海淀区高三年级第二学期期中测试文科数学试题
北京市海淀区高三数学(文科)第二学期期中练习参考答案与评分标准
北京市海淀区高三数学(文科)第二学期期中练习参考答案与评分标准2001.5一、选择题:(1)C ; (2)D ; (3)B ; (4)C ; (5)A ; (6)B ;(7)C ; (8)C ; (9)B ; (10)C ; (11)D ; (12)D.二、填空题:(13)12; (14){};12|<<-x x (15)(]2,0; (16)123,122,242(写出一个即可) 三、解答题:(17)解(I ):设z =a +bi (a ,R b ∈) ∴abi b a z 2222+-=………………………………1分由已知,有⎩⎨⎧=+=22222b a ab ,可解出⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a ∴i z +=11或i z --=12………………………………………………………………………3分 ∴4arg 1π=z ,π45arg 2z ………………………………………………………………………5分∴)4sin 4(cos 21ππi z +=或)45sin 45(cos 22ππi z +=……………………………………7分 (Ⅱ):当i z +=1时,可得i z 22=,i z z -=-12∴A (1,1),B (0,2),C (1,–1)∴11221=⨯⨯=∆ABC S ………………………………………………………………………10分 ∴当i z --=1时,可得i z 22=,i z z 312--=-∴A (–1,–1),B (0,2),C (–1,–3)∴11221=⨯⨯=∆ABC S 综上ABC ∆的面积为1.………………………………………………………………………12分(18)(I )证明:∵ABC ∆是正三角形,AF 是BC 边中线,∴AF ⊥BC .∵D 、E 分别是AB 、AC 的中点,∴DE ∥BC , ∴AF ⊥DE .又AF ∩DE =G ,∴G A '⊥DE ,FG ⊥DE ,又G A '∩FG =G ,∴DE ⊥平面FG A '.……………………4分又DE ⊂平面DECB ,∴平面FG A '⊥平面DECB .…………6分(Ⅱ)解:∵G A '⊥DE ,GF ⊥DE ,∴∠GF A '是二面角B DE A --'的平面角.………………………………………7分∵平面GF A '⊥平面BCED ,作O A '⊥AG 于O ,∴O A '⊥平面BCED .设BD E A ⊥',连结EO 并延长交AD 于H ,∴EH ⊥AD .∵AG ⊥DE ,.∴O 是正三角形ADE 的垂心也是中心.∵AD =DE =AE =2a , ∴a AG G A 43==',a OG 123=. 在OG A Rt '∆中,31cos ='='∠G A OG GO A . ∵GO A GF A '∠-='∠π, ∴31cos cos -='∠-='∠GO A GF A . 即当GF A '∠的余弦值为31-时,E A '与BD 互相垂直.…………………12分(19)解(I ):∵当2≥n 时,43-n S ,n a ,1232--n S 成等差数列, ∴1232432--+-=n n n S S a ,………………………………………………1分∴43-=n n S a (2≥n ).由11=a ,可得4)1(322-+=a a ,∴212=a .………………………………2分 同理,可求出413-=a ,814=a .…………………………………………4分 (Ⅱ):当2≥n 时,∵43+=n n a S ①,∴4311+=++n n a S ②,②–①得 n n n a a a -=++113. ∴211-=+n n a a 为常数,……………………………………………………6分 ∴2a ,3a ,4a ,…,n a ,…成等比数列,其中首项212=a ,21-=q .… …………………………………………………………………………7分∴通项⎪⎩⎪⎨⎧≥--=-==--)2()21()21(211)(n 112n a n n n .……9分 (Ⅲ):∵)(13221n n n a a a a a a S ++++=+++=∴)(lim 1lim 32n n n n a a a S ++++=∞→∞→ =34311)21(1211=+=--+ …………………………………………12分 (20)解(I ):∵)(x f y =是以5为周期的周期函数,∴)1()15()4(-=-=f f f .∵函数)(x f y = (11≤≤-x )是奇函数,∴)4()1()1(f f f =-=-.∴0)4()1(=+f f .……………………………………………………………6分(Ⅱ):当[]4,1∈x 时,由题意,可设5)2()(2--=x a x f (0≠a ), 由0)4()1(=+f f ,得05)24(5)21(22=--+--a a ,∴2=a .∴5)2(2)(2--=x x f (41≤≤x ). ……………………………………12分(21)解(I ):由已知数据,易知)(t f y =的周期T =12, ………………………………1分∴62ππω==T . 由已知,振幅A =3,b =10,………………………………………………………3分 ∴106sin 3+=t y π.…………………………………………………………………4分 (Ⅱ):由题意,该船进出港时,水深应不小于5.115.65=+(米), ∴5.11106sin3≥+t π.………………………………………………………………6分 即216sin ≥t π. 解得,πππππ652662+≤≤+k t k (Z k ∈), ∴512112+≤≤+k t k (Z k ∈) .………………………………………………8分 在同一天内,取0=k 或1,∴51≤≤t 或1713≤≤t . …………………………10分 答:该船可在当日凌晨1时进港,17时离港,它在港内至多停留16小时 。
北京市海淀区 高三第二学期期中练习数学(文)试题及答案【精编】.doc
海淀区高三年级 第二学期期中练习数学试卷(文科)本试卷共4 页,150 分.考试时长120 分钟.考生务必将答案答在答题卡上,在试卷上 作答无效.考试结束后,将本试卷和答题卡一并交回.一、选择题共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出符合题目 要求的一项.1.已知集合A ={}|23x z x ∈-≤<,B ={}|21x x -≤<,则A B I = A .{}2,1,0--B .{}2,1,0,1--C .{}|21x x -<<D .{}|21x x -≤<2、已知向量(1,),(,9)a t b t ==r r ,若a b r rP ,则t =A .1B .2C .3D .43.某程序的框图如图所示,若输入的z =i (其中i 为虚数单位),则输出的S 值为 A .-1 B .1 C .-i D .i4.若x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则12z x y =+的最大值为A .52 B .3 C .72D .45.某三棱锥的三视图如图所示,则其体积为 A .33 B .32C .23 D .266、已知点P 00(,)x y 在抛物线W :24y x =上,且点P 到W 的准线的距离与点P 到x 轴的距离相等,则0x 的值为A 、12 B 、1 C 、32D 、2 7.已知函数sin(),0()cos(),0x a x f x x b x +≤⎧=⎨+>⎩,则“4πα=”是“函数()f x 是偶函数“的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件8.某生产基地有五台机器,现有五项工作待完成,每台机器完成每项工作后获得的效益值 如表所示.若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则 下列叙述正确的是A .甲只能承担第四项工作B .乙不能承担第二项工作C .丙可以不承担第三项工作D .获得的效益值总和为78二、填空题共6 小题,每小题5 分,共30 分. 9.函数22x y =-10.已知数列{}n a 的前n 项和为n S ,且24n S n n =-,则21a a -=_______.11.已知l 为双曲线C :22221x y a b -=的一条渐近线,其倾斜角为4π,且C 的右焦点为(2,0),点C的右顶点为____,则C 的方程为_______.12.在1331,2.log 22这三个数中,最小的数是_______.13.已知函数()sin(2)f x x ϕ=+,若5()()21212f f ππ--=,则函数()f x 的单调增区间为__14.给定正整数k ≥2,若从正方体ABCD -A 1B 1C 1D 1的8个顶点中任取k 个顶点,组成一个集合M ={}12,,,k X X X g g g ,均满足,,,i j s t X X M X X M ∀∈∃∈,使得直线i j s t X X X X ⊥,则k 的所有可能取值是___三、解答题共6 小题,共80 分.解答应写出文字说明、演算步骤或证明过程.15.(本小题满分13 分) 在△ABC 中,∠C =23π,6a =. (Ⅰ)若c =14,求sinA 的值;(Ⅱ)若△ABC 的面积为3,求c 的值. 16.(本小题满分13 分)已知数列{}n a 是等比数列,其前n 项和为n S ,满足210S a +=,312a =。
北京市海淀区高三年级第二学期期中练习数学文科
北京市海淀区高三年级第二学期期中练习数学试题(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共40分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.不能答在试卷上.一、选择题:本大题共8个小题,每小题5分,共40分.在每个小题列出的四个选项中,选出符合题目要求的一项.1.若则角且,0cos ,0cos sin 是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角2.函数xx f 2)(的反函数的图象大致是()3.若向量b a b a 与则向量),3,1(),2,1(的夹角等于()A .45°B .60°C .120°D .135°4.已知l 是直线,α、β是两个不同的平面,下列命题中的真命题是()A .若则,//,//l lB .若l l 则,//,C .若则,//,l lD .若//,//,//l l l 则5.“2a”是“直线022012yax ay x 与直线”的()A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件6.函数)4sin()(x x f 的一个单调增区间为()A .)47,43(B .)43,4(C .)2,2(D .)4,43(7.已知实数a ,b ,c 成公差不为零的等差数列,那么下列不等式不成立...的是()A .2|1|bc a b B .222cbaca bc ab C .acb2D .||||||||b c a b 8.对于数列}{n a ,若存在的常数M ,使得对任意1*,n n a a n 与N 中至少有一个不小于M ,则记:,}{M a n 那么下列命题正确的是()A .若}{,}{n n a M a 则数列的各项均大于或等于MB .若Mb a M b M a n nn n 2}{,}{,}{则C .若22}{,}{M a M a nn 则D .若12}12{,}{M a M a nn 则第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.函数x x f sin )(的最小正周期是.10.在6)2(x 的展开式中,x 的系数是.(用数字作答)11.椭圆的两个焦点为F 1、F 2,短轴的一个端点为A ,且△F 1AF 2是顶角为120°的等腰三角形,则此椭圆的离心率为.12.已知四面体P —ABC 中,PA=PB=PC ,且AB=AC ,∠BAC=90°,则异面直线PA 与BC所成角的大小为.13.在△ABC 中,A B BCAC则,60,2,6的大小是;AB= .14.若实数y x zxyxx y xy x 23,024,||,1,22则满足的最小值是;在平面直角坐标系中,此不等式组表示的平面区域的面积是.三、解答题:本大题共6小题,共80分,解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)已知}.3|2||{},4|||{x x B a x x A (I )若B Aa 求,1;(II )若R BA ,求实数a 的取值范围.16.(本小题共13分)如图,四棱锥P —ABCD 中,PA ⊥平面ABCD ,底面ABCD 为直角梯形,且AB//CD ,∠BAD=90°,PA=AD=DC=2,AB=4. (I )求证:BC ⊥PC ;(II )求PB 与平面PAC 所成角的正弦值;(III )求点A 到平面PBC 的距离.17.(本小题共14分)已知数列,...).3,2,1(1,}{n na S S n a n n n n 且满足项的和为前(I )求21,a a 的值;(II )求}{n a 的通项公式.18.(本小题共13分)3名志愿者在10月1号至10月5日期间参加社区服务工作,若每名志愿者在这5天中任选两天参加社区服务工作,且备志愿者的选择互不影响,求:(I )这3名志愿者在10月1日都参加社区服务工作的概率;(II )这3名志愿者在10月1日至多有1人参加社区服务工作的概率.19.(本小题共14分)已知函数R是定义在)(x f 上的奇函数,当.)1(2)(,023x m mxxx f x时(I )当)(,2x f m 求时的解析式;(II )设曲线0)(x xx f y在处的切线斜率为],1,1[,0x k 且对于任意的m k 求实数,91的取值范围.20.(本小题共13分)在△PAB 中,已知)0,6(A 、),0,6(B 动点P 满足.4|||PB PA (I )求动点P 的轨迹方程;(II )设点)0,2(),0,2(N M ,过点N 作直线l 垂直于AB ,且l 与直线MP 交于点Q ,试在x 轴上确定一点T ,使得PN ⊥QT ;(III )在(II )的条件下,设点Q 关于x 轴的对称点为R ,求OR OP 的值.参考答案一、选择题:本大题共8个小题,每小题5分,共40分.1—5 CADCB6—8 ABD二、填空题(本大题共6小题,每小题5分,有两空的小题,第一空3分,第二空2分,共30分)9.210.24011.2312.90°13.451314.0 22三、解答题(本大题共6小题,共80分)15.(本小题共12分)解:(I )当}.53|{,1x x A a 时………………2分分分或6}.13|{4}.51|{x x BAx x x B (II )}.44|{axax A………………8分分的取值范围是实数分分且或12).3,1(11.31105414}.51|{a aa a B Ax x x B R注:若答案误写为31a,扣1分.16.(本小题共14分)方法1(I )证明:在直角梯形ABCD 中,∵AB//CD ,∠BAD=90°,AD=DC=2∴∠ADC=90°,且.22AC ………………1分取AB 的中点E ,连结CE. 由题意可知,四边形AECD 为正方形,所以AE=CE=2,又,21,221AB CEAB BE所以则△ABC 为等腰直角三角形,所以AC ⊥BC ,……………………2分又因为PA ⊥平面ABCD ,则AC 为PC 在平面ABCD 内的射影,BC平面ABCD ,由三垂线定理得,BC ⊥PC ……………………4分(II )由(I )可知,BC ⊥PC ,BC ⊥AC ,PC ∩AC=C. 所以BC ⊥平面PAC ,……………………5分PC 是PB 在平面APC 内的射影,所以∠CPB 是PB 与平面PAC 所成的角. ……6分又22CB,………………7分,52,20222PB ABPAPB………………8分.510,510sin 所成角的正弦值为与平面即PAC PB CPB ………………9分(III )由(II )可知,BC ⊥平面PAC ,BC 平面PEC ,所以平面PBC ⊥平面PAC ,………………10分过A 点在平面PAC 内作AF ⊥PC 于E ,所以AF ⊥平面PBC ,则AF 的长即为点A 到平面PBC 的距离. ………………11分在直角三角形PAC 中,PA=2,AC=22,………………12分32PC ………………13分所以.362,362的距离为到平面即点PBC A AF ………………14分方法2:∵AP ⊥平面ABCD ,∠BAD=90°∴以A 为原点,AD 、AB 、AP 分别为x 、y 、z 轴,建立空间直角坐标系………1分∵PA=AD=DC=2,AB=4.)2,0,0(),0,2,2(),0,0,2(),0,4,0(P C D B ………………2分(I )),2,2,2(),0,2,2(PC BC 0PC BC ………………3分PCBC PC BC即,………………4分(II )),,(),0,2,2(),2,0,0(z y x PAC AC APn 的法向量设平面022,000yxz ACAP n n ………………6分设)0,1,1(,1,1nyx………………7分||||,cos )2,4,0(n n nPB PB PB PB ………………8分510………………9分即PB 与平面PAC 所成角的正弦值为.510(III )由),,(),2,2,2(),2,4,0(c b a PBC PC PB m的法向量设平面022202400c b acb PCPB m m ………………11分设)2,1,1(,1,2,1m b c a ………………12分||||m m AB dPBC A 的距离为到平面点………………13分=362∴点A 到平面PBC 的距离为362………………14分17.(本小题共13分)解:(I )当111,1a a n 时,………………1分.211a ………………2分当22121,2a a a n时………………3分612a ………………5分(II )nn na S 1分分符合上式时当分分分分时当13).,3,2,1()1(112,21,111)1(110)1(29117)1()1(12111111nn n a a n n n a n n a a n n a na a n a a n S n nn n n nnnn n18.(本小题共13分)解法1:(I )3名志愿者每人任选两天参加社区服务,共有325)(C 种不同的结果,这些结果出现的可能性相等……………………1分设“这3名志愿者在10月1日都参加社区服务工作”为事件 A 则该事件共包括314)(C 种不同的结果……………………3分1258)()()(325314C C A P ………………5分答:这3名志愿者在10月1日都参加社区服务工作的概率为.1258…………6分(II )3名志愿者都不在10月1日参加社区服务工作的概率为.)()(325224C C …………8分3名志愿者中只有1人在10月1日参加社区服务的概率为3252241413)()(C C C C ……10分设“这3名志愿者在10月1日至多有1人参加社区服务工作”为事件B125811255412527)()()()()(3252241413325324C C C C C C B P ………………12分答:这3名志愿者在10月1日至多有1人参加社区服务工作的概率为.12581……13分解法2:(I )每名志愿者在10月1日参加社区服务的概率均为522514CC P…………2分设“3名志愿者在10月1日都参加社区服务工作”为事件A…………3分1258)52()(3A P ………………5分答:这3名志愿者在10月1日都参加社区服务工作的概率为.1258…………6分(II )3名志愿者都不在10月1日参加社区服务工作的概率为:33)53()521(………………8分3名志愿者只有一人在10月1日参加社区服务工作的概率为:213)521)(52(C ……10分设“这3名志愿者在10月1日至多有1人参加社区服务工作”为事件B …………11分125811255412527)53)(52()53()(2133C B P ………………12分答:这3名志愿者在10月1日至多有1人参加社区服务工作的概率为.12581……13分19.(本小题共14分)解:(I )0)0(,)(f x f 上的奇函数是定义在R . …………1分分分分时当时当4)0()1(2)0()1(2)(3)1(2])1(2[)(2)()(,0,)1(2)(,02323232323x xm mxxx x m mx x x f x m mx xx m m xxx f x f x f xx m m xxx f x )0(22)0(22)(,22323xxx xx x x x x f m 时当………………5分(II )由(I )得:)0()1(26)0()1(26)(22xm mx xx m m x x x f ………………6分恒成立即可时对任意是偶函数分恒成立时则对任意且对于任意的处的切线斜率为在曲线9)(1,]1,0[,)(7,9)(1,]1,1[,91],1,01[,)(00000x f x x f x f x kx k x xx f y ①当,06时m 由题意得9)1(1)0(f f 20m………………9分②当160m 时9)1(9)0(1)6(f f m f 06m ……………………11分③当时16m 1)1(9)0(f f 68m……………………13分综合①②③得,28m ……………………14分∴实数m 的取值范围是}.28|{m m 20.(本小题共14分)解:(I )|,|4||||AB PB PA 动点P 的轨迹是以A 、B 为焦点的双曲线的右支,除去其与x 轴的交点. ……………………1分设双曲线方程为).0,0(12222b a by ax 由已知,得,2,6,42,6ac ac 解得………………2分.2b ……………………3分∴动点P 的轨迹方程为).2(12422x yx………………4分注:未除去点(2,0),扣1分(II )由题意,直线MP 的斜率存在且不为0,直线l 的方程为.2x设直线MP 的方程为).2(x k y ……………………5分22202222122222200214)2(212421482,021.2,2.0)48(8)21(,)2(124),,(),4,2(,k k x k y k k x kk x kx x x k xk x k xk y yx y x P k Q MP l Q 且根此方程必有两个不等实整理得由设的交点与直线是点).214,2124(222kkkk P ………………8分),4,2(),214,218(),0,2(.0,),0,(222k tQTkk kkPNN QT PN QT PN t T 由只需要使得设0]16)2(8[(211222k t k kQTPN ,………………10分.0,0,4,0QT PN t k 此时∴所求T 点的坐标为(4,0). ……………………11分(III )由(II )知).4,2(),214,2124(),4,2(222k ORkk kkOP k R .42184)4(2142212422222kk k kk kk OROP .4OR OP ……………………14分说明:其他正确解法相应步骤给分.。
北京市海淀区2024届高三下学期期中练习(一模)数学试题(解析版)
海淀区2023—2024学年第二学期期中练习高三数学本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集{|22}U x x =-≤≤,集合{}12A x x =-≤<,则U A =ð()A.(2,1)--B.[2,1]--C.(2,1){2}-- D.[2,1){2}-- 【答案】D 【解析】【分析】根据给定条件,利用补集的定义求解即得.【详解】全集{|22}U x x =-≤≤,集合{}12A x x =-≤<,所以[2,1){2}U A =-- ð.故选:D2.若复数z 满足i 1i z =+,则z 的共轭复数是()A.1i --B.1i +C.1i -+D.1i-【答案】B 【解析】【分析】根据复数代数形式的除法运算求出复数z 即可求解结果.【详解】解:复数z 满足i 1i z =+,所以()21i 1i 1i1i i i i 1z ++-+====--.所以z 的共轭复数是1i +.故选:B .3.已知{}n a 为等差数列,n S 为其前n 项和.若122a a =,公差0,0m d S ≠=,则m 的值为()A.4B.5C.6D.7【答案】B 【解析】【分析】利用等差数列的通项公式求出1a 和d 的关系,代入0m S =计算可得m 的值.【详解】由已知()12122a a a d ==+,得12a d =-,又()()1112022m m m m m S ma d md d --=+=-+=,又0d ≠,所以()1202m m m --+=,解得5m =或0m =(舍去)故选:B.4.已知向量,a b 满足||2,(2,0)a b ==,且||2a b += ,则,a b 〈〉= ()A.π6B.π3C.2π3 D.5π6【答案】C 【解析】【分析】将||2a b +=两边同时平方,将条件带入计算即可.【详解】由已知||2,2a b ==,所以()22224222cos ,44a b a b a b a b +=+⋅+=+⨯⨯⨯〈〉+=r r r r r r r r,得1cos ,2a b 〈〉=- ,又[],0,πa b 〈〉∈ ,所以2π,3a b 〈〉= .故选:C.5.若双曲线22221(0,0)x y a b a b-=>>上的一点到焦点(的距离比到焦点的距离大b ,则该双曲线的方程为()A.2214x y -= B.2212x y -= C.2212y x -= D.2214y x -=【答案】D 【解析】【分析】根据题意及双曲线的定义可知2a b =,c =,再结合222+=a b c ,求出,a b ,即可求出结果.【详解】由题知c =,根据题意,由双曲线的定义知2a b =,又222+=a b c ,所以255a =,得到221,4a b ==,所以双曲线的方程为2214y x -=,故选:D.6.设,αβ是两个不同的平面,,l m 是两条直线,且,m l αα⊂⊥.则“l β⊥”是“//m β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】通过面面平行的性质判断充分性,通过列举例子判断必要性.【详解】l β⊥,且l α⊥,所以//αβ,又m α⊂,所以//m β,充分性满足,如图:满足//m β,,m l αα⊂⊥,但l β⊥不成立,故必要性不满足,所以“l β⊥”是“//m β”的充分而不必要条件.故选:A .7.已知()()3,0lg 1,0x x f x x x ⎧≤⎪=⎨+>⎪⎩,函数()f x 的零点个数为m ,过点(0,2)与曲线()y f x =相切的直线的条数为n ,则,m n 的值分别为()A.1,1B.1,2C.2,1D.2,2【答案】B 【解析】【分析】借助分段函数性质计算可得m ,借助导数的几何意义及零点的存在性定理可得n .【详解】令()0f x =,即0x ≤时,30x =,解得0x =,0x >时,()lg 10x +=,无解,故1m =,设过点(0,2)与曲线()y f x =相切的直线的切点为()00,x y ,当0x <时,()23f x x '=,则有()320003y x x x x -=-,有()3200023x x x -=-,整理可得301x =-,即01x =-,即当00x <时,有一条切线,当0x >时,()lg e1f x x '=+,则有()()000lg 1e lg 1y x x x x -=-++,有()()000l 2g elg 11x x x -+=-+,整理可得()()()000221lg 10lg e x x x ++-++=,令()()()()()2l 0g 2l 1e 1g g x x x x x =++-++>,则()()2lg 1g x x '=-+,令()0g x '=,可得99x =,故当()0,99x ∈时,()0g x '>,即()g x 在()0,99上单调递增,当()99,x ∈+∞时,()0g x '<,即()g x 在()99,∞+上单调递减,由()()992lg e 99220099lg e 0g =+⨯+-=>,()02020g =-=>,故()g x 在()0,99x ∈上没有零点,又()()9992lg e 999210003999lg e 10000g =+⨯+-⨯=-<,故()g x 在()99,999上必有唯一零点,即当00x >时,亦可有一条切线符合要求,故2n =.故选:B.8.在平面直角坐标系xOy 中,角α以Ox 为始边,终边在第三象限.则()A.sin cos tan ααα-≤B.sin cos tan ααα-≥C.sin cos tan ααα⋅<D.sin cos tan ααα⋅>【答案】C 【解析】【分析】对A 、B :举出反例即可得;对C 、D :借助三角函数的商数关系及其值域计算即可得.【详解】由题意可得sin 0α<、cos 0α<,tan 0α>,对A :当sin 0α-→时,cos 1α→-,则sin cos 1αα-→,tan 0α→,此时sin cos tan ααα->,故A 错误;对B :当5π4α=时,1sin cos sinc 5π5π5π0tan 44os 4αα-=-=<=,故B 错误;对C 、D :22sin sin cos cos cos tan cos ααααααα⋅=⋅=⋅,由1cos 0α-<<,故()2cos 0,1α∈,则2cos tan tan ααα⋅<,即sin cos tan ααα⋅<,故C 正确,D 错误.故选:C.9.函数()f x 是定义在(4,4)-上的偶函数,其图象如图所示,(3)0f =.设()f x '是()f x 的导函数,则关于x 的不等式(1)()0f x f x '+⋅≥的解集是()A.[0,2]B.[3,0][3,4)-C.(5,0][2,4)-D.(4,0][2,3)- 【答案】D 【解析】【分析】借助函数图象与导数的关系计算即可得.【详解】由(3)0f =,且()f x 为偶函数,故(3)0f -=,由导数性质结合图象可得当()4,0x ∈-时,()0f x '<,当()0,4x ∈时,()0f x '>,当0x =时,即()00f '=,则由(1)()0f x f x '+⋅≥,有41444x x -<+<⎧⎨-<<⎩,解得43x -<<,亦可得()()100f x f x ⎧+>>'⎪⎨⎪⎩,或()()100f x f x ⎧+<<'⎪⎨⎪⎩,或()10f x +=,或()0f x '=,由()()100f x f x ⎧+>>'⎪⎨⎪⎩可得41304x x -<+<-⎧⎨<<⎩或31404x x <+<⎧⎨<<⎩,即23x <<,由()()100f x f x ⎧+<<'⎪⎨⎪⎩可得31340x x -<+<⎧⎨-<<⎩,即40x -<<,由()10f x +=,可得13x +=±,即2x =或4x =-(舍去,不在定义域内),由()0f x '=,可得0x =,综上所述,关于x 的不等式(1)()0f x f x '+⋅≥的解集为(4,0][2,3)- .故选:D.10.某生物兴趣小组在显微镜下拍摄到一种黏菌的繁殖轨迹,如图1.通过观察发现,该黏菌繁殖符合如下规律:①黏菌沿直线繁殖一段距离后,就会以该直线为对称轴分叉(分叉的角度约为60︒),再沿直线繁殖,…;②每次分叉后沿直线繁殖的距离约为前一段沿直线繁殖的距离的一半.于是,该组同学将整个繁殖过程抽象为如图2所示的一个数学模型:黏菌从圆形培养皿的中心O 开始,沿直线繁殖到11A ,然后分叉向21A 与22A 方向继续繁殖,其中21112260A A A ∠=︒,且1121A A 与1122A A 关于11OA 所在直线对称,112111221112A A A A OA ==….若114cm OA =,为保证黏菌在繁殖过程中不会碰到培养皿壁,则培养皿的半径r (*N r ∈,单位:cm )至少为()A.6B.7C.8D.9【答案】C 【解析】【分析】根据黏菌的繁殖规律可得每次繁殖在11OA 方向上前进的距离,结合无穷等比递缩数列的和的计算公式,即可判断答案.【详解】由题意可知,114cm OA =,只要计算出黏菌沿直线一直繁殖下去,在11OA 方向上的距离的范围,即可确定培养皿的半径的范围,依题意可知黏菌的繁殖规律,由此可得每次繁殖在11OA 方向上前进的距离依次为:1114,2,222482⨯⨯⨯ ,则31353842155722244+⨯++⨯=+>+=,黏菌无限繁殖下去,每次繁殖在11OA 方向上前进的距离和即为两个无穷等比递缩数列的和,即1311432164316841+281142282331144++⎛⎫⎛⎫++++++≈+⨯= ⎪ ⎪⎝⎭⎝⎭--,综合可得培养皿的半径r (*N r ∈,单位:cm )至少为8cm ,故选:C【点睛】关键点点睛:本题考查了数列的应用问题,背景比较新颖,解答的关键是理解题意,能明确黏菌的繁殖规律,从而求出每次繁殖在11OA 方向上前进的距离的和,结合等比数列求和即可.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.已知ln 2ab=,则22ln ln a b -=_______.【答案】4【解析】【分析】直接利于对数的运算性质求解.【详解】因为ln2ab=,所以22222ln ln ln ln 2ln 4a a a a b b b b ⎛⎫-==== ⎪⎝⎭.故答案为:4.12.已知22:(1)3C x y -+= ,线段AB 是过点(2,1)的弦,则AB 的最小值为_______.【答案】2【解析】【分析】借助直径与弦AB 垂直时,AB 有最小,计算即可得.【详解】由22(21)123-+=<,故点(2,1)在圆的内部,且该圆圆心为()1,0设圆心到直线AB 的距离为d ,由垂径定理可得2222AB r d ⎛⎫=- ⎪⎝⎭,即AB =,故当d 取最大值时,AB 有最小值,又max d ==故2AB =≥=.故答案为:2.13.若443243210(2)x a x a x a x a x a -=++++,则0a =_______;13024a a a a a +=++_______.【答案】①.16②.4041-【解析】【分析】借助赋值法,分别令0x =、1x =、=1x -计算即可得.【详解】令0x =,可得40(02)a -=,即40216a ==,令1x =,可得443210(12)a a a a a -=++++,即()44321011a a a a a ++++=-=,令=1x -,可得443210(12)a a a a a --=-+-+,即()443210381a a a a a -+-+=-=,则()()()4321043210420218182a a a a a a a a a a a a a +++++-+-+=++=+=,即42082412a a a ++==,则()42103114140a a a a a =-++==-+-,故130244041a a a a a +=-++.故答案为:16;4041-.14.已知函数π()sin sin 24f x x x ⎛⎫=+ ⎪⎝⎭,则5π4f ⎛⎫= ⎪⎝⎭_________;函数()f x 的图象的一个对称中心的坐标为_______.【答案】①.1-②.π(,0)4-(答案不唯一)【解析】【分析】根据函数表达式,代入即可求出5π4f ⎛⎫ ⎪⎝⎭的函数值,根据条件,先求出使()0f x =的一个取值π4x =-,再证明π(,0)4-是()f x 的一个对称中心即可.【详解】因为π()sin sin 24f x x x ⎛⎫=+⎪⎝⎭,所以55ππππsin()sin(214444f ⎛⎫=+⨯=- ⎪⎝⎭,因为()f x 定义域为R ,当π4x =-时,ππππ()sin sin()04442f ⎛⎫-=-+-= ⎪⎝⎭,下证π(,0)4-是()f x 的一个对称中心,在π()sin sin 24f x x x ⎛⎫=+ ⎪⎝⎭上任取点()00,P x y ,其关于π(,0)4-对称的点为00π(,)2P x y '---,又00000000ππππππ()sin sin 2()sin()sin(π2)sin()sin(2)224244f x x x x x x x y ⎛⎫--=--+--=----=-+=- ⎪⎝⎭,所以函数()f x 的图象的一个对称中心的坐标为π(,0)4-,故答案为:1-;π(,0)4-(答案不唯一)15.已知函数()f x =①函数()f x 是奇函数;②R k ∀∈,且0k ≠,关于x 的方程0()f x kx -=恰有两个不相等的实数根;③已知P 是曲线()y f x =上任意一点,1,02A ⎛⎫-⎪⎝⎭,则12AP ≥;④设()11,M x y 为曲线()y f x =上一点,()22,N x y 为曲线()y f x =-上一点.若121x x +=,则1MN ≥.其中所有正确结论的序号是_________.【答案】②③④【解析】【分析】对①:计算定义域即可得;对②:对0k >与0k <分类讨论,结合二次函数求根公式计算即可得;对③:借助两点间的距离公式与导数求取最值计算即可得;对④:结合函数性质与③中所得结论即可得.【详解】对①:令30x x -≥,即有()()110x x x +-≥,即[][]1,01,x ∞∈-⋃+,故函数()f x 不是奇函数,故①错误;对②:0()f x kx kx -=-=kx =,当0x =00-=,故0是该方程的一个根;当0x ≠,0k >kx =,故0x >,结合定义域可得[]1,x ∞∈+,有322x x k x -=,即()2210x x k x --=,令2210x k x --=,440k ∆=+>,有242k x +=或242k x -=(负值舍去),则20122k x ++=>=,故2210x k x --=必有一个大于1的正根,即0()f x kx -=必有一个大于1的正根;当0x ≠,0k <kx =,故0x <,结合定义域有[)1,0∈-x ,有322x x k x -=,即()2210x x k x --=,令2210x k x --=,440k ∆=+>,有242k x =或242k x +=(正值舍去),令244k t +=>,即24k t =-,则22211711744242412222k t x ⎫⎛⎫---⎪ ⎪--⎝⎭⎝⎭===>=-,即212k x =>-,故2210x k x --=在定义域内亦必有一根,综上所述,R k ∀∈,且0k ≠,关于x 的方程0()f x kx -=恰有两个不相等的实数根,故②正确;对③:令(),P x y,则有y =222321124AP x x x ⎛⎫=++=++⎪⎝⎭,令()3214g x x x =++,[][]1,01,x ∞∈-⋃+,()()23232g x x x x x =='++,当()21,1,3x ∞⎛⎫∈--⋃+ ⎪⎝⎭时,()0g x '>,当2,03x ⎛⎫∈- ⎪⎝⎭时,()0g x '<,故()g x 在21,3⎛⎫--⎪⎝⎭、()1,∞+上单调递增,在2,03⎛⎫- ⎪⎝⎭上单调递减,又()1111144g -=-++=,()110044g =+=,故()14g x ≥恒成立,即214AP ≥,故12AP ≥,故③正确;对④:当12x x =时,由[][]1,01,x ∞∈-⋃+,121x x +=,故1212x x ==-,此时,124y y =-==,则12MN =≥,当12x x ≠时,由()y f x =与()y f x =-关于x 轴对称,不妨设12x x <,则有1210x x -≤<≤或121012x x -≤≤<≤≤,当121012x x -≤≤<≤≤时,由2121x x x -≥≥,有121MN x x =≥-≥,故成立;当1210x x -≤<≤时,即有211x x =-,由③知,点M 与点N 在圆2211:24A x y ⎛⎫++= ⎪⎝⎭上或圆外,设点()1,M x m '与点()2,N x n '在圆上且位于x 轴两侧,则1M N ''=,故1MN M N ''≥=;综上所述,1MN ≥恒成立,故④正确.故答案为:②③④.【点睛】关键点点睛:结论④中的关键点在于借助结论③,结合函数的对称性,从而得到当1x 、2x 都小于零时,MN 的情况.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在ABC 中,sin cos 2b C B c =.(1)求B ∠;(2)若4a b c =+=,求ABC 的面积.【答案】(1)π6(2【解析】【分析】(1)根据条件,利用正弦定理边转角得到sin 2B B +=,再利用辅助角公式及特殊角的三角函数值,即可求出结果;(2)根据(1)中π6B =及条件,由余弦定理得到22126c b c +-=,再结合4b c +=,即可求出2c =,再利用三角形面积公式,即可求出结果.【小问1详解】因为sin cos 2b C B c =,由正弦定理可得sin sin cos 2sin B C C B C =,又(0,π)C ∈,所以sin 0C ≠,得到sin 2B B +=,即π2sin(23B +=,所以πsin()13B +=,又因为(0,π)B ∈,所以2ππ3B +=,得到π6B =.【小问2详解】由(1)知π6B =,所以2223cos 22a cb B ac +-==,又a =,得到22126c b c +-=①,又4b c +=,得到4b c =-代入①式,得到2c =,所以ABC 的面积为11πsin 2sin 226ABC S ac B ==⨯⨯= .17.如图,在四棱锥P ABCD -中,,AD BC M //为BP 的中点,//AM 平面CDP .(1)求证:2BC AD =;(2)若,1PA AB AB AP AD CD ⊥====,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使四棱锥P ABCD -存在且唯一确定.(i )求证:PA ⊥平面ABCD ;(ⅱ)设平面CDP ⋂平面BAP l =,求二面角C l B --的余弦值.条件①:BP DP =;条件②:AB PC ⊥;条件③:CBM CPM ∠=∠.注:如果选择的条件不符合要求,第(1)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)证明见解析(2)(i )证明见解析;(ⅱ)77【解析】【分析】(1)借助线面平行的性质定理与中位线的性质即可得;(2)(i )借助线面垂直的判定定理即可得;(ⅱ)结合所给条件建立适当的空间直角坐标系后借助空间向量计算即可得.【小问1详解】取PC 的中点N ,连接,MN ND ,因为M 为BP 的中点,所以1,//2MN BC MN BC =,因为//AD BC ,所以//AD MN ,所以,,,M N D A 四点共面,因为//AM 平面CDP ,平面MNDA 平面CDP DN =,AM ⊂平面MNDA ,所以//AM DN ,所以四边形AMND 为平行四边形,所以MN AD =,所以2BC AD =;【小问2详解】(i )取BC 的中点E ,连接,AE AC ,由(1)知2BC AD =,所以EC AD =,因为//EC AD ,所以四边形AECD 是平行四边形,所以1,EC AD AE CD ===,因为1AB CD ==,所以112AE BC ==,所以90BAC ∠= ,即AB AC ⊥,选条件①:BP DP =,因为1,AB AD PA PA ===,所以PAB 与PAD 全等,所以PAB PAD ∠=∠,因为AB PA ⊥,所以90PAB ∠=o ,所以90PAD ∠= ,即AP AD ⊥,又因为AB AC A ⋂=,AB 、AC ⊂平面ABCD ,所以AP ⊥平面ABCD ;(ⅱ)由(i )知AP ⊥平面ABCD ,而AC ⊂平面ABCD ,所以AP AC ⊥,因为,1PA AB AP ⊥=,建立如图所示空间直角坐标系A xyz -,则()()10,0,1,0,,,22P C D ⎛⎫- ⎪ ⎪⎝⎭,所以()1313,,0,,,12222CD PD AC ⎛⎫⎛⎫=--=--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,设平面PDC 的法向量为(),,n x y z = ,则0n CD n PD ⎧⋅=⎪⎨⋅=⎪⎩,即102213022x y x y z ⎧--=⎪⎪⎨⎪-+-=⎪⎩,令x =,则1,y z =-=,于是1,n =-,因为AC 为平面PAB 的法向量,且7cos ,7AC n AC n AC n ⋅===-⋅,所以二面角C l B --的余弦值为77.选条件③:CBM CPM ∠=∠,(i)因为CBM CPM ∠=∠,所以CB CP =,因为1,AB AP CA CA ===,所以ABC 与APC △全等,所以90∠=∠= PAC BAC ,即PA AC ⊥,因为PA AB ⊥,又因为AB AC A ⋂=,AB 、AC ⊂平面ABCD ,所以PA ⊥平面ABCD ;(ii)同选条件①.不可选条件②,理由如下:由(i )可得AB AC ⊥,又PA AB ⊥,PA AC A = ,PA 、AC ⊂平面PAC ,所以AB ⊥平面PAC ,又因为PC ⊂平面PAC ,所以AB PC ⊥,即AB PC ⊥是由已知条件可推出的条件,故不可选条件②.18.某学校为提升学生的科学素养,要求所有学生在学年中完成规定的学习任务,并获得相应过程性积分.现从该校随机抽取100名学生,获得其科普测试成绩(百分制,且均为整数)及相应过程性积分数据,整理如下表:科普测试成绩x科普过程性积分人数90100x ≤≤4108090x ≤<3a 7080x ≤<2b 6070x ≤<123060x ≤<02(1)当35a =时,(i )从该校随机抽取一名学生,估计这名学生的科普过程性积分不少于3分的概率;(ⅱ)从该校科普测试成绩不低于80分的学生中随机抽取2名,记X 为这2名学生的科普过程性积分之和,估计X 的数学期望()E X ;(2)从该校科普过程性积分不高于1分的学生中随机抽取一名,其科普测试成绩记为1Y ,上述100名学生科普测试成绩的平均值记为2Y .若根据表中信息能推断12Y Y ≤恒成立,直接写出a 的最小值.【答案】(1)(i )0.45;(ⅱ)589;(2)7.【解析】【分析】(1)(i )求出科普过程性积分不少于3分的学生数,再求出频率,并用频率估计概率即得;(ⅱ)求出X 的所有可能值,由(i )的结论结合独立重复试验的概率问题求出各个取值的概率,再求出期望即得.(2)求出1Y 的最大值,再求出100名学生科普测试成绩的平均值2Y 的最小值,由题设信息列出不等式求解即得.【小问1详解】当35a =时,(i )由表知,科普过程性积分不少于3分的学生人数为103545+=,则从该校随机抽取一名学生,这名学生的科普过程性积分不少于3分的频率为450.45100=,所以从该校随机抽取一名学生,这名学生的科普过程性积分不少于3分的概率估计为0.45.(ⅱ)依题意,从样本中成绩不低于80分的学生中随机抽取一名,这名学生的科普过程性积分为3分的频率为35735109=+,所以从该校学生科普测试成绩不低于80分的学生中随机抽取一名,这名学生的科普过程性积分为3分的概率估计为79,同理,从该校学生科普测试成绩不低于80分的学生中随机抽取一名,这名学生的科普过程性积分为4分的概率估计为29,X 的所有可能值为6,7,8,7749(6)9981P X ==⨯=,7228(7)29981P X ==⨯⨯=,224(8)9981P X ==⨯=,所以X 的数学期望4928458()6788181819E X =⨯+⨯+⨯=.【小问2详解】由表知,10232100a b ++++=,则65b a =-,从该校科普过程性积分不高于1分的学生中随机抽取一名,其科普测试成绩记为1Y ,则1Y 的最大值为69,100名学生科普测试成绩的平均值记为2Y ,要12Y Y ≤恒成立,当且仅当2min ()69Y ≥,显然2Y 的最小值为各分数段取最小值求得的平均分,因此2min 1683()108070(65)602302]10010a Y a a +=⨯++-+⨯+⨯=,则6836910a+≥,解得7a ≥,所以根据表中信息能推断12Y Y ≤恒成立的a 的最小值是7.19.已知椭圆22:G x my m +=的离心率为12,,2A A 分别是G 的左、右顶点,F 是G 的右焦点.(1)求m 的值及点F 的坐标;(2)设P 是椭圆G 上异于顶点的动点,点Q 在直线2x =上,且PF FQ ⊥,直线PQ 与x 轴交于点M .比较2MP 与12MA MA ⋅的大小.【答案】(1)2m =,()1,0F (2)122MA A MP M <⋅【解析】【分析】(1)借助离心率计算即可得;(2)设()00,P x y ,表示出M 与Q 点坐标后,可得2MP 、12MA MA ⋅,借助作差法计算即可得.【小问1详解】由22:G x my m +=,即22:1x G y m+=,由题意可得1m >,故2=,解得2m =,故22:12x G y +=1=,故()1,0F ;【小问2详解】设()00,P x y ,00,0x y ≠,0x <<,有220012x y +=,由PF FQ ⊥,则有()()001210Q x y y -⋅-+⋅=,即01Q x y y -=,由0PQ k ≠,故有0002Q My y y x x x -=--,即有()()()2000000000200000022211M Q y x y x y x x x x x x y y x y y y ---=-=-=------()200320000022000012222422x x x x x x x x x x x ⎛⎫-- ⎪--+⎝⎭=-=---()()32320000002200000002222242222x x x x x x x x x x x x x ----+=-==---,由22:12x G y +=可得()1A、)2A ,则22222222000000022200002444441322x x MP x y x y x x x x x ⎛⎫=-+=-++=-++-=-+ ⎪⎝⎭,1220002242MA MA x x x ⎛⋅==- ⎝,则222001222004432122x x MP MA MA x x -⋅=-+-+=-,由0x <<,故20102x -<,即212MP MA MA <⋅.20.已知函数12()ea x f x x -=.(1)求()f x 的单调区间;(2)若函数2()()e ,(0,)g x f x a x -=+∈+∞存在最大值,求a 的取值范围.【答案】(1)()f x 的增区间为(),2∞-,减区间为(2,)+∞(2)1a ≥-【解析】【分析】(1)对函数求导,得到121(1))e 2(a x f x x -=-',再求出()0f x '>和()0f x '<对应的x 取值,即可求出结果;(2)令2()()e h x f x a -=+,对()h x 求导,利用导数与函数单调性间的关系,求出()h x 的单调区间,进而得出()h x 在(0,)+∞上取值范围,从而将问题转化成1222ee e a a a ---+≥成立,构造函数12()e e x m x x --=+,再利用()m x 的单调性,即可求出结果.【小问1详解】易知定义域为R ,因为12()ea x f x x -=,所以11122211(1)()e2e e 2a x a x a x x x x f ----=-'=,由()0f x '=,得到2x =,当2x <时,()0f x '>,当2x >时,()0f x '<,所以,函数()f x 的单调递增区间为(),2∞-,单调递减区间为()2,∞+.【小问2详解】令2()()e h x f x a -=+,则()()h x f x ''=,由(1)知,函数()f x 的单调递增区间为(),2∞-,单调递减区间为()2,∞+,所以()h x 在2x =时取得最大值12(2)2e e a h a --=+,所以当2x >时,1222()e e e (0)a x h x x a a h ---=+>=,当02x <<时,()(0)h x h >,即当,()0x ∈+∞时,(]()(0),(2)h x h h ∈,所以函数122()ee a x g x x a --=+在(0,)+∞存在最大值的充要条件是1222e e e a a a ---+≥,即122122e e e e +e 02a a a a a -----++=≥,令12()e e x m x x --=+,则12()e e 0x m x --'=+>恒成立,所以12()e e x m x x --=+是增函数,又因为22(1)e e 0m ---=-=,所以12()e e 0a m a a --=+≥的充要条件是1a ≥-,所以a 的取值范围为[)1,-+∞.【点睛】关键点点晴:本题的关键在于第(2)问,构造函数122()e e a x h x x a --=+,利用函数单调性得到,()0x ∈+∞时,(]()(0),(2)h x h h ∈,从而将问题转化成1222e e e a a a ---+≥,构造函数12()e e x m x x --=+,再利用()m x 的单调性来解决问题.21.已知:()2*12:,,,2,m Q a a a m m ≥∈N为有穷正整数数列,其最大项的值为m ,且当0,1,,1k m =- 时,均有(1)km i km j a a i j m ++≠≤<≤.设00b =,对于{0,1,,1}t m ∈- ,定义{}1min ,t t n b n n b a t +=>>,其中,min M 表示数集M 中最小的数.(1)若:3,1,2,2,1,3,1,2,3Q ,写出13,b b 的值;(2)若存在Q 满足:12311b b b ++=,求m 的最小值;(3)当2024m =时,证明:对所有2023,20240Q b ≤.【答案】(1)11b =,36b =(2)4(3)证明见解析【解析】【分析】(1)结合定义逐个计算出1b 、2b 、3b 即可得;(2)当3m =时,可得12310b b b ++≤,故4m ≥,找到4m =时符合要求的数列Q 即可得;(3)结合题意,分两段证明,先证10122024b ≤,定义1120251012,2k k C C C ++⎡⎤==⎢⎥⎣⎦,再证得2024k C b k ≤,即可得证,【小问1详解】由:3,1,2,2,1,3,1,2,3Q ,00b =,则{}1min 0,0n b n n a =>>,故11b =,则{}2min 1,1n b n n a =>>,故23b =,则{}3min 3,2n b n n a =>>,故36b =;【小问2详解】由题意可知,3m ≥,当3m =时,由1n a ≥,{}1min 0,0n b n n a =>>,故11b =,则{}2min 1,1n b n n a =>>,由题意可得123a a a ≠≠,故2a 、3a 总有一个大于1,即22b =或23b =,{}32min ,2n b n n b a =>>,由456a a a ≠≠,故4a 、5a 、6a 总有一个大于2,故36b ≤,故当3m =时,12310b b b ++≤,不符,故4m ≥,当4m =时,取数列:4,1,3,2,1,2,3,4,1,2,3,4,1,2,3,4Q ,有11b =,23b =,37b =,即12311b b b ++=,符合要求,故m 的最小值为4;【小问3详解】因为{}11min ,,0,1,,2023t n b nn b a t t +=>>= ∣,所以11,0,1,,2023i b b t +>= ,(i)若12024t b +≤,则当1t n b +<时,至少以下情况之一成立:①n a t ≤,这样的n 至少有t 个,②存在,i i t b n ≤=,这样的n 至多有t 个,所以小于1t b +的n 至多有2t 个,所以1121t b t t t +≤++=+,令212024t +≤,解得11012t +≤,所以10122024b ≤,(ii)对*k ∈N ,若12024t t b k b +≤<,且()1202420241t l k b k ++<≤+,因为{}1min ,t l t l n b nn b a t l +++=>>+∣,所以当()12024,t l n k b ++∈时,至少以下情况之一成立:①n a t l ≤+,这样的n 至多有t l +个;②存在,i t i i l <≤+且i b n =,这样的n 至多有l 个,所以120241202421t l b k t l l k t l ++≤++++=+++,令212024t l ++≤,解得20232t l -⎡⎤≤⎢⎥⎣⎦,即202512t t l +⎡⎤++≤⎢⎥⎣⎦,其中[]x 表示不大于x 的最大整数,所以当12024t t b k b +≤<时,()2025220241t b k +⎡⎤⎢⎥⎣⎦≤+;综上所述,定义1120251012,2k k C C C ++⎡⎤==⎢⎥⎣⎦,则2024k C b k ≤,依次可得:2345671518,1771,1898,1961,1993,2009C C C C C C ======,89102017,2021,2023C C C ===,所以202320241020240b ≤⨯=.【点睛】关键点点睛:涉及数列新定义问题,关键是正确理解所给出的定义,由给定数列结合新定义探求出数列的相关性质,进行合理的计算、分析、推理等方法综合解决.。
海淀区高三年级第二学期期中练习文科数学试题及答案
海淀区高三年级第二学期期中练习数 学(文科)一、选择题:本大题共8 小题,每题5 分,共 40 分. 在每题给出的四个选项中,只有一项为哪一项切合题目要求的 .( 1)已知会合 A = { x|x 2 = 1} , B = { x|x( x - 2) <0},那么 AI B =(A )?(B ) {- 1} (C ) {1}(D ) { - 1,1}( 2)在等比数列 { a n } 中, a 2 = 6 , a 3 = - 18 ,则 a 1 + a 2 + a 3 + a 4 =(A ) 26(B ) 40 (C ) 54 (D ) 80( 3)已知向量 a=(x 1, 2), b=(1, x) . 若 a 与 b 垂直,则 | b |=(A )1( B )2(C ) 2 ( D )4( 4)过双曲线x 2y 2 1的右焦点,且平行于经过一、三象限的渐近线的直线方程是916( A ) 3x + 4 y - 15 = 0( B ) 3x - 4 y - 15 = 0( C ) 4x - 3y + 20 = 0( D ) 4x - 3y - 20 = 0( 5)履行如下图的程序框图,输出的k 值是开始(A )5 (B )6n =5,k =0(C )7(D )8x y 0n 为偶数( 6)若知足条件 xy 2是否0 的整点 ( x, y) 恰有 9 个,此中整点是指横、ya nn 3n 1na 的值为2纵坐标都是整数的点,则整数(A ) 3( B )2(C ) 1(D ) 0k =k +1否x 2n =1( 7 ) 已 知 函 数 f ( x)ax, x1,若 x 1 , x 2 R, x 1 x 2 , 使 得 是ax 1, x 1,输出 kf ( x 1 ) f ( x 2 ) 建立,则实数 a 的取值范围是结束( A ) a < 2( B ) a > 2( C ) - 2 < a < 2(D ) a > 2 或 a < - 2( 8)在棱长为 1 的正方体 ABCD -A' B'C ' D '中,若点 P 是棱上一点, 则知足 PA + PC' = 2的点 P 的个数为(A )4(B )6(C )8(D )12ADBCA'D'B'C'二、填空题:本大题共 6小题,每题 5分,共 30分,把答案填在题中横线上.( 9)复数2i在复平面内所对应的点的坐标为.1- i( 10)若 tan= 2 ,则 sin2= .( 11)以抛物线 y 2 4 x 上的点 ( x 0 , 4) 为圆心,并过此抛物线焦点的圆的方程是.22( 12 已知三条侧棱两两垂直的正三棱锥的俯视图如下图,那么此三棱锥的体积是,左视图的面积是 .2俯视图( 13)设某商品的需求函数为Q = 100-5P ,此中 Q, P 分别表示需求量和价钱,假如商品需求弹性EQEP大于 1(此中EQ= -Q 'P , Q ' 是 Q 的导数),则商品价钱P 的取值范围是.EPQì ? Q,1,x?f ( f x ) =______( 14)已知函数?则;( )f ( x) = í?0, x ? e R Q.?下边三个命题中,全部真命题的序号是 .f( )① 函数 x 是偶函数;② 任取一个不为零的有理数T , f ( x + T ) = f ( x) 对 x R 恒建立;③ 存在三个点 A( x 1, f ( x 1 )), B( x 2 , f ( x 2 )), C ( x 3 , f ( x 3 )), 使得 ABC 为等边三角形 .三、解答题:本大题共 6 小题,共 80 分 . 解答应写出文字说明,证明过程或演算步骤 .( 15)(本小题满分 13 分)已知函数 f ( x) = sin x + sin( x-) .3(Ⅰ)求 f ( x) 的单一递加区间;(Ⅱ)在ABC 中,角 A , B , C 的对边分别为 a,b, c . 已知 f ( A) =3 3b ,试判断 ABC 的, a =2形状 .( 16)(本小题满分 13 分)某学校随机抽取部分重生检查其上学所需时间(单位:分钟),并将所得数据绘制成频次散布直方图(如图),此中,上学所需时间的范围是 [0,100] ,样本数据分组为 [0,20) ,[20,40) ,[40,60) ,[60,80) ,[80,100] .(Ⅰ)求直方图中x的值;(Ⅱ)假如上学所需时间许多于1 小时的学生可申请在学校住宿,请预计学校 600 名重生中有多少名学生能够申请住宿.频次 /组距0.025x0.00650.003O 20 40 60 80 100 时间(17) (本小题满分 14 分)已知菱形ABCD AB =4BAD 60o(如图 1所示),将菱形ABCDBD翻折,使点 C中,, 沿对角线翻折到点 C 1 的地点(如图 2 所示),点 E ,F , M 分别是 AB , DC , BC 的中点.11(Ⅰ)证明: BD EMF AC 1BD EF AB f D (x)1 x 21C 1aln x (aR 且 a0)2 C2F(Ⅰ)求 f (x) 的单一区间; MD(Ⅱ)能否存在实数a ,使得对随意的 x 1,A ,都有 f (x)0 若存在,求Ea 的取值范围;若不存BA图 1图 2在,请说明原因 .( 19)(本小题满分 13 分)已知椭圆 C :x 2y 2 A(2,0) ,22 1 (a b 0) 的右极点yabPD离心率为3, O 为坐标原点 .2OA xE(Ⅰ)求椭圆 C 的方程;DE (Ⅱ)已知 P(异于点 A )为椭圆 C 上一个动点,过O 作线段 AP 的垂线 l 交椭圆 C 于点E, D,求AP 的取值范围 .( 20)(本小题满分14 分)对于集合 M ,定义函数f M( x)1,x M ,关于两个会合 M,N,定义会合1,x M .M N { x f M ( x) f N ( x)1} .已知A={2,4,6,8,10},B={1,2,4,8,16}.(Ⅰ)写出 f A (1)和 f B (1)的值,并用列举法写出会合 A B ;(Ⅱ)用 Card( M)表示有限会合M所含元素的个数.(ⅰ)求证:当 Card ( X A) Card (X B) 获得最小值时,2?X;(ⅱ)求 Card ( X A)Card ( X B) 的最小值.海淀区高三年级第二学期期中练习数学(文科)参照答案及评分标准2012. 04一 . 选择题:本大题共8 小题,每题 5 分,共 40 分.题(1)(2)(3)( 4)( 5)( 6)( 7)( 8)号答C B B D A C A B.6530 .9 (- 1,1)10411 ( x - 4) 2 + ( y - 4) 2 = 255122213 (10,20)14 123. 680..1513f ( x) =sin x + sin( x -)3= sin x +1sin x -3cos x222=3sin x -3cos x22骣1÷= 3 ? 3?sin x -cos x ÷?÷?2÷桫2= 3 sin( x -) . 462k -2< x- < 2k +, k ? Z622k -< x < 2k + 2,k ? Z .33f ( x)(2 k- ,2 k + 2) k ? Z .3 36f ( A) =323 sin( A - ) = 3 .sin( A-) = 1.6 26 270< A<-< A-< 5.666A = .93aba =3b=sin A sin Bsin B =1 .112a >b A = B =.C = .362ABC.13(16)1320 x 0.025 20 0.0065 20 0.003 2 20 1.x = 0.0125.610.003创2 20=0.12.9 600 0.1272 .60072.13(17)14F , MC1D,C1BFM //BD2 FM EMF BD EMF ,BD //EMF4ABCDO AC,BD,AC BD5C1 - ABD C1C1O BD , AO BD .FM DC1O I AO O ,AOB EBD AOC17AC1AOC1BD AC19DE ,C1 E ABCD DA AB, BAD 60oABD.DA DB10E AB DE ABC 1 EF AB EFI DE EAB DEFAB DEC 1FM 12DA E BC1EDEC1AB C1EAE = EB,AB = 4 BC1= ABAC1BC1 414(18)13f ( x)(0,) .f '(x)a x2a2 xx.xa0(0,)f '( x)0 .f ( x)(0,) .3a0f '(x) 0 x a x a.f (x) , f '(x) xx(0, a )a( a , )f '( x)+0f ( x)f ( x)(0, a )( a ,) .6a 0 f ( x)(0,)a0f ( x)(0, a )( a ,) .a0 , f ( x) [1,).f (x)[1,) f (1) 0x [1, )f (x)0.7a 0a 10 a 1 f ( x) [1,).f ( x)[1,)f (1) 0x [1, )f (x) 0.10a1a1f ( x) [1, a )f ( a ) f (1) .f (1)0f ( a) 0x[1, )f ( x)0.12a a(,0) U (0,1] .13 1913A(2,0)C a 2.c3c 3 .a2b2a2c2 4 3 1 .C x2y21.34AP0|AP|4DEC|DE| 2.|DE|1.5 |AP|2AP0APy k( x2) P( x0, y0)DE y16x .ky k( x2),x2x24[k ( x2)]2 4 0 .y214(1 4k 2 ) x216k2 x 16k 240 .2x016k 2.24k1x08k 2 - 284k2. 1|AP|( x 0 2) 2( y 0 0)2(1 k 2 )( x 0 2)2.|AP|41k2.4k 2121k|DE| 4.|DE |41k 24k21k2411|AP|41k 2k 2. 44k21t k 24, k2t 2 4 t 2.|DE |4(t24) 14t 215(t2). |AP|t tg(t )4t 215 (t2)g '(t)4t2150.t t 2 g (t).|DE|4t 21544151 |AP|t2.2|DE |[1,+?) .13 |AP|22014f A (1)=1 f B (1)= - 1 A B {1,6,10,16} .3 Card ( X A)Card ( X B)X=W.2?W Y W Card (Y A)Card (YU {2} B).Card (W A) 1 Card (W B) 1 2 ? W Card ( X A) Card ( X Card (W A) Card (W B) .B)2?X..74 ? W8 ? W.a ? X a ? A U B Z e X{ a}.Card (Z A)Card (Z B)Card ( X A) 1Card( XB)1Card ( X A)Card ( X B).W AUB.a ? A U B a ? A I B X a Card ( X A) Card ( X B).W{1,6,10,16}{2,4,8}Card ( X A)Card ( X B) 4.14。
海淀高三级第二学期数学文期中试题目
海淀高三级第二学期数学文期中试题目海淀区高三年级第二学期期中练习数 学 (文科) 2011.4选择题 (共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1、已知集合{}30<<∈=x x A R ,{}42≥∈=x x B R ,则=B AA. {}2 23x x x ≤-≤<或B. {}32<<x xC. {}32<≤x xD. R 2. 设0.5323, log 2, cos 3a b c π===,则A.c b a<< B. c a b<< C.a b c<<D. b c a<<3.函数1()x f x x+=图象的对称中心为A .(0,0)B.(0,1)C.(1,0)D.(1,1)4. 执行如图所示的程序框图,若输入x 的值为2,则输出的x 值为 A. 25 B .24 C. 23 D .225.从集合{1,1,2}A =-中随机选取一个数记为k ,从集合{2,1,2}B =-中随机选取一个数记为b ,则直线y kx b =+不经21x x =+是否3n ≤1n n =+x 输入开始1n =x 输出结束过第三象限的概率为A . 29B. 13C. 49D.596. 在同一个坐标系中画出函数,sin xy a y ax ==的部分图象,,则下列所给图象中可能正确的是7. 已知函数221, 1,()1, 1,x ax x f x ax x x ⎧++≥⎪=⎨++<⎪⎩ 则“单调递增”的A .充分而不必要条件 不充分条件C .充分必要条件 要条件 8.若直线l 被圆22:2C xy +=所截的弦长不小于2,则l 与下列曲线一定有公共点的是y x2πOA11yx2πO11Byx2πO11C yx 2πO11A .22(1)1x y -+= B ..2212x y += C.2y x =D .221x y -=非选择题(共110分)新 课 标 第 一网二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9. 计算21i=+__________________. 10. 为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为1s ,2s ,3,s 则它们的大小关系为 . (用“>”连接)11. 如图,在正方体1111ABCD A B C D -中,点P 是上底面1111A B C D 内一动点,则三棱锥PDCBA1A 1D 1B 1C 左视主视O元频率组距0.00020.00040.00080.0006乙100015002000250030003500O元频率组距0.00020.00040.00080.0006丙100015002000250030003500O元频率组距0.00020.00040.00080.0006甲100015002000250030003500P ABC-的主视图与左视图的面积的比值为_________.12. 已知函数()xf x xe =,则'()f x =________;函数()f x 图象在点(0,(0))f 处的切线方程为_______13. 已知向量(,2),(1,)a x b y ==,其中,0x y ≥.若4≤a b ,则y x -的取值范围为 .14.如图,线段AB =8,点C 在线段AB 上,且AC =2,P 为线段CB 上一动点,点A 绕点C 旋转后与点B绕点P 旋转后重合于点D .设CP =x , △CPD 的面积为()f x .则()f x 的定义域为________;()f x 的最大值为 ________.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题共13分)在ABC ∆中,内角A 、B 、C 所对的边分别为a b c 、、,已知1tan 2B =,1tan 3C =,且1c =. ACPBD(Ⅰ) 求tan()B C +; (Ⅱ) 求a 的值.16. (本小题共13分)数列{}na 的前n 项和为n S ,若12a=且12nn SS n-=+(2n ≥,*n ∈N ).( I )求nS ;( II ) 是否存在等比数列{}nb 满足112339, b a ba b a ===,?若存在,则求出数列{}nb 的通项公式;若不存在,则说明理由.17. (本小题共13分)如图:梯形ABCD 和正△PAB 所在平面互相垂直,其中//,AB DC12AD CD AB ==,且O 为AB 中点.( I ) 求证://BC 平面POD ; ( II ) 求证:AC ⊥PD .18. (本小题共14分)BA CDO P已知函数1()ln (0,)f x a x a a x=+≠∈ R(Ⅰ)若1a =,求函数()f x 的极值和单调区间;(II) 若在区间[1,e]上至少存在一点0x ,使得0()0f x <成立,求实数a 的取值范围.19. (本小题共14分)已知椭圆2222:1x y C a b+= (0)a b >>经过点3(1,),2M 其离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 相交于A 、B 两点,以线段,OA OB 为邻边作平行四边形OAPB ,其中顶点P 在椭圆C 上,O 为坐标原点. 求O 到直线距离的l 最小值.20. (本小题共13分)已知每项均是正整数的数列123100,,,,a a a a ,其中等于i 的项有ik 个(1,2,3)i =,设j jk k k b+++= 21(1,2,3)j =,12()100m g m b b b m =+++-(1,2,3).m = (Ⅰ)设数列1240,30,k k ==34510020,10, 0k k k k =====,求(1),(2),(3),(4)g g g g ;(II) 若123100g m g m+的大,,,,a a a a中最大的项为50,比较(),(1)小;(Ⅲ)若12100200g的最小值.+++=,求函数)(ma a a新课标第一网。
2019年海淀高三年级第二学期数学期中练习试题-附答案(文)
海淀区高三年级第二学期期中练习数 学 (文科) 2019.4选择题 (共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1、已知集合{}30<<∈=x x A R ,{}42≥∈=x x B R ,则=B AA. {}2 23x x x ≤-≤<或 B. {}32<<x x C. {}32<≤x x D. R2. 设0.5323, log 2, cos 3a b c π===,则A. c b a <<B. c a b <<C. a b c <<D. b c a << 3.函数1()x f x x+=图象的对称中心为 A .(0,0) B.(0,1)C. (1,0)D. (1,1)4. 执行如图所示的程序框图,若输入x 的值为2,则输出的x 值为A. 25 B .24 C. 23 D .22 5.从集合{1,1,2}A =-中随机选取一个数记为k ,从集合{2,1,2}B =-中随机选取一个数记为b ,则直线y kx b =+不经过第三象限的概率为A .29 B. 13 C. 49D. 596. 在同一个坐标系中画出函数,sin x y a y ax ==的部分图象,其中01a a >≠且,则下列所给图象中可能正确的是7.2a -≤≤ A B C .充分必要条件D .既不充分也不必要条件8.若直线l 被圆22:2C x y +=所截的弦长不小于2,则l 与下列曲线一定有公共点的是A .22(1)1x y -+= B ..2212x y += C. 2y x = D .221x y -=非选择题(共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9. 计算21i=+__________________. 10. 为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为1s ,2s ,3,s 则它们的大小关系为 . (用“>”连接)11. 如图,在正方体1111ABCD A B C D -中,点P 是上底面1111A B C D 内一动点,则三棱锥P ABC -的主视图与左视图的面积的比值为_________.12. 已知函数()x f x xe =,则'()f x =________;函数()f x 图象在点(0,(0))f 处的切线方程为_______13. 已知向量(,2),(1,)a x b y ==,其中,0x y ≥.若4≤a b ,则y x -的取值范围为 .14.如图,线段AB =8,点C 在线段AB 上,且AC =2,P 为线段CB 上一动点,点A 绕点C 旋转后与点B绕点P 旋转后重合于点D .设CP =x , △CPD 的面积为()f x .则()f x 的定义域为________;()f x 的最大值为 ________.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题共13分)PDCBA1A 1D 1B 1C 左视主视A CP BD乙丙甲在ABC ∆中,内角A 、B 、C 所对的边分别为a b c 、、,已知1tan 2B =,1tan 3C =,且1c =. (Ⅰ) 求tan()B C +; (Ⅱ) 求a 的值.16. (本小题共13分)数列{}n a 的前n 项和为n S ,若12a =且12n n S S n -=+(2n ≥,*n ∈N ).( I )求n S ;( II ) 是否存在等比数列{}n b 满足112339, b a b a b a ===,?若存在,则求出数列{}n b 的通项公式;若不存在,则说明理由.17. (本小题共13分)如图:梯形ABCD 和正△PAB 所在平面互相垂直,其中//,AB DC 12AD CD AB ==,且O 为AB 中点.( I ) 求证://BC 平面POD ; ( II ) 求证:AC ⊥PD .18. (本小题共14分)已知函数1()ln (0,)f x a x a a x=+≠∈ R (Ⅰ)若1a =,求函数()f x 的极值和单调区间;(II) 若在区间[1,e]上至少存在一点0x ,使得0()0f x <成立,求实数a 的取值范围.19. (本小题共14分)已知椭圆2222:1x y C a b+= (0)a b >>经过点3(1,),2M 其离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 相交于A 、B 两点,以线段,OA OB 为邻边作平行四边形OAPB ,其中顶点P 在椭圆C 上,O 为坐标原点. 求O 到直线距离的l 最小值.20. (本小题共13分)BACDOP已知每项均是正整数的数列123100,,,,a a a a ,其中等于i 的项有i k 个(1,2,3)i =,设j j k k k b +++= 21(1,2,3)j =,12()100m g m b b b m =+++-(1,2,3).m =(Ⅰ)设数列1240,30,k k ==34510020,10,...0k k k k =====,求(1),(2),(3),(4)g g g g ; (II) 若123100,,,,a a a a 中最大的项为50, 比较(),(1)g m g m +的大小; (Ⅲ)若12100200a a a +++=,求函数)(m g 的最小值.海淀区高三年级第二学期期中练习数 学(文)答案及评分参考 2019.4选择题 (共40分)一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分. 共30分.有两空的题目,第一空3分,第二空2分)9.1i - 10. s 1>s 2>s 3 11. 112. (1)x x e +, y x = 13. [4,2]- 14. (2,4),三、解答题(本大题共6小题,共80分) 15. (共13分) 解:(I )因为1tan 2B =,1tan 3C =,tan tan tan()1tan tan B CB C B C ++=- …………………3分 代入得到,1123tan()111123B C ++==-⨯. …………………6分 (II )因为180A B C =-- …………………7分 所以tan tan[180()]tan()1A B C B C=-+=-+=- …………………9分 又0180A <<,所以135A =. …………………10分 因为1tan 03C =>,且0180C <<,所以sin C = , …………………11分 由sin sin a c A C=,得a = …………………13分16. (共13分)解:(I )因为12n n S S n -=+,所以有12n n S S n --=对2n ≥,*N n ∈成立 ………2分 即2n a n =对2n ≥成立,又1121a S ==⋅, 所以2n a n =对*N n ∈成立 …………………3分 所以12n n a a +-=对*N n ∈成立 ,所以{}n a 是等差数列, …………………4分所以有212nn a a S n n n +=⋅=+ ,*N n ∈ …………………6分 (II )存在. …………………7分 由(I ),2n a n =,*N n ∈对成立所以有396,18a a ==,又12a =, ………………9分所以由 112339, b a b a b a ===,,则23123b b b b == …………………11分 所以存在以12b =为首项,公比为3的等比数列{}n b , 其通项公式为123n n b -=⋅ . ………………13分17. (共13分)证明: (I) 因为O 为AB 中点, 所以1,2BO AB =…………………1分 又//,AB CD 12CD AB =, 所以有,//,CD BO CD BO = …………………2分所以ODCB 为平行四边形,所以//,BC OD …………………3分又DO ⊂平面,POD BC ⊄平面,POD所以//BC 平面POD . …………………5分 (II)连接OC .因为,//,CD BO AO CD AO ==所以ADCO 为 平行四边形, …………………6分 又AD CD =,所以ADCO 为菱形,所以 AC DO ⊥, …………………7分 因为正三角形PAB ,O 为AB 中点,所以PO AB ⊥ , …………………8 分又因为平面ABCD ⊥平面PAB ,平面A B C D平面P A B A B= , 所以PO ⊥平面ABCD , …………………10分 而AC ⊂平面ABCD ,所以 PO AC ⊥, 又PODO O =,所以AC ⊥平面POD . …………………12分又PD ⊂平面POD ,所以AC ⊥PD . …………………13分18. (共14分)BAC DOPBACDOP解:(I )因为2211'()a ax f x x x x -=-+= , …………………2分 当1a =, 21'()x f x x-= ,令'()0f x =,得 1x =,…………………3分 又()f x 的定义域为(0,)+∞,()f x '()f x x所以时,的极小值为1 . …………………5分()f x 的单调递增区间为(1,)+∞,单调递减区间为(0,1); …………………6分(II )解法一:因为2211'()a ax f x x x x -=-+= ,且0a ≠, 令'()0f x =,得到1x a= ,若在区间(0,]e 上存在一点0x ,使得0()0f x <成立,其充要条件是()f x 在区间(0,]e 上的最小值小于0即可. …………………7分(1)当10x a=<,即0a <时,'()0f x <对(0,)x ∈+∞成立,所以,()f x 在区间(0,]e 上单调递减,故()f x 在区间(0,]e 上的最小值为11()ln f e a e a e e =+=+,由10a e +<,得1a e <-,即1(,)a e∈-∞- …………………9分 (2)当10x a =>,即0a >时,① 若1e a≤,则'()0f x ≤对(0,]x e ∈成立,所以()f x 在区间(0,]e 上单调递减,所以,()f x 在区间(0,]e 上的最小值为11()ln 0f e a e a e e=+=+>,显然,()f x 在区间(0,]e 上的最小值小于0不成立 …………………11分② 若10e <<,即1a >时,则有所以()f x 在区间(0,]e 上的最小值为()ln f a a a a=+,由11()ln (1ln )0f a a a a a a=+=-<,得 1ln 0a -<,解得a e >,即(,)a e ∈+∞. …………………13分综上,由(1)(2)可知:1(,)(,)a e e∈-∞-+∞符合题意. …………………14分解法二:若在区间(0,]e 上存在一点0x ,使得0()0f x <成立, 即001ln 0a x x +<, 因为00x >, 所以,只需001ln 0ax x +< …………………7分 令()1ln g x ax x =+,只要()1ln g x ax x =+在区间(0,]e 上的最小值小于0即可因为'()ln (ln 1)g x a x a a x =+=+,令'()(ln 1)0g x a x =+=,得1x e = …………………9分因为(0,)x e∈时,()1ln 0g x ax x =+>,而()1ln 1g e ae e ae =+=+, 只要10ae +<,得1a e <-,即1(,)a e∈-∞- …………………11分所以,当 (0,]x e ∈时,()g x 极小值即最小值为1()1ln1a g a e e e e=+⋅=-, 由10ae-<, 得 a e >,即(,)a e ∈+∞. …………………13分 综上,由(1)(2)可知,有1(,)(,)a e e∈-∞-+∞ . …………………14分19. (共14分)解:(Ⅰ)由已知,222214a b e a -==,所以2234a b =, ① …………………1分 又点3(1,)2M 在椭圆C 上,所以221914a b+= , ② …………………2分由①②解之,得224,3a b ==.故椭圆C 的方程为22143x y +=. …………………5分 (Ⅱ) 当直线l 有斜率时,设y kx m =+时,则由22,1.43y kx m x y =+⎧⎪⎨+=⎪⎩消去y 得,222(34)84120k x kmx m +++-=, …………………6分222222644(34)(412)48(34)0k m k m k m ∆=-+-=+->, ③…………7分设A 、B 、P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、,则:012012122286,()23434km mx x x y y y k x x m k k =+=-=+=++=++,…………8分由于点P在椭圆C上,所以2200143x y+=. ……… 9分从而222222216121(34)(34)k m mk k+=++,化简得22434m k=+,经检验满足③式.………10分又点O到直线l的距离为:2d===≥=………11分当且仅当0k=时等号成立…………12分当直线l无斜率时,由对称性知,点P一定在x轴上,从而P点为(2,0),(2,0)-,直线l为1x=±,所以点O到直线l的距离为1 ……13分所以点O到直线l……14分20.(共13分)解: (I)因为数列1240,30,k k==320,k=410k=,所以123440,70,90,100b b b b====,所以(1)60,(2)90,(3)100,(4)100g g g g=-=-=-=-. …………………3分(II) 一方面,1(1)()100mg m g m b++-=-,根据j b的含义知1100mb+≤,故0)()1(≤-+mgmg,即)1()(+≥mgmg,①…………………5分当且仅当1100mb+=时取等号.因为123100,,,,a a a a中最大的项为50,所以当50m≥时必有100mb=,所以(1)(2)(49)(50)(51)g g g g g>>>===即当149m<<时,有()(1)g m g m>+;当49m≥时,有()(1)g m g m=+.…………………7分(III)设M为{}12100,,,a a a中的最大值.由(II)可以知道,()g m的最小值为()g M. 下面计算()g M的值.123()100Mg M b b b b M=++++-1231(100)(100)(100)(100)Mb b b b-=-+-+-++-233445()()()()M M M M k k k k k k k k k k =----+----+----++-23[2(1)]Mk k M k=-+++-12312(23)()M Mk k k Mk k k k=-++++++++123100()Ma a a a b=-+++++123100()100a a a a=-+++++,∵123100200a a a a++++=,∴()100g M=-,∴()g m最小值为100-. …………………13分说明:其它正确解法按相应步骤给分.。
北京市海淀区高三数学(文科)第二学期期中练习参考答案与评分标准.doc
北京市海淀区高三数学(文科)第二学期期中练习参考答案与评分标准2001.5一、选择题:(1)C ; (2)D ; (3)B ; (4)C ; (5)A ; (6)B ; (7)C ; (8)C ; (9)B ; (10)C ; (11)D ; (12)D. 二、填空题:(13)12; (14){};12|<<-x x (15)(]2,0; (16)123,122,242(写出一个即可) 三、解答题:(17)解(I ):设z =a +bi (a ,R b ∈) ∴abi b a z 2222+-=………………………………1分 由已知,有⎩⎨⎧=+=22222b a ab ,可解出⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a ∴i z +=11或i z --=12………………………………………………………………………3分 ∴4arg 1π=z ,π45arg 2z ………………………………………………………………………5分 ∴)4sin 4(cos21ππi z +=或)45sin 45(cos 22ππi z +=……………………………………7分 (Ⅱ):当i z +=1时,可得i z 22=,i z z -=-12 ∴A (1,1),B (0,2),C (1,–1) ∴11221=⨯⨯=∆ABC S ………………………………………………………………………10分 ∴当i z --=1时,可得i z 22=,i z z 312--=- ∴A (–1,–1),B (0,2),C (–1,–3)∴11221=⨯⨯=∆ABC S 综上ABC ∆的面积为1.………………………………………………………………………12分 (18)(I )证明:∵ABC ∆是正三角形,AF 是BC 边中线,∴AF ⊥BC .∵D 、E 分别是AB 、AC 的中点, ∴DE ∥BC , ∴AF ⊥DE . 又AF ∩DE =G ,∴G A '⊥DE ,FG ⊥DE ,又G A '∩FG =G ,∴DE ⊥平面FG A '.……………………4分又DE ⊂平面DECB ,∴平面FG A '⊥平面DECB .…………6分(Ⅱ)解:∵G A '⊥DE ,GF ⊥DE ,∴∠GF A '是二面角B DE A --'的平面角.………………………………………7分∵平面GF A '⊥平面BCED ,作O A '⊥AG 于O ,∴O A '⊥平面BCED .设BD E A ⊥',连结EO 并延长交AD 于H , ∴EH ⊥AD . ∵AG ⊥DE ,.∴O 是正三角形ADE 的垂心也是中心. ∵AD =DE =AE =2a , ∴a AG G A 43==',a OG 123=. 在OG A Rt '∆中,31cos ='='∠G A OG GO A .∵GO A GF A '∠-='∠π,∴31cos cos -='∠-='∠GO A GF A .即当GF A '∠的余弦值为31-时,E A '与BD 互相垂直.…………………12分 (19)解(I ):∵当2≥n 时,43-n S ,n a ,1232--n S 成等差数列, ∴1232432--+-=n n n S S a ,………………………………………………1分 ∴43-=n n S a (2≥n ).由11=a ,可得4)1(322-+=a a ,∴212=a .………………………………2分 同理,可求出413-=a ,814=a .…………………………………………4分 (Ⅱ):当2≥n 时,∵43+=n n a S ①,∴4311+=++n n a S ②, ②–①得 n n n a a a -=++113. ∴211-=+n n a a 为常数,……………………………………………………6分 ∴2a ,3a ,4a ,…,n a ,…成等比数列,其中首项212=a ,21-=q .… …………………………………………………………………………7分∴通项⎪⎩⎪⎨⎧≥--=-==--)2()21()21(211)(n 112n a n n n .……9分 (Ⅲ):∵)(13221n n n a a a a a a S ++++=+++=∴)(lim 1lim 32n n n n a a a S ++++=∞→∞→=34311)21(1211=+=--+…………………………………………12分 (20)解(I ):∵)(x f y =是以5为周期的周期函数,∴)1()15()4(-=-=f f f .∵函数)(x f y = (11≤≤-x )是奇函数, ∴)4()1()1(f f f =-=-.∴0)4()1(=+f f .……………………………………………………………6分 (Ⅱ):当[]4,1∈x 时,由题意,可设5)2()(2--=x a x f (0≠a ), 由0)4()1(=+f f ,得05)24(5)21(22=--+--a a ,∴2=a .∴5)2(2)(2--=x x f (41≤≤x ). ……………………………………12分(21)解(I ):由已知数据,易知)(t f y =的周期T =12, ………………………………1分∴62ππω==T . 由已知,振幅A =3,b =10,………………………………………………………3分 ∴106sin3+=t y π.…………………………………………………………………4分(Ⅱ):由题意,该船进出港时,水深应不小于5.115.65=+(米), ∴5.11106sin 3≥+t π.………………………………………………………………6分 即216sin≥tπ. 解得,πππππ652662+≤≤+k t k (Z k ∈), ∴512112+≤≤+k t k (Z k ∈) .………………………………………………8分 在同一天内,取0=k 或1,∴51≤≤t 或1713≤≤t . …………………………10分 答:该船可在当日凌晨1时进港,17时离港,它在港内至多停留16小时 。
北京市海淀区高三下学期期中练习数学(文)试题
海淀区高三年级第二学期期中练习数学〔文科〕 2022.4本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每题5分,共40分.在每题列出的四个选项中,选出符合题目要求的一项.1.52i=- A.2i - B.2i + C.12i + D. 12i - 2. 集合{}{}1,0,1,sin π,,A B y y x x A A B =-==∈=则A.1 B.0 C. 1 D.3. 抛物线28y x =上到其焦点F 距离为5的点有 A.0个B.1个C. 2个D. 4个4. 平面向量,a b 满足||2=a ,||1=b ,且,a b 的夹角为60︒,那么()⋅+a a b = A.1 B. 3 C.5 D. 75. 函数()2sin f x x x =+的局部图象可能是A B C D6. 等比数列{}n a 的前n 项和为n S ,且1S ,22S a +,3S 成等差数列,那么数列{}n a 的公比为 A .1 B .2 C .12D .3 7. ()x f x a 和()x g x b 是指数函数,那么“(2)(2)f g 〞是“ab 〞的A.充分不必要条件B.必要不充分条件C.充分必要条件D. 既不充分也不必要条件8. (1,0)A ,点B 在曲线:G ln y x =上,假设线段AB 与曲线:M 1y x=相交且交点恰为线段AB 的中点,那么称B 为曲线G 关于曲线M 的一个关联点.那么曲线G 关于曲线M 的关联点的个数为 A .0 B .1 C .2 D .4二、填空题:本大题共6小题,每题5分,共30分.9.双曲线221 3x y m -=的离心率为2,那么m =__________.10. 李强用流程图把早上上班前需要做的事情做了如下几种方案,那么所用时间最少的方案是_______方案一:方案二:方案三: sin ______,sin A cB11. 在ABC ∆中,3a,5b ,120C ,那么12. 某商场2022年一月份到十二月份月销售额呈现先下降后上升的趋势,现有三种函数模型: ①()xf x p q =⋅,(0,1)q q >≠;②()log (0,1)x p f x q p p =+>≠;③2()f x x px q =++.能较准确反映商场月销售额()f x 与月份x 关系的函数模型为_________〔填写相应函数的序号〕,假设所选函数满足(1)10,(3)2f f ==,那么()f x =_____________.13.一个空间几何体的三视图如下列图,该几何体的外表积为 __________.14. 设不等式组20,20x y x ay ++≥⎧⎨++≤⎩表示的区域为1Ω,不等式221x y +≤表示的平面区域为2Ω.(1) 假设1Ω与2Ω有且只有一个公共点,那么a =;(2) 记()S a 为1Ω与2Ω公共局部的面积,那么函数()S a 的取值范围是 .三、解答题: 本大题共6小题,共80分.解容许写出文字说明, 演算步骤或证明过程.15.〔本小题总分值13分〕函数π()sin sin()3f x x x =--.〔Ⅰ〕求π()6f ;〔Ⅱ〕求()f x 在ππ[,]22-上的取值范围.16.〔本小题总分值13分〕某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对100名出租车司机进行调查.调查问卷共10道题,答题情况如下表:答对题目数 [)0,88 9 10女 213128男3 37 16 9(Ⅰ)如果出租车司机答对题目数大于等于9,就认为该司机对新法规的知晓情况比较好,试估计该33846俯视图主视图侧视图公司的出租车司机对新法规知晓情况比较好的概率;(Ⅱ)从答对题目数少于8的出租车司机中任选出两人做进一步的调查,求选出的两人中至少有一名女出租车司机的概率.17.〔本小题总分值14分〕如图1,在Rt △ABC 中,∠ABC =90°,D 为AC 中点,AE BD ⊥于E 〔不同于点D 〕,延长AE 交BC 于F ,将△ABD 沿BD 折起,得到三棱锥1A BCD -,如图2所示. 〔Ⅰ〕假设M 是FC 的中点,求证:直线DM //平面1A EF ; 〔Ⅱ〕求证:BD ⊥1A F ;〔Ⅲ〕假设平面1A BD ⊥平面BCD ,试判断直线1A B 与直线CD 能否垂直并说明理由. 18. 〔本小题总分值13分〕函数()ln f x x x =. (Ⅰ)求()f x 的单调区间;(Ⅱ) 当1k ≤时,求证:()1f x kx ≥-恒成立. 19.〔本小题总分值14分〕1122(,),(,)A x y B x y 是椭圆22:24C x y +=上两点,点M 的坐标为(1,0).〔Ⅰ〕当,A B 关于点(1,0)M 对称时,求证:121x x ==;〔Ⅱ〕当直线AB 经过点(0,3)时,求证:MAB ∆不可能为等边三角形.20.〔本小题总分值13分〕在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列〔整点即横纵坐标都是整数的点〕()A n :123,,,,n A A A A 与()B n :123,,,,n B B B B ,其中3n ≥,假设同时满足:①两点列的起点和终点分别相同;②线段11i i i i A A B B ++⊥,其中1,2,3,,1i n =-,那么称()A n 与()B n 互为正交点列.〔Ⅰ〕试判断(3)A :123(0,2),(3,0),(5,2)A A A 与(3)B :123(0,2),(2,5),(5,2)B B B 是否互为正交点列,并说明理由;〔Ⅱ〕求证:(4)A :12340,0),3,1),6,0)(((,9,1)(A A A A 不存在正交点列(4)B ; 〔Ⅲ〕是否存在无正交点列(5)B 的有序整数点列(5)A 并证明你的结论.海淀区高三年级第二学期期中练习参考答案数学〔文科〕 2022.4阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
北京市海淀区高三第二学期期中练习(一模)数学(文)试卷(含答案)【精选】.doc
海淀区高三年级第二学期期中练习数 学(文科)本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将答题纸交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{}0,A a =,{}12B x x =-p p ,且A B ⊆,则a 可以是 (A)1- (B)0 (C)l (D)2(2)已知向量a =(l ,2),b =(1-,0),则a +2b =(A)(1-,2) (B)(1-,4) (C)(1,2)(D) (1,4) (3)下列函数满足()()=0f x f x +-的是 (A)()f x x = (B)()ln f x x =(C)1()1f x x =- (D)()cos f x x x = (4)执行如图所示的程序框图,输出的S 值为 (A)2 (B)6 (C)8 (D) 10(5)若抛物线22(0)y px p =f 上任意一点到焦点的距 离恒大于1,则p 的取值范围是 (A)1p p (B)1p f (C)2p p (D)2p f(6)如图,格纸上小正方形的边长为1,若四边形ABCD 及其内部的点组成的集合记为M ,(,)P x y 为M 中任意一点,则y x -的最大值为 (A)1 (B)2 (C)1- (D) 2-(7)已知n S 是等差数列{}n a 的前n 项和,则“n n S na p 对,2n ≥恒成立”是“数列{}n a 为递增 数列”的(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不充分也不必要条件(8)已知直线l :(4)y k x =+与圆22(2)4x y ++=相交于A B ,两点,M 是线段AB 的中点,则点M 到直线3460x y --=的距离的最大值为(A)2 (B)3 (C)4 (D)5第二部分(非选择题,共110分)二、填空题共6小题,每小题5分,共30分。
北京市海淀区高三下学期期中考试(一模)数学文试题 Word版含答案
高三年级第二学期期中练习数学(文科)第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}|13A x x =<<,集合{}2|4B x x =>,则集合A B 等于( )A .{}|23x x <<B .{}|1x x >C .{}|12x x <<D .{}|2x x >2.圆心为(0,1)且与直线2y =相切的圆的方程为( ) A .22(1)1x y -+=B .22(1)1x y ++=C .22(1)1x y +-=D .22(1)1x y ++=3.执行如图所示的程序框图,输出的x 的值为( )A .4B .3C .2D .14.若实数a ,b 满足0a >,0b >,则“a b >”是“ln ln a a b b +>+”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件5.某三棱锥的三视图如图所示,则该三棱锥中最长棱的长度为( )ABC.D .36.在ABC ∆上,点D 满足2AD AB AC =-,则( ) A .点D 不在直线BC 上 B .点D 在BC 的延长线上 C .点D 在线段BC 上D .点D 在CB 的延长线上7.若函数cos ,,()1,x x a f x x a x≤⎧⎪=⎨>⎪⎩ 的值域为[]1,1-,则实数a 的取值范围是( )A .[1,)+∞B .(,1]-∞-C .(0,1]D .(1,0)-8.如图,在公路MN 两侧分别有1A ,2A ,…,7A 七个工厂,各工厂与公路MN (图中粗线)之间有小公路连接.现在需要在公路MN 上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是( )①车站的位置设在C 点好于B 点;②车站的位置设在B 点与C 点之间公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A .①B .②C .①③D .②③第Ⅱ卷(共110分)二、填空题(每题5分,满分30分,将答案填在答题纸上)9.已知复数(1)2z a i =+-为纯虚数,则实数a = .10.已知等比数列{}n a 中,245a a a =,48a =,则公比q = ,其前4项和4S = .11.若抛物线22y px =的准线经过双曲线2213y x -=的左焦点,则实数p = . 12.若x ,y 满足240,20,1,x y x y x +-=⎧⎪-≤⎨⎪≥⎩则y x 的最大值是 .13.已知函数()sin f x x ω=(0ω>),若函数()y f x a =+(0a >)的部分图象如图所示,则ω= ,a 的最小值是 .14.阅读下列材料,回答后面问题:在2014年12月30日13CCTV 播出的“新闻直播间”节目中,主持人说:“……加入此次亚航失联航班8501QZ 被证实失事的话,2014年航空事故死亡人数将达到1320人.尽管如此,航空安全专家还是提醒:飞机仍是相对安全的交通工具.①世界卫生组织去年公布的数据显示,每年大约有124万人死于车祸,而即使在航空事故死亡人数最多的一年,也就是1972年,其死亡数字也仅为3346人;②截至2014年9月,每百万架次中有2.1次(指飞机失事),乘坐汽车的百万人中其死亡人数在100人左右.”对上述航空专家给出的①、②两段表述(划线部分),你认为不能够支持“飞机仍是相对安全的交通工具”的所有表述序号为 ,你的理由是 .三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.已知等差数列{}n a 满足126a a +=,2310a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}1n n a a ++的前n 项和.16.某地区以“绿色出行”为宗旨开展“共享单车”业务.该地有a ,b 两种“共享单车”(以下简称a 型车,b 型车).某学习小组7名同学调查了该地区共享单车的使用情况. (Ⅰ)某日该学习小组进行一次市场体验,其中4人租到a 型车,3人租到b 型车.如果从组内随机抽取2人,求抽取的2人中至少有一人在市场体验过程中租到a 型车的概率; (Ⅱ)根据已公布的2016年该地区全年市场调查报告,小组同学发现3月,4月的用户租车情况城现如表使用规律.例如,第3个月租a 型车的用户中,在第4个月有60%的用户仍租a 型车.若认为2017年该地区租用单车情况与2016年大致相同.已知2017年3月该地区租用a ,b 两种车型的用户比例为1:1,根据表格提供的信息,估计2017年4月该地区租用两种车型的用户比例.17.在ABC ∆中,2A B =. (Ⅰ)求证:2cos a b B =; (Ⅱ)若2b =,4c =,求B 的值.18.在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,2PA AB ==,E ,F 分别是PB ,PD 的中点.(Ⅰ)求证://PB 平面FAC ; (Ⅱ)求三棱锥P EAD -的体积; (Ⅲ)求证:平面EAD ⊥平面FAC .19.已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为A ,B ,且||4AB =,离心率为12. (Ⅰ)求椭圆C 的方程;(Ⅱ)设点(4,0)Q ,若点P 在直线4x =上,直线BP 与椭圆交于另一点M .判断是否存在点P ,使得四边形APQM 为梯形?若存在,求出点P 的坐标;若不存在,说明理由. 20.已知函数2()x f x e x ax =-+,曲线()y f x =在点(0,(0))f 处的切线与x 轴平行. (Ⅰ)求a 的值;(Ⅱ)若()21x g x e x =--,求函数()g x 的最小值; (Ⅲ)求证:存在0c <,当x c >时,()0f x > .高三年级第二学期期中练习数学(文科)答案一、选择题1-5:ACCCB 6-8:DAC二、填空题9.2 10.2,15 11.4 12.32 13.2,12π 14.选①,数据①虽是同类数据,但反映不出乘车出行和乘飞机出行的总人数的关系; 选②,数据②两个数据不是同一类数据,这与每架次飞机的乘机人数有关;不选②,数据②两个数据虽表面不是同一类数据,但是可以做如下大致估算,考虑平均每架次飞机的乘机人数为x ,这样每百万人乘机死亡人数2.1人,要远远少于乘车每百万人中死亡人数.三、解答题15.解:(Ⅰ)设数列{}n a 的公差为d ,因为126a a +=,2310a a +=,所以314a a -=, 所以24d =,2d =.又116a a d ++=,所以12a =, 所以1(1)2n a a n d n =+-=.(Ⅱ)记1n n n b a a +=+,所以22(1)42n b n n n =++=+, 又14(1)2424n n b b n n +-=++--=, 所以{}n b 是首项为6,公差为4的等差数列, 其前n 项和21()(642)2422n n n b b n n S n n +++===+. 16.解:(Ⅰ)依题意租到a 型车的4人为1A ,2A ,3A ,4A ;租到b 型车的3人为1B ,2B ,3B ;设事件A 为“7人中抽到2人,至少有一人租到a 型车”, 则事件A 为“7人中抽到2人都租到b 型车”.如表格所示:从7人中抽出2人共有21种情况,事件A 发生共有3种情况, 所以事件A 概率36()1()1217P A P A =-=-=.(Ⅱ)依题意,市场4月份租用a 型车的比例为50%60%50%50%55%+=, 租用b 型车的比例为50%40%50%50%45%+=, 所以市场4月租用a ,b 型车的用户比例为55%1145%9=. 17.解:(Ⅰ)因为2A B =,所以由正弦定理sin sin a b A B =,得sin sin 2a aA B=, 得2sin cos sin a bB B B=,所以2cos a b B =.(Ⅱ)由余弦定理,2222cos a b c bc A =+-,因为2b =,4c =,2A B =,所以216cos 41616cos 2B B =+-,所以23cos 4B =, 因为2A B B B π+=+<,所以3B π<,所以cos B =,所以6B π=.18.(Ⅰ)证明:连接BD ,与AC 交于点O ,连接OF ,在PBD ∆中,O ,F 分别是BD ,PD 的中点, 所以//OF PB ,又因为OF ⊂平面FAC ,PB ⊄平面FAC , 所以//PB 平面FAC .(Ⅱ)解:因为PA ⊥平面ABCD ,所以PA 为棱锥P ABD -的高. 因为2PA AB ==,底面ABCD 是正方形, 所以13P ABD ABD V S PA -∆=⨯⨯114222323=⨯⨯⨯⨯=, 因为E 为PB 中点,所以PAE ABE S S ∆∆=, 所以1223P EAD P ABD V V --=⨯=. (Ⅲ)证明:因为AD ⊥平面PAB ,PB ⊂平面PAB , 所以AD PB ⊥,在等腰直角PAB ∆中,AE PB ⊥, 又AEAD A =,AE ⊂平面EAD ,AD ⊂平面EAD ,所以PB ⊥平面EAD , 又//OF PB , 所以OF ⊥平面EAD , 又OF ⊂平面FAC ,所以平面EAD ⊥平面FAC .19.解:(Ⅰ)由||4AB =,得2a =. 又因为12c e a ==,所以1c =,所以2223b a c =-=,所以椭圆C 的方程为22143x y +=. (Ⅱ)假设存在点P ,使得四边形APQM 为梯形. 由题意知,显然AM ,PQ 不平行,所以//AP MQ ,所以||||||||BQ BM AB BP =,所以||1||2BM BP =.设点11(,)M x y ,(4,)P t , 过点M 作MH AB ⊥于H ,则有||||1||||2BH BM BQ BP ==, 所以||1BH =,所以(1,0)H ,所以11x =, 代入椭圆方程,求得132y =±, 所以(4,3)P ±.20.解:(Ⅰ)'()2x f x e x a =-+,由已知可得'(0)0f =,所以10a +=,得1a =-. (Ⅱ)'()2xg x e =-,令'()0g x =,得ln 2x =, 所以x ,'()g x ,()g x 的变化情况如表所示:所以()g x 的最小值为ln2(ln 2)2ln 2112ln 2g e=--=-.(Ⅲ)证明:显然()'()g x f x =,且(0)0g =,由(Ⅱ)知,()g x 在(,ln 2)-∞上单调递减,在(ln 2,)+∞上单调递增. 又(ln 2)0g <,2(2)50g e =->,由零点存在性定理,存在唯一实数0(ln 2,)x ∈+∞,满足0()0g x =,即00210x e x --=,0021x e x =+,综上,()'()g x f x =存在两个零点,分别为0,0x .所以0x <时,()0g x >,即'()0f x >,()f x 在(,0)-∞上单调递增;00x x <<时,()0g x <,即'()0f x <,()f x 在0(0,)x 上单调递减; 0x x >时,()0g x >,即'()0f x >,()f x 在0(,)x +∞上单调递增,所以(0)f 是极大值,0()f x 是极小值,0222200000000015()211()24x f x e x x x x x x x x =--=+--=-++=--+,因为(1)30g e =-<,323()402g e =->,所以03(1,)2x ∈,所以0()0f x >, 因此0x ≥时,()0f x >.因为(0)1f =且()f x 在(,0)-∞上单调递增, 所以一定存在0c <满足()0f c >, 所以存在0c <,当x c >时,()0f x >.。
北京市海淀区高三数学(文科)第二学期期中练习参考答案与评分标准
北京市海淀区高三数学(文科)第二学期期中练习参考答案与评分标准2001.5一、选择题:(1)C ; (2)D ; (3)B ; (4)C ; (5)A ; (6)B ; (7)C ; (8)C ; (9)B ; (10)C ; (11)D ; (12)D. 二、填空题:(13)12; (14){};12|<<-x x (15)(]2,0; (16)123,122,242(写出一个即可) 三、解答题:(17)解(I ):设z =a +bi (a ,R b ∈) ∴abi b a z 2222+-=………………………………1分 由已知,有⎩⎨⎧=+=22222b a ab ,可解出⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a ∴i z +=11或i z --=12………………………………………………………………………3分 ∴4arg 1π=z ,π45arg 2z ………………………………………………………………………5分 ∴)4sin 4(cos21ππi z +=或)45sin 45(cos 22ππi z +=……………………………………7分 (Ⅱ):当i z +=1时,可得i z 22=,i z z -=-12 ∴A (1,1),B (0,2),C (1,–1) ∴11221=⨯⨯=∆ABC S ………………………………………………………………………10分 ∴当i z --=1时,可得i z 22=,i z z 312--=- ∴A (–1,–1),B (0,2),C (–1,–3)∴11221=⨯⨯=∆ABC S 综上ABC ∆的面积为1.………………………………………………………………………12分 (18)(I )证明:∵ABC ∆是正三角形,AF 是BC 边中线,∴AF ⊥BC .∵D 、E 分别是AB 、AC 的中点, ∴DE ∥BC , ∴AF ⊥DE . 又AF ∩DE =G ,∴G A '⊥DE ,FG ⊥DE ,又G A '∩FG =G ,∴DE ⊥平面FG A '.……………………4分又DE ⊂平面DECB ,∴平面FG A '⊥平面DECB .…………6分(Ⅱ)解:∵G A '⊥DE ,GF ⊥DE ,∴∠GF A '是二面角B DE A --'的平面角.………………………………………7分∵平面GF A '⊥平面BCED ,作O A '⊥AG 于O ,∴O A '⊥平面BCED .设BD E A ⊥',连结EO 并延长交AD 于H , ∴EH ⊥AD . ∵AG ⊥DE ,.∴O 是正三角形ADE 的垂心也是中心. ∵AD =DE =AE =2a , ∴a AG G A 43==',a OG 123=. 在OG A Rt '∆中,31cos ='='∠G A OG GO A .∵GO A GF A '∠-='∠π,∴31cos cos -='∠-='∠GO A GF A .即当GF A '∠的余弦值为31-时,E A '与BD 互相垂直.…………………12分 (19)解(I ):∵当2≥n 时,43-n S ,n a ,1232--n S 成等差数列, ∴1232432--+-=n n n S S a ,………………………………………………1分 ∴43-=n n S a (2≥n ).由11=a ,可得4)1(322-+=a a ,∴212=a .………………………………2分 同理,可求出413-=a ,814=a .…………………………………………4分 (Ⅱ):当2≥n 时,∵43+=n n a S ①,∴4311+=++n n a S ②, ②–①得 n n n a a a -=++113. ∴211-=+n n a a 为常数,……………………………………………………6分 ∴2a ,3a ,4a ,…,n a ,…成等比数列,其中首项212=a ,21-=q .… …………………………………………………………………………7分∴通项⎪⎩⎪⎨⎧≥--=-==--)2()21()21(211)(n 112n a n n n .……9分 (Ⅲ):∵)(13221n n n a a a a a a S ++++=+++=∴)(lim 1lim 32n n n n a a a S ++++=∞→∞→=34311)21(1211=+=--+…………………………………………12分 (20)解(I ):∵)(x f y =是以5为周期的周期函数,∴)1()15()4(-=-=f f f .∵函数)(x f y = (11≤≤-x )是奇函数, ∴)4()1()1(f f f =-=-.∴0)4()1(=+f f .……………………………………………………………6分 (Ⅱ):当[]4,1∈x 时,由题意,可设5)2()(2--=x a x f (0≠a ), 由0)4()1(=+f f ,得05)24(5)21(22=--+--a a ,∴2=a .∴5)2(2)(2--=x x f (41≤≤x ). ……………………………………12分(21)解(I ):由已知数据,易知)(t f y =的周期T =12, ………………………………1分∴62ππω==T . 由已知,振幅A =3,b =10,………………………………………………………3分 ∴106sin3+=t y π.…………………………………………………………………4分(Ⅱ):由题意,该船进出港时,水深应不小于5.115.65=+(米), ∴5.11106sin 3≥+t π.………………………………………………………………6分 即216sin≥tπ. 解得,πππππ652662+≤≤+k t k (Z k ∈), ∴512112+≤≤+k t k (Z k ∈) .………………………………………………8分 在同一天内,取0=k 或1,∴51≤≤t 或1713≤≤t . …………………………10分 答:该船可在当日凌晨1时进港,17时离港,它在港内至多停留16小时 。
2019年海淀高三年级第二学期数学期中练习试题-附答案(文)(精校版)
海淀区高三年级第二学期期中练习数 学 (文科) 2019.4选择题 (共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1、已知集合{}30<<∈=x x A R ,{}42≥∈=x x B R ,则=B AA. {}2 23x x x ≤-≤<或 B. {}32<<x x C. {}32<≤x x D. R2. 设0.5323, log 2, cos 3a b c π===,则A. c b a <<B. c a b <<C. a b c <<D. b c a << 3.函数1()x f x x+=图象的对称中心为 A .(0,0) B.(0,1)C. (1,0)D. (1,1)4. 执行如图所示的程序框图,若输入x 的值为2,则输出的x 值为A. 25 B .24 C. 23 D .225.从集合{1,1,2}A =-中随机选取一个数记为k ,从集合{2,1,2}B =-中随机选取一个数记为b ,则直线y kx b =+不经过第三象限的概率为A . 29 B. 13 C. 49D. 596. 在同一个坐标系中画出函数,sin xy a y ax ==的部分图象,其中01a a >≠且,则下列所给图象中可能正确的是7.2a -≤≤A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.若直线l 被圆22:2C x y +=所截的弦长不小于2,则l 与下列曲线一定有公共点的是A .22(1)1x y -+= B ..2212x y += C. 2y x = D .221x y -=非选择题(共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9. 计算21i=+__________________. 10. 为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为1s ,2s ,3,s 则它们的大小关系为 . (用“>”连接)11. 如图,在正方体1111ABCD A B C D -中,点P 是上底面1111A B C D 内一动点,则三棱锥P ABC -的主视图与左视图的面积的比值为_________.12. 已知函数()x f x xe =,则'()f x =________;函数()f x 图象在点(0,(0))f 处的切线方程为_______13. 已知向量(,2),(1,)a x b y ==,其中,0x y ≥.若4≤a b ,则y x -的取值范围为 .14.如图,线段AB =8,点C 在线段AB 上,且AC =2,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设CP =x , △CPD 的面积为()f x .则()f x 的PDCBA 1A 1D 1B 1C 左视主视乙丙甲定义域为________;()f x 的最大值为 ________.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题共13分)在ABC ∆中,内角A 、B 、C 所对的边分别为a b c 、、,已知1tan 2B =,1tan 3C =,且1c =. (Ⅰ) 求tan()B C +; (Ⅱ) 求a 的值.16. (本小题共13分)数列{}n a 的前n 项和为n S ,若12a =且12n n S S n -=+(2n ≥,*n ∈N ).( I )求n S ;( II ) 是否存在等比数列{}n b 满足112339, b a b a b a ===,?若存在,则求出数列{}n b 的通项公式;若不存在,则说明理由.17. (本小题共13分)如图:梯形ABCD 和正△PAB 所在平面互相垂直,其中//,AB DC 12AD CD AB ==,且O 为AB 中点.( I ) 求证://BC 平面POD ; ( II ) 求证:AC ⊥PD .18. (本小题共14分)已知函数1()ln (0,)f x a x a a x=+≠∈ R (Ⅰ)若1a =,求函数()f x 的极值和单调区间;(II) 若在区间[1,e]上至少存在一点0x ,使得0()0f x <成立,求实数a 的取值范围.BACDOP19. (本小题共14分)已知椭圆2222:1x y C a b += (0)a b >>经过点3(1,),2M 其离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 相交于A 、B 两点,以线段,OA OB 为邻边作平行四边形OAPB ,其中顶点P 在椭圆C 上,O 为坐标原点. 求O 到直线距离的l 最小值.20. (本小题共13分)已知每项均是正整数的数列123100,,,,a a a a ,其中等于i 的项有i k 个(1,2,3)i =,设j j k k k b +++= 21(1,2,3)j =,12()100m g m b b b m =+++-(1,2,3).m =(Ⅰ)设数列1240,30,k k ==34510020,10,...0k k k k =====,求(1),(2),(3),(4)g g g g ; (II) 若123100,,,,a a a a 中最大的项为50, 比较(),(1)g m g m +的大小; (Ⅲ)若12100200a a a +++=,求函数)(m g 的最小值.海淀区高三年级第二学期期中练习数 学(文)答案及评分参考 2019.4选择题 (共40分)一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分. 共30分.有两空的题目,第一空3分,第二空2分)9.1i - 10. s 1>s 2>s 3 11. 1 12. (1)x x e +, y x = 13. [4,2]- 14. (2,4),三、解答题(本大题共6小题,共80分) 15. (共13分) 解:(I )因为1tan 2B =,1tan 3C =,tan tan tan()1tan tan B CB C B C ++=- …………………3分 代入得到,1123tan()111123B C ++==-⨯. …………………6分 (II )因为180A B C =-- …………………7分 所以tan tan[180()]tan()1A B C B C =-+=-+=- …………………9分又0180A <<,所以135A =. …………………10分 因为1tan 03C =>,且0180C <<,所以sin 10C = , …………………11分 由sin sin a c A C=,得a =. …………………13分16. (共13分)解:(I )因为12n n S S n -=+,所以有12n n S S n --=对2n ≥,*N n ∈成立 ………2分 即2n a n =对2n ≥成立,又1121a S ==⋅, 所以2n a n =对*N n ∈成立 …………………3分 所以12n n a a +-=对*N n ∈成立 ,所以{}n a 是等差数列, …………………4分 所以有212nn a a S n n n +=⋅=+ ,*N n ∈ …………………6分 (II )存在. …………………7分 由(I ),2n a n =,*N n ∈对成立所以有396,18a a ==,又12a =, ………………9分 所以由 112339, b a b a b a ===,,则23123b b b b == …………………11分 所以存在以12b =为首项,公比为3的等比数列{}n b ,其通项公式为123n n b -=⋅ . ………………13分17. (共13分)证明: (I) 因为O 为AB 中点, 所以1,2BO AB =…………………1分 又//,AB CD 12CD AB =, 所以有,//,CD BO CD BO = …………………2分所以ODCB 为平行四边形,所以//,BC OD …………………3分又DO ⊂平面,POD BC ⊄平面,POD所以//BC 平面POD . …………………5分BAC DOP(II)连接OC .因为,//,CD BO AO CD AO ==所以ADCO 为 平行四边形, …………………6分 又AD CD =,所以ADCO 为菱形,所以 AC DO ⊥, …………………7分 因为正三角形PAB ,O 为AB 中点,所以PO AB ⊥ , …………………8 分又因为平面A B C D ⊥平面PAB ,平面A B C D 平面P A B A B= , 所以PO ⊥平面ABCD , …………………10分 而AC ⊂平面ABCD ,所以 PO AC ⊥, 又PODO O =,所以AC ⊥平面POD . …………………12分又PD ⊂平面POD ,所以AC ⊥PD . …………………13分18. (共14分) 解:(I )因为2211'()a ax f x x x x-=-+= , …………………2分 当1a =, 21'()x f x x-=, 令'()0f x =,得 1x =,…………………3分又()f x 的定义域为(0,)+∞, ()f x ',()f x 随x 的变化情况如下表:所以时,的极小值为5分()f x 的单调递增区间为(1,)+∞,单调递减区间为(0,1); …………………6分(II )解法一: 因为2211'()a ax f x x x x-=-+= ,且0a ≠, 令'()0f x =,得到1x a=, 若在区间(0,]e 上存在一点0x ,使得0()0f x <成立,其充要条件是()f x 在区间(0,]e 上的最小值小于0即可. …………………7分BACDO P(1)当10x a=<,即0a <时,'()0f x <对(0,)x ∈+∞成立, 所以,()f x 在区间(0,]e 上单调递减, 故()f x 在区间(0,]e 上的最小值为11()ln f e a e a e e=+=+, 由10a e +<,得1a e <-,即1(,)a e∈-∞- …………………9分 (2)当10x a=>,即0a >时, ① 若1e a≤,则'()0f x ≤对(0,]x e ∈成立,所以()f x 在区间(0,]e 上单调递减, 所以,()f x 在区间(0,]e 上的最小值为11()ln 0f e a e a e e=+=+>, 显然,()f x 在区间(0,]e 上的最小值小于0不成立 …………………11分 ② 若10e a <<,即1a e>时,则有所以()f x 在区间(0,]e 上的最小值为()lnf a a a a=+, 由11()ln(1ln )0f a a a a a a=+=-<, 得 1ln 0a -<,解得a e >,即(,)a e ∈+∞. …………………13分 综上,由(1)(2)可知:1(,)(,)a e e∈-∞-+∞符合题意. …………………14分解法二:若在区间(0,]e 上存在一点0x ,使得0()0f x <成立, 即001ln 0a x x +<, 因为00x >, 所以,只需001ln 0ax x +< …………………7分 令()1ln g x ax x =+,只要()1ln g x ax x =+在区间(0,]e 上的最小值小于0即可因为'()ln (ln 1)g x a x a a x =+=+, 令'()(ln 1)0g x a x =+=,得1x e= …………………9分 (1)当0a <时:因为(0,)x e∈时,()1ln 0g x ax x =+>,而()1ln 1g e ae e ae =+=+, 只要10ae +<,得1a e <-,即1(,)a e∈-∞- …………………11分 (2)当0a >时:所以,当 (0,]x e ∈时,()g x 极小值即最小值为1()1ln1a g a e e e e=+⋅=-, 由10ae-<, 得 a e >,即(,)a e ∈+∞. …………………13分 综上,由(1)(2)可知,有1(,)(,)a e e∈-∞-+∞ . …………………14分19. (共14分)解:(Ⅰ)由已知,222214a b e a -==,所以2234a b =, ① …………………1分 又点3(1,)2M 在椭圆C 上,所以221914a b += , ② …………………2分 由①②解之,得224,3a b ==.故椭圆C 的方程为22143x y +=. …………………5分 (Ⅱ) 当直线l 有斜率时,设y kx m =+时,则由22,1.43y kx m x y =+⎧⎪⎨+=⎪⎩消去y 得,222(34)84120k x kmx m +++-=, …………………6分222222644(34)(412)48(34)0k m k m k m ∆=-+-=+->, ③…………7分 设A 、B 、P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、,则:012012122286,()23434km mx x x y y y k x x m k k =+=-=+=++=++,…………8分 由于点P 在椭圆C 上,所以2200143x y +=. ……… 9分 从而222222216121(34)(34)k m m k k +=++,化简得22434m k =+,经检验满足③式. ………10分 又点O 到直线l 的距离为:2d ===≥= ………11分 当且仅当0k =时等号成立 …………12分当直线l 无斜率时,由对称性知,点P 一定在x 轴上,从而P 点为(2,0),(2,0)-,直线l 为1x =±,所以点O 到直线l 的距离为1 ……13分所以点O 到直线l的距离最小值为2……14分 20. (共13分)解: (I) 因为数列1240,30,k k ==320,k =410k =, 所以123440,70,90,100b b b b ====,所以(1)60,(2)90,(3)100,(4)100g g g g =-=-=-=- . …………………3分 (II) 一方面,1(1)()100m g m g m b ++-=-,根据j b 的含义知1100m b +≤,故0)()1(≤-+m g m g ,即 )1()(+≥m g m g , ① …………………5分 当且仅当1100m b +=时取等号. 因为123100,,,,a a a a 中最大的项为50,所以当50m ≥时必有100m b =,所以(1)(2)(49)(50)(51)g g g g g >>>===即当149m <<时,有()(1)g m g m >+; 当49m ≥时,有()(1)g m g m =+ . …………………7分(III )设M 为{}12100,,,a a a 中的最大值.由(II )可以知道,()g m 的最小值为()g M . 下面计算()g M 的值.123()100M g M b b b b M =++++-1231(100)(100)(100)(100)M b b b b -=-+-+-++-_.__._ 233445()()()()M M M M k k k k k k k k k k =----+----+----++- 23[2(1)]M k k M k =-+++- 12312(23)()M M k k k Mk k k k =-++++++++ 123100()M a a a a b =-+++++ 123100()100a a a a =-+++++, ∵123100200a a a a ++++= , ∴()100g M =-, ∴()g m 最小值为100-.…………………13分说明:其它正确解法按相应步骤给分.。
海淀区高三年级第二学期期中练习--文科答案
海淀区高三年级第二学期期中练习数 学 (文)参考答案及评分标准2013.4说明: 合理答案均可酌情给分,但不得超过原题分数. 一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分, 共30分)三、解答题(本大题共6小题,共80分) 15.(本小题满分13分) 解:(I)2π1()2)1322f =--=………………2分 因为2()2cos )f x x x =--222(3sin cos cos )x x x x =-+- 22(12sin )x x =-+………………4分212sin x x =-+cos2x x =………………6分π= 2sin(2)6x +………………8分所以 ()f x 的周期为2π2ππ||2T ω===………………9分 (II )当ππ[,]63x ∈-时, π2π2[,]33x ∈-,ππ5π(2)[,]666x +∈- 9. 0 10. 21-11.16 12.4 13. 4a >14.2,2所以当6x π=-时,函数取得最小值()16f π-=-………………11分当6x π=时,函数取得最大值()26f π=………………13分16.解: (I)因为“数学与逻辑”科目中成绩等级为B 的考生有10人, 所以该考场有100.2540÷=人………………2分所以该考场考生中“阅读与表达”科目中成绩等级为A 的人数为40(10.3750.3750.150.025)400.0753⨯----=⨯=………………4分(II )求该考场考生“数学与逻辑”科目的平均分为1(400.2)2(400.1)3(400.375)4(400.25)5(400.075)2.940⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=………………8分(Ⅲ)因为两科考试中,共有6人得分等级为A ,又恰有两人的两科成绩等级均为A ,所以还有2人只有一个科目得分为A ………………9分设这四人为甲,乙,丙,丁,其中甲,乙是两科成绩都是A 的同学,则在至少一科成绩等级为A 的考生中,随机抽取两人进行访谈,基本事件空间为{Ω={甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}},一共有6个基本事件 ………………11分设“随机抽取两人进行访谈,这两人的两科成绩等级均为A ”为事件B ,所以事件B 中包含的基本事件有1个,则1()6P B =. ………………13分 17.解:(I )证明:(I) 因为ABC ∆是正三角形,M 是AC 中点, 所以BM AC ⊥,即BD AC ⊥………………1分又因为PA ABCD ⊥平面,BD ⊂平面ABCD ,PA BD ⊥………………2分 又PA AC A = ,所以BD ⊥平面PAC ………………4分 又PC ⊂平面PAC ,所以BD PC ⊥………………5分(Ⅱ)在正三角形ABC 中,BM =6分 在ACD ∆,因为M 为AC 中点,DM AC ⊥,所以AD CD =30CAD ∠= ,所以,3DM =,所以:3:1BM MD =………………8分 所以::BN NP BM MD =,所以//MN PD ………………9分又MN ⊄平面PDC ,PD ⊂平面PDC ,所 以//MN 平面PDC ………………11分 (Ⅲ)假设直线//l CD ,因为l ⊂平面PAB ,CD ⊄平面PAB , 所以//CD 平面PAB ………………12分又CD ⊂平面ABCD ,平面PAB 平面ABCD AB =,所以//CD AB ……………13分 这与CD 与AB 不平行,矛盾所以直线l 与直线CD 不平行………………14分18.解:(I )因为2'()f x x k =-………………2分当4k =时,2'()4f x x =-,令2'()40f x x =-=,所以122,2x x ==-'(),()f x f x 随x 的变化情况如下表:………………4分所以()f x 的单调递增区间是(,2)-∞-,(2,)+∞ 单调递减区间是(2,2)-………………6分(II )令()()g x f x k =-,所以()g x 只有一个零点………………7分 因为2'()'()g x f x x k ==-当0k =时,3()g x x =,所以()g x 只有一个零点0 ………………8分 当0k <时,2'()0g x x k =->对R x ∈成立,所以()g x 单调递增,所以()g x 只有一个零点………………9分当0k >时,令2'()'()0g x f x x k ==-=,解得1x =或2x =10分 所以'(),()g x g x 随x 的变化情况如下表:()g x 有且仅有一个零点等价于(0g <………………11分即2(03g k =<,解得904k <<………………12分 综上所述,k 的取值范围是94k <………………13分 19.解:(I)设椭圆的焦距为2c , 因为a =,2c a =,所以1c =………………2分 所以1b =所以椭圆C :2212x y +=………………4分(II )设A (1x ,1y ),B (2x ,2y )由直线l 与椭圆C 交于两点A ,B ,则22220y kx x y =⎧⎨+-=⎩所以22(12)20k x +-=, 则120x x +=,122212x x k =-+………………6分所以AB ==8分 点M )到直线l 的距离d =………………10分则GH =………………11分 显然,若点H 也在线段AB 上,则由对称性可知,直线y kx =就是y 轴,矛盾, 因为AG BH =,所以AB GH =所以22228(1)724()1231k k k k+=-++ 解得21k =,即1k =±………………14分HG BA20.解: (I)因为x ∆+=3(,y x y ∆∆∆为非零整数)故1,2x y ∆=∆=或2,1x x ∆=∆=,所以点(0,0)的“相关点”有8个………………1分又因为22()()5x y ∆+∆=,即2211(0)(0)5x y -+-=所以这些可能值对应的点在以(0,0)3分 (II)设(,)M M M x y ,因为(),()M H L M ττ==所以有|9||3|3M M x y -+-=,|5||3|3M M x y -+-=………………5分 所以|9||5|M M x x -=-,所以7,M x =2M y =或4M y = 所以(7,2)M 或(7,4)M ………………7分(III)当*2,N n k k =∈时,0||n P P 的最小值为0………………8分当=1n 时,可知0||n P P 9分当=3n 时,对于点P ,按照下面的方法选择“相关点”,可得300(,+1)P x y :000(,)P x y →100200300(+2,+1)(+1,+3)(,+1)P x y P x y P x y →→故0||n P P 的最小值为1………………11分当231,,*, N n k k k =+>∈时,对于点P ,经过2k 次变换回到初始点000(,)P x y ,然后经过3次变换回到00(,+1)n P x y ,故0||n P P 的最小值为1综上,当=1n 时,0||n P P 当*2,N n k k =∈时,0||n P P 的最小值为0当21*, N n k k =+∈时,0||n P P 的最小值为1 ………………13分。
北京市海淀区高三数学文科期中考试卷 新课标 人教版
北京市海淀区高三数学文科期中考试卷2020.11一、选择题(每小题5分,共40分,每小题给出的四个选项有且只有只有一个是正确的,请把正确答案的序号填在相应的括号内)1. 已知全集I=R,集合x x A |{=≤1},{}20|<<=x x B ,则()I A ðB U 等于( )(A )[1,)+∞(B )(1,)+∞ (C )[0,)+∞ (D )(0,)+∞2. 在等差数列{}n a 中,若12343,5a a a a +=+=,则78a a +的和等于 ( ) (A)7 (B)8 (C)9 (D)103.函数)1(log )(2+=x x f (x >0)的反函数是 ( ) (A )112)(--=x x f (R x ∈) (B )12)(1-=-x x f (R x ∈) (C )112)(--=x x f(x >0) (D )12)(1-=-x x f(x >0)4.设,,a b c R ∈,则“a b >”是“22ac bc >”的( )(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件5.下列函数中,在其定义域内既是奇函数又是减函数的是 ( )(A )||x y -=(R x ∈) (B )13xy ⎛⎫= ⎪⎝⎭(R x ∈)(C )x x y --=3(R x ∈) (D )xy 1-=(R x ∈,0≠x ) 6.已知函数||)(x ax f -= (a >0,1≠a ),且8)3(=f ,则 ( )(A ))1(-f >)2(-f (B ))1(f >)2(f (C ))2(f >)2(-f (D ))3(-f >)2(-f 7.某小组共8名同学,其中男生6名,女生2名.现抽取3名男生、1名女生参加一项采访活动,则不同的抽取方法共有 ( ) (A )40种 (B )80种 (C )70种 (D )240种 8. 某医药研究所开发一种新药.如果成年人按规定的剂量服用, 据检测,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图所示曲线.定,每毫升血液中含药量不少于0.25毫克时,治疗疾病有效.一次治疗该疾病有效的时间为( )(A) 4小时 ( B) 478 小时( C) 41516小时 ( D) 5小时二、填空题(每小题5分,共30分.请把答案填在题中横线上) 9.在62)1(xx +的展开式中常数项的值是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海淀区高三年级第二学期期中测试数 学 (文科) 2014.4本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.52i=- A.2i - B.2i + C.12i + D. 12i -2. 已知集合{}{}1,0,1,sin π,,A B y y x x A A B =-==∈= 则A.{}1-B.{}0C. {}1 D.Æ 3. 抛物线28y x =上到其焦点F 距离为5的点有 A.0个B.1个C. 2个D. 4个4. 平面向量,a b 满足||2=a ,||1=b ,且,a b 的夹角为60︒,则()⋅+a a b = A.1 B. 3 C.5D. 75. 函数()2sin f x x x =+的部分图象可能是A B C D6. 已知等比数列{}n a 的前n 项和为n S ,且1S ,22S a +,3S 成等差数列,则数列{}n a 的公比为A .1B .2C .12D .3 7. 已知()x f x a =和()x g x b =是指数函数,则“(2)(2)f g >”是“a b >”的 A.充分不必要条件 B.必要不充分条件C.充分必要条件D. 既不充分也不必要条件OyxOyxOyxOyx8. 已知(1,0)A ,点B 在曲线:G ln y x =上,若线段AB 与曲线:M 1y x=相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.那么曲线G 关于曲线M 的关联点的个数为A .0B .1C .2D .4二、填空题:本大题共6小题,每小题5分,共30分.9.双曲线221 3x y m -=的离心率为2,则m =__________.10. 李强用流程图把早上上班前需要做的事情做了如下几种方案,则所用时间最少的方案是_______方案一: 方案二: 方案三:11. 在ABC ∆中,3a =,5b =,120C = ,则sin ______,_______.sin Ac B== 12. 某商场2013年一月份到十二月份月销售额呈现先下降后上升的趋势,现有三种函数模型:①()x f x p q =⋅,(0,1)q q >≠;②()log (0,1)xp f x q p p =+>≠;③2()f x x px q =++.能较准确反映商场月销售额()f x 与月份x 关系的函数模型为_________(填写相应函数的序号),若所选函数满足(1)10,(3)2f f ==,则()f x =_____________.13.一个空间几何体的三视图如图所示,该几何体的表面积为__________.14. 设不等式组20,20x y x ay ++≥⎧⎨++≤⎩表示的区域为1Ω,不等式221x y +≤表示的平面区域为2Ω.(1) 若1Ω与2Ω有且只有一个公共点,则a = ;(2) 记()S a 为1Ω与2Ω公共部分的面积,则函数()S a 的取值范围是.俯视图主视图侧视图三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)已知函数π()sin sin()3f x x x =--.(Ⅰ)求π()6f ;(Ⅱ)求()f x 在ππ[,]22-上的取值范围.16.(本小题满分13分)某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对100名出租车司机.10(Ⅰ)如果出租车司机答对题目数大于等于,就认为该司机对新法规的知晓情况比较好,试估计该公司的出租车司机对新法规知晓情况比较好的概率;(Ⅱ)从答对题目数少于8的出租车司机中任选出两人做进一步的调查,求选出的两人中至少有一名女出租车司机的概率.17. (本小题满分14分)如图1,在Rt △ABC 中,∠ABC =90°,D 为AC 中点,AE BD ⊥于E (不同于点D ),延长AE 交BC 于F ,将△ABD 沿BD 折起,得到三棱锥1A BCD -,如图2所示. (Ⅰ)若M 是FC 的中点,求证:直线DM //平面1A EF ; (Ⅱ)求证:BD ⊥1A F ;(Ⅲ)若平面1A BD ⊥平面BCD ,试判断直线1A B 与直线CD 能否垂直?并说明理由.1图 图 218. (本小题满分13分)已知函数()ln f x x x =. (Ⅰ)求()f x 的单调区间;(Ⅱ) 当1k ≤时,求证:()1f x kx ≥-恒成立.19. (本小题满分14分)已知1122(,),(,)A x y B x y 是椭圆22:24C x y +=上两点,点M 的坐标为(1,0). (Ⅰ)当,A B 关于点(1,0)M 对称时,求证:121x x ==;(Ⅱ)当直线AB 经过点(0,3) 时,求证:MAB ∆不可能为等边三角形.20. (本小题满分13分)在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点)()A n :123,,,,n A A A A 与()B n :123,,,,n B B B B ,其中3n ≥,若同时满足:①两点列的起点和终点分别相同;②线段11i i i i A A B B ++⊥,其中1,2,3,,1i n =- , 则称()A n 与()B n 互为正交点列.(Ⅰ)试判断(3)A :123(0,2),(3,0),(5,2)A A A 与(3)B :123(0,2),(2,5),(5,2)B B B 是否互为正交点列,并说明理由;(Ⅱ)求证:(4)A :12340,0),3,1),6,0)(((,9,1)(A A A A 不存在正交点列(4)B ; (Ⅲ)是否存在无正交点列(5)B 的有序整数点列(5)A ?并证明你的结论.海淀区高三年级第二学期期中练习参考答案数 学 (文科) 2014.4阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
2.其它正确解法可以参照评分标准按相应步骤给分。
一、选择题:本大题共8小题,每小题5分,共40分.1.B2.B3.C4.C5.A6.D7. C8.B二、填空题:本大题共6小题,每小题5分,共30分.9. 1 10. 方案三 11.35,7 12. ③,2()817f x x x =-+ 13. 15214. π[0,)2{说明:两空的第一空3分,第二空2分;14题的第二空若写成π(0,)2不扣分}三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.解:(Ⅰ)ππππ()sin sin()6663f =-- ---------------------------------1分ππsin sin()66=-- ---------------------------------2分ππsin sin 66=+ ---------------------------------3分π2sin 16== ---------------------------------4分(Ⅱ)1()sin sin 22f x x x x =-+---------------------------------6分1sin 2x x =+sin()3x π=+ --------------------------------8分因为ππ22x -≤≤ 所以ππ5π636x -≤+≤--------------------------------10分 所以1πsin()123x -≤+≤ --------------------------------12分所以()f x 的取值范围是1[,1]2- --------------------------------13分16.解:(Ⅰ)答对题目数小于9道的人数为55人,记“答对题目数大于等于9道”为事件A55()10.45100P A =-= --------------------------------5分 (Ⅱ)设答对题目数少于8道的司机为 A 、B 、C 、D 、E ,其中A 、B 为女司机 ,选出两人包含AB 、AC 、AD 、AE 、BC 、BD 、BE 、CD 、CE 、DE 共10种情况,至少有1名女驾驶员的事件为AB 、AC 、AD 、AE 、BC 、BD 、BE 共7种.记“随机选出的两人中至少有1名女驾驶员”为事件M ,则7()0.710P M == --------------------------------13分 17.解:(Ⅰ)因为D ,M 分别为,AC BD 中点,所以DM //EF ---------------------2分 又1EF A EF ⊂平面,1DM A EF ⊄平面所以1//DM A EF 平面. -----------------------4分 (Ⅱ)因为1A E BD ⊥,EF BD ⊥且1A E EF E =所以1BD A EF ⊥平面 -------------7分 又11A F A EF ⊂平面所以1BD A F ⊥ ------------------------9分(Ⅲ)直线1A B 与直线CD 不能垂直 ---------------------------------------10分因为1A BD BCD ⊥平面平面,1A BD BCD BD = 平面平面,EF BD ⊥,EF CBD ⊂平面,所以 1EF A BD ⊥平面. ---------------------------------------12分 因为11A B A BD ⊂平面,所以1A B EF ⊥, 又因为//EF DM ,所以1A B DM ⊥. 假设1A B CD ⊥,因为1A B DM ⊥,CD DM D = ,所以1A B BCD ⊥平面, ------------------------------------------13分 所以1A B BD ⊥,这与1A BD ∠为锐角矛盾所以直线1A B 与直线CD 不能垂直. ---------------------------------------14分18.解:(Ⅰ) 定义域为()0,+∞ ------------------------------------1分'()ln 1f x x =+ ------------------------------------2分令'()0f x =,得 1ex =------------------------------------3分 '()f x 与()f x 的情况如下:分所以()f x 的单调减区间为1(0,)e ,单调增区间为1(,)e+∞--------------------------6分 (Ⅱ) 证明1:设1()ln g x x x=+,0x > ------------------------------------7分 22111'()x g x x x x-=-= -------------------------------8分 '()g x 与()g x 的情况如下:所以()(1)1g x g ≥=,即 1ln 1x x+≥在0x >时恒成立, ----------------------10分 所以,当1k ≤时,1ln x k x+≥,所以ln 1x x kx +≥,即ln 1x x kx ≥-,所以,当1k ≤时,有()1f x kx ≥-. ------------------------13分 证明2:令()()(1)ln 1g x f x kx x x kx =--=-+ ----------------------------------7分'()ln 1g x x k =+- -----------------------------------8分令'()0g x =,得1e k x -= -----------------------------------9分'()g x 与()g x 的情况如下:分()g x 的最小值为11(e )1e k k g --=- -------------------11分当1k ≤时,1e 1k -≤,所以11e 0k --≥故()0g x ≥ -----------------------------12分 即当1k ≤时,()1f x kx ≥-. ------------------------------------13分 19.解:(Ⅰ)证明:因为,A B 在椭圆上,所以2211222224,2 4.x y x y ②①ìï+=ïíï+=ïî -----------------------------------1分 因为,A B 关于点(1,0)M 对称,所以12122,0x x y y +=+=, --------------------------------2分将21212,x x y y=-=-代入②得2211(2)24x y -+= ③,由①和③消1y 解得11x =, ------------------------------------------4分 所以 121x x ==. ------------------------------------------5分 (Ⅱ)当直线AB 不存在斜率时,(0,A B -,可得AB MA ==∆ABM 不是等边三角形. -----------------------6分当直线AB 存在斜率时,显然斜率不为0.设直线AB :3y kx =+,AB 中点为00(,)N x y ,联立2224,3,x y y kx ⎧+=⎨=+⎩ 消去y 得22(12)12140k x kx +++=, ------------------7分2221444(12)143256k k k ∆=-+⋅=-由0∆>,得到274k >① -----------------------------------8分 又1221212kx x k -+=+, 1221412x x k⋅=+ 所以0002263,31212k x y kx k k -==+=++, 所以 2263(,)1212k N k k-++ -------------------------------------------10分 假设∆ABM 为等边三角形,则有⊥MN AB , 又因为(1,0)M ,所以1MN k k ⨯=-, 即2231216112k k kk +⨯=---+, ---------------------11分 化简 22310k k ++=,解得1=-k 或12k =----------------12分 这与①式矛盾,所以假设不成立.因此对于任意k 不能使得⊥MN AB ,故∆ABM 不能为等边三角形. ------------14分 20.解:(Ⅰ)有序整点列123(0,2),(3,0),(5,2)A A A 与123(0,2),(2,5),(5,2)B B B 互为正交点列.-------------------------1分理由如下:由题设可知 1223(3,2),(2,2)=-= A A A A ,1223(2,3)(33)B B B B ==-,,, 因为 12120= A A B B ,23230=A AB B所以 12122323⊥⊥A A B B A A B B ,.所以整点列123(0,2),(3,0),(5,2)A A A 与123(0,2),(2,5),(5,2)B B B 互为正交点列.----------------------------3分(Ⅱ)证明 :由题意可得 122334(3,1),(3,1)(3,1)A A A A A A ==-=,, 设点列1234,,,B B B B 是点列1234,,,A A A A 的正交点列,则可设121232343(1,3),(1,3)(1,3)B B B B B B λλλ=-==-,,123λλλ∈,,Z 因为1144,与与A B A B 相同,所以有 λλλλλλ⎧⎪⎨⎪⎩123123-+-=9①3+3+3=1②因为λλλ∈123,,Z ,方程②不成立,所以有序整点列12340,0),3,1),6,0)(((,9,1)(A A A A 不存在正交点列.----------8分 (Ⅲ)存在无正交点列的整点列(5)A . -------------------------------------------9分当5n =时,设1(,),,,i i i i i i A A a b a b +=∈Z其中,i i a b 是一对互质整数,1,2,3,4i =若有序整点列12345,,,,B B B B B 是点列12345,,,,A A A A A 的正交点列,则1(,),1,2,3,4i i i i i B B b a i λ+=-=,由441i+1=11+==∑∑i i i i i A A B B得44=1144=11,.i i i i i i i i i i b a a b λλ==⎧-=⎪⎪⎨⎪=⎪⎩∑∑∑∑①②取1,(0,0)A =3,1,2,3,4i a i =,12342,1,1,1b b b b ==-==- 由于12345,,,,B B B B B 是整点列,所以有,1,2,3,4i i λ∈=Z .等式②中左边是3的倍数,右边等于1,等式不成立,所以存在无正交点列的整点列(5)A . -----------------------------------13分。