烯和己烷都可以氯化等, 但对产率或转化率的表述和基团活性却存在着差异。 大分子链上的基团很难全部起反应,参加化学反应的主体是 大分子的某部分(如侧基或端基),而非整个分子,一个高分 子链上含有未反应和反应后的多种不同的基团,类似共聚物。
24
3.反应功能高分子
(2)高分子药物 高分子药物属于高分子试剂范围,只是在人体 内反应。高分子药物是将药物共价结合或络合在 聚合物上,或将带有药效基团的单体聚合,就成 了高分子药物。在生物体内,基团通过体液水解 或酶解,产生药效,具有长效和副作用小的优点。 缓释放或控制释放药剂: 将低分子药物高分子化,处理方法有化学结合 和物理隔离二类,物理隔离又有外包膜和微胶囊 等法。
CH2CH OH RCHO O R O O R O OH O R O
9
2.聚合物的基团反应
2.1聚二烯烃的加成反应
二烯类橡胶分子中含有双键,也可以进行加成反应, 如加氢、氯化和氢氯化,从而引入原子或基团。 (1)加氢反应 顺丁橡胶、天然橡胶、丁苯橡胶、SBS等 大分子链中留有双键,易氧化和老化,经加氢成饱和橡胶, 玻璃化温度和结晶度均有改变,可提高耐候性,部分氢化 的橡胶可作电缆涂层。
PVC是通用塑料,但其热变形温度低(约80℃)。经 氯化,使氯含量从原来的56.8%提高到62~68%,耐热性可 提高10~40℃,溶解性能、耐候、耐腐蚀、阻燃等性能也 相应改善,因此CPVC可用于热水管、涂料、化工设备等方 面。
14
2.3聚醋酸乙烯酯(PVAc)的反应
聚乙烯醇只能从PVAc的水解得到:
加氢的关键是寻找加氢催化剂(镍或贵金属类),并关 注与氢扩散传递相关的化工问题,因为气体扩散可能成为 控制步骤。
10
2.聚合物的基团反应
◆ (2)氯化和氢氯化
天然橡胶的氯化可在四氯化碳或氯仿溶液中、80~100℃下进行,产物氯含量可 高达65%,除在双键上加成外,还可能在烯丙基位置取代和环化,甚至交联。
氯化橡胶不透水,耐无机酸、碱和大部分化学品,可用作防腐蚀涂料和粘合剂, 如混凝土涂层。
11
2.2聚烯烃和聚氯乙烯的氯化
聚烯烃的氯化是取代反应,属于比较简单的高分子基团反 应。 (1)聚乙烯(PE)的氯化 在适当温度下或经紫外光照射,聚乙烯容易被氯化, 形成氯化聚乙烯(CPE),释放出HCl。 总反应式: 氯化反应属自由基连锁机理。氯气吸收光量子后,均 裂成氯自由基。氯自由基向聚乙烯移成链自由基和氯化氢。 链自由基与氯反应,形成CPE和氯自由基。 高分子量PE氯化后可形成韧性弹性体,低分子量PE的 氯化产物易加工。含30~40%Cl的CPE为弹性体,阻燃,可 作PVC抗冲改性剂。 12