2018年中考数学总复习经典(几何)试题(含答案)

合集下载

(完整版)2018年辽宁省沈阳市中考数学试题含答案

(完整版)2018年辽宁省沈阳市中考数学试题含答案

辽宁省沈阳市2018年中考数学试卷一、选择题<每小题3分,共24分)1.<3分)<2018•沈阳)0这个数是< )A .正数B.负数C.整数D.无理数考点:有理数.分析:根据0的意义,可得答案.解答:解:A、B、0不是正数也不是负数,故A、B错误;C、是整数,故C正确;D、0是有理数,故D错误;故选:C.点评:本题考查了有理数,注意0不是正数也不是负数,0是有理数.2.<3分)<2018•沈阳)2018年端午节小长假期间,沈阳某景区接待游客约为85000人,将数据85000用科学记数法表示为< )b5E2RGbCAPA .85×103B.8.5×104C.0.85×105D.8.5×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将85000用科学记数法表示为:8.5×104.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.<3分)<2018•沈阳)某几何体的三视图如图所示,这个几何体是< )A .圆柱B.三棱柱C.长方体D.圆锥考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为长方形可得为长方体.故选C.点评:本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间的想象能力.4.<3分)<2018•沈阳)已知一组数据:1,2,6,3,3,下列说法正确的是< )A .众数是3B.中位数是6C.平均数是4D.方差是5考点:众数;算术平均数;中位数;方差.分析:利用众数、算术平均数、中位数及方差的定义分别求解后即可确定正确的选项.解答:解:A、数据3出现2次,最多,故众数为3正确;B、排序后位于中间位置的数为3,故中位数为3,故选项错误;C、平均数为3,故选项错误;D、方差为2.4,故选项错误.故选A.点评:本题考查了众数、算术平均数、中位数及方差的定义,属于基础题,比较简单.5.<3分)<2018•沈阳)一元一次不等式x﹣1≥0的解集在数轴上表示正确的是< )A .B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式.分析:先求出不等式的解集,再在数轴上表示出来即可.解答:解:移项得,x≥1,故此不等式组的解集为:x≥1.在数轴上表示为:.故选A.点评:本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.6.<3分)<2018•沈阳)正方形是轴对称图形,它的对称轴有< )A .2条B.4条C.6条D.8条考点:轴对称图形.分析:正方形既是矩形,又是菱形,具有矩形和菱形的轴对称性,由此可知其对称轴.解答:解:正方形的对称轴是两对角线所在的直线,两对边中点所在的直线,对称轴共4条.故选:B.点评:本题考查了正方形的轴对称性.关键是明确正方形既具有矩形的轴对称性,又具有菱形的轴对称性.7.<3分)<2018•沈阳)下列运算正确的是< )A .<﹣x3)2=﹣x6B.x4+x4=x8C.x2•x3=x6D.xy4÷<﹣xy)=﹣y3考点:整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可作出判断;B、原式合并得到结果即可找出判断;C、原式利用同底数幂的乘法法则计算得到结果,即可找出判断;D、原式利用单项式除以单项式法则计算即可得到结果.解答:解:A、原式=x6,故选项错误;B、原式=2x4,故选项错误;C、原式=x5,故选项错误;D、原式=﹣y3,故选项正确.故选:D.点评:此题考查了整式的除法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.8.<3分)<2018•沈阳)如图,在△ABC中,点D在边AB上,BD=2AD,DE∥BC交AC于点E,若线段DE=5,则线段BC的长为< )p1EanqFDPwA .7.5B.10C.15D.20考点:相似三角形的判定与性质.分析:由DE∥BC,可证得△ADE∽△ABC,然后由相似三角形的对应边成比例求得答案.解答:解:∵DE∥BC,∴△ADE∽△ABC,∴=,∵BD=2AD,∴=,∵DE=5,∴=,∴DE=15.故选C.点评:此题考查了相似三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.二、填空题<每小题4分,共32分)9.<4分)<2018•沈阳)计算:= 3 .考点:算术平方根.分析:根据算术平方根的定义计算即可.解答:解:∵32=9,∴=3.点评:本题较简单,主要考查了学生开平方的运算能力.10.<4分)<2018•沈阳)分解因式:2m2+10m= 2m<m+5).考点:因式分解-提公因式法.分析:直接提取公因式2m,进而得出答案.解答:解:2m2+10m=2m<m+5).故答案为:2m<m+5).点评:此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.11.<4分)<2018•沈阳)如图,直线a∥b,直线l与a相交于点P,与直线b相交于点Q,PM⊥l于点P,若∠1=50°,则∠2= 40 °.DXDiTa9E3d考点:平行线的性质;垂线.分析:根据两直线平行,内错角相等,即可求得∠3=∠1,根据PM⊥l 于点P,则∠MPQ=90°,即可求解.解答:解:∵直线a∥b,∴∠3=∠1=50°,又∵PM⊥l于点P,∴∠MPQ=90°,∴∠2=90°﹣∠3=90°﹣50°=40°.故答案是:40.点评:本题重点考查了平行线的性质及垂直的定义,是一道较为简单的题目.12.<4分)<2018•沈阳)化简:<1+)=.考点:分式的混合运算.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,约分即可得到结果.解答:解:原式=•=•=.故答案为:.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.13.<4分)<2018•沈阳)已知一次函数y=x+1的图象与反比例函数y=的图象相交,其中有一个交点的横坐标是2,则k的值为 6 .RTCrpUDGiT考点:反比例函数与一次函数的交点问题.分析:把x=2代入一次函数的解读式,即可求得交点坐标,然后利用待定系数法即可求得k的值.解答:解:在y=x+1中,令x=2,解得y=3,则交点坐标是:<2,3),代入y=得:k=6.故答案是:6.点评:本题考查了用待定系数法确定函数的解读式,是常用的一种解题方法.同学们要熟练掌握这种方法.14.<4分)<2018•沈阳)如图,△ABC三边的中点D,E,F组成△DEF,△DEF三边的中点M,N,P组成△MNP,将△FPM与△ECD涂成阴影.假设可以随意在△ABC中取点,那么这个点取在阴影部分的概率为.5PCzVD7HxA考点:三角形中位线定理;几何概率.分析:先设阴影部分的面积是x,得出整个图形的面积是,再根据几何概率的求法即可得出答案.解答:解:∵D、E分别是BC、AC的中点,∴DE是△ABC的中位线,∴ED∥AB,且DE=AB,∴△CDE∽△CBA,∴==,∴S△CDE=S△CBA.同理,S△FPM=S△FDE=S△CBA.∴S△FPM=+S△CDE=S△CBA.则=.故答案是:.点评:本题考查了三角形中位线定理和几何概率.几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件<A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件<A)发生的概率.15.<4分)<2018•沈阳)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元<20≤x≤30,且x为整数)出售,可卖出<30﹣x)件.若使利润最大,每件的售价应为25 元.jLBHrnAILg考点:二次函数的应用.分析:本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.解答:解:设最大利润为w元,则w=<x﹣20)<30﹣x)=﹣<x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案是:25.点评:本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.16.<4分)<2018•沈阳)如图,▱ABCD中,AB>AD,AE,BE,CM,DM分别为∠DAB,∠ABC,∠BCD,∠CDA的平分线,AE与DM相交于点F,BE与CM相交于点H,连接EM.若▱ABCD的周长为42cm,FM=3cm,EF=4cm,则EM= 5 cm,AB= 13 cm.xHAQX74J0X考点:矩形的判定与性质;勾股定理的应用;平行四边形的性质;相似三角形的应用.专题:综合题.分析:由条件易证∠AEB=∠AFD=∠DMC=90°.进而可证到四边形EFMN 是矩形及∠EFM=90°,由FM=3cm,EF=4cm可求出EM.易证△ADF≌△CBN,从而得到DF=BN;易证△AFD∽△AEB,从而得到4DF=3AF.设DF=3k,则AF=4k.AE=4<k+1),BE=3<k+1),从而有AD=5k,AB=5<k+1).由▱ABCD的周长为42cm可求出k,从而求出AB长.解答:解:∵AE为∠DAB的平分线,∴∠DAE=∠EAB=∠DAB,同理:∠ABE=∠CBE=∠ABC,∠BCM=∠DCM=∠BCD,∠CDM=∠ADM=∠ADC.∵四边形ABCD是平行四边形,∴∠DAB=∠BCD,∠ABC=∠ADC,AD=BC.∴∠DAF=∠BCN,∠ADF=∠CBN.在△ADF和△CBN中,.∴△ADF≌△CBN<ASA).∴DF=BN.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB+∠ABC=180°.∴∠EAB+∠EBA=90°.∴∠AEB=90°.同理可得:∠AFD=∠DMC=90°.∴∠EFM=90°.∵FM=3,EF=4,∴ME==5<cm).∵∠EFM=∠FMN=∠FEN=90°.∴四边形EFMN是矩形.∴EN=FM=3.∵∠DAF=∠EAB,∠AFD=∠AEB,∴△AFD∽△AEB.∴=.∴=.∴4DF=3AF.设DF=3k,则AF=4k.∵∠AFD=90°,∴AD=5k.∵∠AEB=90°,AE=4<k+1),BE=3<k+1),∴AB=5<k+1).∵2<AB+AD)=42,∴AB+AD=21.∴5<k+1)+5k=21.∴k=1.6.∴AB=13<cm).故答案为:5、13.点评:本题考查了平行四边形的性质、平行线的性质、矩形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识,综合性较强.三、解答题<17、18各8分,19题10分,共26分)17.<8分)<2018•沈阳)先化简,再求值:{<a+b)2﹣<a﹣b)2}•a,其中a=﹣1,b=5.LDAYtRyKfE考点:整式的混合运算—化简求值.分析:先利用完全平方公式和整式的乘法计算化简,再进一步代入求得数值即可.解答:解:[<a+b)2﹣<a﹣b)2]•a =<a2+2ab+b2﹣a2+2ab﹣b2)•a =4ab•a=4a2b;当a=﹣1,b=5时,原式=4×<﹣1)2×5=20.点评:此题考查整式的混合运算与化简求值,注意先利用公式计算化简,再进一步代入求得数值即可.18.<8分)<2018•沈阳)如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别在边AD,BC上,且DE=CF,连接OE,OF.求证:OE=OF.Zzz6ZB2Ltk考点:全等三角形的判定与性质;矩形的性质.专题:证明题.分析:欲证明OE=OF,只需证得△ODE≌△OCF即可.解答:证明:如图,∵四边形ABCD是矩形,∴∠ADC=∠BCD=90°,AC=BD,OD=BD,OC=AC,∴OD=OC,∴∠ODC=∠OCD,∴∠ADC﹣∠ODC=∠BCD﹣∠OCD,即∠EDO=∠FCO,∴在△ODE与△OCF中,,∴△ODE≌△OCF<SAS),∴OE=OF.点评:本题考查了全等三角形的判定与性质,矩形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.<10分)<2018•沈阳)在一个不透明的盒子里有红球、白球、黑球各一个,它们除了颜色外其余都相同.小明从盒子里随机摸出一球,记录下颜色后放回盒子里,充分摇匀后,再随机摸出一球,并记录下颜色.请用列表法或画树状图<树形图)法求小明两次摸出的球颜色不同的概率.dvzfvkwMI1考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明两次摸出的球颜色不同的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有9种等可能的结果,小明两次摸出的球颜色不同的有6种情况,∴小明两次摸出的球颜色不同的概率为:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.四、每小题10分,共20分20.<10分)<2018•沈阳)2018年世界杯足球赛于北京时间6月 13日 2时在巴西开幕,某媒体足球栏目从参加世界杯球队中选出五支传统强队:意大利队、德国队、西班牙队、巴西队、阿根廷队,对哪支球队最有可能获得冠军进行了问卷调查.为了使调查结果有效,每位被调查者只能填写一份问卷,在问卷中必须选择这五支球队中的一队作为调查结果,这样的问卷才能成为有效问卷.从收集到的4800份有效问卷中随机抽取部分问卷进行了统计,绘制了统计图表的一部分如下:rqyn14ZNXI球队名称百分比意大利17%德国a西班牙10%巴西38%阿根廷0根据统计图表提供的信息,解答下列问题:<1)a= 30% ,b= 5% ;<2)根据以上信息,请直接在答题卡中补全条形统计图;<3)根据抽样调查结果,请你估计在提供有效问卷的这4800人中有多少人预测德国队最有可能获得冠军.考点:条形统计图;用样本估计总体.分析:<1)首先根据意大利有85人,占17%,据此即可求得总人数,则根据百分比的定义求得b的值,然后利用1减去其它各组的百分比即可求得a的值;<2)根据百分比的定义求得德国、西班牙的人数,即可解答;<3)利用总人数4800,乘以对应的百分比即可求解.解答:解:<1)总人数是:85÷17%=500<人),则b==5%,a=1﹣17%﹣10%﹣38%﹣5%=30%;<2)<3)4800×30%=1440<人).点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据.21.<10分)<2018•沈阳)某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率.EmxvxOtOco考点:一元二次方程的应用.专题:增长率问题.分析:设每月获得的利润的增长率是x,然后用x分别表示出2月份和3月份,根据“3月份的利润比2月份的利润增加4.8万元”列方程求解.解答:解:设这个增长率为x.依题意得:200<1+x)2﹣20<1+x)=4.8,解得 x1=0.2,x2=﹣1.2<不合题意,舍去).0.2=20%.答:这个增长率是20%.点评:本题考查了一元二次方程的应用.此题中要求学生能够根据利润率分别用x表示出每一年的利润.能够熟练运用因式分解法解方程.五、本题10分22.<10分)<2018•沈阳)如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD.SixE2yXPq5<1)求证:AD=CD;<2)若AB=10,cos∠ABC=,求tan∠DBC的值.考点:圆周角定理;勾股定理;圆心角、弧、弦的关系;解直角三角形.分析:<1)由AB为直径,OD∥BC,易得OD⊥AC,然后由垂径定理证得,=,继而证得结论;<2)由AB=10,cos∠ABC=,可求得OE的长,继而求得DE,AE的长,则可求得tan∠DAE,然后由圆周角定理,证得∠DBC=∠DAE,则可求得答案.解答:<1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴OD⊥AC,∴=,∴AD=CD;<2)解:∵AB=10,∴OA=OD=AB=5,∵OD∥BC,∴∠AOE=∠ABC,在Rt△AEO中,OE=OA•cos∠AOE=OA•cos∠ABC=5×=3,∴DE=OD=OE=5﹣3=2,∴AE===4,在Rt△AED中,tan∠DAE===,∵∠DBC=∠DAE,∴tan∠DBC=.点评:此题考查了圆周角定理、垂径定理以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.六、本题12分23.<12分)<2018•沈阳)如图,在平面直角坐标系中,四边形OABC的顶点O为坐标原点,点C在x轴的正半轴上,且BC⊥OC于点C,点A的坐标为<2,2),AB=4,∠B=60°,点D是线段OC上一点,且OD=4,连接AD.6ewMyirQFL<1)求证:△AOD是等边三角形;<2)求点B的坐标;<3)平行于AD的直线l从原点O出发,沿x轴正方向平移.设直线l被四边形OABC截得的线段长为m,直线l与x轴交点的横坐标为t.kavU42VRUs①当直线l与x轴的交点在线段CD上<交点不与点C,D重合)时,请直接写出m 与t的函数关系式<不必写出自变量t的取值范围)y6v3ALoS89②若m=2,请直接写出此时直线l与x轴的交点坐标.考点:一次函数综合题.分析:<1)过点A作AM⊥x轴于点M,根据已知条件,依据三角函数求得∠AOM=60°,根据勾股定理求得OA=4,即可求得.<2)过点A作AN⊥BC于点N,则四边形AMCN是矩形,在Rt△ABN中,根据三角函数求得AN、BN的值,从而求得OC、BC 的长,得出点B的坐标.<3)①如图3,因为∠B=60°,BC=4,所以PC=12,EM=m,因为OC=8,所以PO=4,OF=t,DF=t﹣m,所以PD=4+<t﹣m),根据△PDE∽△PCB即可求得m=t+2;②如图4,△OEF是等边三角形所以OF=EF=m=2,在Rt△PCF'中∠CF'P=60°,∠BPE'=∠CPF'=30°,所以BP=PE'÷si n∠B=,PC=4﹣=,根据勾股定理求得CF'=,所以OF'=8+=.解答:解:<1)如图2,证明:过点A作AM⊥x轴于点M,∵点A的坐标为<2,2),∴OM=2,AM=2∴在Rt△AOM中,tan∠AOM===∴∠AOM=60°由勾股定理得,OA===4∵OD=4,∴OA=OD,∴△AOD是等边三角形.<2)如图2,解:过点A作AN⊥BC于点N,∵BC⊥OC,AM⊥x轴,∴∠BCM=∠CMA=∠ANC=90°∴四边形ANCM为矩形,∴AN=MC,AM=NC,∵∠B=60°,AB=4,∴在Rt△ABN中,AN=AB•SinB=4×=6,BN=AB•CosB=4×=2∴AN=MC=6,CN=AM=2,∴OC=OM+MC=2+6=8,BC=BN+CN=2+2=4,∴点B的坐标为<8,4).<3)①如图3,m=t+2;②如图4,<2,0),<,0).点评:本题考查了等边三角形的性质,矩形的性质,直角三角函数的应用以及勾股定理的应用.七、本题12分24.<12分)<2018•沈阳)如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形 ABE.点F是对角线BD上一动点<点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.M2ub6vSTnP<1)求AO的长;<2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC=AM;<3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.考点:四边形综合题.分析:<1)在RT△OAB中,利用勾股定理OA=求解,<2)由四边形ABCD是菱形,求出△AFM为等边三角形,∠M=∠AFM=60°,再求出∠MAC=90°,在RT△ACM中tan∠M=,求出AC.<3)求出△AEM≌△ABF,利用△AEM的面积为40求出BF,在利用勾股定理AF===,得出△AFM的周长为3.解答:解:<1)∵四边形ABCD是菱形,∴AC⊥BD,OB=OD=BD,∵BD=24,∴OB=12,在RT△OAB中,∵AB=13,∴OA===5,<2)如图2,∵四边形ABCD是菱形,∴BD垂直平分AC,∴FA=FC,∠FAC=∠FCA,由已知AF=AM,∠MAF=60°,∴△AFM为等边三角形,∴∠M=∠AFM=60°,∵点M,F,C三点在同一条直线上,∴∠FAC+∠FCA=∠AFM=60°,∴∠FAC=∠FCA=30°,∴∠MAC=∠MAF+∠FAC=60°+30°=90°,在RT△ACM中∵tan∠M=,∴tan60°=,∴AC=AM.<3)如图,连接EM,∵△ABE是等边三角形,∴AE=AB,∠EAB=60°,由<1)知△AFM为等边三角形,∴AM=AF,∠MAF=60°,∴∠EAM=∠BAF,在△AEM和△ABF中,,∴△AEM≌△ABF<SAS),∵△AEM的面积为40,△ABF的高为AO ∴BF•AO=40,BF=16,∴FO=BF﹣BO=16﹣12=4AF===,∴△AFM的周长为3.点评:本题主要考查四边形的综合题,解题的关键是灵活运用等过三角形的性质及菱形的性质.八、本题14分25.<14分)<2018•沈阳)如图1,在平面直角坐标系中,二次函数y=﹣x2+12的图象与y轴交于点A,与x轴交于B,C两点<点B在点C的左侧),连接AB,AC.0YujCfmUCw<1)点B的坐标为<﹣9,0),点C的坐标为<9,0);<2)过点C作射线CD∥AB,点M是线段AB上的动点,点P是线段AC上的动点,且始终满足BM=AP<点M不与点A,点B重合),过点M作MN∥BC分别交AC于点Q,交射线CD于点N <点 Q不与点P重合),连接PM,PN,设线段AP的长为n.eUts8ZQVRd①如图2,当n<AC时,求证:△PAM≌△NCP;②直接用含n的代数式表示线段PQ的长;③若PM的长为,当二次函数y=﹣x2+12的图象经过平移同时过点P和点N 时,请直接写出此时的二次函数表达式.sQsAEJkW5T。

2018年陕西省中考数学试卷(带解析答案)

2018年陕西省中考数学试卷(带解析答案)

【解答】解:∵
t = =,
∴S1= S△AOB,S2= S△BOC. ∵点 O 是▱ ABCD 的对称中心, ∴S△AOB=S△BOC= S▱ ABCD,
t = =, hh
∴ = =.
即 S1 与 S2 之间的等量关系是 = . 故答案为 = .
三、解答题(共 11 小题,计 78 分。解答应写出过程)
∴AD= AC=4 . 在 Rt△ADB 中,AD=4 ,∠ABD=60°,
∴BD= AD= . ∵BE 平分∠ABC, ∴∠EBD=30°.
在 Rt△EBD 中,BD= ,∠EBD=30°,
∴DE= BD= ,
∴AE=AD﹣DE= . 故选:C.
第 3页(共 18页)
7.(3 分)若直线 l1 经过点(0,4),l2 经过点(3,2),且 l1 与 l2 关于 x 轴对称, 则 l1 与 l2 的交点坐标为( ) A.(﹣2,0) B.(2,0) C.(﹣6,0) D.(6,0)
第 8页(共 18页)
∴△DPA∽△ABM.
18.(5 分)如图,AB∥CD,E、F 分别为 AB、CD 上的点,且 EC∥BF,连接 AD, 分别与 EC、BF 相交于点 G,H,若 AB=CD,求证:AG=DH.
【解答】证明:∵AB∥CD、EC∥BF, ∴四边形 BFCE 是平行四边形,∠A=∠D, ∴∠BEC=∠BFC,BE=CF, ∴∠AEG=∠DFH, ∵AB=CD, ∴AE=DF, 在△AEG 和△DFH 中,
A.15° B.35° C.25° D.45° 【解答】解:∵AB=AC、∠BCA=65°, ∴∠CBA=∠BCA=65°,∠A=50°, ∵CD∥AB, ∴∠ACD=∠A=50°, 又∵∠ABD=∠ACD=50°, ∴∠DBC=∠CBA﹣∠ABD=15°, 故选:A.

【中考复习】2018届甘肃中考数学《专题聚焦》总复习练习题含答案

【中考复习】2018届甘肃中考数学《专题聚焦》总复习练习题含答案

题型一 规律探索类型一 数与式规律探索 1.(2017·百色)观察以下一列数的特点:0,1,-4,9,-16,25,…,则第11个数是(B )A .-121B .-100C .100D .121 2.(2017·武汉)按照一定规律排列的n 个数:-2、4、-8、16、-32、64、…,若最后三个数的和为768,则n 为(导学号 35694235)(B )A .9B .10C .11D .123.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x 1,第二个三角形数记为x 2,…,第n 个三角形数记为x n ,则x n +x n+1=__(n +1)2__.4.若x 是不等于1的实数,我们把11-x 称为x 的差倒数,如2的差倒数是11-2=-1,-1的差倒数为11-(-1)=12,现已知x 1=-13,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,以此类推,则x 2018=__34__.5.观察下列等式:1=12,1+3=22,1+3+5=32,1+3+5+7=42,…,则1+3+5+7+…+2015=__1016064__.6.小明写出如下一组数:15,-39,717,-1533,…,请用你发现的规律,猜想第2014个数为__-22014-122015+1__.7.(2017·云南)观察下列各个等式的规律: 第一个等式:22-12-12=1,第二个等式:32-22-12=2,第三个等式:42-32-12=3,…请用上述等式反映出的规律解决下列问题: (1)直接写出第四个等式;(2)猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的. 解:(1)第四个等式为:52-42-12=4;(2)第n 个等式为:(n +1)2-n 2-12=n;证明如下:∵(n +1)2-n 2-12=n 2+2n +1-n 2-12=2n 2=n ,∴左边=右边,等式成立.类型二 图形规律探索 1.(2017·德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图①);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图②,图③…),则图⑥中挖去三角形的个数为(导学号 35694236)(C )A .121B .362C .364D .7292.如图,在△ABC 中,BC =1,点P 1,M 1分别是AB ,AC 边的中点,点P 2,M 2分别是AP 1,AM 1的中点,点P 3,M 3分别是AP 2,AM 2的中点,按这样的规律下去,P n M n 的长为__12n__(n 为正整数).3.如图,在△ABC 中,∠A =m °,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠A 2016BC 和∠A 2016CD 的平分线交于点A 2017,则∠A 2017=__m22017__°.4.如图,是一组按照某种规律摆放成的图案,则图⑤中三角形的个数是(C )A .8B .9C .16D .17 5.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,依此规律,第11个图案需(B )根火柴.A .156B .157C .158D .1596.观察下列图形中点的个数,若按其规律再画下去,可以得到第n 个图形中所有点的个数为__(n +1)2__(用含n 的代数式表示).(导学号 35694237)类型三 与坐标系结合的规律探索1.如图,在平面直角坐标系中,将△ABO 绕点A 顺指针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…,若点A (53,0),B (0,4),则点B 2016的横坐标为(D )A .5B .12C .10070D .100802.如图,在平面直角坐标系中有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,-1)…,根据这个规律探索可得第100个点的坐标为(D )A .(14,0)B .(14,-1)C .(14,1)D .(14,2)3.如图,已知菱形OABC 的两个顶点O (0,0),B (2,2),若将菱形绕点O 以每秒45°的速度逆时针旋转,则第2017秒时,菱形两对角线交点D 的坐标为.4.(2017·赤峰)在平面直角坐标系中,点P (x ,y )经过某种变换后得到点P ′(-y +1,x +2),我们把点P ′(-y +1,x +2)叫做点P (x ,y )的终结点.已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…P n 、…,若点P 1的坐标为(2,0),则点P 2017的坐标为__(2,0)__.(导学号 35694238)5.如图,在平面直角坐标系中有一菱形OABC,且∠A=120°,点O、B在y轴上,OA =1,现在把菱形向右无滑动翻转,每次翻转60°,点B的落点依次为B1、B2、B3…,连续翻转2017次,则B2017的坐标为__(1345.5,2)__.题型二尺规作图类型一作与两条直线距离有关的点1.(2017·陕西)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)(导学号35694239)解:如解图,点P即为所求.2.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)解:如解图所示,作CD的垂直平分线,∠AOB的平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.P和P1都是所求的点.3.(2017·绥化)如图,A、B、C为某公园的三个景点,景点A和景点B之间有一条笔直的小路,现要在小路上建一个凉亭P,使景点B、景点C到凉亭P的距离之和等于景点B到景点A的距离,请用直尺和圆规在所给的图中作出点P.(不写作法和证明,只保留作图痕迹)解:如解图,连接AC,作线段AC的垂直平分线MN,直线MN交AB于点P.点P即为所求的点.4.如图,Rt△ABC中,∠C=90°,用直尺和圆规在边BC上找一点D,使D到AB的距离等于CD.(保留作图痕迹,不写作法)解:如解图,点D即为所求.类型二作角平分线和垂直平分线1.(2017·福建)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D,求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)解:BQ就是所求的∠ABC的平分线,P、Q就是所求作的点.证明:∵AD⊥BC,∴∠ADB=90°,∴∠BPD+∠PBD=90°.∵∠BAC=90°,∴∠AQP+∠ABQ=90°.∵∠ABQ=∠PBD,∴∠BPD=∠AQP.∵∠BPD=∠APQ,∴∠APQ=∠AQP,∴AP=AQ.2.(2017·赤峰)已知平行四边形ABCD.(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:CE=CF.(1)解:如解图所示,AF即为所求;(2)证明:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠4.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠4,∴CE=CF.3.如图,△ABC中,AB=AC,∠A=40°.(1)作边AB的垂直平分线MN;(保留作图痕迹,不写作法)(2)在已知的图中,若MN交AC于点D,连接BD,求∠DBC的度数.(导学号35694240)解:(1)如解图①即为所求垂直平分线MN;(2)如解图②,连接BD,∵AB的垂直平分线MN交AC于点D,∴AD=BD,∵∠A=40°,∴∠ABD=∠A=40°,∵AB=AC,∴∠ABC =∠C =12(180°-∠A)=70°,∴∠DBC =∠ABC -∠ABD =70°-40°=30°. 4.如图,已知△ABC 中,∠ABC =90°.(1)尺规作图:按下列要求完成作图(保留作图痕迹,请标明字母)①作线段AC 的垂直平分线l ,交AC 于点O ;②连接BO 并延长,在BO 的延长线上截取OD ,使得OD =OB ; ③连接DA 、DC ;(2)判断四边形ABCD 的形状,并说明理由. (1)①②③如解图所示; (2)四边形ABCD 是矩形,理由:∵在Rt △ABC 中,∠ABC =90°,BO 是AC 边上的中线, ∴BO =12AC ,∵BO =DO ,AO =CO ,∴AO =CO =BO =DO ,∴四边形ABCD 是矩形.类型三 作圆1.如图,在图中求作⊙P ,使⊙P 满足以线段MN 为弦且圆心P 到∠AOB 两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)解:如解图所示,⊙P 即为所作的圆.2.如图,已知在△ABC 中,∠A =90°.(1)请用圆规和直尺作出⊙P ,使圆心P 在AC 边上,且与AB ,BC 两边都相切(保留作图痕迹,不写作法和证明);(2)若∠B =60°,AB =3,求⊙P 的面积.解:(1)如解图所示, ⊙P 为所求作的圆; (2)∵∠B =60°, BP 平分∠ABC ,∴∠ABP =30°, ∵tan ∠ABP =AP AB, ∴AP =3, ∴S ⊙P =3π.3.(2017·舟山)如图,已知△ABC ,∠B =40°.(1)在图中,用尺规作出△ABC 的内切圆O ,并标出⊙O 与边AB ,BC ,AC 的切点D ,E ,F(保留痕迹,不必写作法);(2)连接EF ,DF ,求∠EFD 的度数. 解:(1)如解图①,⊙O 即为所求;(2)如解图②,连接OD ,OE , ∴OD ⊥AB ,OE ⊥BC , ∴∠ODB =∠OEB =90°, ∵∠B =40°,∴∠DOE =140°,∴∠EFD =70°.4.已知△ABC 中,∠A =25°,∠B =40°.(1)求作:⊙O ,使得⊙O 经过A 、C 两点,且圆心O 落在AB 边上(要求尺规作图,保留作图痕迹,不必写作法);(2)求证:BC 是(1)中所作⊙O 的切线. (1)解:作图如解图①;(2)证明:如解图②,连接OC ,∵OA =OC ,∠A =25°,∴∠BOC =50°, 又∵∠B =40°,∴∠BOC +∠B =90°, ∴∠OCB =90°,∴OC ⊥BC ,∴BC 是⊙O 的切线.5.如图,在直角三角形ABC 中,∠ABC =90°. (1)先作∠ACB 的平分线,设它交AB 边于点O ,再以点O 为圆心OB 为半径作⊙O(尺规作图,保留作图痕迹,不写作法);(2)证明:AC 是所作⊙O 的切线;(3)若BC =3,sin A =12,求△AOC 的面积.(1)解:作图如解图所示:(2)证明:过点O 作OE ⊥AC 于点E , ∵FC 平分∠ACB ,∴OB =OE ,∴AC 是所作⊙O 的切线;(3)解:∵sin A =12,∠ABC =90°,∴∠A =30°,∴∠ACO =∠OCB =12∠ACB =30°,∵BC =3,∴AC =23,BO =BC tan 30°=3³33=1, ∴S △AOC =12AC·OE =12³23³1= 3.题型三 与三角形、四边形有关的证明与计算类型一 与三角形有关的证明与计算 1.(2017·黄冈)已知:如图,∠BAC =∠DAM ,AB =AN ,AD =AM ,求证:∠B =∠ANM.证明:∵∠BAC =∠DAM ,∠BAC =∠BAD +∠DAC ,∠DAM =∠DAC +∠NAM , ∴∠BAD =∠NAM , 在△BAD 和△NAM 中,⎩⎨⎧AB =AN ,∠BAD =∠NAM ,AD =AM ,∴△BAD ≌△NAM(SAS ),∴∠B =∠ANM. 2.(2017·孝感)如图,已知AB =CD ,AE ⊥BD ,CF ⊥BD ,垂足分别为E ,F ,BF =DE ,求证:AB ∥CD.证明:∵AE ⊥BD , CF ⊥BD ,∴∠AEB =∠CFD =90°, ∵BF =DE ,∴BF +EF =DE +EF , ∴BE =DF.在Rt △AEB 和Rt △CFD 中,⎩⎨⎧AB =CD ,BE =DF ,∴Rt △AEB ≌Rt △CFD(HL ), ∴∠B =∠D ,∴AB ∥CD. 3.(2017·连云港)如图,已知等腰三角形ABC 中,AB =AC ,点D 、E 分别在边AB 、AC 上,且AD =AE ,连接BE 、CD ,交于点F.(1)判断∠ABE 与∠ACD 的数量关系,并说明理由;(2)求证:过点A 、F 的直线垂直平分线段BC.(1)解:∠ABE =∠ACD ;理由如下:在△ABE 和△ACD 中,⎩⎨⎧AB =AC ,∠A =∠A ,AE =AD ,∴△ABE ≌△ACD(SAS ),∴∠ABE =∠ACD ; (2)证明:∵AB =AC , ∴∠ABC =∠ACB ,由(1)可知∠ABE =∠ACD , ∴∠FBC =∠FCB , ∴FB =FC , ∵AB =AC ,∴点A 、F 均在线段BC 的垂直平分线上,即直线AF 垂直平分线段BC. 4.(2017·荆门)已知:如图,在Rt △ACB 中,∠ACB =90°,点D 是AB 的中点,点E 是CD 的中点,过点C 作CF ∥AB 交AE 的延长线于点F.(1)求证:△ADE ≌△FCE ;(2)若∠DCF =120°,DE =2,求BC 的长.(1)证明:∵点E 是CD 的中点, ∴DE =CE , ∵AB ∥CF ,∴∠BAF =∠AFC , 在△ADE 与△FCE 中,⎩⎨⎧∠DAF =∠AFC ,∠AED =∠FEC ,DE =CE ,∴△ADE ≌△FCE(AAS ); (2)解:由(1)得,CD =2DE , ∵DE =2,∴CD =4.∵点D 为AB 的中点,∠ACB =90°, ∴AB =2CD =8,AD =CD =12AB.∵AB ∥CF ,∴∠BDC =180°-∠DCF =180°-120°=60°, ∴∠DAC =∠ACD =12∠BDC =12³60°=30°,∴BC =12AB =12³8=4.5.(2017·重庆A )在△ABM 中,∠ABM =45°,AM ⊥BM ,垂足为M ,点C 是BM 延长线上一点,连接AC.(1)如图①,若AB =32,BC =5,求AC 的长;(2)如图②,点D 是线段AM 上一点,MD =MC ,点E 是△ABC 外一点,EC =AC ,连接ED 并延长交BC 于点F ,且点F 是线段BC 的中点,求证:∠BDF =∠CEF.(导学号 35694241)(1)解:AC =13;(2)证明:如解图,延长EF 到点G ,使得FG =EF ,连接BG. ∵DM =MC ,∠BMD =∠AMC , BM =AM ,∴△BMD ≌△AMC(SAS ), ∴AC =BD ,又∵CE =AC ,∴BD =CE , ∵BF =FC ,∠BFG =∠CFE , FG =FE ,∴△BFG ≌△CFE(SAS ),∴BG =CE ,∠G =∠CEF ,∴BD =CE =BG ,∴∠BDG =∠G =∠CEF. 6.(2017·呼和浩特)如图,等腰三角形ABC 中,BD ,CE 分别是两腰上的中线. (1)求证:BD =CE ;(2)设BD 与CE 相交于点O ,点M ,N 分别为线段BO 和CO 的中点,当△ABC 的重心到顶点A 的距离与底边长相等时,判断四边形DEMN 的形状,无需说明理由.(1)证明:由题意得,AB =AC , ∵BD ,CE 分别是两腰上的中线, ∴AD =12AC ,AE =12AB ,∴AD =AE ,在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠A =∠A ,AD =AE ,∴△ABD ≌△ACE(SAS ).∴BD =CE ; (2)解:四边形DEMN 是正方形,证明:略7.△ABC 的三条角平分线相交于点I ,过点I 作DI ⊥IC ,交AC 于点D. (1)如图①,求证:∠AIB =∠ADI ;(2)如图②,延长BI ,交外角∠ACE 的平分线于点F. ①判断DI 与CF 的位置关系,并说明理由; ②若∠BAC =70°,求∠F 的度数.(1)证明:∵AI 、BI 分别平分∠BAC ,∠ABC , ∴∠BAI =12∠BAC ,∠ABI =12∠ABC ,∴∠BAI +∠ABI =12(∠BAC +∠ABC)=12(180°-∠ACB)=90°-12∠ACB ,∴在△ABI 中,∠AIB =180°-(∠BAI +∠ABI)=180°-(90°-12∠ACB)=90°+12∠ACB ,∵CI 平分∠ACB ,∴∠DCI =12∠ACB ,∵DI ⊥IC ,∴∠DIC =90°,∴∠ADI =∠DIC +∠DCI =90°+12∠ACB ,∴∠AIB =∠ADI ;(2)解:①结论:DI ∥CF.理由:∵∠IDC =90°-∠DCI =90°-12∠ACB ,∵CF 平分∠ACE ,∴∠ACF =12∠ACE =12(180°-∠ACB)=90°-12∠ACB ,∴∠IDC =∠ACF ,∴DI ∥CF ;②∵∠ACE =∠ABC +∠BAC ,∴∠ACE -∠ABC =∠BAC =70°, ∵∠FCE =∠FBC +∠F , ∴∠F =∠FCE -∠FBC ,∵∠FCE =12∠ACE ,∠FBC =12∠ABC ,∴∠F =12∠ACE -12∠ABC =12(∠ACE -∠ABC)=35°.8.(8分)(2017·北京)在等腰直角△ABC 中,∠ACB =90°,P 是线段BC 上一动点(与点B 、C 不重合),连接AP ,延长BC 至点Q ,使得CQ =CP ,过点Q 作QH ⊥AP 于点H ,交AB 于点M.(1)若∠PAC =α,求∠AMQ 的大小(用含α的式子表示);(2)用等式表示线段MB 与PQ 之间的数量关系,并证明.(导学号 35694242)解:(1)∠AMQ =45°+α;理由如下:∵∠PAC =α,△ACB 是等腰直角三角形, ∴∠BAC =∠B =45°,∠PAB =45°-α, ∵QH ⊥AP , ∴∠AHM =90°, ∴∠AMQ =180°-∠AHM -∠PAB =45°+α;(2)PQ =2MB.理由如下:如解图,连接AQ ,作ME ⊥QB , ∵AC ⊥QP ,CQ =CP , ∴∠QAC =∠PAC =α, ∴∠QAM =45°+α=∠AMQ ,∴AP =AQ =QM , 在△APC 和△QME 中,⎩⎨⎧∠MQE =∠PAC ,∠ACP =∠QEM ,AP =QM ,∴△APC ≌△QME(AAS ),∴PC =ME , ∴△MEB 是等腰直角三角形,∴12PQ =22MB ,∴PQ=2MB.类型二 与四边形有关的证明与计算1.在▱ABCD 中,点E 、F 分别在AB 、CD 上,且AE =CF. (1)求证:△ADE ≌△CBF ;(2)若DF =BF ,求证:四边形DEBF 为菱形.证明:(1)∵四边形ABCD 是平行四边形, ∴AD =BC ,∠A =∠C , 在△ADE 和△CBF 中,⎩⎨⎧AD =BC ,∠A =∠C ,AE =CF ,∴△ADE ≌△CBF(SAS );(2)∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD , ∵AE =CF ,∴DF =EB ,∴四边形DEBF 是平行四边形,又∵DF =FB ,∴四边形DEBF 为菱形.2.如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F ,E 为四边形ABCD 外一点,且∠ADE =∠BAD ,AE ⊥AC.(1)求证:四边形ABDE 是平行四边形;(2)如果DA 平分∠BDE ,AB =5,AD =6,求AC 的长. (导学号 35694243)(1)证明:∵AE ⊥AC ,BD 垂直平分AC , ∴AE ∥BD ,∵∠ADE =∠BAD , ∴DE ∥AB ,∴四边形ABDE 是平行四边形; (2)解:∵DA 平分∠BDE , ∴∠BAD =∠ADB , ∴AB =BD =5,设BF =x ,则52-x 2=62-(5-x)2, 解得x =75,∴AF =AB 2-BF 2=245,∴AC =2AF =485. 3.(2017·上海)已知:如图,四边形ABCD 中,AD ∥BC ,AD =CD ,E 是对角线BD 上一点,且EA =E C .(1)求证:四边形ABCD 是菱形;(2)如果BE =BC ,且∠CBE ∶∠BCE =2∶3,求证:四边形ABCD 是正方形.证明:(1)在△ADE 和△CDE 中,⎩⎨⎧AD =CD ,DE =DE ,EA =EC ,∴△ADE ≌△CDE(SSS ), ∴∠ADE =∠CDE ,∵AD ∥BC ,∴∠ADE =∠CBD , ∴∠CDE =∠CBD ,∴BC =CD , ∵AD =CD ,∴BC =AD ,∴四边形ABCD 为平行四边形,∵AD =CD ,∴四边形ABCD 是菱形; (2)∵BE =BC ,∴∠BCE =∠BEC , ∵∠CBE ∶∠BCE =2∶3, ∴∠CBE =180°³22+3+3=45°,∵四边形ABCD 是菱形,∴∠ABE =45°, ∴∠ABC =90°,∴四边形ABCD 是正方形.4.如图,在▱ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于点F ,连接BE ,∠F =45°.(1)求证:四边形ABCD 是矩形;(2)若AB =14,DE =8,求sin ∠AEB 的值.(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠DAF =∠F =45°.∵AE 是∠BAD 的平分线, ∴∠EAB =∠DAE =45°, ∴∠DAB =90°,又∵四边形ABCD 是平行四边形, ∴四边形ABCD 是矩形;(2)解:如解图,过点B 作BH ⊥AE 于点H , ∵四边形ABCD 是矩形, ∴AB =CD ,AD =BC , ∠DCB =∠D =90°,∵AB =14,DE =8,∴CE =6. 在Rt △ADE 中,∠DAE =45°, ∴AD =DE =8,∴BC =8. 在Rt △BCE 中,由勾股定理得BE =BC 2+CE 2=10, 在Rt △AHB 中,∠HAB =45°, ∴BH =AB·sin 45°=72, ∵在Rt △BHE 中,∠BHE =90°, ∴sin ∠AEB =BH BE =7210.5.(2017·大庆)如图,以BC 为底边的等腰△ABC ,点D ,E ,G 分别在BC ,AB ,AC 上,且EG ∥BC ,DE ∥AC ,延长GE 至点F ,使得BE =BF.(1)求证:四边形BDEF 为平行四边形; (2)当∠C =45°,BD =2时,求D ,F 两点间的距离.(导学号 35694244) (1)证明:∵△ABC 是等腰三角形, ∴∠ABC =∠C ,∵EG ∥BC ,DE ∥AC , ∴∠AEG =∠ABC =∠C ,∴四边形CDEG 是平行四边形, ∴∠DEG =∠C , ∵BE =BF ,∴∠BFE =∠BEF =∠AEG =∠ABC , ∴∠F =∠DEG ,∴BF ∥DE , ∴四边形BDEF 为平行四边形; (2)解:∵∠C =45°,∴∠ABC =∠BFE =∠BEF =45°, ∴△BDE 、△BEF 是等腰直角三角形,∴BF =BE =22BD =2, 作FM ⊥BD 于点M ,连接DF ,如解图所示,则△BFM 是等腰直角三角形, ∴FM =BM =22BF =1, ∴DM =3,在Rt △DFM 中,由勾股定理得: DF =12+32=10,即D ,F 两点间的距离为10. 6.(2017·张家界)如图,在平行四边形ABCD 中,边AB 的垂直平分线交AD 于点E ,交CB 的延长线于点F ,连接AF ,BE.(1)求证:△AGE ≌△BGF ;(2)试判断四边形AFBE 的形状,并说明理由.(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠AEG =∠BFG , ∵EF 垂直平分AB , ∴AG =BG ,在△AGE 和△BGF 中,⎩⎨⎧∠AEG =∠BFG ,∠AGE =∠BGF ,AG =BG ,∴△AGE ≌△BGF(AAS );(2)解:四边形AFBE 是菱形,理由如下: ∵△AGE ≌△BGF ,∴AE =BF ,∵AD ∥BC ,∴四边形AFBE 是平行四边形, 又∵EF ⊥AB ,∴四边形AFBE 是菱形.7.如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =CO ,BO =DO ,且∠ABC +∠ADC =180°.(1)求证:四边形ABCD 是矩形.(2)若∠ADF ∶∠FDC =3∶2,DF ⊥AC ,则∠BDF 的度数是多少?(1)证明:∵AO =CO ,BO =DO∴四边形ABCD 是平行四边形, ∴∠ABC =∠ADC ,∵∠ABC +∠ADC =180°, ∴∠ABC =∠ADC =90°,∴四边形ABCD 是矩形;(2)解:∵∠ADC =90°,∠ADF ∶∠FDC =3∶2, ∴∠FDC =36°,∵DF ⊥AC ,∴∠DCO =90°-36°=54°, ∵四边形ABCD 是矩形, ∴OC =OD ,∴∠ODC =54°,∴∠BDF =∠ODC -∠FDC =18°. 8.(2017·娄底)如图,在▱ABCD 中,各内角的平分线分别相交于点E ,F ,G ,H. (1)求证:△ABG ≌△CDE ;(2)猜一猜:四边形EFGH 是什么样的特殊四边形?证明你的猜想; (3)若AB =6,BC =4,∠DAB =60°,求四边形EFGH 的面积.(1)证明:∵GA 平分∠BAD ,EC 平分∠BCD , ∴∠BAG =12∠BAD ,∠DCE =12∠DCB ,∵在▱ABCD 中,∠BAD =∠DCB ,AB =CD ,∴∠BAG =∠DCE ,同理可得,∠ABG =∠CDE ,∵在△ABG 和△CDE 中,⎩⎨⎧∠BAG =∠DCE ,AB =CD ,∠ABG =∠CDE ,∴△ABG ≌△CDE(ASA ); (2)解:四边形EFGH 是矩形.证明:∵GA 平分∠BAD ,GB 平分∠ABC , ∴∠GAB =12∠BAD ,∠GBA =12∠ABC ,∵在▱ABCD 中,∠DAB +∠ABC =180°,∴∠GAB +∠GBA =12(∠DAB +∠ABC)=90°,即∠AGB =90°,同理可得,∠DEC =90°,∠AHD =90°=∠EHG , ∴四边形EFGH 是矩形;(3)解:依题意得:∠BAG =12∠BAD =30°,∵AB =6,∴BG =12AB =3,AG =33=CE ,∵BC =4,∠BCF =12∠BCD =30°,∴BF =12BC =2,CF =23,∴EF =33-23=3,GF =3-2=1, ∴S 矩形EFGH 的面积=EF·GF = 3.题型四解直角三角形的实际应用1.(2017·镇江)如图,小明在教学楼A处分别观测对面实验楼CD底部的俯角为45°,顶部的仰角为37°,已知教学楼和实验楼在同一平面上,观测点距地面的垂直高度AB为15 m,求实验楼的垂直高度即CD长.(精确到1 m,参考值:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)解:作AE⊥CD于E,如解图,∵AB=15 m,∴DE=AB=15 m,∵∠DAE=45°,∴AE=DE=15 m,在Rt△ACE中,tan∠CAE=CE AE,则CE=AE·tan37°=15³0.75≈11 m,∴CD=CE+DE=11+15=26 m.答:实验楼的垂直高度CD长为26 m.2.(2017·宜宾)如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边取两点B、C测得∠α=30°,∠β=45°,量得BC长为100米,求河的宽度.(结果保留根号)解:过点A作AD⊥BC于点D,如解图,∵∠β=45°,∠ADC=90°,∴AD=DC,设AD=DC=x m,则tan 30°=x x +100=33, 解得x =50(3+1).答:河的宽度为50(3+1) m . 3.(2017·宿迁)如图所示,飞机在一定高度上沿水平直线飞行,先在点A 处测得正前方小岛C 的俯角为30°,面向小岛方向继续飞行10 km 到达B 处,发现小岛在其正后方,此时测得小岛的俯角为45°,如果小岛高度忽略不计,求飞机飞行的高度.(结果保留根号)(导学号 35694245)解:过点C 作CD ⊥AB 于点D ,如解图,设CD =x , ∵∠CBD =45°, ∴BD =CD =x ,在Rt △ACD 中, ∵tan ∠CAD =CDAD,∴AD =CD tan ∠CAD =x tan 30°=x33=3x ,由AD +BD =AB 可得3x +x =10,解得x =53-5.答:飞机飞行的高度为(53-5) km . 4.(2016·菏泽)南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B 处时,测得该岛位于正北方向20(1+3)海里的C 处,为了防止某国海巡警干扰,就请求我A 处的渔监船前往C 处护航,已知C 位于A 处的北偏东45°方向上,A 位于B 的北偏西30°的方向上,求A 、C 之间的距离.解:如解图,作AD ⊥BC ,垂足为D ,由题意得,∠ACD =45°, ∠ABD =30°.设CD=x,在Rt△ACD中,可得AD=x,在Rt△ABD中,可得BD=3x,又∵BC=20(1+3),CD+BD=BC,即x+3x=20(1+3),解得:x=20,∴AC=2x=202(海里).答:A、C之间的距离为20 2 海里.5.(2017·荆门)金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高,他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45°,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60°,已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30°,且点E、F、D在同一条直线上,求旗杆AB的高度.(计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73)解:如解图,过点C作CM⊥AB于M.则四边形MEDC是矩形,∴ME=DC=3,CM=ED,在Rt△AEF中,∠AFE=60°,设EF=x,则AF=2x,AE=3x,在Rt△FCD中,CD=3,∠CFD=30°,∴DF=33,在Rt △AMC 中, ∠ACM =45°,∴∠MAC =∠ACM =45°,∴MA =MC , ∵ED =CM ,∴AM =ED ,∵AM =AE -ME ,ED =EF +DF , ∴3x -3=x +33,解得x =6+33, ∴AE =3(6+33)=63+9,∴AB =AE -BE =9+63-1≈18.4米. 答:旗杆AB 的高度约为18.4米. 6.(2016·贺州)如图,是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面10米处有一建筑物HQ ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角∠BDC =30°,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数.参考数据:2≈1.414,3≈1.732)(导学号 35694246)解:由题意得,AH =10米,BC =10米, 在Rt △ABC 中,∠CAB =45°, ∴AB =BC =10,在Rt △DBC 中,∠CDB =30°, ∴DB =BCtan ∠CDB=103,∴DH =AH -AD =AH -(DB -AB)=10-103+10=20-103≈2.7(米), ∵2.7米<3米,∴该建筑物需要拆除.7.(2017·鄂州)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M 处出发,向前走3米到达A 处,测得树顶端E 的仰角为30°,他又继续走下台阶到达C 处,测得树的顶端E 的仰角是60°,再继续向前走到大树底D 处,测得食堂楼顶N 的仰角为45°.已知A 点离地面的高度AB =2米,∠BCA =30°,且B 、C 、D 三点在同一直线上.(1)求树DE 的高度;(2)求食堂MN 的高度. 解:(1)如解图,设DE =x ,∵AB =DF =2,∴EF =DE -DF =x -2, ∵∠EAF =30°, ∴AF =EFtan ∠EAF =x -233=3(x -2),又∵CD =DE tan ∠DCE =x 3=33x ,BC =AB tan ∠ACB =233=23,∴BD =BC +CD =23+33x , 由AF =BD 可得3(x -2)=23+33x , 解得:x =6,∴树DE 的高度为6米;(2)延长NM 交DB 延长线于点P ,如解图,则AM =BP =3, 由(1)知CD =33x =33³6=23,BC =23, ∴PD =BP +BC +CD =3+23+23=3+43,∵∠NDP =45°,且MP =AB =2, ∴NP =PD =3+43,∴NM =NP -MP =3+43-2=1+43, ∴食堂MN 的高度为1+4 3 米.题型五 与圆有关的证明与计算类型一 与切线判定有关的证明与计算1.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别与BC 、AC 交于点D 、E ,过点D 作DF ⊥AC 于点F.(1)求证:DF 是⊙O 的切线;(2)若⊙O 的半径为2,BC =22,求DF 的长. (导学号 35694247)(1)证明:连接OD ,如解图,∵OB =OD ,∴∠ABC =∠ODB , ∵AB =AC ,∴∠ABC =∠ACB , ∴OD ∥AC ,∵DF ⊥AC ,∴DF ⊥OD ,∴DF 是⊙O 的切线;(2)解:连接AD ,如解图, ∵AB 是⊙O 的直径, ∴AD ⊥BC ,又∵AB =AC ,∴BD =DC =2,∴AD =AB 2-BD 2=42-(2)2=14, ∵DF ⊥AC ,∴△ADC ∽△DFC ,∴AD DF =AC DC ,∴14DF =42,∴DF =72. 2.如图,在△ABC 中,以BC 为直径的⊙O 交AC 于点D ,∠ABD =∠ACB. (1)求证:AB 是⊙O 的切线;(2)若点E 是BC 上一点,已知BE =4,tan ∠AEB =53,AB ∶BC =2∶3,求⊙O 的直径.(1)证明:∵BC 是直径, ∴∠BDC =90°,∴∠ACB +∠DBC =90°,∵∠ABD =∠ACB , ∴∠ABD +∠DBC =90°, ∴∠ABC =90°, ∴AB ⊥BC , ∴AB 是⊙O 的切线;(2)解:在Rt △AEB 中,tan ∠AEB =53,∴AB BE =53,即AB =53BE =203, 在Rt △ABC 中,AB BC =23,∴BC =32AB =10,∴⊙O 的直径为10.3.如图,AB 为⊙O 的直径,C 为⊙O 上一点,点D 是BC ︵的中点,DE ⊥AC 于点E ,DF ⊥AB 于点F.(1)求证:DE 是⊙O 的切线; (2)若OF =2,求AC 的长度.(导学号 35694248)(1)证明:如解图①,连接OD 、AD , ∵点D 是BC ︵的中点,∴BD ︵=CD ︵,∴∠DAO =∠DAC , ∵OA =OD ,∴∠DAO =∠ODA ,图①∴∠DAC =∠ODA ,∴OD ∥AE , ∵DE ⊥AE ,∴∠AED =90°, ∴∠AED =∠ODE =90°, ∴OD ⊥DE , ∴DE 是⊙O 的切线;图②(2)解:如解图②,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵OD∥AE,∴∠DOB=∠EAB,∵∠DFO=∠ACB=90°,∴△DFO∽△BCA,∴OFAC=ODAB=12,即2AC=12,∴AC=4.4.(2017·张家界)在等腰△ABC中,AC=BC,以BC为直径的⊙O分别与AB,AC相交于点D,E,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)分别延长CB,FD,相交于点G,∠A=60°,⊙O的半径为6,求阴影部分的面积.(1)证明:连接OD,如解图所示,∵AC=BC,OB=OD,∴∠ABC=∠A,∠ABC=∠ODB,∴∠A=∠ODB,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∵OD是⊙O的半径,∴DF是⊙O的切线;(2)解:∵AC=BC,∠A=60°,∴△ABC是等边三角形,∴∠ABC=60°,∵OD=OB,∴△OBD是等边三角形,∴∠BOD =60°,∵DF ⊥OD ,∴∠ODG =90°,∴∠G =30°, ∴DG =3OD =63,∴S 阴影部分=S △ODG -S 扇形OBD =12³6³63-60π³62360=183-6π.5.(2017·安顺)如图,AB 是⊙O 的直径,C 是⊙O 上一点,OD ⊥BC 于点D ,过点C 作⊙O 的切线,交OD 的延长线于点E ,连接BE.(1)求证:BE 与⊙O 相切;(2)设OE 交⊙O 于点F ,若DF =1,BC =23,求阴影部分的面积.(1)证明:连接OC ,如解图, ∵CE 为切线,∴OC ⊥CE , ∴∠OCE =90°,∵OD ⊥BC ,∴CD =BD , 即OD 垂中平分BC , ∴EC =EB ,在△OCE 和△OBE 中,⎩⎨⎧OC =OB ,OE =OE ,EC =EB ,∴△OCE ≌△OBE ,∴∠OBE =∠OCE =90°, ∴OB ⊥BE ,∴BE 与⊙O 相切;(2)解:设⊙O 的半径为r ,则OD =r -1, 在Rt △OBD 中,BD =CD =12BC =3,∴(r -1)2+(3)2=r 2,解得r =2, ∵tan ∠BOD =BDOD =3,∴∠BOD =60°,∴∠BOC =2∠BOD =120°, 在Rt △OBE 中,BE =3OB =23, ∴S 阴影部分=S 四边形OBEC -S 扇形BOC =2S △OBE -S 扇形BOC=2³12³2³23-120π³22360=43-43π.类型二 与切线性质有关的证明与计算 1.(2017·绵阳)如图,已知AB 是⊙O 的直径,弦CD ⊥AB ,垂足为H ,与AC 平行的⊙O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N.(1)求证:CA =CN ;(2)连接OF ,若cos ∠DFA =45,AN =210,求⊙O 的直径的长度.(1)证明:连接OF ,则∠OAF =∠OFA ,如解图①所示, ∵ME 与⊙O 相切, ∴OF ⊥ME. ∵CD ⊥AB ,∴∠M +∠FOH =180°.∵∠BOF =∠OAF +∠OFA =2∠OAF ,∠FOH +∠BOF =180°, ∴∠M =2∠OAF. ∵ME ∥AC ,∴∠M =∠C =2∠OAF.∵CD ⊥AB ,∴∠ANC +∠OAF =∠BAC +∠C =90°, ∴∠ANC =90°-∠OAF ,∠BAC =90°-∠C =90°-2∠OAF , ∴∠CAN =∠OAF +∠BAC =90°-∠OAF =∠ANC , ∴CA =CN ;(2)解:连接OC ,如解图②所示. ∵cos ∠DFA =45,∠DFA =∠ACH , ∴CH AC =45. 设CH =4a ,则AC =5a ,AH =3a , ∵CA =CN ,∴NH =a ,∴AN =AH 2+NH 2=(3a )2+a 2=10a =210, ∴a =2,AH =3a =6,CH =4a =8. 设⊙O 的半径为r ,则OH =r -6,在Rt △OCH 中,OC =r ,CH =8,OH =r -6, ∴OC 2=CH 2+OH 2,r 2=82+(r -6)2, 解得:r =253,∴⊙O 的直径的长度为2r =503.2.(2017·大连)如图,AB 是⊙O 直径,点C 在⊙O 上,AD 平分∠CAB ,BD 是⊙O 的切线,AD 与BC 相交于点E.(1)求证:BD =BE ;(2)若DE =2,BD =5,求CE 的长. (导学号 35694249)(1)证明:设∠BAD =α,∵AD 平分∠BAC ,∴∠CAD =∠BAD =α,∵AB 是⊙O 的直径,点C 在⊙O 上,∴∠ACB =90°, ∴∠ABC =90°-2α,∵BD 是⊙O 的切线,∴BD ⊥AB ,∴∠DBE =2α,∠BED =∠BAD +∠ABC =90°-α, ∴∠D =180°-∠DBE -∠BED =90°-α, ∴∠D =∠BED ,∴BD =BE ;(2)解:设AD 交⊙O 于点F ,CE =x ,则AC =2x ,连接BF ,如解图, ∵AB 是⊙O 的直径, ∴∠AFB =90°,∵BD =BE ,DE =2,∴FE =FD =1,∵BD =5,∴BF =2, ∵∠BAD +∠D =90°,∠D +∠FBD =90°, ∴∠FBD =∠BAD =α,∴tan α=FD BF =12,∴AB =BF sin α=255=25,在Rt △ABC 中,由勾股定理可知(2x)2+(x +5)2=(25)2, 解得x =-5(舍去)或x =355,∴CE =355.3.(2017·南京)如图,PA ,PB 是⊙O 的切线,A ,B 为切点,连接AO 并延长,交PB 的延长线于点C ,连接PO ,交⊙O 于点D.(1)求证:PO 平分∠APC ; (2)连接DB ,若∠C =30°,求证:DB ∥AC.证明:(1)如解图,连接OB , ∵PA ,PB 是⊙O 的切线, ∴OA ⊥AP ,OB ⊥BP , 又OA =OB ,∴PO 平分∠APC ;(2)∵OA ⊥AP ,OB ⊥BP , ∴∠CAP =∠OBP =90°,∵∠C =30°, ∴∠APC =90°-30°=60°, ∵PO 平分∠APC ,∴∠OPC =12∠APC =12³60°=30°,∴∠POB =90°-∠OPC =90°-30°=60°,又∵OD =OB ,∴△ODB 是等边三角形, ∴∠OBD =60°,∴∠DBP =∠OBP -∠OBD =90°-60°=30°, ∴∠DBP =∠C ,∴DB ∥AC.4.如图,直线l 经过点A(4,0),B(0,3).(1)求直线l 的函数表达式;(2)若圆M 的半径为2,圆心M 在y 轴上,当圆M 与直线l 相切时,求点M 的坐标.(1)∵A(4,0),B(0,3),∴直线l 的解析式为:y =-34x +3;(2)作MH ⊥AB ,垂足为H ,如解图所示, ∵M 在y 轴上,∴设M(0,t),2S △ABM =BM·AO =AB·MH , ∴|3-t|³4=5³2, 解得t 1=12,t 2=112,∴M 1(0,12),M 2(0,112).题型六 二次函数与几何图形综合题类型一 探究特殊三角形的存在性问题 1.(2017·乌鲁木齐)如图,抛物线y =ax 2+bx +c(a ≠0)与直线y =x +1相交于A(-1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式;(2)点P 是抛物线上的一个动点(不与点A 、点B 重合),过点P 作直线PD ⊥x 轴于点D ,交直线AB 于点E.①当PE =2ED 时,求P 点坐标;②是否存在点P ,使△BEC 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.(导学号 35694250)解:(1)∵点B(4,m)在直线y =x +1上, ∴m =4+1=5,∴B(4,5),把A 、B 、C 三点坐标代入抛物线解析式可得 ⎩⎨⎧a -b +c =0,16a +4b +c =5,25a +5b +c =0, 解得⎩⎨⎧a =-1,b =4,c =5,∴抛物线的解析式为y =-x 2+4x +5;(2)①设P(x ,-x 2+4x +5),则E(x ,x +1),D(x ,0),则PE =|-x 2+4x +5-(x +1)|=|-x 2+3x +4|,DE =|x +1|, ∵PE =2ED ,∴|-x 2+3x +4|=2|x +1|,当-x 2+3x +4=2(x +1)时,解得x =-1或x =2,但当x =-1时,P 与A 重合不合题意,舍去,∴P(2,9);当-x 2+3x +4=-2(x +1)时,解得x =-1或x =6,但当x =-1时,P 与A 重合,不合题意,舍去,∴P(6,-7);综上可知,P 点坐标为(2,9)或(6,-7);②点P 的坐标为(34,11916)或(4+13,-413-8)或(4-13,413-8)或(0,5)时,△BEC 为等腰三角形.2.(2017·阜新)如图,抛物线y =-x 2+bx +c 的图象与x 轴交于A(-5,0),B(1,0)两点,与y 轴交于点C ,抛物线的对称轴与x 轴交于点D.(1)求抛物线的函数表达式;(2)如图①,点E(x ,y)为抛物线上一点,且-5<x<-2,过点E 作EF ∥x 轴,交抛物线的对称轴于点F ,作EH ⊥x 轴于点H ,得到矩形EHDF ,求矩形EHDF 周长的最大值;(3)如图②,点P 为抛物线对称轴上一点,是否存在点P ,使以点P ,A ,C 为顶点的三角形是直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.解:(1)把A(-5,0),B(1,0)代入y =-x 2+bx +c ,得到⎩⎨⎧-25-5b +c =0,-1+b +c =0,解得⎩⎪⎨⎪⎧b =-4,c =5.∴抛物线的函数表达式为y =-x 2-4x +5;(2)如解图①,∵抛物线的对称轴为直线x =-2,E(x ,-x 2-4x +5), ∴EH =-x 2-4x +5, EF =-2-x ,∴矩形EFDH 的周长=2(EH +EF)=2(-x 2-5x +3)=-2(x +52)2+372,∵-2<0,∴x =-52时,矩形EHDF 的周长最大,最大值为372;(3) 如解图②,设P(-2,m),①当∠ACP =90°时, AC 2+PC 2=PA 2,∴(52)2+22+(m -5)2=32+m 2, 解得m =7, ∴P 1(-2,7).②当∠CAP =90°时, AC 2+PA 2=PC 2,∴(52)2+32+m 2=22+(m -5)2, 解得m =-3,∴P 2(-2,-3).③当∠APC =90°时,PA 2+PC 2=AC 2,∴32+m 2+22+(m -5)2=(52)2, 解得m =6或m =-1,∴P 3(-2,6),P 4(-2,-1),综上所述,满足条件的点P 坐标为(-2,7)或(-2,-3)或(-2,6)或(-2,-1). 3.(2017·重庆A )如图,在平面直角坐标系中,抛物线y =33x 2-233x -3与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E(4,n)在抛物线上.(1)求直线AE 的解析式;(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE.当△PCE 的面积最大时,连接CD ,CB ,点K 是线段CB 的中点,点M 是CP 上的一点,点N 是CD 上的一点,求KM +MN +NK 的最小值;(3)点G 是线段CE 的中点,将抛物线y =33x 2-233x -3沿x 轴正方向平移得到抛物线y′,y ′经过点D ,y ′的顶点为点F.在新抛物线y′的对称轴上,是否存在点Q ,使得△FGQ为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.解:(1)直线AE 的解析式为y =33x +33.(2)设直线CE 的解析式为y =mx -3, ∴直线CE 的解析式为y =233x - 3. 过点P 作PF ∥y 轴,交CE 于点F.如解图①, 设点P 的坐标为(x ,33x 2-233x -3), 则点F(x ,233x -3),则FP =-33x 2+433x.∴△EPC 的面积=-233x 2+833x.∴当x =2时,△EPC 的面积最大.∴P(2,-3).如解图②,作点K 关于CD 和CP 的对称点G 、H ,连接G 、H 交CD 和CP 于N 、M.∵K 是CB 的中点,∴K(32,32).∴tan ∠KCP =33.∵OD =1,OC =3, ∴tan ∠OCD =33. ∴∠OCD =∠KCP =30°. ∴∠KCD =30°.∵K 是BC 的中点,∠OCB =60°, ∴OC =CK.∴点O 与点K 关于CD 对称. ∴点G 与点O 重合. ∴点G(0,0).∵点H 与点K 关于CP 对称,∴点H 的坐标为(32,-332).∴KM +MN +NK =MH +MN +GN.当点G 、N 、M 、H 在一条直线上时,KM +MN +NK 有最小值,最小值=GH. ∴GH =(32)2+(332)2=3. ∴KM +MN +NK 的最小值为3.(3)点Q 的坐标为(3,-43+2213)或(3,-43-2213)或(3,23)或(3,-235).类型二 探究特殊四边形的存在性问题1.(2017·宜宾)如图,抛物线y =-x 2+bx +c 与x 轴分别交于A(-1,0),B(5,0)两点. (1)求抛物线的解析式;(2)在第二象限内取一点C ,作CD 垂直x 轴于点D ,连接AC ,且AD =5,CD =8,将Rt △ACD 沿x 轴向右平移m 个单位,当点C 落在抛物线上时,求m 的值;(3)在(2)的条件下,当点C 第一次落在抛物线上记为点E ,点P 是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q ,使以点B 、E 、P 、Q 为顶点的四边形是平行四边形?若存在,请求出点Q 的坐标;若不存在,请说明理由.(导学号 35694251)解:(1)抛物线的解析式为y =-x 2+4x +5; (2)∵AD =5,且OA =1,∴OD =6, 又∵CD =8,∴C(-6,8),设平移后的点C 的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可得8=-x 2+4x +5,解得x =1或x =3,∴C ′点的坐标为(1,8)或(3,8), ∵C(-6,8),∴当点C 落在抛物线上时,向右平移了7或9个单位,∴m 的值为7或9;(3)Q 点的坐标为(-2,-7)或(6,-7)或(4,5)时,以点B 、E 、P 、Q 四点为顶点的四边形为平行四边形.。

2018年广东省深圳市中考数学试卷(含答案解析版)

2018年广东省深圳市中考数学试卷(含答案解析版)

2018年广东省深圳市中考数学试卷(含答案解析版)12.(3.00分)(2018•深圳)如图,A、B是函数y=12x上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9= .14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.(3.00分)(2018•深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.16.(3.00分)(2018•深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=√2,则AC= .三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为人,a= ,b= .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.23.(9.00分)(2018•深圳)已知顶点为A抛物线y=a(x−12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.2018年广东省深圳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)(2018•深圳)6的相反数是()A.﹣6 B.−16 C.16D.6【考点】14:相反数.【专题】1 :常规题型.【分析】直接利用相反数的定义进而分析得出答案.【解答】解:6的相反数是:﹣6.故选:A.【点评】此题主要考查了相反数的定义,正确把握相关定义是解题关键.2.(3.00分)(2018•深圳)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×107【考点】1I:科学记数法—表示较大的数.【专题】1 :常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:260000000用科学记数法表示为2.6×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)(2018•深圳)图中立体图形的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55:几何图形.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.【点评】本题考查了三视图,关键是根据学生的思考能力和对几何体三种视图的空间想象能力进行解答.4.(3.00分)(2018•深圳)观察下列图形,是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【专题】27 :图表型.【分析】根据中心对称图形的概念对各选项分析判断即可得解【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3.00分)(2018•深圳)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,10【考点】W5:众数;W6:极差.【专题】1 :常规题型.【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.【解答】解:众数为85,极差:85﹣75=10,故选:A.【点评】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.6.(3.00分)(2018•深圳)下列运算正确的是()A.a2•a3=a6 B.3a﹣a=2a C.a8÷a4=a2D.√a+√b=√ab【考点】35:合并同类项;46:同底数幂的乘法;48:同底数幂的除法;78:二次根式的加减法.【专题】1 :常规题型.【分析】直接利用二次根式加减运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a﹣a=2a,正确;C、a8÷a4=a4,故此选项错误;D、√a+√b无法计算,故此选项错误.故选:B.【点评】此题主要考查了二次根式加减运算以及同底数幂的乘除运算、合并同类项,正确掌握运算法则是解题关键.7.(3.00分)(2018•深圳)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)【考点】F8:一次函数图象上点的坐标特征;F9:一次函数图象与几何变换.【专题】53:函数及其图象.【分析】根据平移的性质得出解析式,进而解答即可.【解答】解:∵该直线向上平移3的单位,∴平移后所得直线的解析式为:y=x+3;把x=2代入解析式y=x+3=5,故选:D.【点评】本题考查的是一次函数的图象与几何变换,熟知一次函数图象平移的法则是解答此题的关键.8.(3.00分)(2018•深圳)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°【考点】JA:平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】依据两直线平行,同位角相等,即可得到正确结论.【解答】解:∵直线a,b被c,d所截,且a∥b,∴∠3=∠4,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.9.(3.00分)(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .{x +y =708x +6y =480 B .{x +y =706x +8y =480 C .{x +y =4806x +8y =70D .{x +y =4808x +6y =70【考点】99:由实际问题抽象出二元一次方程组.【专题】1 :常规题型.【分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x 个,小房间有y 个,由题意得:{x +y =708x +6y =480,故选:A .【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题意,找出题目中的等量关系.10.(3.00分)(2018•深圳)如图,一把直尺,60°的直角三角板和光盘如图摆放,A 为60°角与直尺交点,AB=3,则光盘的直径是( )A .3B .3√3C .6D .6√3【考点】MC :切线的性质.【专题】1 :常规题型;55A :与圆有关的位置关系.【分析】设三角板与圆的切点为C ,连接OA 、OB ,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan∠OAB可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=ABtan∠OAB=3√3,∴光盘的直径为6√3,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.11.(3.00分)(2018•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根【考点】H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【专题】53:函数及其图象.【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,进而解答即可.【解答】解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b>0,错误;C、3a+c<0,正确;D、ax2+bx+c﹣3=0无实数根,错误;故选:C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab <0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3.00分)(2018•深圳)如图,A、B是函数y=12x上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④【考点】GB:反比例函数综合题.【专题】15 :综合题.【分析】由点P 是动点,进而判断出①错误,设出点P 的坐标,进而得出AP ,BP ,利用三角形面积公式计算即可判断出②正确,利用角平分线定理的逆定理判断出③正确,先求出矩形OMPN=4,进而得出mn=4,最后用三角形的面积公式即可得出结论.【解答】解:∵点P 是动点,∴BP 与AP 不一定相等,∴△BOP 与△AOP 不一定全等,故①不正确;设P (m ,n ),∴BP ∥y 轴,∴B (m ,12m), ∴BP=|12m ﹣n|,∴S △BOP =12|12m ﹣n|×m=12|12﹣mn|∵PA ∥x 轴,∴A (12n ,n ),∴AP=|12n ﹣m|,∴S △AOP =12|12n ﹣m|×n=12|12﹣mn|,∴S △AOP =S △BOP ,故②正确;如图,过点P 作PF ⊥OA 于F ,PE ⊥OB 于E ,∴S △AOP =12OA ×PF ,S △BOP =12OB ×PE ,∵S △AOP =S △BOP ,∴OB ×PE=OA ×PE ,∵OA=OB ,∴PE=PF ,∵PE ⊥OB ,PF ⊥OA ,∴OP 是∠AOB 的平分线,故③正确;如图1,延长BP 交x 轴于N ,延长AP 交y 轴于M ,∴AM ⊥y 轴,BN ⊥x 轴,∴四边形OMPN 是矩形,∵点A ,B 在双曲线y=12x上,∴S △AMO =S △BNO =6, ∵S △BOP =4,∴S △PMO =S △PNO =2,∴S 矩形OMPN =4,∴mn=4, ∴m=4n, ∴BP=|12m﹣n|=|3n ﹣n|=2|n|,AP=|12n﹣m|=8|n|,∴S △APB=12AP ×BP=12×2|n|×8|n|=8,故④错误;∴正确的有②③,故选:B .【点评】此题是反比例函数综合题,主要考查了反比例函数的性质,三角形面积公式,角平分线定理逆定理,矩形的判定和性质,正确作出辅助线是解本题的关键.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9= (a+3)(a﹣3).【考点】54:因式分解﹣运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:12.【考点】X4:概率公式.【专题】17 :推理填空题.【分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.【解答】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:3 6=1 2,故答案为:1 2.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.15.(3.00分)(2018•深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是8 .【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【专题】11 :计算题.【分析】根据正方形的性质得到AC=AF ,∠CAF=90°,证明△CAE ≌△AFB ,根据全等三角形的性质得到EC=AB=4,根据三角形的面积公式计算即可.【解答】解:∵四边形ACDF 是正方形,∴AC=AF ,∠CAF=90°,∴∠EAC+∠FAB=90°, ∵∠ABF=90°, ∴∠AFB+∠FAB=90°, ∴∠EAC=∠AFB , 在△CAE 和△AFB 中,{∠CAE =∠AFB∠AEC =∠FBA AC =AF ,∴△CAE ≌△AFB ,∴EC=AB=4,∴阴影部分的面积=12×AB ×CE=8,故答案为:8.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.16.(3.00分)(2018•深圳)在Rt △ABC 中,∠C=90°,AD 平分∠CAB ,BE 平分∠ABC ,AD 、BE 相交于点F ,且AF=4,EF=√2,则AC= 8√105.【考点】IJ :角平分线的定义;KQ :勾股定理;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】先求出∠EFG=45°,进而利用勾股定理即可得出FG=EG=1,进而求出AE ,最后判断出△AEF ∽△AFC ,即可得出结论.【解答】解:如图,∵AD ,BE 是分别是∠BAC 和∠ABC 的平分线,∴∠1=∠2,∠3=∠4, ∵∠ACB=90°,∴2(∠2+∠4)=90°,∴∠2+∠4=45°,∴∠EFG=∠2+∠4=45°,过点E 作EG ⊥AD 于G ,在Rt △EFG 中,EF=√2,∴FG=EG=1,∵AF=4,∴AG=AF ﹣FG=3,根据勾股定理得,AE=√AG 2+EG 2=√10,连接CF ,∵AD 平分∠CAB ,BE 平分∠ABC , ∴CF 是∠ACB 的平分线,∴∠ACF=45°=∠AFE ,∵∠CAF=∠FAE ,∴△AEF ∽△AFC , ∴AE AF =AF AC, ∴AC=AF 2AE =√10=8√105,故答案为8√105.【点评】此题主要考查了角平分线定义,勾股定理,相似三角形的判定和性质,求出AE 是解本题的关键.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2×√22+√2+1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.【考点】6D:分式的化简求值.【专题】11 :计算题.【分析】根据分式的运算法则即可求出答案,【解答】解:原式=x−x+1x−1⋅(x+1)(x−1)(x+1)2=1x+1把x=2代入得:原式=1 3【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为100 人,a= 0.25 ,b= 15 .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?【考点】V5:用样本估计总体;V7:频数(率)分布表;VC:条形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)根据“频率=频数÷总数”求解可得;(2)根据频数分布表即可补全条形图;(3)用总人数乘以样本中“艺术”类频率即可得.【解答】解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.【点评】此题主要考查了条形统计图的应用以及利用样本估计总体,根据题意求出样本总人数是解题关键.20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.【考点】N3:作图—复杂作图;S9:相似三角形的判定与性质;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】(1)根据折叠和已知得出AC=CD,AB=DB,∠ACB=∠DCB,求出AC=AB,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.【解答】(1)证明:∵由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA ∴四边形ACDB 是菱形,∵∠ACD 与△FCE 中的∠FCE 重合,它的对角∠ABD 顶点在EF 上,∴四边形ACDB 为△FEC 的亲密菱形;(2)解:设菱形ACDB 的边长为x ,∵四边形ABCD 是菱形,∴AB ∥CE ,∴∠FAB=∠FCE ,∠FBA=∠E ,△EAB ∽△FCE则:FA FC =AB CE ,即x 12=6−x 6,解得:x=4,过A 点作AH ⊥CD 于H 点,∵在Rt △ACH 中,∠ACH=45°,∴AH =AC√2=2√2,∴四边形ACDB 的面积为:4×2√2=8√2.【点评】本题考查了菱形的性质和判定,解直角三角形,相似三角形的性质和判定等知识点,能求出四边形ABCD 是菱形是解此题的关键.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】34 :方程思想;522:分式方程及应用;524:一元一次不等式(组)及应用.【分析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据单价=总价÷单价结合第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设销售单价为m元,根据获利不少于1200元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•1600x=6000x+2,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.【考点】MR:圆的综合题.【专题】15 :综合题;559:圆的有关概念及性质.【分析】(1)作AM垂直于BC,由AB=AC,利用三线合一得到CM等于BC的一半,求出CM的长,再由cosB的值,利用锐角三角函数定义求出AB的长即可;(2)连接DC,由等边对等角得到一对角相等,再由圆内接四边形的性质得到一对角相等,根据一对公共角,得到三角形EAC与三角形CAD相似,由相似得比例求出所求即可;(3)在BD上取一点N,使得BN=CD,利用SAS得到三角形ACD与三角形ABN全等,由全等三角形对应边相等及等量代换即可得证.【解答】解:(1)作AM⊥BC,∵AB=AC,AM⊥BC,BC=2BM,∴CM=12BC=1,∵cosB=BMAB=√1010,在Rt△AMB中,BM=1,∴AB=BMcosB=√10;(2)连接DC,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE公共角,∴△EAC∽△CAD,∴AC AD =AE AC,∴AD•AE=AC 2=10;(3)在BD 上取一点N ,使得BN=CD ,在△ABN 和△ACD 中{AB =AC∠3=∠1BN =CD,∴△ABN ≌△ACD (SAS ),∴AN=AD ,∵AN=AD ,AH ⊥BD , ∴NH=HD ,∵BN=CD ,NH=HD ,∴BN+NH=CD+HD=BH .【点评】此题属于圆的综合题,涉及的知识有:圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的性质是解本题的关键.23.(9.00分)(2018•深圳)已知顶点为A 抛物线y =a(x −12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB 与x 轴相交于点M ,y 轴相交于点E ,抛物线与y 轴相交于点F ,在直线AB 上有一点P ,若∠OPM=∠MAF ,求△POE 的面积;(3)如图2,点Q 是折线A ﹣B ﹣C 上一点,过点Q 作QN ∥y 轴,过点E 作EN ∥x 轴,直线QN 与直线EN 相交于点N ,连接QE ,将△QEN 沿QE 翻折得到△QEN 1,若点N 1落在x 轴上,请直接写出Q 点的坐标.【考点】HF :二次函数综合题.【专题】15 :综合题;537:函数的综合应用.【分析】(1)将点B 坐标代入解析式求得a 的值即可得;(2)由∠OPM=∠MAF 知OP ∥AF ,据此证△OPE ∽△FAE 得OP FA=OE FE=134=43,即OP=43FA ,设点P (t ,﹣2t ﹣1),列出关于t 的方程解之可得;(3)分点Q 在AB 上运动、点Q 在BC 上运动且Q 在y 轴左侧、点Q 在BC 上运动且点Q 在y 轴右侧这三种情况分类讨论即可得.【解答】解:(1)把点B(−32,2)代入y =a(x −12)2−2,解得:a=1,∴抛物线的解析式为:y =(x −12)2−2;(2)由y =(x −12)2−2知A (12,﹣2),设直线AB 解析式为:y=kx+b ,代入点A ,B 的坐标,得:{−2=12k +b 2=−32k +b,解得:{k =−2b =−1,∴直线AB 的解析式为:y=﹣2x ﹣1,易求E (0,1),F(0,−74),M(−12,0),若∠OPM=∠MAF , ∴OP ∥AF ,∴△OPE ∽△FAE ,∴OP FA =OE FE =134=43,∴OP =43FA =43√(12−6)2+(−2+74)2=√53,设点P (t ,﹣2t ﹣1),则:√t 2+(−2t −1)2=√53解得t 1=−215,t 2=−23,由对称性知;当t 1=−215时,也满足∠OPM=∠MAF ,∴t 1=−215,t 2=−23都满足条件,∵△POE 的面积=12OE ⋅|l|,∴△POE 的面积为115或13.(3)若点Q 在AB 上运动,如图1,设Q (a ,﹣2a ﹣1),则NE=﹣a 、QN=﹣2a ,由翻折知QN′=QN=﹣2a 、N′E=NE=﹣a ,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴QR N′S =RN′ES =QN′EN′,即QR 1=−2a−1ES =−2a −a=2,∴QR=2、ES=−2a−12,由NE+ES=NS=QR 可得﹣a+−2a−12=2,解得:a=﹣54,∴Q (﹣54,32);若点Q 在BC 上运动,且Q 在y 轴左侧,如图2,设NE=a ,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a ,在Rt △SEN′中,(√5﹣a )2+12=a 2,解得:a=3√55,∴Q (﹣3√55,2);若点Q 在BC 上运动,且点Q 在y 轴右侧,如图3,第31页(共31页)设NE=a ,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a ,在Rt △SEN′中,(√5﹣a )2+12=a 2, 解得:a=3√55, ∴Q (3√55,2).综上,点Q 的坐标为(﹣54,32)或(﹣3√55,2)或(3√55,2). 【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.。

(完整版)2018年北京市中考数学试卷(含答案解析)

(完整版)2018年北京市中考数学试卷(含答案解析)

2018年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第1—8题均有四个选项,符合题意的选项只有一个.1.下列几何体中,是圆柱的为A.B.C.D.2.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是103214234A.||4a>B.0c b->C.0ac>D.0a c+>3.方程组33814x yx y-=⎧⎨-=⎩的解为A.12xy=-⎧⎨=⎩B.12xy=⎧⎨=-⎩C.21xy=-⎧⎨=⎩D.21xy=⎧⎨=-⎩4.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为27140m,则FAST的反射面积总面积约为A.327.1410m⨯B.427.1410m⨯C.522.510m⨯D.622.510m⨯5.若正多边形的一个外角是60︒,则该正多边形的内角和为A.360︒B.540︒C.720︒D.900︒6.如果a b-=,那么代数式22 ()2a b aba a b+-⋅-的值为A.B.C.D.127.跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2y ax bx c =++(0a ≠).下图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为4020 O 46.254.057.9x/my/mA .10mB .15mC .20mD .22.5m8.下图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(6-,3-)时,表示左安门的点的坐标为(5,6-);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(12-,6-)时,表示左安门的点的坐标为(10,12-); ③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(11-,5-)时,表示左安门的点的坐标为(11,11-); ④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(16.5-,7.5-)时,表示左安门的点的坐标为(16.5,16.5-).上述结论中,所有正确结论的序号是3A .①②③B .②③④C .①④D .①②③④二、填空题(本题共16分,每小题2分)9.下图所示的网格是正方形网格,BAC ∠________DAE ∠.(填“>",“="或“<”)EDCBA10在实数范围内有意义,则实数x 的取值范围是_______.11.用一组a ,b ,c 的值说明命题“若a b <,则ac bc <”是错误的,这组值可以是a =_____,b =______,c =_______.12.如图,点A ,B ,C ,D 在O 上,CB CD =,30CAD ∠=︒,50ACD ∠=︒,则ADB ∠=________.13.如图,在矩形ABCD 中,E 是边AB 的中点,连接DE 交对角线AC 于点F ,若4AB =,3AD =,则CF 的长为________.FEDCB A14.从甲地到乙地有A ,B ,C 三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:45分钟”的可能性最大.15.某公园划船项目收费标准如下:某班18________元.16.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第________.45三、解答题(本题共68分,第17-22题,每小题5分,第23—26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.下面是小东设计的“过直线外一点作这条直线的平行线"的尺规作图过程.已知:直线及直线外一点P .lP求作:PQ ,使得PQ l ∥. 作法:如图,l①在直线上取一点A ,作射线PA ,以点A 为圆心,AP 长为半径画弧,交PA 的延长线于点B ;②在直线上取一点C (不与点A 重合),作射线BC ,以点C 为圆心,CB 长为半径画弧,交BC 的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=_______,CB=_______,∴PQ l∥(____________)(填推理的依据).18.计算:04sin45(π2)|1|︒+---.19.解不等式组:3(1)1922x xxx+>-⎧⎪⎨+>⎪⎩.620.关于x的一元二次方程210ax bx++=.(1)当2b a=+时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.21.如图,在四边形ABCD中,AB DC∥,AB AD=,对角线AC,BD交于点O,AC平分BAD∠,过点C作CE AB⊥交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,2BD=,求OE的长.OED CBA22.如图,AB是O的直径,过O外一点P作O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP CD⊥;(2)连接AD,BC,若50DAB∠=︒,70CBA∠=︒,2OA=,求OP的长.78A23.在平面直角坐标系xOy 中,函数ky x =(0x >)的图象G 经过点A (4,1),直线14l y x b =+∶与图象G 交于点B ,与y 轴交于点C . (1)求k 的值;(2)横、纵坐标都是整数的点叫做整点.记图象G 在点A ,B 之间的部分与线段OA ,OC ,BC 围成的区域(不含边界)为W .①当1b =-时,直接写出区域W 内的整点个数;②若区域W 内恰有4个整点,结合函数图象,求b 的取值范围.24.如图,Q 是AB 与弦AB 所围成的图形的内部的一定点,P 是弦AB 上一动点,连接PQ 并延长交AB 于点C ,连接AC .已知6cm AB =,设A ,P 两点间的距离为x cm ,P ,C 两点间的距离为1cm y ,A ,C 两点间的距离为2cm y .9A小腾根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究. 下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值;(2xOy x ,1y ),(x ,2y ),并画出函数1y ,2y 的图象;(3)结合函数图象,解决问题:当APC △为等腰三角形时,AP 的长度约为____cm .25.某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:4050≤,7080x<x<≤,≤,6070x<≤,5060x<≤≤);≤,90100xx<8090频数/分x<≤这一组是:b.A课程成绩在708070 71 71 71 76 76 77 78 78.578.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A”或“B"),理由是_______;(3)假设该年级学生都参加此次测试,估计A课程成绩超过75.8分的人数.101126.在平面直角坐标系xOy 中,直线44y x =+与x 轴、y 轴分别交于点A ,B ,抛物线23y ax bx a =+-经过点A ,将点B 向右平移5个单位长度,得到点C . (1)求点C 的坐标; (2)求抛物线的对称轴;(3)若抛物线与线段BC 恰有一个公共点,结合函数图象,求a 的取值范围.27.如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH DE⊥交DG的延长线于点H,连接BH.(1)求证:GF GC=;(2)用等式表示线段BH与AE的数量关系,并证明.DA28.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离”,记作d (M,N).已知点A(2-,6),B(2-,2-),C(6,2-).(1)求d(点O,ABC△);12(2)记函数y kx=,直接写出k的取值范=(11k≠)的图象为图形G,若d(G,ABCx-≤≤,0△)1围;(3)T的圆心为T(,0),半径为1.若d(T,ABC=,直接写出的取值范围.△)113142018年北京市中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1—8题均有四个选项,符合题意的选项只有一个. 1.下列几何体中,是圆柱的为A. B. C. D.【答案】A【解析】A 选项为圆柱,B 选项为圆锥,C 选项为四棱柱,D 选项为四棱锥. 【考点】立体图形的认识2.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是13214234A .||4a >B .0c b ->C .0ac >D .0a c +>【答案】B【解析】∵43a -<<-,∴34a <<,故A 选项错误;数轴上表示b 的点在表示c 的点的左侧,故B 选项正确; ∵0a <,0c >,∴0ac <,故C选项错误;∵0a <,0c >,a c >,∴0a c +<,故D 选项错误.15【考点】实数与数轴3.方程组33814x y x y -=⎧⎨-=⎩的解为A .12x y =-⎧⎨=⎩B .12x y =⎧⎨=-⎩C .21x y =-⎧⎨=⎩D .21x y =⎧⎨=-⎩【答案】D【解析】将4组解分别代入原方程组,只有D 选项同时满足两个方程,故选D . 【考点】二元一次方程组的解4.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为27140m ,则FAST 的反射面积总面积约为 A .327.1410m ⨯ B .427.1410m ⨯ C .522.510m ⨯ D .622.510m ⨯【答案】C【解析】5714035249900 2.510⨯=≈⨯(2m ),故选C . 【考点】科学记数法5.若正多边形的一个外角是60︒,则该正多边形的内角和为A .360︒B .540︒C .720︒D .900︒【答案】C【解析】由题意,正多边形的边数为360660n ︒==︒,其内角和为()2180720n -⋅︒=︒. 【考点】正多边形,多边形的内外角和.6.如果a b-=,那么代数式22()2a b aba a b+-⋅-的值为A.B.C.D.【答案】A【解析】原式()2222222a ba b ab a a a ba ab a a b-+--=⋅=⋅=--,∵a b-=∴原式=.【考点】分式化简求值,整体代入.7.跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系2y ax bx c=++(0a≠).下图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为my/A.10m B.15m C.20m D.22.5m【答案】B【解析】设对称轴为x h=,1617由(0,54.0)和(40,46.2)可知,040202h +<=, 由(0,54.0)和(20,57.9)可知,020102h +>=, ∴1020h <<,故选B .【考点】抛物线的对称轴.8.下图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(6-,3-)时,表示左安门的点的坐标为(5,6-);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(12-,6-)时,表示左安门的点的坐标为(10,12-); ③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(11-,5-)时,表示左安门的点的坐标为(11,11-); ④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(16.5-,7.5-)时,表示左安门的点的坐标为(16.5,16.5-). 上述结论中,所有正确结论的序号是 A .①②③ B .②③④ C .①④ D .①②③④【答案】D【解析】显然①②正确;③是在②的基础上,将所有点向右平移个单位,再向上平移个单位得到,故③正确;④是在“当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(18-,9-)时,表示左安门的点的坐标为(15,18)”的基础上,将所有点向右平移1.5个单位,再向上平移1.5个单位得到,故④正确.【考点】平面直角坐标系,点坐标的确定,点的平移1819二、填空题(本题共16分,每小题2分)9.下图所示的网格是正方形网格,BAC ∠________DAE ∠.(填“>”,“="或“<")EDCBA【答案】>【解析】如下图所示,G FABCD EAFG △是等腰直角三角形,∴45FAG BAC ∠=∠=︒,∴BAC DAE ∠>∠.另:此题也可直接测量得到结果.【考点】等腰直角三角形10在实数范围内有意义,则实数x 的取值范围是_______.【答案】0x ≥【解析】被开方数为非负数,故0x ≥. 【考点】二次根式有意义的条件.2011.用一组a ,b ,c 的值说明命题“若a b <,则ac bc <”是错误的,这组值可以是a =_____,b =______,c =_______.【答案】答案不唯一,满足a b <,0c ≤即可,例如:,2,1- 【解析】不等式两边乘(或除以)同一个负数,不等号的方向改变. 【考点】不等式的基本性质12.如图,点A ,B ,C ,D 在O 上,CB CD =,30CAD ∠=︒,50ACD ∠=︒,则ADB ∠=________.【答案】70【解析】∵CB CD =,∴30CAB CAD ∠=∠=︒,∴60BAD ∠=︒,∵50ABD ACD ∠=∠=︒,∴18070ADB BAD ABD ∠=︒-∠-∠=︒.【考点】圆周角定理,三角形内角和定理13.如图,在矩形ABCD 中,E 是边AB 的中点,连接DE 交对角线AC 于点F ,若4AB =,3AD =,则CF 的长为________.FEDCB A21【答案】103【解析】∵四边形ABCD 是矩形,∴4AB CD ==,AB CD ∥,90ADC ∠=︒,在Rt ADC △中,90ADC ∠=︒,∴5AC ==, ∵E 是AB 中点,∴1122AE AB CD ==,∵AB CD ∥,∴12AF AE CF CD ==,∴21033CF AC ==. 【考点】矩形的性质,勾股定理,相似三角形的性质及判定14.从甲地到乙地有A ,B ,C 三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:45分钟"的可能性最大. 【答案】C【解析】样本容量相同,C 线路上的公交车用时超过45分钟的频数最小,所以其频率也最小,故选C . 【考点】用频率估计概率15.某公园划船项目收费标准如下:某班18元.【答案】380【解析】租用四人船、六人船、八人船各1艘,租船的总费用为100130150380++=(元)【考点】统筹规划16.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第________.【答案】【解析】从左图可知,创新综合排名全球第22,对应创新产出排名全球第11;从下图可知,创新产出排名全球第11,对应创新效率排名全球第3.2223【考点】函数图象获取信息三、解答题(本题共68分,第17—22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P .lP求作:PQ ,使得PQ l ∥. 作法:如图,l①在直线上取一点A ,作射线PA ,以点A 为圆心,AP 长为半径画弧,交PA 的延长线于点B ;24②在直线上取一点C (不与点A 重合),作射线BC ,以点C 为圆心,CB 长为半径画弧,交BC 的延长线于点Q ; ③作直线PQ .所以直线PQ 就是所求作的直线. 根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明:∵AB =_______,CB =_______,∴PQ l ∥(____________)(填推理的依据).【解析】(1)尺规作图如下图所示:l(2)PA ,CQ ,三角形中位线平行于三角形的第三边.【考点】尺规作图,三角形中位线定理18.计算:04sin 45(π2)|1|︒+--.【解析】解:原式4112=-+=- 【考点】实数的运算2519.解不等式组:3(1)1922x x x x +>-⎧⎪⎨+>⎪⎩.【解析】解:由①得,2x >-,由②得,3x <,∴不等式的解集为23x -<<.【考点】一元一次不等式组的解法20.关于x 的一元二次方程210ax bx ++=.(1)当2b a =+时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根. 【解析】(1)解:由题意:0a ≠.∵()22242440b a a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b a -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=, 解得:121x x ==.【考点】一元二次方程21.如图,在四边形ABCD 中,AB DC ∥,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;26(2)若AB =2BD =,求OE 的长.OEDCB A【解析】(1)证明:∵AB CD ∥∴CAB ACD ∠=∠ ∵AC 平分BAD ∠ ∴CAB CAD ∠=∠ ∴CAD ACD ∠=∠ ∴AD CD = 又∵AD AB = ∴AB CD = 又∵AB CD ∥∴四边形ABCD 是平行四边形 又∵AB AD = ∴ABCD 是菱形(2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O .∴AC BD ⊥.12OA OC AC ==,12OB OD BD ==,∴112OB BD ==.在Rt AOB △中,90AOB ∠=︒.27∴2OA ==. ∵CE AB ⊥, ∴90AEC ∠=︒.在Rt AEC △中,90AEC ∠=︒.O 为AC 中点. ∴122OE AC OA ===.【考点】菱形的性质和判定,勾股定理,直角三角形斜边中线22.如图,AB 是O 的直径,过O 外一点P 作O 的两条切线PC ,PD ,切点分别为C ,D ,连接OP ,CD .(1)求证:OP CD ⊥;(2)连接AD ,BC ,若50DAB ∠=︒,70CBA ∠=︒,2OA =,求OP 的长.A【解析】(1)证明:∵PC 、PD 与O ⊙相切于C 、D .∴PC PD =,OP 平分CPD ∠.在等腰PCD △中,PC PD =,PQ 平分CPD ∠. ∴PQ CD ⊥于Q ,即OP CD ⊥. (2)解:连接OC 、OD .28∵OA OD =∴50OAD ODA ∠=∠=︒∴18080AOD OAD ODA ∠=︒-∠-∠=︒ 同理:40BOC ∠=︒∴18060COD AOD BOC ∠=︒-∠-∠=︒. 在等腰COD △中,OC OD =.OQ CD ⊥ ∴1302DOQ COD ∠=∠=︒. ∵PD 与O ⊙相切于D . ∴OD DP ⊥. ∴90ODP ∠=︒.在Rt ODP △中,90ODP ∠=︒,30POD ∠=︒∴cos cos30OD OA OP POD ====∠︒【考点】切线的性质,切线长定理,锐角三角函数23.在平面直角坐标系xOy 中,函数ky x =(0x >)的图象G 经过点A (4,1),直线14l y x b =+∶与图象G 交于点B ,与y 轴交于点C . (1)求k 的值;(2)横、纵坐标都是整数的点叫做整点.记图象G 在点A ,B 之间的部分与线段OA ,OC ,BC 围成的区域(不含边界)为W .①当1b =-时,直接写出区域W 内的整点个数;A29②若区域W 内恰有4个整点,结合函数图象,求b 的取值范围. 【解析】(1)解:∵点A (4,1)在ky x=(0x >)的图象上. ∴14k=, ∴4k =.(2)① 3个.(1,0),(2,0),(3,0).② a .当直线过(4,0)时:1404b ⨯+=,解得1b =-b .当直线过(5,0)时:1504b ⨯+=,解得54b =-c .当直线过(1,2)时:1124b ⨯+=,解得74b =d .当直线过(1,3)时:1134b ⨯+=,解得114b =30∴综上所述:514b -<-≤或71144b <≤. 【考点】一次函数与反比例函数综合,区域内整点个数问题24.如图,Q 是AB 与弦AB 所围成的图形的内部的一定点,P 是弦AB 上一动点,连接PQ 并延长交AB 于点C ,连接AC .已知6cm AB =,设A ,P 两点间的距离为x cm ,P ,C 两点间的距离为1cm y ,A ,C 两点间的距离为2cm y .A小腾根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究. 下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值;(2xOy x ,1y ),(x ,2y ),并画出函数1y ,2y 的图象;(3)结合函数图象,解决问题:当APC△为等腰三角形时,AP的长度约为____cm.【解析】(1)3.00(2)如下图所示:(3)3.00或4.83或5.88.如下图所示,个函数图象的交点的横坐标即为所求.3132【考点】动点产生的函数图象问题,函数探究25.某年级共有300名学生.为了解该年级学生A,B 两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a .A 课程成绩的频数分布直方图如下(数据分成6组:4050x <≤,5060x <≤,6070x <≤,7080x <≤,8090x <≤,90100x ≤≤); /分频数b .A 课程成绩在7080x <≤这一组是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.533c .A ,B 两门课程成绩的平均数、中位数、众数如下:(1)写出表中m 的值;(2)在此次测试中,某学生的A 课程成绩为76分,B 课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A”或“B”),理由是_______;(3)假设该年级学生都参加此次测试,估计A 课程成绩超过75.8分的人数. 【解析】(1)78.75(2)B .该学生A 课程分数低于中位数,排名在中间位置之后,而B 课程分数高于中位数,排名在中间位置之前.(3)解:抽取的60名学生中.A 课程成绩超过75.8的人数为36人.∴3630018060⨯=(人) 答:该年级学生都参加测试.估计A 课程分数超过75.8的人数为180人.【考点】频数分布直方图,中位数,用样本估计总体26.在平面直角坐标系xOy 中,直线44y x =+与x 轴、y 轴分别交于点A ,B ,抛物线23y ax bx a =+-经过点A ,将点B 向右平移5个单位长度,得到点C .(1)求点C 的坐标; (2)求抛物线的对称轴;(3)若抛物线与线段BC 恰有一个公共点,结合函数图象,求a 的取值范围.34【解析】(1)解:∵直线44y x =+与x 轴、y 轴交于A 、B .∴A (1-,0),B (0,4) ∴C (5,4)(2)解:抛物线23y ax bx a =+-过A (1-,0)∴30a b a --=.2b a =-∴223y ax ax a =-- ∴对称轴为212ax a-=-=. (3)解:①当抛物线过点C 时.251034a a a --=,解得13a =. ②当抛物线过点B 时.3534a -=,解得43a =-. ③当抛物线顶点在BC 上时.此时顶点为(1,4)∴234a a a --=,解得1a =-.∴综上所述43a <-或13a ≥或1a =-.【考点】一次函数与坐标轴的交点,点的平移,抛物线对称轴,抛物线与线段交点问题27.如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A ,B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH DE ⊥交DG 的延长线于点H ,连接BH . (1)求证:GF GC =;(2)用等式表示线段BH 与AE 的数量关系,并证明.(完整版)2018年北京市中考数学试卷(含答案解析)36HDA【解析】(1)证明:连接DF .∵A ,F 关于DE 对称. ∴AD FD =.AE FE =. 在ADE △和FDE △中.AD FDAE FE DE DE =⎧⎪=⎨⎪=⎩∴ADE FDE △≌△ ∴DAE DFE ∠=∠. ∵四边形ABCD 是正方形 ∴90A C ∠=∠=︒.AD CD = ∴90DFE A ∠=∠=︒∴18090DFG DFE ∠=︒-∠=︒ ∴DFG C ∠=∠ ∵AD DF =.AD CD = ∴DF CD =在Rt DCG △和Rt DFG △.DH37DC DFDG DG =⎧⎨=⎩∴Rt DCG △≌Rt DFG △ ∴CG FG =.(2)BH =.证明:在AD 上取点M 使得AM AE =,连接ME . ∵四这形ABCD 是正方形. ∴AD AB =.90A ADC ∠=∠=︒.∵DAE △≌DFE △ ∴ADE FDE ∠=∠ 同理:CDG FDG ∠=∠∴EDG EDF GDF ∠=∠+∠1122ADF CDF =∠+∠ 1452ADC =∠=︒ ∵DE EH ⊥ ∴90DEH ∠=︒∴18045EHD DEH EDH ∠=︒-∠-∠=︒ ∴EHD EDH ∠=∠ ∴DE EH =. ∵90A ∠=︒MHD38∴90ADE AED ∠+∠=︒ ∵90DEH ∠=︒ ∴90AED BEH ∠+∠=︒ ∴ADE BEH ∠=∠ ∵AD AB =.AM AE = ∴DM EB =在DME △和EBH △中DM EB MDE BEH DE EH =⎧⎪∠=∠⎨⎪=∠⎩∴DME △≌EBH △ ∴ME BH =在Rt AME △中,90A ∠=︒,AE AM =.∴ME ==∴BH =.【考点】正方形的性质,轴对称的性质,全等三角形的性质与判定,等腰直角三角形的性质与判定28.对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的“闭距离",记作d (M ,N ). 已知点A (2-,6),B (2-,2-),C (6,2-). (1)求d (点O ,ABC △);(2)记函数y kx=,直接写出k的取值范=(11xk≠)的图象为图形G,若d(G,ABC-≤≤,0△)1围;(3)T的圆心为T(,0),半径为1.若d(T,ABC=,直接写出的取值范围.△)1【解析】(1)如下图所示:∵B(2-,2-),C(6,2-)∴D(0,2-)∴d(O,ABC==OD△)2(2)10<≤kk≤或01-<39(3)4t=-或04t-≤≤或4t=+.【考点】点到直线的距离,圆的切线40。

中考复习初中数学几何证明 试题(含答案)

中考复习初中数学几何证明 试题(含答案)

初中几何证明题经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二).如下图做GH ⊥AB,连接EO 。

由于GOFE 四点共圆,所以∠GFH =∠OEG , 即△GHF ∽△OGE,可得EO GF =GO GH =COCD,又CO=EO ,所以CD=GF 得证。

2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二).3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)APCDB D 2C 2 B 2 A 2D 1C 1B 1C B DA A 1 AFGCEBOD4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.BF求证:点P 到边AB 的距离等于AB 的一半.经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEFB 、D .求证:AB =DC ,BC =AD .(初三)经典题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5. 求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值. A P CB P A D CB C B D A F PD E CB A APCB3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典题(一)1.如下图做GH⊥AB,连接EO。

江苏扬州市2018年中考数学试题(含答案解析)

江苏扬州市2018年中考数学试题(含答案解析)

江苏省扬州市2018年中考数学试题一、选择题:1. 的倒数是()A. B. C. 5 D.【答案】A【解析】分析:根据倒数的定义进行解答即可.详解:∵(-5)×(-)=1,∴-5的倒数是-.故选A.点睛:本题考查的是倒数的定义,即乘积是1的两数互为倒数.2. 使有意义的的取值范围是()A. B. C. D.【答案】C【解析】分析:根据被开方数是非负数,可得答案.详解:由题意,得x-3≥0,解得x≥3,故选C.3. 如图所示的几何体的主视图是()A. B. C. D.【答案】B【解析】根据主视图的定义,几何体的主视图由三层小正方形组成,下层有三个小正方形,二三层各有一个小正方形,故选B.4. 下列说法正确的是()A. 一组数据2,2,3,4,这组数据的中位数是2B. 了解一批灯泡的使用寿命的情况,适合抽样调查C. 小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D. 某日最高气温是,最低气温是,则该日气温的极差是【答案】B【解析】分析:直接利用中位数的定义以及抽样调查的意义和平均数的求法、极差的定义分别分析得出答案.详解:A、一组数据2,2,3,4,这组数据的中位数是2.5,故此选项错误;B、了解一批灯泡的使用寿命的情况,适合抽样调查,正确;C、小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是130分,故此选项错误;D、某日最高气温是7℃,最低气温是-2℃,则改日气温的极差是7-(-2)=9℃,故此选项错误;故选B.点睛:此题主要考查了中位数、抽样调查的意义和平均数的求法、极差,正确把握相关定义是解题关键.5. 已知点、都在反比例函数的图象上,则下列关系式一定正确的是()A. B. C. D.【答案】A【解析】分析:根据反比例函数的性质,可得答案.详解:由题意,得k=-3,图象位于第二象限,或第四象限,在每一象限内,y随x的增大而增大,∵3<6,∴x1<x2<0,故选A.点睛:本题考查了反比例函数,利用反比例函数的性质是解题关键.6. 在平面直角坐标系的第二象限内有一点,点到轴的距离为3,到轴的距离为4,则点的坐标是()A. B. C. D.【答案】C【解析】分析:根据第二象限内点的坐标特征,可得答案.详解:由题意,得x=-4,y=3,即M点的坐标是(-4,3),故选C.点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.7. 在中,,于,平分交于,则下列结论一定成立的是()A. B. C. D.【答案】C【解析】分析:根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.详解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选C.点睛:本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.8. 如图,点在线段上,在的同侧作等腰和等腰,与、分别交于点、.对于下列结论:①;②;③.其中正确的是()A. ①②③B. ①C. ①②D. ②③【答案】A【解析】分析:(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.详解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°-∠BAC-∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选A.点睛:本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.二、填空题9. 在人体血液中,红细胞直径约为,数据0.00077用科学记数法表示为__________.【答案】【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解:0.00077=7.7×10-4,故答案为:7.7×10-4.点睛:本题主要考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10. 因式分解:__________.【答案】【解析】分析:原式提取2,再利用平方差公式分解即可.详解:原式=2(9-x2)=2(x+3)(3-x),故答案为:2(x+3)(3-x)点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11. 有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.【答案】【解析】分析:根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.详解:根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,二种;故其概率为:.点睛:本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.12. 若是方程的一个根,则的值为__________.【答案】2018【解析】分析:根据一元二次方程的解的定义即可求出答案.详解:由题意可知:2m2-3m-1=0,∴2m2-3m=1∴原式=3(2m2-3m)+2015=2018故答案为:2018点睛:本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.13. 用半径为,圆心角为的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为__________.【答案】【解析】分析:圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解.详解:设圆锥的底面圆半径为r,依题意,得2πr=,解得r=cm.故答案为:.点睛:本题考查了圆锥的计算.圆锥的侧面展开图为扇形,计算要体现两个转化:1、圆锥的母线长为扇形的半径,2、圆锥的底面圆周长为扇形的弧长.14. 不等式组的解集为__________.【答案】【解析】分析:先求出每个不等式的解集,再根据口诀求出不等式组的解集即可.详解:解不等式3x+1≥5x,得:x≤,解不等式,得:x>-3,则不等式组的解集为-3<x≤,故答案为:-3<x≤.点睛:此题考查了一元一次不等式组的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15. 如图,已知的半径为2,内接于,,则__________.【答案】【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案为:2.点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16. 关于的方程有两个不相等的实数根,那么的取值范围是__________.【答案】且【解析】分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m>0且m≠0,求出m的取值范围即可.详解:∵一元二次方程mx2-2x+3=0有两个不相等的实数根,∴△>0且m≠0,∴4-12m>0且m≠0,∴m<且m≠0,故答案为:m<且m≠0.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.17. 如图,四边形是矩形,点的坐标为,点的坐标为,把矩形沿折叠,点落在点处,则点的坐标为__________.【答案】【解析】分析:由折叠的性质得到一对角相等,再由矩形对边平行得到一对内错角相等,等量代换及等角对等边得到BE=OE,利用AAS得到三角形OED与三角形BEA全等,由全等三角形对应边相等得到DE=AE,过D作DF垂直于OE,利用勾股定理及面积法求出DF 与OF的长,即可确定出D坐标.详解:由折叠得:∠CBO=∠DBO,∵矩形ABCO,∴BC∥OA,∴∠CBO=∠BOA,∴∠DBO=∠BOA,∴BE=OE,在△ODE和△BAE中,,∴△ODE≌△BAE(AAS),∴AE=DE,设DE=AE=x,则有OE=BE=8-x,在Rt△ODE中,根据勾股定理得:42+(8-x)2=x2,解得:x=5,即OE=5,DE=3,过D作DF⊥OA,∵S△OED=OD•DE=OE•DF,∴DF=,OF=,则D(,-).故答案为:(,-).点睛:此题考查了翻折变化(折叠问题),坐标与图形变换,以及矩形的性质,熟练掌握折叠的性质是解本题的关键.18. 如图,在等腰中,,点的坐标为,若直线:把分成面积相等的两部分,则的值为__________.【答案】【解析】分析:根据题意作出合适的辅助线,然后根据题意即可列出相应的方程,从而可以求得m的值.详解:∵y=mx+m=m(x+1),∴函数y=mx+m一定过点(-1,0),当x=0时,y=m,∴点C的坐标为(0,m),由题意可得,直线AB的解析式为y=-x+2,,得,∵直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,∴,解得,m=或m=(舍去),故答案为:.点睛:本题考查一次函数图象上点的坐标特征、等腰直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题19. 计算或化简.(1);(2).【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.20. 对于任意实数、,定义关于“”的一种运算如下:.例如.(1)求的值;(2)若,且,求的值.【答案】(1);(2).【解析】分析:(1)根据新定义型运算法则即可求出答案.(2)列出方程组即可求出答案详解:(1)(2)由题意得∴.点睛:本题考查新定义型运算,解题的关键是正确利用运算法则,本题属于基础题型.21. 江苏省第十九届运动会将于2018年9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表根据以上信息,请回答下列问题:(1)这次调查的样本容量是,;(2)扇形统计图中“自行车”对应的扇形的圆心角为度;(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.【答案】(1)50人,;(2);(3)该校最喜爱的省运动会项目是篮球的学生人数为480人.【解析】分析:(1)依据9÷18%,即可得到样本容量,进而得到a+b的值;(2)利用圆心角计算公式,即可得到“自行车”对应的扇形的圆心角;(3)依据最喜爱的省运会项目是篮球的学生所占的比例,即可估计该校最喜爱的省运会项目是篮球的学生人数.详解:(1)样本容量是9÷18%=50,a+b=50-20-9-10=11,故答案为:50,11;(2)“自行车”对应的扇形的圆心角=×360°=72°,故答案为:72°;(3)该校最喜爱的省运会项目是篮球的学生人数为:1200×=480(人).点睛:本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.22. 4张相同的卡片上分别写有数字-1、-3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字是奇数的概率是;(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数中的;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数中的.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.【答案】(1);(2).【解析】解:(1)总共有四个,奇数有两个,所以概率就是(2)根据题意得:一次函数图形过第一、二、四象限,则∴图象经过第一、二、四象限的概率是.分析:(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,利用一次获胜的性质,找出k<0,b>0的结果数,然后根据概率公式求解.详解:(1)从中任意抽取1张,抽到的数字是奇数的概率=;故答案为;(2)画树状图为:共有12种等可能的结果数,其中k<0,b>0有4种结果,所以这个一次函数的图象经过第一、二、四象限的概率=.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了一次函数的性质.【答案】货车的速度是千米/小时.【解析】分析:设货车的速度是x千米/小时,则客车的速度是2x千米/小时,根据时间=路程÷速度结合客车比货车少用6小时,即可得出关于x的分式方程,解之经检验后即可得出结论.详解:设货车的速度为由题意得经检验是该方程的解答:货车的速度是千米/小时.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24. 如图,在平行四边形中,,点是的中点,连接并延长,交的延长线于点,连接.(1)求证:四边形是菱形;(2)若,,求菱形的面积.【答案】(1)证明见解析;(2).【解析】分析:(1)由△AFD≌△BFE,推出AD=BE,可知四边形AEBD是平行四边形,再根据BD=AD可得结论;(2)解直角三角形求出EF的长即可解决问题;详解:(1)∵四边形是平行四边形∴,∴∵是的中点,∴∴在与中,∵,∴四边形是平行四边形∵,∴四边形是菱形(2)∵四边形是菱形,∴,∴∵∴∴∵,∴,∴.点睛:本题考查平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25. 如图,在中,,于点,于点,以点为圆心,为半径作半圆,交于点.(1)求证:是的切线;(2)若点是的中点,,求图中阴影部分的面积;(3)在(2)的条件下,点是边上的动点,当取最小值时,直接写出的长.【答案】(1)证明见解析;(2);(3).【解析】分析:(1)过作垂线,垂足为,证明OM=OE即可;(2)根据“S△AEO-S扇形EOF=S阴影”进行计算即可;(3)作关于的对称点,交于,连接交于,此时最小.通过证明∽即可求解详解:(1)过作垂线,垂足为∵,∴平分∵∴∵为⊙的半径,∴为⊙的半径,∴是⊙的切线(2)∵且是的中点∴,,∴∵∴即,∴(3)作关于的对称点,交于,连接交于此时最小由(2)知,,∴∵∴,,∵,∴∽∴即∵,∴即,∴.点睛:本题是圆的综合题,主要考查了圆的切线的判定,不规则图形的面积计算以及最短路径问题.找出点E的对称点G是解决一题的关键.26. “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.(1)求与之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.【答案】(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】分析:(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.详解:(1)由题意得:.故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.点睛:此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.27. 问题呈现如图1,在边长为1的正方形网格中,连接格点、和、,与相交于点,求的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题.比如连接格点、,可得,则,连接,那么就变换到中.问题解决(1)直接写出图1中的值为_________;(2)如图2,在边长为1的正方形网格中,与相交于点,求的值;思维拓展(3)如图3,,,点在上,且,延长到,使,连接交的延长线于点,用上述方法构造网格求的度数.【答案】(1)见解析;(2);(3)(1)根据方法归纳,运用勾股定理分别求出MN和DM的值,即可求出【解析】分析:的值;(2)仿(1)的思路作图,即可求解;(3)方法同(2)详解:(1)如图进行构造由勾股定理得:DM=,MN=,DN=∵()2+()2=()2∴D M2+MN2=DN2∴△DMN是直角三角形.∵MN∥EC∴∠CPN=∠DNM,∵tan∠DNM=,∴=2.(2)∵,∴∴(3),证明同(2).点睛:本题考查了非直角三角形中锐角三角函数值的求法.求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形是解题的关键.28. 如图1,四边形是矩形,点的坐标为,点的坐标为.点从点出发,沿以每秒1个单位长度的速度向点运动,同时点从点出发,沿以每秒2个单位长度的速度向点运动,当点与点重合时运动停止.设运动时间为秒.(1)当时,线段的中点坐标为________;(2)当与相似时,求的值;(3)当时,抛物线经过、两点,与轴交于点,抛物线的顶点为,如图2所示.问该抛物线上是否存在点,使,若存在,求出所有满足条件的点坐标;若不存在,说明理由.【答案】(1)的中点坐标是;(2)或;(3),. 【解析】分析:(1)先根据时间t=2,和速度可得动点P和Q的路程OP和AQ的长,再根据中点坐标公式可得结论;(2)根据矩形的性质得:∠B=∠PAQ=90°,所以当△CBQ与△PAQ相似时,存在两种情况:①当△PAQ∽△QBC时,,②当△PAQ∽△CBQ时,,分别列方程可得t的值;(3)根据t=1求抛物线的解析式,根据Q(3,2),M(0,2),可得MQ∥x轴,∴KM=KQ,KE⊥MQ,画出符合条件的点D,证明△KEQ∽△QMH,列比例式可得点D的坐标,同理根据对称可得另一个点D.详解:(1)如图1,∵点A的坐标为(3,0),∴OA=3,当t=2时,OP=t=2,AQ=2t=4,∴P(2,0),Q(3,4),∴线段PQ的中点坐标为:(,),即(,2);故答案为:(,2);(2)如图1,∵四边形OABC是矩形,∴∠B=∠PAQ=90°∴当△CBQ与△PAQ相似时,存在两种情况:①当△PAQ∽△QBC时,,∴,4t2-15t+9=0,(t-3)(t-)=0,t1=3(舍),t2=,②当△PAQ∽△CBQ时,,∴,t2-9t+9=0,t=,∵0≤t≤6,>7,∴x=不符合题意,舍去,综上所述,当△CBQ与△PAQ相似时,t的值是或;(3)当t=1时,P(1,0),Q(3,2),把P(1,0),Q(3,2)代入抛物线y=x2+bx+c中得:,解得:,∴抛物线:y=x2-3x+2=(x-)2-,∴顶点k(,-),∵Q(3,2),M(0,2),∴MQ∥x轴,作抛物线对称轴,交MQ于E,∴KM=KQ,KE⊥MQ,∴∠MKE=∠QKE=∠MKQ,如图2,∠MQD=∠MKQ=∠QKE,设DQ交y轴于H,∵∠HMQ=∠QEK=90°,∴△KEQ∽△QMH,∴,∴,∴MH=2,∴H(0,4),易得HQ的解析式为:y=-x+4,则,x2-3x+2=-x+4,解得:x1=3(舍),x2=-,∴D(-,);同理,在M的下方,y轴上存在点H,如图3,使∠HQM=∠MKQ=∠QKE,由对称性得:H(0,0),易得OQ的解析式:y=x,则,x2-3x+2=x,解得:x1=3(舍),x2=,∴D(,);综上所述,点D的坐标为:D(-,)或(,).点睛:本题是二次函数与三角形相似的综合问题,主要考查相似三角形的判定和性质的综合应用,三角形和四边形的面积,二次函数的最值问题的应用,函数的交点等知识,本题比较复杂,注意用t表示出线段长度,再利用相似即可找到线段之间的关系,代入可解决问题.。

2018年中考数学《几何图形的动点问题》同步提分训练含答案解析

2018年中考数学《几何图形的动点问题》同步提分训练含答案解析

2018年中考数学提分训练: 几何图形的动点问题一、选择题1.如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B,C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x 的大致图象是()A. B. C. D.2.如图1,在矩形ABCD中,动点E从A出发,沿方向运动,当点E到达点C时停止运动,过点E做,交CD于F点,设点E运动路程为x, ,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是( )A. B. C. 6 D. 53.如图甲,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位的速度匀速运动,回到点A运动结束.设运动时间为x,弦BP的长度为y,那么如图乙图象中可能表示y与x的函数关系的是()A. ①B. ④C. ①或③D. ②或④4.如图,平行四边形ABCD中,AB= cm,BC=2cm,∠ABC=45°,点P从点B出发,以1cm/s的速度沿折线BC→CD→DA运动,到达点A为止,设运动时间为t(s),△ABP的面积为S(cm2),则S与t的大致图象是()A. B. C. D.5.如图,矩形ABCD,R是CD的中点,点M在BC边上运动,E,F分别为AM,MR的中点,则EF的长随M点的运动( )A. 变短B. 变长C. 不变D. 无法确定二、填空题6.在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为________.(结果不取近似值)7.如图,在平面直角坐标系中,A(4,0)、B(0,-3),以点B为圆心、2 为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为________.8.如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC 在平面内滑动,设运动时间为t秒,当B到达原点时停止运动(1)连接OC,线段OC的长随t的变化而变化,当OC最大时,t=________;(2)当△ABC的边与坐标轴平行时,t=________。

“中考数学专题复习 圆来如此简单”经典几何模型之隐圆专题(含答案)

“中考数学专题复习  圆来如此简单”经典几何模型之隐圆专题(含答案)

经典几何模型之隐圆”“圆来如此简单”一.名称由来在中考数学中,有一类高频率考题,几乎每年各地都会出现,明明图形中没有出现“圆”,但是解题中必须用到“圆”的知识点,像这样的题我们称之为“隐圆模型”。

正所谓:有“圆”千里来相会,无“圆”对面不相逢。

“隐圆模型”的题的关键突破口就在于能否看出这个“隐藏的圆”。

一旦“圆”形毕露,则答案手到擒来!二.模型建立【模型一:定弦定角】【模型二:动点到定点定长(通俗讲究是一个动的点到一个固定的点的距离不变)】【模型三:直角所对的是直径】【模型四:四点共圆】三.模型基本类型图形解读【模型一:定弦定角的“前世今生”】【模型二:动点到定点定长】【模型三:直角所对的是直径】【模型四:四点共圆】四.“隐圆”破解策略牢记口诀:定点定长走圆周,定线定角跑双弧。

直角必有外接圆,对角互补也共圆。

五.“隐圆”题型知识储备3六.“隐圆”典型例题 【模型一:定弦定角】1.(2017 威海)如图 1,△ABC 为等边三角形,AB =2,若 P 为△ABC 内一动点,且满足 ∠PAB =∠ACP ,则线段 P B 长度的最小值为_ 。

简答:因为∠PAB =∠PCA ,∠PAB +∠PAC =60°,所以∠PAC +∠PCA =60°,即∠APC =120°。

因为 A C 定长、∠APC =120°定角,故满足“定弦定角模型”,P 在圆上,圆周角∠APC =120°,通过简单推导可知圆心角∠AOC =60°,故以 AC 为边向下作等边△AOC ,以 O 为圆心,OA 为半径作⊙O ,P 在⊙O 上。

当 B 、P 、O 三点共线时,BP 最短(知识储备一:点圆距离),此时 B P =2 -22. 如图 1 所示,边长为 2 的等边△ABC 的原点 A 在 x 轴的正半轴上移动,∠BOD =30°, 顶点 A在射线 O D 上移动,则顶点 C 到原点 O 的最大距离为 。

“中考数学专题复习圆来如此简单”经典几何模型之隐圆专题(含答案)

“中考数学专题复习圆来如此简单”经典几何模型之隐圆专题(含答案)

AC= 5,所以 BP= 13―5= 8.再根据 △ BPO∽ △BCA,所以 OP= 10 , CQ=20 .当点 Q
3
3
与点 B 重合时(如图 3),直径 CQ 最大,此时CQ=12.综上所述,
20 ≤CQ≤12 3
5. 如图 1,半径为 4 的⊙O 中, CD 为直径,弦 AB⊥ CD 且过半径 OD 的中点,点 E 为 ⊙ O 上一
的动点,将 △ CEF沿直线 EF翻折,点 C落在点 P 处,则点 P 到边 AB 距离的最小值是
简答: E 是动点,导致 EF、 EC、 EP都在变化,但是 FP=FC=2 不变,故 P 点到 F 点的距离永远等 于 2,故 P 在 ⊙ F 上运动,如图 2。由垂线段最短可知, FH⊥ AB 时, FH 最短, 当 F、P、H 三 点共线时, PH 最短,又因为 △ AFH∽ △ ABC,所以 AF:FH:AH=5:4:3,又因为 AF=5,故 FH=4, 又因为 FP=2,故 PH 最短为 2 9. 如图,在 □ABCD中, ∠ BCD= 30°, BC= 4, CD= 3 3 , M 是AD 边的中点, N 是 AB 边上一动点,将 △ AMN 沿MN 所在直线翻折得到 △ PMN,连接 PC,则 PC长度的最小值是
动点, CF⊥ AE 于点 F.当点 E 从点 B 出发顺时针运动到点 D 时,点 F 所经过的路径长为
2 +1 ,故答案选 B
4. 如图 1, AC 为边长为 2 的菱3 形 ABCD的对角线, ∠ ABC=60 °,点 M 、 N 分别从点 B、
C同时出发,以相同速度沿 BC、 CA 向终点 C 和 A 运动,连接 AM 和 BN,求 △ APB 周长的最大 值
简答:如图 2,由 M 、 N 点速度相同可知 BM =CN,易证 △ ABM≌ △ BCN,故 ∠ NBC=∠ BAM (如图 2),又因为 ∠ NBC+∠ ABN=60°,所以 ∠ BAM+∠ ABN=∠ APN=60°(外角性质) ,所以 ∠APB=120 (°定角),又因为 AB 长度固定(定弦) ,故以 AB 为底向左侧构建等腰 △ QAB, ∠ AQB=120 ,°则 P 在 ⊙ Q 上,由 “知识储备三 ”可知,当 △ABP 是等腰三角形时,

2018年辽宁省沈阳市中考数学试卷(含答案解析版)-(27820)

2018年辽宁省沈阳市中考数学试卷(含答案解析版)-(27820)

2018年辽宁省沈阳市中考数学试卷一、选择题(每题只有一个正确选项,本题共10 小题,每题 2 分,共 20 分)1.( 2.00 分)( 2018? 沈阳)下列各数中是有理数的是()A.πB.0 C. D .2.(2.00 分)( 2018? 沈阳)辽宁男蓝夺冠后,从 4 月21 日至 24 日各类媒体体关于“辽篮CBA 夺冠”的相关文章达到 81000篇,将数据81000用科学记数法表示为()A.0.81×104 B.0.81× 106 C.8.1×104D.8.1×106 3.( 2.00 分)( 2018? 沈阳)如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.4.(2.00分)( 2018? 沈阳)在平面直角坐标系中,点 B 的坐标是( 4,﹣ 1),点 A 与点 B 关于 x 轴对称,则点 A 的坐标是()A.(4,1)B.(﹣ 1,4) C .(﹣ 4 ,﹣ 1 )D.(﹣ 1,﹣ 4)5.(2.00分)( 2018? 沈阳)下列运算错误的是()A.(m2)3=m 6B.a10÷a9=a C . x3?x5=x 8 D.a4+a3=a76.(2.00分)( 2018? 沈阳)如图,AB∥CD,EF∥GH ,∠ 1=60 °,则∠2 补角的度数是()A. 60 °B. 100 ° C. 110 ° D.120 °7.( 2.00 分)( 2018? 沈阳)下列事件中,是必然事件的是()A.任意买一张电影票,座位号是 2 的倍数----WORD格式 -- 专业资料 -- 可编辑 ---B.13 个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨8.( 2.00 分)( 2018? 沈阳)在平面直角坐标系中,一次函数 y=kx+b 的图象如图所示,则k 和 b 的取值范围是()A.k>0,b>0 B.k>0, b<0 C.k<0,b>0 D.k <0,b<09.(2.00分)( 2018? 沈阳)点A(﹣ 3,2)在反比例函数 y= (k≠0)的图象上,则k 的值是()A.﹣ 6 B.﹣C.﹣ 1 D.610.(2.00分)( 2018? 沈阳)如图,正方形ABCD 内接于⊙ O,AB=2,则的长是()--WORD格式 -- 专业资料 -- 可编辑 ---A.πB.π C. 2π D.π二、细心填一填(本大题共 6 小题,每小题 3 分,满分 18 分,请把答案填在答題卷相应题号的横线上)11.( 3.00分)(2018? 沈阳因)式分解:3x3﹣12x=.12.(3.00分)( 2018? 沈阳)一组数 3,4,7,4,3,4,5,6,5 的众数是.13.(3.00分)( 2018? 沈阳化)简:﹣=.14.(3.00分)( 2018? 沈阳)不等式组<的解集是.15.(3.00分)(2018? 沈阳)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与 CD 边平行的篱笆 EF 分开.已知篱笆的总长为 900m(篱笆的厚度忽略不计),当 AB=m 时,矩形土地 ABCD 的面积最大.--WORD格式 -- 专业资料 -- 可编辑 ---16.(3.00分)( 2018? 沈阳)如图,△ABC 是等边三角形, AB= ,点 D 是边 BC 上一点,点 H 是线段 AD 上一点,连接 BH、CH.当∠ BHD=60°,∠ AHC=90°时, DH=.三、解答题题( 17 题 6 分,18-19题各 8 分,请认真读题)17.(6.00分)( 2018? 沈阳)计算:2tan45 °﹣|﹣3|+()﹣20﹣( 4﹣π).18.(8.00 分)( 2018? 沈阳)如图,在菱形 ABCD 中,对角线 AC 与 BD 交于点 O.过点 C 作 BD 的平行线,过点 D 作 AC 的平行线,两直线相交于点E.(1)求证:四边形OCED 是矩形;(2)若 CE=1,DE=2 ,ABCD 的面积是.--WORD格式 -- 专业资料 -- 可编辑 ---19.(8.00 分)( 2018? 沈阳)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.四、解答题(每题8 分,请认真读题)20.(8.00 分)( 2018? 沈阳)九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生,m的--WORD格式 -- 专业资料 -- 可编辑 ---值是.(2)请根据据以上信息直在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是度;(4)若该校九年级共有 1000 名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.21.(8.00分)( 2018? 沈阳)某公司今年1 月份的生产成本是 400 万元,由于改进技术,生产成本逐月下降,3 月份的生产成本是361万元.假设该公司 2、3、4 月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测 4 月份该公司的生产成本.五、解答题(本题10)22.(10.00分)( 2018? 沈阳)如图,BE 是 O 的直径,点 A 和点 D 是⊙ O 上的两点,过点 A 作⊙ O 的切----WORD格式 -- 专业资料 -- 可编辑 ---交 BE 延长线于点.(1)若∠ ADE=25°,求∠C 的度数;(2)若 AB=AC ,CE=2,求⊙ O 半径的长.六、解答题(本题10 分)23.(10.00分)( 2018? 沈阳)如图,在平面直角坐标系中,点 F 的坐标为(0,10).点 E 的坐标为(20,0),直线 l1经过点 F 和点 E,直线 l1与直线 l2、y= x 相交于点 P.(1)求直线 l1的表达式和点 P 的坐标;(2)矩形 ABCD 的边 AB 在 y 轴的正半轴上,点 A与点 F 重合,点 B 在线段 OF 上,边 AD 平行于 x 轴,且 AB=6 ,AD=9 ,将矩形 ABCD 沿射线 FE 的方向平移,边 AD 始终与 x 轴平行.已知矩形 ABCD 以每秒个单位的速度匀速移动(点 A 移动到点 E 时止移动),设移动时间为 t 秒( t>0).①矩形 ABCD 在移动过程中, B、C、D 三点中有且只有一个顶点落在直线l1或 l2上,请直接写出此时t的值;②若矩形 ABCD 在移动的过程中,直线CD 交直线 l1于点 N,交直线 l2于点 M.当△ PMN 的面积等于 18时,请直接写出此时t 的值.七、解答题(本题12 分)24.(12.00 分)( 2018? 沈阳)已知:△ABC 是等腰三角形, CA=CB , 0°<∠ACB≤ 90 °.点 M 在边 AC 上,点 N 在边 BC 上(点 M、点 N 不与所在线段端点重合),BN=AM ,连接 AN ,BM,射线 AG ∥BC,延长 BM 交射线 AG 于点 D ,点 E 在直线 AN 上,且AE=DE .(1)如图,当∠ ACB=90°时①求证:△ BCM≌△ ACN ;②求∠BDE 的度数;(2)当∠ ACB=α,其它多件不变时,∠BDE 的度数是(用含α的代数式表示)(3)若△ ABC 是等边三角形, AB=3 ,点 N 是 BC 边上的三等分点,直线 ED 与直线 BC 交于点 F,请直接写出线段 CF 的长.八、解答题(本题12 分)25.(12.00分)( 2018? 沈阳如)图,在平面角坐标系中,抛物线 C1:y=ax2+bx﹣1 经过点 A(﹣ 2,1)和点 B (﹣ 1,﹣ 1),抛物线 C2:y=2x2+x+1 ,动直线 x=t 与抛物线 C1交于点 N ,与抛物线 C2交于点 M.(1)求抛物线 C1的表达式;(2)直接用含 t 的代数式表示线段 MN 的长;(3)当△ AMN 是以 MN 为直角边的等腰直角三角形时,求 t 的值;(4)在(3)的条件下,设抛物线 C1与 y 轴交于点 P,点 M 在 y 轴右侧的抛物线 C2上,连接 AM 交 y 轴于点k,连接 KN ,在平面内有一点Q,连接 KQ 和 QN ,当 KQ=1 且∠ KNQ= ∠BNP 时,请直接写出点 Q 的坐标.2018年辽宁省沈阳市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10 小题,每题 2 分,共 20 分)1.( 2.00 分)( 2018? 沈阳)下列各数中是有理数的是()A.πB.0 C. D .【考点】 27:实数.【专题】 511:实数.【分析】根据有理数是有限小数或无限循环小,可得答案.【解答】解: A、π是无限不循环小数,属于无理数,故本选项错误;B、0 是有理数,故本选项正确;C、是无理数,故本选项错误;D、无理数,故本选项错误;故选: B.【点评】本题考查了有理数,有限小数或无限循环小数是有理数.2.(2.00 分)( 2018? 沈阳)辽宁男蓝夺冠后,从 4 月21 日至 24 日各类媒体体关于“辽篮CBA 夺冠”的相关文章达到 81000篇,将数据81000用科学记数法表示为()A.0.81×104 B.0.81× 106 C.8.1×104D.8.1×106【考点】 1I:科学记数法—表示较大的数.【专题】 1:常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中 1≤|a| <10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时,n 是正数;当原数的绝对值< 1 时, n 是负数.【解答】解:将 81000用科学记数法表示为: 8.1×104.故选: C.--WORD格式 -- 专业资料 -- 可编辑 ---【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n的形式,其中 1≤|a| <10,n为整数,表示时关键要正确确定 a 的值以及 n 的值.3.( 2.00 分)( 2018? 沈阳)如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.【考点】 U2:简单组合体的三视图.【专题】 55:几何图形.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答】解:从左边看,从左往右小正方形的个数依次为: 2,1.左视图如下:【点评】本题主要考查了几何体的三种视图和学生的空间想象能力,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.4.(2.00分)( 2018? 沈阳)在平面直角坐标系中,点 B 的坐标是( 4,﹣ 1),点 A 与点 B 关于 x 轴对称,则点 A 的坐标是()A.(4,1)B.(﹣ 1,4) C .(﹣ 4 ,﹣ 1 )D.(﹣ 1,﹣ 4)【考点】 P5:关于 x 轴、 y 轴对称的点的坐标.【专题】 1:常规题型.【分析】直接利用关于x 轴对称点的性质,横坐标不变纵坐标改变符号进而得出答案.【解答】解:∵点 B 的坐标是( 4,﹣1),点 A 与点 B 关于 x 轴对称,∴点 A 的坐标是:(4,1).【点评】此题主要考查了关于 x 轴对称点的性质,正确把握横纵坐标的关系是解题关键.5.(2.00分)( 2018? 沈阳)下列运算错误的是()A.(m2)3=m 6B.a10÷a9=a C . x3?x5=x 8 D.a4+a3=a7【考点】 35:合并同类项; 46:同底数幂的乘法; 47:幂的乘方与积的乘方; 48:同底数幂的除法.【专题】 11 :计算题.【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【解答】解: A、(m2)3=m 6,正确;B、a10÷a9=a,正确;C、x3?x5=x 8,正确;D、a4+a3=a4+a3,错误;----WORD格式 -- 专业资料 -- 可编辑 ---【点评】此题主要考查了合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.6.(2.00分)( 2018? 沈阳)如图,AB∥CD,EF∥GH ,∠ 1=60 °,则∠2 补角的度数是()A. 60°B. 100 ° C. 110 °D. 120 °【考点】 IL :余角和补角; JA:平行线的性质.【专题】 551:线段、角、相交线与平行线.【分析】根据平行线的性质比较多定义求解即可;【解答】解:∵ AB∥CD,∴∠ 1=∠EFH ,∵E F∥GH ,∴∠ 2=∠EFH ,∴∠ 2=∠ 1=60 °,∴∠ 2 的补角为 120 °,故选: D.【点评】本题考查平行线的性质、补角和余角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.( 2.00 分)( 2018? 沈阳)下列事件中,是必然事件的是()A.任意买一张电影票,座位号是 2 的倍数B.13 个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨【考点】 X1:随机事件.【专题】 543:概率及其应用.【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解: A 、“任意买一张电影票,座位号是2的倍数”是随机事件,故此选项错误;B、“ 13个人中至少有两个人生肖相同”是必然事件,故此选项正确;C、“车辆随机到达一个路口,遇到红灯”是随机事件,故此选项错误;D、“明天一定会下雨”是随机事件,故此选项错误;故选: B.【点评】考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.( 2.00 分)( 2018? 沈阳)在平面直角坐标系中,一次函数 y=kx+b 的图象如图所示,则 k 和 b 的取值范围是()A.k>0,b>0 B.k>0, b<0 C.k<0,b>0 D.k <0,b<0【考点】 F7:一次函数图象与系数的关系.【专题】 53:函数及其图象.【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数 y=kx+b 的图象经过一、二、四象限,∴k<0,b> 0.故选: C.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数 y=kx+b (k≠0)中,当 k<0,b>0 时图象在一、二、四象限.9.(2.00分)( 2018? 沈阳)点A(﹣ 3,2)在反比例函数 y= (k≠0)的图象上,则k 的值是()A.﹣ 6 B.﹣C.﹣ 1 D.6【考点】 G6:反比例函数图象上点的坐标特征.【专题】 33 :函数思想.【分析】根据点 A 的坐标,利用反比例函数图象上点的坐标特征求出 k 值,此题得解.【解答】解:∵A(﹣3,2)在反比例函数y= (k≠0)的图象上,∴k=(﹣ 3)× 2= ﹣6.故选: A.【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数图象上所有点的坐标均满足该函数的解析式.10.(2.00分)( 2018? 沈阳)如图,正方形ABCD 内接于⊙ O,AB=2,则的长是()A.πB.π C. 2π D.π【考点】 LE :正方形的性质; MN :弧长的计算.【专题】 1:常规题型.【分析】连接 OA 、OB,求出∠ AOB=90°,根据勾股定理求出 AO ,根据弧长公式求出即可.【解答】解:连接 OA 、OB,∵正方形 ABCD 内接于⊙ O,∴A B=BC=DC=AD ,∴===,∴∠ AOB= × 360 ° =90 °,在 Rt△AOB 中,由勾股定理得: 2AO2= (2 )2,解得: AO=2 ,∴的长为=π,故选: A.【点评】本题考查了弧长公式和正方形的性质,能求出∠ AOB 的度数和 OA 的长是解此题的关键.二、细心填一填(本大题共 6 小题,每小题 3 分,满分 18 分,请把答案填在答題卷相应题号的横线上)11.(3.00分)( 2018? 沈阳)因式分解:3x3﹣12x= 3x (x+2)(x﹣ 2).【考点】 55:提公因式法与公式法的综合运用.【分析】首先提公因式 3x,然后利用平方差公式即可分解.【解答】解: 3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2)故答案是: 3x(x+2)(x﹣2).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.(3.00分)( 2018? 沈阳)一组数 3,4,7,4,3,4,5,6,5 的众数是4.【考点】 W5:众数.【专题】 1:常规题型;542:统计的应用.【分析】根据众数的定义求解可得.【解答】解:在这组数据中 4 出现次数最多,有 3 次,所以这组数据的众数为 4,故答案为: 4.【点评】本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.13.(3.00分)( 2018? 沈阳化)简:﹣=.【考点】 6B:分式的加减法.【专题】 11 :计算题; 513:分式.【分析】原式通分并利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式=﹣==,故答案为:【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.(3.00分)( 2018? 沈阳)不等式组<的解集是﹣2≤x<2.【考点】 CB:解一元一次不等式组.【专题】 11 :计算题; 524:一元一次不等式 (组)及应用.【分析】先求出两个不等式的解集,再求不等式组的公共解.【解答】解:解不等式 x﹣2<0,得: x<2,解不等式 3x+6≥0,得: x≥﹣ 2,则不等式组的解集为﹣2≤x<2,故答案为:﹣ 2≤x<2.【点评】本题考查了解一元一次不等式组,遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.(3.00分)(2018? 沈阳)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与 CD 边平行的篱笆 EF 分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当 AB= 150 m 时,矩形土地 ABCD 的面积最大.【考点】 HE :二次函数的应用.【专题】 12 :应用题.【分析】根据题意可以用相应的代数式表示出矩形绿地的面积;即可解答本题.【解答】解:(1)设 AB=xm ,则 BC= (900﹣3x),由题意可得, S=AB× BC=x ×( 900﹣ 3x)= ﹣( x2﹣300x)= ﹣(x﹣150)2+33750∴当 x=150 时, S 取得最大值,此时, S=33750,--WORD格式 -- 专业资料 -- 可编辑 ---∴A B=150m,故答案为: 150.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的顶点式求函数的最值.16.(3.00分)( 2018? 沈阳)如图,△ABC 是等边三角形, AB= ,点 D 是边 BC 上一点,点 H 是线段 AD 上一点,连接 BH、CH.当∠ BHD=60°,∠ AHC=90°时, DH=.【考点】 KD :全等三角形的判定与性质; KK :等边三角形的性质; S9:相似三角形的判定与性质.【专题】11 :计算题.【分析】作 AE⊥BH 于 E,BF⊥AH 于 F,如图,利用等边三角形的性质得 AB=AC ,∠ BAC=60°,再证明∠ ABH= ∠CAH ,则可根据“AAS”证明△ABE ≌△CAH ,所以 BE=AH ,AE=CH ,在 Rt△AHE 中利用含 30 度的直角三角形三边的关系得到HE=AH ,AE= AH ,则 CH= AH ,于是在 Rt△AHC 中利用勾股定理可计算出AH=2 ,从而得到BE=2 , HE=1 ,AE=CH=,BH=1 ,接下来在Rt△ BFH 中计算出HF= ,BF=,然后证明△ CHD∽△ BFD,利用相似比得到=2,从而利用比例性质可得到DH 的长.【解答】解:作 AE⊥BH 于 E,BF⊥AH 于 F,如图,∵△ ABC 是等边三角形,∴A B=AC ,∠ BAC=60°,∵ ∠ BHD= ∠ ABH+ ∠ BAH=60°,∠ BAH+ ∠CAH=60°,∴∠ ABH= ∠CAH ,在△ ABE 和△ CAH 中,∴△ ABE≌△ CAH ,∴B E=AH ,AE=CH ,在 Rt△AHE 中,∠ AHE= ∠ BHD=60°,∴sin∠AHE= ,HE= AH ,∴ AE=AH?sin60 °=AH ,∴C H= AH ,在 Rt△AHC 中, AH 2+ ( AH )2=AC 2= ()2,解得 AH=2 ,∴BE=2,HE=1 ,AE=CH=,∴B H=BE ﹣HE=2 ﹣1=1,在 Rt△BFH 中, HF= BH= ,BF= ,∵B F∥CH,∴△ CHD ∽△ BFD ,∴===2,∴D H=HF=×=.故答案为.--WORD格式 -- 专业资料 -- 可编辑 ---【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了全等三角形的判定与性质和等边三角形的性质.三、解答题题( 17 题 6 分,18-19题各 8 分,请认真读题)17.(6.00分)( 2018? 沈阳)计算:2tan45 °﹣|﹣3|+()﹣20﹣( 4﹣π).【考点】 2C:实数的运算; 6E:零指数幂; 6F:负整数指数幂; T5:特殊角的三角函数值.【专题】 1 :常规题型.--WORD格式 -- 专业资料 -- 可编辑 ---【分析】直接利用绝对值的性质以及零指数幂的性质和特殊角的三角函数值以及负指数幂的性质分别化简得出答案.【解答】解:原式 =2×1﹣( 3﹣)+4﹣1=2﹣3+ +4﹣1=2+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(8.00 分)( 2018? 沈阳)如图,在菱形 ABCD 中,对角线 AC 与 BD 交于点 O.过点 C 作 BD 的平行线,过点 D 作 AC 的平行线,两直线相交于点E.(1)求证:四边形OCED 是矩形;(2)若 CE=1,DE=2 ,ABCD 的面积是4.【考点】 L8:菱形的性质; LD :矩形的判定与性质.--WORD格式 -- 专业资料 -- 可编辑 ---【专题】 556:矩形菱形正方形.【分析】(1)欲证明四边形 OCED 是矩形,只需推知四边形 OCED 是平行四边形,且有一内角为90 度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【解答】(1)证明:∵四边形 ABCD 是菱形,∴AC⊥BD,∴∠ COD=90°.∵CE∥OD ,DE ∥OC,∴四边形 OCED 是平行四边形,又∠ COD=90°,∴平行四边形OCED 是矩形;( 2)由( 1)知,平行四边形OCED 是矩形,则CE=OD=1 ,DE=OC=2 .∵四边形 ABCD 是菱形,∴AC=2OC=4 ,BD=2OD=2 ,∴菱形 ABCD 的面积为:AC?BD= ×4×2=4.故答案是: 4.【点评】考查了矩形的判定与性质,菱形的性质.此题中,矩形的判定,首先要判定四边形是平行四边形,然后证明有一内角为直角.19.(8.00 分)( 2018? 沈阳)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.【考点】 X6:列表法与树状图法.【专题】 1:常规题型;543:概率及其应用.【分析】画树状图展示所有9 种等可能的结果数,找出“至少有一人直行”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有 9 种等可能的结果数,其中两人之中至少有一人直行的结果数为 5,所以两人之中至少有一人直行的概率为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果 n,再从中选出符合事件 A 或 B 的结果数目 m,然后利用概率公式计算事件 A 或事件 B 的概率.四、解答题(每题8 分,请认真读题)20.(8.00 分)( 2018? 沈阳)九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.--WORD格式 -- 专业资料 -- 可编辑 ---据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了50名学生,m的值是18.(2)请根据据以上信息直在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是108度;(4)若该校九年级共有 1000 名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.【考点】 V5:用样本估计总体; VB :扇形统计图;VC:条形统计图.【专题】 54:统计与概率.【分析】(1)根据统计图化学对应的数据和百分比可以求得这次调查的学生数,进而求得m 的值;(2)根据( 1)中的结果和条形统计图中的数据可以求得选择数学的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得“数学”所对应的圆心角度数;(4)根据统计图中的数据,可以求得该校九年级学生中有多少名学生对数学感兴趣.【解答】解:( 1)在这次调查中一共抽取了: 10÷20%=50(名)学生,m%=9÷50× 100%=18%,故答案为: 50,18;(2)选择数学的有;50﹣9﹣5﹣8﹣10﹣3=15(名),补全的条形统计图如右图所示;(3)扇形统计图中,“数学”所对应的圆心角度数是:360 °× =108 °,故答案为: 108;(4)1000×=300(名),答:该校九年级学生中有300 名学生对数学感兴趣.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.(8.00分)( 2018? 沈阳)某公司今年1 月份的生产成本是 400 万元,由于改进技术,生产成本逐月下降,3 月份的生产成本是361万元.假设该公司 2、3、4 月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测 4 月份该公司的生产成本.【考点】 AD :一元二次方程的应用.【专题】34 :方程思想; 523:一元二次方程及应用.--WORD格式 -- 专业资料 -- 可编辑 ---【分析】(1)设每个月生产成本的下降率为x,根据 2月份、 3 月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由 4 月份该公司的生产成本 =3 月份该公司的生产成本×( 1﹣下降率),即可得出结论.【解答】解:(1)设每个月生产成本的下降率为 x,根据题意得: 400(1﹣x)2=361,解得: x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为 5%.(2)361×( 1﹣5%)=342.95(万元).答:预测 4 月份该公司的生产成本为342.95万元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.五、解答题(本题10)22.(10.00分)( 2018? 沈阳)如图,BE 是 O 的直径,点 A 和点 D 是⊙ O 上的两点,过点 A 作⊙ O 的切--交 BE 延长线于点.(1)若∠ ADE=25°,求∠C 的度数;(2)若 AB=AC ,CE=2,求⊙ O 半径的长.【考点】 KQ :勾股定理; M5:圆周角定理; MC:切线的性质.【专题】 55:几何图形.【分析】(1)连接 OA ,利用切线的性质和角之间的关系解答即可;(2)根据直角三角形的性质解答即可.【解答】解:(1)连接 OA ,∵A C 是⊙O 的切线,OA 是⊙O 的半径,∴OA⊥AC,∴∠ OAC=90°,∵,∠ ADE=25°,∴∠ AOE=2 ∠ ADE=50°,∴∠ C=90°﹣∠AOE=90°﹣ 50 ° =40 °;(2)∵ AB=AC ,∴∠ B=∠C,∵ ,∴∠ AOC=2∠B,∴∠ AOC=2∠C,∵∠OAC=90°,∴∠ AOC+ ∠ C=90°,∴3∠ C=90°,∴∠ C=30°,∴OA= OC,设⊙ O 的半径为 r,∵CE=2,∴r=,解得: r=2,∴⊙ O 的半径为 2.【点评】此题考查切线的性质,关键是根据切线的性质进行解答.六、解答题(本题10 分)23.(10.00分)( 2018? 沈阳)如图,在平面直角坐标系中,点 F 的坐标为(0,10).点 E 的坐标为(20,0),直线 l 1经过点 F 和点 E,直线 l1与直线 l2、y= x 相交于点 P.(1)求直线 l1的表达式和点 P 的坐标;(2)矩形 ABCD 的边 AB 在 y 轴的正半轴上,点 A与点 F 重合,点 B 在线段 OF 上,边 AD 平行于 x 轴,且 AB=6 ,AD=9 ,将矩形 ABCD 沿射线 FE 的方向平移,边 AD 始终与 x 轴平行.已知矩形 ABCD 以每秒个单位的速度匀速移动(点 A 移动到点 E 时止移动),设移动时间为 t 秒( t>0).①矩形 ABCD 在移动过程中, B、C、D 三点中有且只有一个顶点落在直线l1或 l2上,请直接写出此时t 的值;②若矩形 ABCD 在移动的过程中,直线CD 交直线 l1于点 N,交直线 l2于点 M.当△ PMN 的面积等于 18时,请直接写出此时t 的值.【考点】 FI:一次函数综合题.【专题】153:代数几何综合题; 31 :数形结合; 32 :分类讨论; 533:一次函数及其应用.【分析】(1)利用待定系数法求解析式,函数关系式联立方程求交点;(2)①分析矩形运动规律,找到点 D 和点 B 分别在直线 l2上或在直线 l1上时的情况,利用 AD 、AB 分别可以看成图象横坐标、纵坐标之差构造方程求点A 坐标,进而求出 AF 距离;②设点 A 坐标,表示△ PMN 即可.【解答】解:(1)设直线 l1的表达式为 y=kx+b ∵直线 l1过点 F(0,10),E( 20,0)∴解得直线 l1的表达式为 y= ﹣ x+10求直线 l1与直线 l2交点,得x=﹣ x+10解得 x=8y= ×8=6∴点 P 坐标为( 8,6)(2)①如图,当点 D 在直线上 l2时∵A D=9∴点 D 与点 A 的横坐标之差为 9 ∴将直线 l1与直线 l2交解析式变为x=20﹣2y,x= y∴y﹣( 20﹣2y)=9解得y=则点 A 的坐标为:(,)则 AF=∵点 A 速度为每秒个单位∴t=如图,当点 B 在 l2直线上时∵A B=6∴点 A 的纵坐标比点 B 的纵坐标高 6 个单位∴直线 l1的解析式减去直线l2的解析式得﹣x+10﹣ x=6解得 x=则点A坐标为(,)则 AF=∵点 A 速度为每秒个单位∴t=故 t 值为或②如图,设直线 AB 交 l2于点 H设点 A 横坐标为 a,则点 D 横坐标为 a+9 由①中方法可知: MN=此时点 P 到 MN 距离为:a+9﹣8=a+1∵△ PMN 的面积等于 18∴解得a1=,a2=﹣(舍去)∴A F=6 ﹣则此时 t 为当 t=时,△ PMN的面积等于18【点评】本题是代数几何综合题,应用待定系数法和根据函数关系式来表示点坐标,涉及到了分类讨论思想和数形结合思想.七、解答题(本题12 分)24.(12.00 分)( 2018? 沈阳)已知:△ABC 是等腰三角形, CA=CB , 0°<∠ACB≤ 90 °.点 M 在边 AC 上,点 N 在边 BC 上(点 M、点 N 不与所在线段端点重合),BN=AM ,连接 AN ,BM,射线 AG ∥BC,延长 BM 交射线 AG 于点 D ,点 E 在直线 AN 上,且AE=DE .(1)如图,当∠ ACB=90°时①求证:△ BCM≌△ ACN ;。

2018年河北省中考数学试卷(含答案)

2018年河北省中考数学试卷(含答案)

2018年河北省中考数学试卷一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:﹣(﹣1)=()A.±1 B.﹣2 C.﹣1 D.12.计算正确的是()A.(﹣5)0=0 B.x2+x3=x5C.(ab2)3=a2b5 D.2a2•a﹣1=2a3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算结果为x﹣1的是()A.1﹣B.•C.÷D.5.若k≠0,b<0,则y=kx+b的图象可能是()A.B.C.D.6.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形7.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④9.如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心10.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD11.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙 B.丙丁 C.甲丙 D.乙丁12.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.=﹣5 B.=+5 C.=8x﹣5 D.=8x+513.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°14.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根 D.有一根为015.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.16.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.8的立方根是______.18.若mn=m+3,则2mn+3m﹣5mn+10=______.19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°﹣7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=______°.…若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=______°.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.21.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.22.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D 开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24.某商店通过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如表:第1个第2个第3个第4个…第n个调整前的单价x(元)x1x2=6 x3=72 x4…x n调整后的单价y(元)y1y2=4 y3=59 y4…y n已知这个n玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导过程.25.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为______,此时点P,A间的距离为______;点M与AB的最小距离为______,此时半圆M的弧与AB所围成的封闭图形面积为______;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)26.如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=(k>0,x>0)于点P,且OA•MP=12,(1)求k值;(2)当t=1时,求AB的长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t的取值范围.2018年河北省中考数学试卷参考答案与试题解析一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。

2018届中考数学复习 专题21 平面几何初步(点、线、面、角、相交线与平行线等)试题(B卷,含解析)

2018届中考数学复习 专题21 平面几何初步(点、线、面、角、相交线与平行线等)试题(B卷,含解析)

平面几何初步一、选择题1. ( 福建福州,3,3分)如图,直线a ,b 被直线c 所截,∠1和∠2的位置关系是A .同位角B .内错角C .同旁内角D .对顶角【答案】B【逐步提示】本题考查了同位角、内错角、同位角和对顶角的识别,解题的关键是认识三线八角,根据内错角的定义可得答案.【详细解答】解:直线a ,b 被直线c 所截,∠1与∠2是内错角,故选择B .【解后反思】三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线. 【关键词】内错角;同位角;同旁内角;对顶角2. ( 甘肃省武威市、白银市、定西市、平凉市、酒泉市、临夏州、张掖市等9市,6,3分)如图,AB ∥CD ,DE ⊥CE ,∠1=34º,则∠DCE 的度数为( )A . 34º B.54º C. 66º D . 56º1BE第6题图【答案】D 【逐步提示】本题考查了平行线的性质,解题的关键是将线的位置关系转化为角的数量关系,应用平行线的性质:两直线平行线内错角相等得出∠EDC 的度数,再利用直角三角形两锐角互余得出∠DCE 的度数. 【详细解答】解:∵AB ∥CD ,∴ ∠EDC =∠1=34°.∵DE ⊥CE ∴ ∠DEC =90°,∴∠EDC +∠DCE =90°.∴∠DCE =90°-34°=56º,故选择D .【解后反思】本题考查了平行线的性质即两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.【关键词】平行线的性质;垂直的定义;直角三角形的性质; 3. ( 甘肃省天水市,5,4分)如图,直线AB ∥CD ,OG 是∠EOB 的平分线,∠EFD =70°,则∠BOG 的度数是( ) A .70° B .20° C .35° D .40°【答案】C【逐步提示】本题考查了平行线的性质和角平分线的定义,解题关键是注意两直线平行,相关的同位角相等、内错角相等及同旁内角互补.要求∠BOG 的度数,关键是先求∠EOB 的度数,这可根据∠EFD =70°,联想到两直线CO A B D E FG平行,同位角相等解决.【详细解答】解:∵AB∥CD,∴∠EOB=∠EFD=70°.又∵OG平分∠EOB,∴∠BOG=12∠EOB=12×70°=35°.故选择C.【解后反思】平行线间的角离不开同位角、同旁内角,及内错角等知识,另外还要和三角形的内角和定理,及外角等于与它不相邻的两内角和知识相联系,只要从这些方面思考,就不难得到解决.【关键词】平行线的性质;角的平分线.4.(广东茂名,5,3分)如图,直线a、b被直线c所截,若a∥b,∠1=60°,那么∠2的度数为()A.120°B.90°C.60°D.30°【答案】C【逐步提示】本题考查了平行线的性质,解题的关键是识别出图中的∠1、∠2是两条平行直线a、b被第三条直线c截出的一组相等的同位角.直接利用“两直线平行,同位角相等”解题即可.【详细解答】解:∵a∥b,∴∠1=∠2. ∵∠1=60°,∴∠2=60°.故选择C .【解后反思】“两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补”这是由直线的位置关系得出角的数量关系,“同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;”这是由角的数量关系得出直线的位置关系,这里体现了数形结合的思想.【关键词】同位角;平行线的性质5.(贵州省毕节市,8,3分)如图,直线a//b,∠1=85°,∠2=35°,则∠3=()(第8题图)A. 85°B. 60°C. 50°D. 35°【答案】C【逐步提示】本题考查平行线的性质,三角形外角和定理,解题的关键是能从图中发现∠3与∠1、∠2的联系.【详细解答】解:如图,∵a//b,∴∠4=∠3.又∵∠1=∠2+∠4,∴∠4=∠1-∠2=85°-35°=50°,∴∠3=50°,故选择C.【解后反思】此类问题容易出错的地方是找不到图形中角与角之间的数量关系.【关键词】平行线的性质;三角形外角和定理6.(河北省,13,2分)如图,将□ABCD沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°【答案】C【逐步提示】根据平行线的性质和折叠的性质得到∠BAC=12∠B’AB=12∠1=22°,再在△ABC中根据三角形内角和定理求得∠B的度数.【详细解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B’AB=∠1=44°.根据折叠的性质可知∠BAC=12∠B’AB=12×44°=22°.又∵∠2=44°,∴∠B=180°-22°-44°=114°,故答案为选项C.【解后反思】折叠问题是属于轴对称变换,折叠后图形的形状和大小不变,三角形折叠后得到的三角形与原三角形全等,对应边和对应角相等.【关键词】平行四边形的性质;平行线的性质;折叠;三角形内角和定理7.(湖北省黄冈市,3,3分)如图,直线a∥b,∠1=550,则∠2= ()A.350B.450C. 550D.650【答案】C【逐步提示】本题考查了平行线的性质“两直线平行,同位角相等”及对顶角的性质“对顶角相等”,解题的关键是能观察出∠1与∠2之间的联系而不走弯路.由图易发现,∠1的对顶角与∠2是同位角,a∥b是沟通∠1与∠2的桥梁.【详细解答】解:如图,∵a∥b,∴∠3=∠2.∵∠3=∠1,∴∠2=∠1=55°,故选择C.【解后反思】此类题主要考查形式为选择或填空,解决此类题型常用的方法是根据平行线的性质:两直线平行同位角相等、两直线平行内错角相等,两直线平行同旁内角互补,结合对顶角相等或邻补角和为180°,直接求出正确答案后做出选择.【关键词】平行线的性质;对顶角。

2018年安徽省中考数学试卷及解析(完美打印版)

2018年安徽省中考数学试卷及解析(完美打印版)

2018年安徽省中考数学试卷(打印版)一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣8的绝对值是()A.﹣8B.8C.±8D.﹣2.(4分)2017年我省粮食总产量为695.2亿斤.其中695.2亿用科学记数法表示为()A.6.952×106B.6.952×108C.6.952×1010D.695.2×1083.(4分)下列运算正确的是()A.(a2)3=a5B.a4•a2=a8C.a6÷a3=a2D.(ab)3=a3b34.(4分)一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A.B.C.D.5.(4分)下列分解因式正确的是()A.﹣x2+4x=﹣x(x+4)B.x2+xy+x=x(x+y)C.x(x﹣y)+y(y﹣x)=(x﹣y)2D.x2﹣4x+4=(x+2)(x﹣2)6.(4分)据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)2aC.b=(1+22.1%)×2a D.b=22.1%×2a7.(4分)若关于x的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A.﹣1B.1C.﹣2或2D.﹣3或18.(4分)为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差9.(4分)▱ABCD中,E,F是对角线BD上不同的两点.下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF10.(4分)如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处.将正方形ABCD沿l向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)11.(5分)不等式>1的解集是.12.(5分)如图,菱形ABOC的边AB,AC分别与⊙O相切于点D,E.若点D是AB的中点,则∠DOE =°.13.(5分)如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B.平移直线y=kx,使其经过点B,得到直线l,则直线l对应的函数表达式是.14.(5分)矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为.三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)计算:50﹣(﹣2)+×.16.(8分)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是个平方单位.18.(8分)观察以下等式:第1个等式:++×=1,第2个等式:++×=1,第3个等式:++×=1,第4个等式:++×=1,第5个等式:++×=1,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E 恰好观测到旗杆顶A(此时∠AEB=∠FED),在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米?(结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)20.(10分)如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.六、解答题(本大题满分12分)21.(12分)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.七、解答题(本题满分12分)22.(12分)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?八、解答题(本题满分14分)23.(14分)如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E.点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.2018年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣8的绝对值是()A.﹣8B.8C.±8D.﹣【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣8<0,∴|﹣8|=8.故选:B.2.(4分)2017年我省粮食总产量为695.2亿斤.其中695.2亿用科学记数法表示为()A.6.952×106B.6.952×108C.6.952×1010D.695.2×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:695.2亿=695 2000 0000=6.952×1010,故选:C.3.(4分)下列运算正确的是()A.(a2)3=a5B.a4•a2=a8C.a6÷a3=a2D.(ab)3=a3b3【分析】根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.【解答】解:∵(a2)3=a6,∴选项A不符合题意;∵a4•a2=a6,∴选项B不符合题意;∵a6÷a3=a3,∴选项C不符合题意;∵(ab)3=a3b3,∴选项D符合题意.故选:D.4.(4分)一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看上边是一个三角形,下边是一个矩形,故选:A.5.(4分)下列分解因式正确的是()A.﹣x2+4x=﹣x(x+4)B.x2+xy+x=x(x+y)C.x(x﹣y)+y(y﹣x)=(x﹣y)2D.x2﹣4x+4=(x+2)(x﹣2)【分析】直接利用公式法以及提取公因式法分解因式分别分析得出答案.【解答】解:A、﹣x2+4x=﹣x(x﹣4),故此选项错误;B、x2+xy+x=x(x+y+1),故此选项错误;C、x(x﹣y)+y(y﹣x)=(x﹣y)2,故此选项正确;D、x2﹣4x+4=(x﹣2)2,故此选项错误;故选:C.6.(4分)据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)2aC.b=(1+22.1%)×2a D.b=22.1%×2a【分析】根据2016年的有效发明专利数×(1+年平均增长率)2=2018年的有效发明专利数.【解答】解:因为2016年和2018年我省有效发明专利分别为a万件和b万件,所以b=(1+22.1%)2a.故选:B.7.(4分)若关于x的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A.﹣1B.1C.﹣2或2D.﹣3或1【分析】将原方程变形为一般式,根据根的判别式△=0即可得出关于a的一元二次方程,解之即可得出结论.【解答】解:原方程可变形为x2+(a+1)x=0.∵该方程有两个相等的实数根,∴△=(a+1)2﹣4×1×0=0,解得:a=﹣1.故选:A.8.(4分)为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差【分析】根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;对于n个数x1,x2,…,x n,则x¯=(x1+x2+…+x n)就叫做这n个数的算术平均数;s2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]进行计算即可.【解答】解:A、甲的众数为7,乙的众数为8,故原题说法错误;B、甲的中位数为7,乙的中位数为4,故原题说法错误;C、甲的平均数为6,乙的平均数为5,故原题说法错误;D、甲的方差为4.4,乙的方差为6.4,甲的方差小于乙的方差,故原题说法正确;故选:D.9.(4分)▱ABCD中,E,F是对角线BD上不同的两点.下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF【分析】连接AC与BD相交于O,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF即可,然后根据各选项的条件分析判断即可得解.【解答】解:如图,连接AC与BD相交于O,在▱ABCD中,OA=OC,OB=OD,要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、若AE=CF,则无法判断OE=OE,故本选项符合题意;C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;D、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,然后同A,故本选项不符合题意;故选:B.10.(4分)如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处.将正方形ABCD沿l向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为()A.B.C.D.【分析】当0≤x≤1时,y=2x,当1<x≤2时,y=2,当2<x≤3时,y=﹣2x+6,由此即可判断;【解答】解:当0≤x≤1时,y=2x,当1<x≤2时,y=2,当2<x≤3时,y=﹣2x+6,∴函数图象是A,故选:A.二、填空题(本大题共4小题,每小题5分,共20分)11.(5分)不等式>1的解集是x>10.【分析】根据解一元一次不等式得基本步骤依次计算可得.【解答】解:去分母,得:x﹣8>2,移项,得:x>2+8,合并同类项,得:x>10,故答案为:x>10.12.(5分)如图,菱形ABOC的边AB,AC分别与⊙O相切于点D,E.若点D是AB的中点,则∠DOE =60°.【分析】连接OA,根据菱形的性质得到△AOB是等边三角形,根据切线的性质求出∠AOD,同理计算即可.【解答】解:连接OA,∵四边形ABOC是菱形,∴BA=BO,∵AB与⊙O相切于点D,∴OD⊥AB,∵点D是AB的中点,∴直线OD是线段AB的垂直平分线,∴OA=OB,∴△AOB是等边三角形,∵AB与⊙O相切于点D,∴OD⊥AB,∴∠AOD=∠AOB=30°,同理,∠AOE=30°,∴∠DOE=∠AOD+∠AOE=60°,故答案为:60.13.(5分)如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B.平移直线y=kx,使其经过点B,得到直线l,则直线l对应的函数表达式是y=x﹣3.【分析】首先利用图象上点的坐标特征得出A点坐标,进而得出正比例函数解析式,再利用平移的性质得出答案.【解答】解:∵正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),∴2m=6,解得:m=3,故A(2,3),则3=2k,解得:k=,故正比例函数解析式为:y=x,∵AB⊥x轴于点B,平移直线y=kx,使其经过点B,∴B(2,0),∴设平移后的解析式为:y=x+b,则0=3+b,解得:b=﹣3,故直线l对应的函数表达式是:y=x﹣3.故答案为:y=x﹣3.14.(5分)矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为或3.【分析】根据勾股定理求出BD,分PD=DA、P′D=P′A两种情况,根据相似三角形的性质计算.【解答】解:∵四边形ABCD为矩形,∴∠BAD=90°,∴BD==10,当PD=DA=8时,BP=BD﹣PD=2,∵△PBE∽△DBC,∴=,即=,解得,PE=,当P′D=P′A时,点P′为BD的中点,∴P′E′=CD=3,故答案为:或3.三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)计算:50﹣(﹣2)+×.【分析】首先计算零次幂和乘法,然后再计算加减即可.【解答】解:原式=1+2+4=7.16.(8分)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.【分析】设城中有x户人家,根据鹿的总数是100列出方程并解答.【解答】解:设城中有x户人家,依题意得:x+=100解得x=75.答:城中有75户人家.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是20个平方单位.【分析】(1)以点O为位似中心,将线段AB放大为原来的2倍,即可画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,即可画出线段A2B1;(3)连接AA2,即可得到四边形AA1B1A2为正方形,进而得出其面积.【解答】解:(1)如图所示,线段A1B1即为所求;(2)如图所示,线段A2B1即为所求;(3)由图可得,四边形AA1B1A2为正方形,∴四边形AA1B1A2的面积是()2=()2=20.故答案为:20.18.(8分)观察以下等式:第1个等式:++×=1,第2个等式:++×=1,第3个等式:++×=1,第4个等式:++×=1,第5个等式:++×=1,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【分析】以序号n为前提,依此观察每个分数,可以用发现,每个分母在n的基础上依次加1,每个分子分别是1和n﹣1【解答】解:(1)根据已知规律,第6个分式分母为6和7,分子分别为1和5故应填:(2)根据题意,第n个分式分母为n和n+1,分子分别为1和n﹣1故应填:证明:=∴等式成立五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E 恰好观测到旗杆顶A(此时∠AEB=∠FED),在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米?(结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)【分析】根据平行线的性质得出∠FED=45°.解等腰直角△DEF,得出DE=DF=1.8米,EF=DE =米.证明∠AEF=90°.解直角△AEF,求出AE=EF•tan∠AFE≈18.036米.再解直角△ABE,即可求出AB=AE•sin∠AEB≈18米.【解答】解:由题意,可得∠FED=45°.在直角△DEF中,∵∠FDE=90°,∠FED=45°,∴DE=DF=1.8米,EF=DE=米.∵∠AEB=∠FED=45°,∴∠AEF=180°﹣∠AEB﹣∠FED=90°.在直角△AEF中,∵∠AEF=90°,∠AFE=39.3°+45°=84.3°,∴AE=EF•tan∠AFE≈×10.02=18.036(米).在直角△ABE中,∵∠ABE=90°,∠AEB=45°,∴AB=AE•sin∠AEB≈18.036×≈18(米).故旗杆AB的高度约为18米.20.(10分)如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【分析】(1)利用基本作图作AE平分∠BAC;(2)连接OE交BC于F,连接OC,如图,根据圆周角定理得到=,再根据垂径定理得到OE⊥BC,则EF=3,OF=2,然后在Rt△OCF中利用勾股定理计算出CF=,在Rt△CEF中利用勾股定理可计算出CE.【解答】解:(1)如图,AE为所作;(2)连接OE交BC于F,连接OC,如图,∵AE平分∠BAC,∴∠BAE=∠CAE,∴=,∴OE⊥BC,∴EF=3,∴OF=5﹣3=2,在Rt△OCF中,CF==,在Rt△CEF中,CE==.六、解答题(本大题满分12分)21.(12分)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有50人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为30%;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【分析】(1)用“59.5~69.5”这组的人数除以它所占的百分比可得到调查的总人数;再计算出“89.5~99.5”这一组人数占总参赛人数的百分比,然后用1分别减去其它三组的百分比得到“69.5~79.5”这一组人数占总参赛人数的百分比;(2)利用“59.5~69.5”和“69.5~79.5”两分数段的百分比为40%可判断他不能获奖;(3)画树状图展示所有12种等可能的结果数,再找出恰好选中1男1女的结果数,然后根据概率公式求解.【解答】解:(1)5÷10%=50,所以本次比赛参赛选手共有50人,“89.5~99.5”这一组人数占总参赛人数的百分比为×100%=24%,所以“69.5~79.5”这一组人数占总参赛人数的百分比为1﹣10%﹣36%﹣24%=30%;故答案为50,30%;(2)他不能获奖.理由如下:他的成绩位于“69.5~79.5”之间,而“59.5~69.5”和“69.5~79.5”两分数段的百分比为10%+30%=40%,因为成绩由高到低前60%的参赛选手获奖,他位于后40%,所以他不能获奖;(3)画树状图为:共有12种等可能的结果数,其中恰好选中1男1女的结果数为8,所以恰好选中1男1女的概率==.七、解答题(本题满分12分)22.(12分)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【分析】(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,根据“总利润=盆数×每盆的利润”可得函数解析式;(2)将盆景的利润加上花卉的利润可得总利润关于x的函数解析式,配方成顶点式,利用二次函数的性质求解可得.【解答】解:(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,所以W1=(50+x)(160﹣2x)=﹣2x2+60x+8000,W2=19(50﹣x)=﹣19x+950;(2)根据题意,得:W=W1+W2=﹣2x2+60x+8000﹣19x+950=﹣2x2+41x+8950=﹣2(x﹣)2+,∵﹣2<0,且x为整数,∴当x=10时,W取得最大值,最大值为9160,答:当x=10时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是9160元.八、解答题(本题满分14分)23.(14分)如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E.点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【分析】(1)利用直角三角形斜边中线的性质定理即可证明;(2)利用四边形内角和定理求出∠CME即可解决问题;(3)首先证明△ADE是等腰直角三角形,△DEM是等边三角形,设FM=a,则AE=CM=EM=a,EF=2a,推出=,=,由此即可解决问题;【解答】(1)证明:如图1中,∵DE⊥AB,∴∠DEB=∠DCB=90°,∵DM=MB,∴CM=DB,EM=DB,∴CM=EM.(2)解:∵∠AED=90°,∠A=50°,∴∠ADE=40°,∠CDE=140°,∵CM=DM=ME,∴∠MCD=∠MDC,∠MDE=∠MED,∴∠CME=360°﹣2×140°=80°,∴∠EMF=180°﹣∠CME=100°.(3)证明:如图2中,设FM=a.∵△DAE≌△CEM,CM=EM,∴AE=ED=EM=CM=DM,∠AED=∠CME=90°∴△ADE是等腰直角三角形,△DEM是等边三角形,∴∠DEM=60°,∠MEF=30°,∴AE=CM=EM =a,EF=2a,∵CN=NM,∴MN =a,∴=,=,∴=,∴EM∥AN.(也可以连接AM利用等腰三角形的三线合一的性质证明)21。

中考复习初中数学几何证明经典试题(含答案)

中考复习初中数学几何证明经典试题(含答案)

P CG FAD E初中几何证明题经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二).如下图做GH ⊥AB,连接EO 。

由于GOFE 四点共圆,所以∠GFH =∠OEG , 即△GHF ∽△OGE,可得EO GF =GO GH =COCD,又CO=EO ,所以CD=GF 得证。

2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 的延长线交MN 于E 、F .求证:∠DEN =∠F . 经典1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 设MN 是圆O 的弦,过MN 的中点A 任作两弦于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二) 经典题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .AQ P NM · O B D AF D AFGCEBO D求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .(初二) 4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,=AD .(初三)经典题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5. 求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA DPC .(初二) 经典难题(五)1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC , 求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数. 经典题(一)1.如下图做GH ⊥AB,连接EO 。

2018年安徽省中考数学试卷(答案解析版)

2018年安徽省中考数学试卷(答案解析版)

2018年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,满分40分)1. 的绝对值是()A. B. 8 C. D.【答案】B【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2. 2017年我赛粮食总产量为635.2亿斤,其中635.2亿科学记数法表示()A. B. C. D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】635.2亿=63520000000,63520000000小数点向左移10位得到6.352,所以635.2亿用科学记数法表示为:6.352×108,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3. 下列运算正确的是()A. B. C. D.【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.4. 一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【详解】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.5. 下列分解因式正确的是()A. B.C. D.【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. =(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.6. 据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.7. 若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:类于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,=6.4,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.9. □ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A. BE=DFB. AE=CFC. AF//CED. ∠BAE=∠DCF【答案】B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.10. 如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B. C. D.【答案】A【解析】【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1、1<x≤2、2<x≤3三种情况结合等腰直角三角形的性质即可得到相应的函数解析式,由此即可判断.【详解】由正方形的性质,已知正方形ABCD的边长为,易得正方形的对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,y=2,如图,当1<x≤2时,y=2m+2n=2(m+n)= 2,如图,当2<x≤3时,y=2,综上,只有选项A符合,故选A.【点睛】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质,勾股定理等,结合图形正确分类是解题的关键.二、填空题(本大共4小题,每小题5分,满分30分)11. 不等式的解集是___________.【答案】x>10【解析】【分析】按去分母、移项、合并同类项的步骤进行求解即可得.【详解】去分母,得 x-8>2,移项,得 x>2+8,合并同类项,得 x>10,故答案为:x>10.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤及注意事项是解题的关键.12. 如图,菱形ABOC的AB,AC分别与⊙O相切于点D、E,若点D是AB的中点,则∠DOE__________.【答案】60°【解析】【分析】由AB,AC分别与⊙O相切于点D、E,可得∠BDO=∠ADO=∠AEO=90°,根据已知条件可得到BD=OB,在Rt△OBD中,求得∠B=60°,继而可得∠A=120°,再利用四边形的内角和即可求得∠DOE 的度数.【详解】∵AB,AC分别与⊙O相切于点D、E,∴∠BDO=∠ADO=∠AEO=90°,∵四边形ABOC是菱形,∴AB=BO,∠A+∠B=180°,∵BD=AB,∴BD=OB,在Rt△OBD中,∠ODB=90°,BD=OB,∴cos∠B=,∴∠B=60°,∴∠A=120°,∴∠DOE=360°-120°-90°-90°=60°,故答案为:60°.【点睛】本题考查了切线的性质,菱形的性质,解直角三角形的应用等,熟练掌握相关的性质是解题的关键.13. 如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .【答案】y=x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y==3,∴A(2,3),B(2,0),∵y=kx过点 A(2,3),∴3=2k,∴k=,∴y=x,∵直线y=x平移后经过点B,∴设平移后的解析式为y=x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=x-3,故答案为:y=x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.14. 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD 是等腰三角形,则PE的长为数___________.【答案】3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.三、解答题15. 计算:【答案】7【解析】【分析】先分别进行0次幂的计算、二次根式的乘法运算,然后再按运算顺序进行计算即可. 【详解】=1+2+=1+2+4=7.【点睛】本题考查了实数的运算,熟练掌握实数的运算法则、0次幂的运算法则是解题的关键.16. 《孙子算经》中有过样一道题,原文如下:“今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.【答案】城中有75户人家.【解析】【分析】设城中有x户人家,根据今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,可得方程x+x=100,解方程即可得.【详解】设城中有x户人家,由题意得x+x=100,解得x=75,答:城中有75户人家.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列方程进行求解是关键.17. 如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;(2)将线段绕点逆时针旋转90°得到线段.画出线段;(3)以为顶点的四边形的面积是个平方单位.【答案】(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=,所以四边形AA1 B1 A2的在面积为:=20,故答案为:20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.18. 观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式: (用含n的等式表示),并证明.【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.【详解】(1)观察可知第6个等式为:,故答案为:;(2)猜想:,证明:左边====1,右边=1,∴左边=右边,∴原等式成立,∴第n个等式为:,故答案为:.【点睛】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键.19. 为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)【答案】旗杆AB高约18米.【解析】【分析】如图先证明△FDE∽△ABE,从而得,在Rt△FEA中,由tan∠AFE=,通过运算求得AB的值即可.【详解】如图,∵FM//BD,∴∠FED=∠MFE=45°,∵∠DEF=∠BEA,∴∠AEB=45°,∴∠FEA=90°,∵∠FDE=∠ABE=90°,∴△FDE∽△ABE,∴,在Rt△FEA中,∠AFE=∠MFE+∠MFA=45°+39.3°=84.3°,tan84.3°=,∴,∴AB=1.8×10.02≈18,答:旗杆AB高约18米.【点睛】本题考查了解直角三角形的应用,相似三角形的判定与性质,得到是解题的关键.20. 如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.21. “校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【答案】(1)50,30%;(2)不能,理由见解析;(3)P=【解析】【分析】(1)由直方图可知59.5~69.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.5~99.5这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段69.5~79.5所占的百分比;(2)观察可知79.5~99.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可.【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),“89.5~99.5”这一组人数占百分比为:(8+4)÷50×100%=24%,所以“69.5~79.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为:50,30%;(2)不能;由统计图知,79.5~89.5和89.5~99.5两组占参赛选手60%,而78<79.5,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的8结果共有种,故P==.【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键.22. 小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【答案】(1)W1=-2x²+60x+8000,W2=-19x+950;(2)当x=10时,W总最大为9160元.【解析】【分析】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉(50-x)盆,根据盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元,②花卉的平均每盆利润始终不变,即可得到利润W1,W2与x的关系式;(2)由W总=W1+W2可得关于x的二次函数,利用二次函数的性质即可得.【详解】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x)盆,由题意得W1=(50+x)(160-2x)=-2x²+60x+8000,W2=19(50-x)=-19x+950;(2)W总=W1+W2=-2x²+60x+8000+(-19x+950)=-2x²+41x+8950,∵-2<0,=10.25,故当x=10时,W总最大,W总最大=-2×10²+41×10+8950=9160.【点睛】本题考查了二次函数的应用,弄清题意,找准数量关系列出函数解析式是解题的关键.23. 如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【解析】【分析】(1)在Rt△DCB和Rt△DEB中,利用直角三角形斜边中线等于斜边一半进行证明即可得;(2)根据直角三角形两锐角互余可得∠ABC=40°,根据CM=MB,可得∠MCB=∠CBM,从而可得∠CMD=2∠CBM,继而可得∠CME=2∠CBA=80°,根据邻补角的定义即可求得∠EMF的度数;【详解】(1)∵M为BD中点,Rt△DCB中,MC=BD,Rt△DEB中,EM=BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°;(3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE,∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°,∴∠ABC=45°,∠ECM=45°,又∵CM=ME=BD=DM,∴DE=EM=DM,∴△DEM是等边三角形,∴∠EDM=60°,∴∠MBE=30°,∵CM=BM,∴∠BCM=∠CBM,∵∠MCB+∠ACE=45°,∠CBM+∠MBE=45°,∴∠ACE=∠MBE=30°,∴∠ACM=∠ACE+∠ECM=75°,连接AM,∵AE=EM=MB,∴∠MEB=∠EBM=30°,∠AME=∠MEB=15°,∵∠CME=90°,∴∠CMA=90°-15°=75°=∠ACM,∴AC=AM,∵N为CM中点,∴AN⊥CM,∵CM⊥EM,∴AN∥CM.【点睛】本题考查了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判定与性质、三角形外角的性质等,综合性较强,正确添加辅助线、灵活应用相关知识是解题的关键.。

(通用版)2018年中考数学总复习 专题突破预测与详解 第四单元 三角形 专题14 三角形和全等三角形试题 (新

(通用版)2018年中考数学总复习 专题突破预测与详解 第四单元 三角形 专题14 三角形和全等三角形试题 (新

专题14三角形和全等三角形2016~2018详解详析第18页A组基础巩固1.(2017江苏无锡崇安一模,9,3分)如图,用四条线段首尾相接连成一个框架,其中AB=12,BC=14,CD=18,DA=24,则A,B,C,D任意两点之间的最长距离为(C)A.24 cmB.26 cmC.32 cmD.36 cm2.(2018中考预测)如图,AE,AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,则∠DAE的度数为(B)A.40°B.20°C.18°D.38°〚导学号92034059〛3.(2017河北唐山丰南一模,6,3分)如图,从下列四个条件:①BC=B'C,②AC=A'C,③∠A'CA=∠B'CB,④AB=A'B'中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是(B)A.1B.2C.3D.4 〚导4.(2016江苏江阴校级月考,23,10分)将纸片△ABC沿DE折叠使点A落在A'处的位置.图1图2(1)如果A'落在四边形BCDE的内部(如图1),∠A'与∠1+∠2之间存在怎样的数量关系?并说明理由.(2)如果A'落在四边形BCDE的BE边上,这时图1中的∠1变为0°角,则∠EA'D与∠2之间的关系是.(3)如果A'落在四边形BCDE的外部(如图2),这时∠A'与∠1,∠2之间又存在怎样的数量关系?并说明理由.解(1)2∠A'=∠1+∠2,理由略.(2)如图,∠EA'D=∠A,∠2=∠A+∠EA'D=2∠EA'D,故答案为:2∠EA'D=∠2.(3)题图2中,2∠A'=∠2-∠1,理由是:因为沿DE折叠,A和A'重合,所以∠A=∠A'.∵∠DME=∠A'+∠1,∠2=∠A+∠DME,∴∠2=∠A+∠A'+∠1,即2∠A'=∠2-∠1.B组能力提升1.(2017湖北襄阳老河口期中,17,2分)如图,正方形①,②的一边在同一直线上,正方形③的一个顶点也在该直线上,且有两个顶点分别与正方形①,②的两个顶点重合,若正方形①,②的面积分别为3 cm2和4 cm2,则正方形③的面积为7cm2.2.(2018中考预测)如图,Rt△ABC中,直角边AC=7 cm,BC=3 cm,CD为斜边AB上的高,点E从点B出发沿直线BC以2 cm/s的速度移动,过点E作BC的垂线交直线CD于点F.(1)求证:∠A=∠BCD.(2)点E运动多长时间,CF=AB?并说明理由.(1)证明∵∠A+∠ACD=90°,∠BCD+∠ACD=90°,∴∠A=∠BCD.(2)解当点E在直线BC上运动2 s或5 s时,CF=AB.理由如下:如图,当点E在射线BC上移动时,若E移动5 s,则BE=2×5=10(cm),∴CE=BE-BC=10-3=7(cm).∴CE=AC,又∵∠ECF=∠BCD,∠BCD=∠A,在△CF E与△ABC中,∴△CEF≌△ABC,∴CF=AB,当点E在射线CB上移动时,若E移动2 s,则BE'=2×2=4(cm),∴CE'=BE'+BC=4+3=7(cm),∴CE'=AC.在△CF'E'与△ABC中,∴△CF'E'≌△ABC,∴CF'=AB.总之,当点E在直线BC上运动5 s或2 s时,CF=AB.百度文库是百度发布的供网友在线分享文档的平台。

浙江省2018年中考数学总复习 第四章 基本图形(一)第21讲 矩形讲解篇

浙江省2018年中考数学总复习 第四章 基本图形(一)第21讲 矩形讲解篇

第21讲矩形、菱形与正方形1.矩形2.菱形3.正方形4.平行四边形、矩形、菱形、正方形的关系角为120°的等腰三角形BDE ,则∠EBC 的度数为____________________.2.(2016·衢州)如图,已知BD 是矩形ABCD 的对角线.(1)用直尺和圆规作线段BD 的垂直平分线,分别交AD 、BC 于E 、F(保留作图痕迹,不写作法和证明).(2)连结BE ,DF ,问四边形BEDF 是什么四边形?请说明理由.【问题】矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形.正方形不仅是特殊的平行四边形,而且是邻边相等的特殊矩形,也是有一个角是直角的特殊菱形.因此,我们可以利用矩形、菱形的性质来研究正方形的有关问题,回答下列问题:(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系图中:(2)要证明一个四边形是正方形,可以先证明四边形是矩形,再证明这个矩形的________相等;或者先证明四边形是菱形,再证明这个菱形有一角是________.(3)如图菱形ABCD ,某同学根据菱形面积计算公式推导出对角线长为a 的正方形面积是S =12a 2,对此结论,你认为是否正确?若正确,请给予证明;若不正确,举出一个反例来说明.【归纳】通过开放式问题,归纳、疏理平行四边形、矩形、菱形、正方形的关系,以及性质与判定.类型一矩形的性质与判定例1(1)如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )A.AB=CD B.AC=BD C.AB=BC D.AC⊥BD(2)如图,在矩形ABCD中,有以下结论:①△AOB是等腰三角形;②S△ABO=S△ADO;③AC=BD;④AC⊥BD;⑤当∠ABD=45°时,矩形ABCD会变成正方形;⑥AC所在直线为对称轴;⑦矩形ABCD的周长是28,点E是CD的中点,AC=10时,△DOE的周长是12.则正确结论的序号是________.【解后感悟】(1)结合图形,利用图形条件、已知条件综合判定;(2)熟记各种特殊几何图形,利用性质、揭示图形的数量关系是解题关键.1.(1)(2015·南昌)如图,小贤为了检验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是( )A.四边形ABCD由矩形变为平行四边形B.BD的长度增大C.四边形ABCD的面积不变D.四边形ABCD的周长不变(2)(2015·临沂)如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连结EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )A.AB=BE B.DE⊥DC C.∠ADB=90°D.CE⊥DE2.(2017·南京模拟)如图,在矩形ABCD中,AB=4,AD=6,M,N分别是AB,CD的中点,P是AD上的点,且∠PNB=3∠CBN.(1)求证:∠PNM=2∠CBN;(2)求线段AP的长.类型二菱形的性质与判定例2(1)如图,菱形ABCD中,对角线AC、BD相交于点O,E是AD的中点,连结OE,①若菱形的边长是10,一条对角线长是12,则此菱形的另一条对角线长是______. ②若OE =3,则菱形的周长是________.③若∠ABC=60°,周长是16,则菱形的面积是________.(2)已知四边形ABCD 是平行四边形,再从①AB=BC ,②∠ABC =90°,③AC =BD ,④AC ⊥BD 四个条件中,选一个作为补充条件后,使得四边形ABCD 是菱形,现有下列四种选法,其中都正确的是( )A .①或②B .②或③C .③或④D .①或④【解后感悟】(1)熟记各种特殊几何图形,利用性质、揭示图形的数量关系是解题关键;(2)结合图形,利用图形条件、已知条件综合判定.3.(1)(2015·黔东南州)如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH =( )A .245B .125C .12D .24(2)如图,在△ABC 中,点D 是BC 的中点,点E ,F 分别在线段AD 及其延长线上,且DE =DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC ;从中选择一个条件使四边形BECF 是菱形,你认为这个条件是____________________(只填写序号).(3) (2016·梅州)如图,在平行四边形ABCD 中,以点A 为圆心,AB 长为半径画弧交AD 于点F ,再分别以点B 、F 为圆心,大于12BF 长为半径画弧,两弧交于一点P ,连结AP 并延长交BC 于点E ,连结EF.①四边形ABEF是____________________;(选“矩形”、“菱形”、“正方形”或“无法确定”)(直接填写结果)②AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为____________________,∠ABC=____________________°.(直接填写结果) 4.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF =BE,连结CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.类型三正方形的性质与判定例3如图,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别在OD、OC上,且DE=CF,连结DF、AE,AE的延长线交DF于点M.求证:AM⊥DF.【解后感悟】正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形,因此正方形具有这些图形的所有性质.正方形的判定方法有两条道路:(1)先判定四边形是矩形,再判定这个矩形是菱形;(2)先判定四边形是菱形,再判定这个菱形是矩形.5.(1)(2015·日照)小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )A.①②B.②③C.①③D.②④(2)如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=( )A.2 B.3 C.2 2 D.2 3(3)(2015·黄冈)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF =20°,则∠AED等于____________________度.6.(2017·绍兴模拟)如图,正方形AEFG的顶点E、G在正方形ABCD的边AB、AD上,连结BF、DF.(1)求证:BF=DF;(2)连结CF,请直接写出BE∶CF的值(不必写出计算过程).类型四特殊平行四边形的综合运用例4(2016·临沂)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE =BF.连结DE,过点E作EG⊥DE,使EG=DE,连结FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断.【解后感悟】本题是三角形与四边形综合问题,涉及全等三角形、平行四边形、矩形、正方形的判定与性质.解题的关键是利用全等三角形的对应边相等进行线段的等量代换,从而求证出平行四边形.7.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连结EF.给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中正确结论的序号是____________________.8.(2016·荆州)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B 时,A′C′交CD于E,D′C′交CB于点F,连结EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.【课本改变题】教材母题--浙教版八下第147页,作业题第5题(1)如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF =90°.求证:BE=CF;(2)如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH 交于点O,∠FOH=90°,EF=4.求GH的长;(3)已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4.直接写出下列两题的答案:①如图3,矩形ABCD由2个全等的正方形组成,求GH的长;②如图4,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示).【方法与对策】这题是从特殊到一般的规律探究题.从课本题出发逐步提出问题,解决问题,然后根据这些解题体验,领悟解题方法,再来解决一般性问题,这是中考命题热点之一,平时学习要重视一些典型的基本图形.【由于思维定势,对问题考虑不全】若正方形ABCD的边长为4,E为BC边上一点,BE=3,M为线段AE上一点,射线BM交正方形的一边于点F,且BF=AE,则BM的长为________.参考答案第21讲矩形、菱形与正方形【考点概要】1.直角直角相等对角线的交点对角线相等 2.邻边相等相等垂直平分对角线的交点 一半 相等 互相垂直 3.相等 直角 相等 直角 垂直平分 相等四 矩形 菱形 互相垂直平分且相等 4.两组对边分别平行 有一个角是直角 有一组邻边相等 有一组邻边相等 有一个角是直角【考题体验】1.105°或45°2.(1)如图,EF 为所求直线; (2)四边形BEDF 为菱形,理由为:证明:∵EF 垂直平分BD ,∴BE =DE ,∠DEF =∠BEF ,∵AD ∥BC ,∴∠DEF =∠BFE ,∴∠BEF =∠BFE ,∴BE =BF ,∵BF =DF ,∴BE =ED =DF =BF ,∴四边形BEDF 为菱形.【知识引擎】【解析】(1)根据在平行四边形中,邻边相等的是菱形,邻边垂直的是矩形,而既是矩形又是菱形的平行四边形是正方形,可根据此关系来画图.如图(2)根据正方形的判定方法进行解答即可.即两种常见的方法:①一组邻边相等的矩形是正方形.②一个角是直角的菱形是正方形.∴填:一组邻边,直角.(3)本题的证明方法有多种,可根据正方形的对角线互相垂直平分且相等,将正方形分成四个直角三角形的面积和来求证,也可通过对角线求出正方形的边长来求证.∴结论正确.证明:S正方形ABCD =S △AOB+S △AOD +S △COD +S △BOC =4×12×12a ×12a =12a 2. 【例题精析】例1 (1)B ;(2)①②③⑤⑦ 例2 (1)①16 ②24 ③8 3 (2)D例3 证明:∵四边形ABCD 是正方形,∴OD =OC.又∵DE=CF ,∴OD -DE =OC -CF ,即OF =OE ,在Rt △AOE 和Rt △DOF 中,⎩⎪⎨⎪⎧AO =DO ,∠AOD =∠DOF,OE =OF ,∴△AOE ≌△DOF ,∴∠OAE =∠ODF.∵∠OAE+∠AEO=90°,∠AEO =∠DEM,∴∠ODF +∠DEM=90°,即可得AM⊥DF.例4 (1)FG =CE ,FG ∥CE ;(2)过点G 作GH⊥CB 的延长线于点H ,∵EG ⊥DE ,∴∠GEH+∠DEC=90°,∵∠GEH +∠HGE=90°,∴∠DEC =∠HGE,在△HGE 与△CED 中,⎩⎪⎨⎪⎧∠GHE =∠DCE,∠HGE =∠DEC EG =DE ,,∴△HGE ≌△CED(AAS),∴GH =CE ,HE =CD ,∵CE =BF ,∴GH =BF ,∵GH ∥BF ,∴四边形GHBF 是矩形,∴GF =BH ,FG ∥CH ,∴FG ∥CE ,∵四边形ABCD 是正方形,∴CD =BC ,∴HE =BC ,∴HE +EB =BC +EB ,∴BH =EC ,∴FG =EC. (3)成立.∵四边形ABCD是正方形,∴BC =CD ,∠FBC =∠ECD=90°,在△CBF 与△D CE 中,⎩⎪⎨⎪⎧BF =CE ,∠FBC =∠ECD BC =DC ,,∴△CBF ≌△DCE(SAS),∴∠BCF =∠CDE,CF =DE ,∵EG =DE ,∴CF =EG ,∵D E⊥EG,∴∠DEC +∠CEG=90°,∵∠CDE +∠DEC=90°,∴∠CDE =∠CEG,∴∠BCF =∠CEG,∴CF ∥EG ,∴四边形CEGF 是平行四边形,∴FG ∥CE ,FG =CE.【变式拓展】1.(1)C (2)B2.(1)∵四边形ABCD 是矩形,M ,N 分别是AB ,CD 的中点,∴MN ∥BC ,∴∠CBN =∠MNB ,∵∠PNB =3∠CBN,∴∠PNM =2∠CBN; (2)连结AN ,根据矩形的轴对称性,可知∠PAN=∠CBN,∵MN ∥AD ,∴∠PAN =∠ANM,由(1)知∠PNM=2∠CBN,∴∠PAN =∠PNA,∴AP =PN ,∵AB =CD =4,M ,N 分别为AB ,CD 的中点,∴DN =2,设AP =x ,则PD =6-x ,在Rt △PDN中,PD 2+DN 2=PN 2,∴(6-x)2+22=x 2,解得:x =103,所以AP =103.3.(1)A (2)③ (3)①菱形 ②10 3 1204. (1)略; (2)∵∠BCF=120°,∴∠EBC =60°,∴△EBC 是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=8 3.5.(1)B (2)C (3)65 6. (1)只要证明△BEF≌△DGF(SAS),∴BF =DF ; (2)∵BF=DF ,∴点F 在对角线AC 上,∵AD ∥EF ∥BC ,∴BE ∶CF =AE∶AF=AE∶2AE =22,∴BE ∶CF =22.7.①②④⑤8.当四边形EDD′F 为菱形时,△A ′DE 是等腰三角形,△A ′DE ≌△EFC ′.理由:∵△BCA 是直角三角形,∠ACB =90°,AD =DB ,∴CD =DA =DB ,∴∠DAC =∠DCA,∵A ′C ′∥AC ,∴∠DA ′E =∠A,∠DEA ′=∠DCA,∴∠DA ′E =∠DEA′,∴DA ′=DE ,∴△A ′DE 是等腰三角形,∵四边形DEFD′是菱形,∴EF =DE =DA′,EF ∥DD ′,∴∠C ′EF =∠DA′E,∠EFC ′=∠C′D′A′,∵CD ∥C ′D ′,∴∠A ′DE =∠A′D′C′=∠EFC′,在△A ′DE和△EFC′中⎩⎪⎨⎪⎧∠EA ′D =∠C′EF,A ′D =EF ,∠A ′DE =∠EFC′,∴△A ′DE ≌△EFC ′.【热点题型】【分析与解】(1)证明:如图1,∵四边形ABCD 为正方形,∴AB =BC ,∠ABC =∠BCD=90°,∴∠EAB +∠AEB =90°.∵∠EOB =∠AOF=90°,∴∠FBC +∠AEB=90°,∴∠EAB =∠FBC,∴△ABE ≌△BCF ,∴BE =CF. (2)如图,过点A 作AM∥GH 交BC 于M ,过点B 作BN∥EF 交CD 于N ,AM 与BN 交于点O′,则四边形AMHG 和四边形BNFE 均为平行四边形,∴EF =BN ,GH =AM ,∵∠FOH =90°,AM ∥GH ,EF ∥BN ,∴∠NO ′A =90°,故由(1)得,△ABM ≌△BCN ,∴AM =BN ,∴GH =EF =4. (3)①8 ②4n.【错误警示】由题中射线BM 交正方形的一边于点F 知有如下两种情形:∴BM =52或125。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学总复习经典题(几何)(二)几何试题1、 如图,正方形ABCD 的边长为2,点E 在AB 边上.四边形EFGB 也为正方形,设△AFC 的面积为S ,则 ( )A .S=2B .S=2.4C .S=4D .S 与BE 长度有关2、正方形ABCD 、正方形BEFG 和正方形RKPF 的位置如图4所示,点G 在线段DK 上,正方形BEFG 的边长为4,则DEK △的面积为: (A)10 (B)12 (C)14 (D)163、如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,2EF BE =,则AFC S =△ 2cm .4、 如图,在△ABC 中, ο70=∠CAB . 在同一平面内, 将△ABC 绕点A 旋转到△//C AB 的位置, 使得AB CC ///, 则=∠/BAB ( )A. ο30 B. ο35 C. ο40 D. ο50 5、如图,1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆1的半径)得图形34,,,,n P P P L L ,记纸板n P 的面积为n S , 试计算求出2S = ;3S = ;并猜想得到1n n S S --= ()2n ≥。

6、如图,在四边形ABCD 中,P 是对角线BD 的中点,E F ,分别是AB CD ,的中点,18AD BC PEF =∠=o ,,则PFE ∠的度数是 .(第16题)CFD BE A P (第6题)ADCEF GB 3题图 D ABRP F CGK图4E8题10题 12题7、如图,点G 是ABC △的重心,CG 的延长线交AB 于D ,5cm GA =,4cm GC =,3cm GB =,将ADG △绕点D 旋转180o得到BDE △,则DE = cm ,ABC △的面积= cm 2.8、如图,已知梯形ABCD ,AD BC ∥,4AD DC ==,8BC =,点N 在BC 上,2CN =,E 是AB 中点,在AC 上找一点M 使EM MN +的值最小,此时其最小值一定等于( ) A .6B .8C .4D .439、将一副直角三角板按图示方法放置(直角顶点重合),则AOB DOC ∠+∠= o.10、已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE=AP =1,PB = 5 .下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为 2 ;③EB ⊥ED ;④S △APD +S △APB =1+ 6 ;⑤S 正方形ABCD =4+ 6 .其中正确结论的序号是()A .①③④B .①②⑤C .③④⑤D .①③⑤11、如图,直角梯形ABCD 中,∠BCD =90°,AD ∥BC ,BC =CD ,E 为梯形内一点,且∠BEC =90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF ,连EF 交CD 于M .已知BC =5,CF =3,则DM:MC 的值为 ( ) A.5:3 B.3:5 C.4:3 D.3:412、如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2,将腰CD 以D 为中心逆时针旋转90°至ED ,AE 、DE ,△ADE 的面积为3,则BC 的长为 . 13、如图,四边形OABC 为菱形,点B 、C 在以点O 为为圆心的上,若OA = 3,∠1 = ∠2,则扇形OEF 的面积为_________.14、 如图,点P 是∠AOB 的角平分线上一点,过点P 作PC ∥OA 交OB 于点C.若∠AOB = 60o,OC = 4,则点P 到OA 的距离PD 等于__________. 15、如图,在Rt ABC △中,90ACB ∠=°,3BC =,4AC =,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( )A .32 B .76 C .256D .2B AC D O P (第14题) AD B EC (第15题) ABE G CD(第7题)C D AO B30°45°A D EM(第11题(第13题)O A B C F 1 2 E E D(第20题)16、如图,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且OP AB //.若阴影部分的面积为π9,则弦AB 的长为( )A .3B .4C .6D .917、如图,等腰△ABC 中,底边a BC =,︒=∠36A ,ABC ∠的平分线交AC 于D ,BCD ∠的平分线交BD 于E ,设215-=k ,则=DE ( )A .a k 2B .a k 3C .2k aD .3ka18、如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱形,四边形ABCD 还应满足的一个条件是19、如图,把矩形纸条ABCD 沿EF 、GH 同时折叠,B 、C 两点恰好落在AD 边的P 点处,若∠FPH=90°,PF=8,PH=6,则矩形ABCD 的边BC 长为 . 20、.梯形ABCD 中AB ∥CD ,∠ADC +∠BCD =90°,以AD 、AB 、BC 为斜边向形外作等腰直角三角形,其面积分别是S 1、S 2、S 3 ,且S 1 +S 3 =4S 2,则CD =( )A. 2.5ABB. 3ABC. 3.5ABD. 4AB21、如图,在□ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 .22、如图,已知a ∥b ,∠1=70°,∠2=40°,则∠3= __________。

23、 如图,在⊙O 中,∠AOB=60°,AB=3cm ,则劣弧»AB 的长为______cm . 24、 如图为二次函数y=ax 2+b x +c 的图象,在下列说法中:①ac <0②方程ax 2+b x +c=0的根是x 1= -1, x 2= 3③a +b +c >0 ④当x >1时,y 随x 的增大而增大。

正确的说法有_____________。

(把正确的答案的序号都填在横线上)(第16题)BAC P O ADC EB (第17题)第21题图C DEHA BF 第22题第23题第24题yx图 1OB DC P4 9图 225、如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是 .26、如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是A .10B .16C .18D .20. 27、.如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:① AD =BE ; ② PQ ∥AE ; ③ AP =BQ ; ④ DE =DP ; ⑤ ∠AOB =60°. 恒成立的结论有______________(把你认为正确的序号上).28、如图2,已知ABC △中,45ABC ∠=o,4AC =,H 是高AD 和BE 的交点,则线段BH 的长度为( )A .6B . 4.C .23D .529、如图6,Rt ABC △中,90ACB ∠=o,30CAB ∠=o,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120o到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( ) A .77π338- B .47π338+ C .πD .4π33+ 30、如图8,在ABC △中,45BAC ∠=o,AD BC ⊥于D 点,已知64BD CD ==,,则高AD 的长为 .(第25题)35°A BCEDO PQ D CBAE H图2图6AHB OC 1O1H1A1CCABD 图8ACDEBA EBCFDA 1D 131、如图,等边△ABC 的边长为1cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点'A 处,且点'A 在△ABC 外部,则阴影部分图形的周长为________cm .32、如图,在矩形ABCD 中,AB =12cm ,BC =6cm .点E 、F 分别在AB 、CD 上,将矩形ABCD 沿EF 折叠,使点A 、D 分别落在矩形ABCD 外部的点A 1、D 1处,则整个阴影部分图形的周长为( )A .18cmB .36cmC .40cmD .72cm33、如图,在△ABC 中,∠C =90º,D 是AC 上一点,DE ⊥AB 于点E ,若AC =8,BC =6,DE =3,则AD 的长为( ) A .3 B .4 C .5 D .634、 如图甲,将三角形纸片ABC 沿EF 折叠可得图乙(其中EF ∥BC ),已知图乙的面积与原三角形的面积之比为3:4,且阴影部分的面积为8cm 2,则原三角形面积为( ) A 、12cm 2 B 、16cm 2 C 、20cm 2 D 、32cm 2(34题)(35题图) (36题图 )35、如图,己知点F 是正方形ABCD 的边CD 的中点,BE ⊥AF 于E,点G ,H 在直线AF 上,且AE=EG=GH.,连CG 和CH ,则下列结论:①tan ∠ABE= ②∠CGH =45 ③∠DEH =45 ④∠GCH=60其中正确的是( ) A 、①②③ B 、①②④ C 、①②③④ D 、①③④36 在正方形ABCD 中,P 为AB 的中点,BE ⊥PD 的延长线于点E ,连接AE 、BE 、FA ⊥AE 交DP 于点F ,连接BF ,FC .下列结论:①△ABE ≌△ADF ; ②FB=AB ;③CF ⊥DP ;④FC=EF 其中正确的是( )A 、①②④B 、①③④C 、①②③D 、①②③④37、如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论:①△AED ≌△AEF ; ②△ABE ∽△ACD ; ③BE DC DE +=; ④222BE DC DE +=其中一定正确的是A .②④B .①③C .②③D .①④38、如图,将△ABC 绕点C (0,-1)旋转180°得到△ABC ,设点A 的坐标为),(b a 则点A ′的坐标为( )(A )),(b a -- (B ))1.(---b a (C ))1,(+--b a (D ))2,(---b a(第8题图)AB CD E F(第6题)B'A'AB C x y O39、如图,矩形ABCG(AB<BC)与矩形CDEF全等,点B、C、D在同一条直线上,APE∠的顶点P在线段BD上移动,使APE∠为直角的点P的个数是()A.0 B.1 C.2 D.340、如图,在锐角ABC△中,4245AB BAC=∠=,°,BAC∠的平分线交BC于点D M N,、分别是AD 和AB上的动点,则BM MN+的最小值是___________ .41、如图,D,E分别是△ABC的边BC、AC上的点,若∠B=∠C,∠ADE=∠AED,则()A .当∠B为定值时,∠CDE也为定值 B. 当∠α为定值时,∠CDE也为定值C. 当∠β为定值时,∠CDE也为定值 D .当∠γ为定值时,∠CDE也为定值42、(2001 宁波市)如图D、E分别是△ABC的边BC,AC上的点,若AB=AC,AD=AE则1.若∠BAD=20°,则∠EDC=2.若∠EDC=20°,则∠BAD=若∠BAD=a,∠EDC=b,你能由1.2中的结果找到a.b间所满足的关系吗?请说明理由41题图 42题图 43题43、如图,D、E分别是△ABC的边BC上的三等分点,F为△ABC的边AC的中点,连接AD、AE、DF,若△ABC的面积为36,则△DFC的面积为44、如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P/AB.(1)则点P与点P′之间的距离是____________(2)∠APB=____________45、如图1,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,求∠APB的度数。

相关文档
最新文档