北京市高中物理(力学)竞赛第29届(2016)预赛试题与解答
第15北京市高中物理(力学)(师大二附中杯)竞赛预赛卷及
第15届北京市高中物理(力学)(师大二附中杯)竞赛预赛试卷2002.5一、选择题(共33分,每小题3分)下列每小题均有四个备选答案,至少有一个答案是正确的,请把所选答案前的字母填在下面的答案表内.每小题全选对的得3分,选对但不全的得1分,错选或多选均不得分.1.小球从高处自静止开始下落,不计空气阻力.如图1所示,小球动能Ek随下落时间t 变化的图线正确的是2.汽车行驶时所受空气阻力与汽车速度的平方成正比.汽车沿平直公路以速度ν匀速行驶时,不计空气阻力外的其他阻力,汽车消耗的功率为P,则当汽车以速度2ν匀速行驶时,汽车消耗的功率为(A)2P(B)4P(C)8P(D)10P3.如图2所示,向右匀速行驶的车内,a绳和水平b绳静止吊起一球,此时a绳对球拉力的大小为T1,b绳对球拉力的大小为T2.若车改为向右匀加速行驶,a绳与竖直方向的夹角保持不变,球与车仍保持相对静止,则拉力T1和T2变化的情况是(A)T1增大,T2减小(B)T1增大,T2不变(C)T1不变,T2减小(D)T1增大,T2增大4.惯性制导系统已广泛应用于导弹工程中,这个系统的重要元件之一是加速度计.加速度计构造的原理示意图如图3所示:沿导弹轴线方向安装的固定光滑杆上套一质量为m的滑块,滑块两侧分别与劲度系数为k的轻质弹簧相连,两弹簧的另一端与固定壁相连.滑块静止时,弹簧处于自然长度.滑块上有指针,可通过标尺测出滑块的位移,然后通过控制系统进行制导.设某段时间内导弹沿水平方向飞行,指针向左偏离O点的距离为s,则这段时间内导弹的加速度等于(A)k s/m,方向向左(B)k s/m,方向向右(C)2k s/m,方向向左(D)2k s/m,方向向右5.甲、乙两物块质量相同,并排放在光滑水平地面上.甲受一水平向右的恒力F 作用,乙受一水平向右的瞬时冲量I 作用,甲、乙同时开始向右运动,经过一段时间甲、乙相遇.在甲、乙相遇前,从开始运动到甲、乙间距离最大经过的时间为(A) I /F (B) 2I /F (C)2F /I (D)F /I6.做简谐运动的水平弹簧振子,其质量为m ,最大速率为ν,则从某时刻算起,经历半个周期的时间,(A)弹力做的功一定为零(B)弹力做的功可能是零到221mv 之间的某一个值 (C)弹力的冲量一定为零(D)弹力的冲量大小可能是零到2m ν之间的某一个值7.如图4所示,三角形木块B 始终静止在水平地面上,一物体A 先沿B 的光滑斜面上升,后又沿斜面下滑,设A 上滑过程中,B 对地面压力的大小为N 1,B 受到地面摩擦力的大小为f 1.A 下滑过程中,B 对地面压力的大小为N 2,B 受到地面摩擦力的大小为f 2.则(A)N 1=N 2 (B)f 1≠f 2,但方向相反(C)f 1=f 2,但方向相反(D)f 1=f 2,且方向相同8.在水平桌面上放一张纸,纸上放置一砂桶,用水平力快速拉纸使纸从砂桶下抽出,假设把纸从砂桶下抽出的时间相同,则在纸抽出过程中砂桶位移的大小(A)与砂桶的质量有关,砂桶质量越大位移越小(B)与砂桶的质量有关,砂桶质量越小位移越小(C)与砂桶的质量有关,与桌面的摩擦有关(D)与砂桶的质量无关。
高中物理竞赛十年预赛真题热学纯手打word版含答案
十年真题-热学(预赛)1.(34届预赛2)系统1和系统2质量相等,比热容分别为C 1和C 2,两系统接触后达到够达到共同的温度T ,整个过程中与外界(两系统之外)无热交换.两系统初始温度T 1和T 2的关系为A .T 1=C 2C 1(T -T 2)-TB .T 1=C 1C 2(T -T 2)-T C .T 1=C 1C 2(T -T 2)+T D .T 1=C 2C 1(T -T 2)+T 2.(31届预赛1)一线膨胀系数为α的正立方体物块,当膨胀量较小时,其体膨胀系数等于A .αB .α1/3C .α3D .3α3.(29届预赛1)下列说法中正确的是A .水在0℃时密度最大B .一个绝热容器中盛有气体,假设把气体中分子速率很大的如大于v A 的分子全部取走,则气体的温度会下降,此后气体中不再存在速率大于v A 的分子C .杜瓦瓶的器壁是由两层玻璃制成的,两层玻璃之间抽成真空,抽成真空的主要作用是既可降低热传导,又可降低热辐射D .图示为一绝热容器,中间有一隔板,隔板左边盛有温度为T 的理想气体,右边为真空.现抽掉隔板,则气体的最终温度仍为T4.(28届预赛2)下面列出的一些说法中正确的是A .在温度为20ºC 和压强为1个大气压时,一定量的水蒸发为同温度的水蒸气,在此过程中,它所吸收的热量等于其内能的增量.B .有人用水银和酒精制成两种温度计,他都把水的冰点定为0度,水的沸点定为100度,并都把0刻度与100刻度之间均匀等分成同数量的刻度,若用这两种温度计去测量同一环境的温度(大于0度小于100度)时,两者测得的温度数值必定相同.C .一定量的理想气体分别经过不同的过程后,压强都减小了,体积都增大了,则从每个过程中气体与外界交换的总热量看,在有的过程中气体可能是吸收了热量,在有的过程中气体可能是放出了热量,在有的过程中气体与外界交换的热量为零.D .地球表面一平方米所受的大气的压力,其大小等于这一平方米表面单位时间内受上方作热运动的空气分子对它碰撞的冲量,加上这一平方米以上的大气的重量.5.(27届预赛2)烧杯内盛有0℃的水,一块0℃的冰浮在水面上,水面正好在杯口处.最后冰全部融化成0℃的水.在这过程中A .无水溢出杯口,但最后水面下降了B .有水溢出杯口,但最后水面仍在杯口处C .无水溢出杯口,水面始终在杯口处D .有水溢出杯口,但最后水面低于杯口6.(27届预赛3)如图所示,a和b是绝热气缸中的两个活塞,它们把气缸分成甲和乙两部分,两部分中都封有等量的理想气体.a是导热的,其热容量可不计,与气缸壁固连.b 是绝热的,可在气缸内无摩擦滑动,但不漏气,其右方为大气.图中k为加热用的电炉丝.开始时,系统处于平衡状态,两部分中气体的温度和压强皆相同.现接通电源,缓慢加热一段时间后停止加热,系统又达到新的平衡,则A.甲、乙中气体的温度有可能不变B.甲、乙中气体的压强都增加了C.甲、乙中气体的内能的增加量相等D.电炉丝放出的总热量等于甲、乙中气体增加内能的总和7.(27届预赛4)一杯水放在炉上加热烧开后,水面上方有“白色气”;夏天一块冰放在桌面上,冰的上方也有“白色气”.A.前者主要是由杯中水变来的“水的气态物质”B.前者主要是由杯中水变来的“水的液态物质”C.后者主要是由冰变来的“水的气态物质”D.后者主要是由冰变来的“水的液态物质”8.(26届预赛3)一根内径均匀、两端开中的细长玻璃管,竖直插在水中,管的一部分在水面上.现用手指封住管的上端,把一定量的空气密封在玻璃管中,以V0表示其体积;然后把玻璃管沿竖直方向提出水面,设此时封在玻璃管中的气体体积为V1;最后把玻璃管在竖直平面内转过900,让玻璃管处于水平位置,设此时封在玻璃管中的气体体积为V2.则有A.V1>V0≥V2B.V1>V0>V2C.V1=V2>V0D.V1>V0,V2>V09.(25届预赛4)如图所示,放置在升降机地板上的盛有水的容器中,插有两根相对容器的位置是固定的玻璃管a和b,管的上端都是封闭的,下端都是开口的.管内被水各封有一定质量的气体.平衡时,a管内的水面比管外低,b管内的水面比管外高.现令升降机从静止开始加速下降,已知在此过程中管内气体仍被封闭在管内,且经历的过程可视为绝热过程,则在此过程中A.a中气体内能将增加,b中气体内能将减少B.a中气体内能将减少,b中气体内能将增加C.a、b中气体内能都将增加D.a、b中气体内能都将减少10.(25届预赛5)图示为由粗细均匀的细玻璃管弯曲成的“双U形管”,a、b、c、d 为其四段竖直的部分,其中a、d上端是开口的,处在大气中.管中的水银把一段气体柱密封在b、c内,达到平衡时,管内水银面的位置如图所示.现缓慢地降低气柱中气体的温度,若c中的水银面上升了一小段高度Δh,则A.b中的水银面也上升ΔhB.b中的水银面也上升,但上升的高度小于ΔhC .气柱中气体压强的减少量等于高为Δh 的水银柱所产生的压强D .气柱中气体压强的减少量等于高为2Δh 的水银柱所产生的压强11.(31届预赛9)图中所示的气缸壁是绝热的.缸内隔板A 是导热的,它固定在缸壁上.活塞B 是绝热的,它与缸壁的接触是光滑的,但不漏气.B 的上方为大气.A 与B 之间以及A 与缸底之间都盛有n mol 的同种理想气体.系统在开始时处于平衡状态,现通过电炉丝E 对气体缓慢加热.在加热过程中,A 、B 之间的气体经历_________过程,A 以下气体经历________过程;气体温度每上升1K ,A 、B 之间的气体吸收的热量与A 以下气体净吸收的热量之差等于_____________.已知普适气体常量为R .答案:等压、等容、nR解析:在加热过程中,AB 之间的气体的压强始终等于大气压强与B 活塞的重力产生的压强之和,故进行的是等压变化,由于隔板A 是固定在气缸内的,所以,A 以下的气体进行的是等容变化,当气体温度升高1K 时,AB 之间的气体吸收的热量为Q 1=P ΔV +ΔU ,A以下的气体吸收的热量为Q 2=ΔU ,又根据克拉伯龙方程p ΔV =nR ΔT ,所以Q 1-Q 2=p ΔV=nR .12.(28届预赛6)在大气中,将一容积为0.50m 3的一端封闭一端开口的圆筒筒底朝上筒口朝下竖直插人水池中,然后放手,平衡时,筒内空气的体积为0.40m 3.设大气的压强与10.0m 高的水柱产生的压强相同,则筒内外水面的高度差为 .答案:2.5m13.(34届预赛13)横截面积为S 和2S 的两圆柱形容器按图示方式连接成一气缸,每隔圆筒中各置有一活塞,两活塞间的距离为l ,用硬杆相连,形成“工”字形活塞,它把整个气缸分隔成三个气室,其中Ⅰ、Ⅲ室密闭摩尔数分别为ν和2ν的同种理想气体,两个气室内都有电加热器;Ⅱ室的缸壁上开有一个小孔,与大气相通;1mol 该种气体内能为CT(C 是气体摩尔热容量,T 是气体的绝对温度).当三个气室中气体的温度均为T 1时,“工”字形活塞在气缸中恰好在图所示的位置处于平衡状态,这时Ⅰ室内空气柱长亦为l ,Ⅱ室内空气的摩尔数为32ν.已知大气压不变,气缸壁和活塞都是绝热的,不计活塞与气缸之间的摩擦.现通过电热器对Ⅰ、Ⅲ两室中的气体缓慢加热,直至Ⅰ室内气体的温度升为其初始状态温度的2倍,活塞左移距离d .已知理想气体常量为R ,求:(1)Ⅲ室内气体初态气柱的长度;(2)Ⅲ室内气体末态的温度;(3)此过程中ⅠⅢ室密闭气体吸收的总热量.解析:(1)设大气压强为p 0.初态:Ⅰ室内气体压强为p 1;Ⅲ室内气体压强为p 1′,气柱的长度为l ′.末态:Ⅰ室内气体压强为p 2;Ⅲ室内气体压强为p 2′.由初态到末态:活塞左移距离为d .对初态应用气体状态方程,对Ⅰ室气体有:p 1lS =νRT 1 ①对Ⅱ室内气体有:p 0(l 2×S +l 2×2S )=32ν0RT 1②对Ⅲ室内气体有:p1′l′(2S)=(2ν)RT1③由力学平衡条件有:p1′(2S)=p1S+p0(2S-S) ④由题给条件和①②③④式得:l′=ν2ν1+ν0l=2νν+ν0l⑤(2)对末态应用气体状态方程,对Ⅰ室内气体有:p2(l-d)S=νRT2=νR·2T1⑥对Ⅲ室内气体有:p2′(l′+d)(2S)=(2ν)RT2′⑦由力学平衡条件有:p2′(2S)=p2S+p0(2S-S) ⑧联立②⑤⑥⑦⑧和题给条件得:T2′=2νl+(ν+ν0)d(l-d)(ν+ν0)⎝⎛⎭⎫1+ν02νl-dl T1⑨(3)大气对密闭气体系统做的功为W=p0(2S-S)(-d)=-p0Sd=-dlν0RT1⑩已利用②式.系统密闭气体内能增加量为:ΔU=νC(T2-T1)+(2ν)C(T2′-T1)=νC(2T2′-T1) ⑪由⑨⑩式得:ΔU=2νl+(ν+ν0)d(l-d)(ν+ν0)⎝⎛⎭⎫2ν+l-dlν0CT1-νCT1⑫系统吸收的热量为:Q=ΔU-W=2νl+(ν+ν0)d(l-d)(ν+ν0)⎝⎛⎭⎫2ν+l-dlν0CT1-νCT1+dlν0RT1⑬参考评分:第(1)问9分,①②③④式各2分,⑤式1分.第(2)问4分,⑥⑦⑧⑨式各1分.第(3)问7分,⑩⑪式各2分,⑫式1分,⑬式2分.14.(33届预赛16)充有水的连通软管常常用来检验建筑物的水平度.但软管中气泡会使得该软管两边管口水面不在同一水平面上.为了说明这一现象的物理原理,考虑如图所示的连通水管(由三段内径相同的U形管密接而成),其中封有一段空气(可视为理想气体),与空气接触的四段水管均在竖直方向;且两个有水的U形管两边水面分别等高.此时被封闭的空气柱的长度为L a .已知大气压强P 0、水的密度ρ、重力加速度大小为g ,L 0≡P 0/(ρg).现由左管口添加体积为ΔV =xS 的水,S 为水管的横截面积,在稳定后:(1)求两个有水的U 形管两边水面的高度的变化和左管添水后封闭的空气柱的长度;(2)当x <<L 0、L a<<L 0时,求两个有水的U 形管两边水面的高度的变化(用x 表出)以及空气柱的长度.已知1+z ≈1+12z ,当z <<1. 解析:解法(一)(1)设在左管添加水之前左右两个U 形管两边水面的高度分贝为h 1和h 2,添加水之后左右两个U 形管两边水面的高度分别为h 1L 和h 1R 、h 2L 和h 2R .如图所示,设被封闭的空气的压强为p ,空气柱的长度为L b .水在常温常压下可视为不可被压缩的流体,故:2h 1+x =h 1L +h 1R ①2h 2=h 2L +h 2R ②由力学平衡条件有:p 0+ρgh 1L =p +ρgh 1R ③p 0+ρgh 2R =p +ρgh 2L④由于连通管中间高度不变,有:h 1+h 2+L a =h 1R +h 2L +L b ⑤由玻意耳定律得:p 0L a =pL b ⑥联立①②③④⑤⑥式得p 满足的方程:L 0p 0p 2+⎝⎛⎭⎫L a -L 0-x 2p -p 0L a =0 解得:p =p 02L 0⎣⎡⎦⎤L 0-L a +x 2+⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 ⑦ 将⑦式带入⑥式得:L b =12⎣⎡⎦⎤L a -L 0-x 2+⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 ⑧ 由①②③④⑦式得:Δh 1L ≡h 1L -h 1=x -Δh 1R=x -L 02+14[L 0-L a +x 2+⎝⎛⎭⎫L a -L 0-x 22+4L a L 0] ⑨ =5x -2L a -2L 08+14⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 Δh 1R ≡h 1R -h 1=L 0+x 2-p 2ρg=L 0+x 2-14⎣⎡⎦⎤L 0-L a +x 2+⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 ⑩=3x +2L a +2L 08-14⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 Δh 2L ≡h 2L -h 2=L 02-p 2ρg =L 02-14⎣⎡⎦⎤L 0-L a +x 2+⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 ⑪ =2L a +2L 0-x 8-14⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 Δh 2R ≡h 2R -h 2=-Δh 2L=x -2L a -2L 08+14⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 ⑫ (2)在x <<L 0和L a <<L 0的情形下,由⑧式得:L b ≈L a ⑬⑦式成为:p ≈p 0(1+x 2L 0) ⑭ 由⑨⑩⑪⑫⑬⑭式得:Δh 1L ≈34x ⑮ Δh 1R ≈-Δh 2L =Δh 2R ≈14x ⑯ 参考评分:第(1)问14分,①②③④⑤⑥⑦⑧式各1分,⑨⑩式各2分,⑪⑫式各1分;第(2)问6分,⑬⑭式各1分,⑮⑯式各2分.解法(二)(1)设U 形管1左侧末态水面比初态上升x 2+y ,右侧末态水面比初态上升x 2-y ,U 形管2左侧末态水面比初态下降y ,右侧末态水面比初态上升y .由玻意耳定律得: L a L 0=L b (L 0+2y ) ①由几何关系有:L a -x 2+2y =L b ②将②式带入①式得:L a L 0=(L a -x 2+2y ) (L 0+2y ) ③解得: y =x 8-L 04-L a 4+14⎝⎛⎭⎫L 0+L a -x 22+2xL 0 ④ 此即U 形管2左侧末态比初态水面下降值,也是右侧末态比初态水面上升值(负根y=x 8-L 04-L a 4-14⎝⎛⎭⎫L 0+L a -x 22+2xL 0不符合题意,已舍去).U 形管1左侧末态比初态水面上升:x 2+y =5x -2L a -2L 08+14⎝⎛⎭⎫L a +L 0-x 22+2xL 0 ⑤ 右侧末态比初态水面上升:x 2-y =3x +2L a +2L 08-14⎝⎛⎭⎫L a +L 0-x 2 2+2xL 0 ⑥ 将④式带入②式得:L b =L a -x 2+2y =2L a -2L 0-x 4+12⎝⎛⎭⎫L a +L 0-x 22+2xL 0 ⑦ (2)在x <<L 0和L a <<L 0的情形下,④⑤⑥⑦式中的根号部分⎝⎛⎭⎫L a +L 0-x 22+2xL 0=L a 2+L 02+x 24+2L 0L a -xL 0-xL a +2xL 0 =L 01+L a 2L 02+x 24L 02+2L a L 0-xL a 2L 02+x L 0≈L 0⎣⎡⎦⎤1+12(L a 2L 02+x 24L 02+2L a L 0-xL a L 02+x L 0 =L 0+12⎣⎡⎦⎤L a 2L 0+x 24L 0+2L a -xL a L 0+x ⑧ ≈L 0+12(2L a +x ) =L a +L 0+x 2⑧式在推导过程中用到了1+z ≈1+12z ,当z <<1. 将⑧式带入④⑤⑥⑦式中分别得到:y ≈x 8-L 04-L a 4+14⎝⎛⎭⎫L 0+L a +x 2=x 4⑨ x 2+y ≈x 2+x 4=3x 4⑩ x 2-y ≈x 2-x 4=x 4⑪ L b ≈L a 2-L 02-x 4+12⎝⎛⎭⎫L 0+L a +x 2=L a ⑫参考评分:第(1)问14分,①式4分,②③式各1分,④式3分,⑤式2分,⑥式1分.第(2)问6分,⑨⑩式各2分,⑪⑫式各1分.15.(32届预赛15)如图,导热性能良好的气缸A 和B 高度均为h (已除开活塞的厚度),横截面积不同,竖直浸没在温度为T 0的恒温槽内,它们的底部由一细管连通(细管容积可忽略).两气缸内各有一个活塞,质量分别为m A =2m 和m B =m ,活塞与气缸之间无摩擦,两活塞的下方为理想气体,上方为真空.当两活塞下方气体处于平衡状态时,两活塞底面相对于气缸底的高度均为h /2.现保持恒温槽温度不变,在两活塞上面同时各缓慢加上同样大小的压力,让压力从零缓慢增加,直至其大小等于2m g (g 为重力加速度)为止,并一直保持两活塞上的压力不变;系统再次达到平衡后,缓慢升高恒温槽的温度,对气体加热,直至气缸B 中活塞底面恰好回到高度为h /2处.求:(1)两个活塞的横截面积之比S A ∶S B .(2)气缸内气体的最后的温度.(3)在加热气体的过程中,气体对活塞所做的总功.解析:(1)平衡时气缸A 、B 内气体的压强相等,故:m A g S A =m B g S B① 由①式和题给条件得: S A ∶S B =2∶1 ②(2)两活塞上各放一质量为2m 的质点前,气体的压强p 1和体积V 1分别为:p 1=2mg S A =mg S B③ V 1=32S B h ④ 两活塞上各放一质量为2m 的质点后,B 中活塞所受到的气体压力小于它和质点所受重力之和,B 中活塞将一直下降至气缸底部为之,B 中气体全部进入气缸A .假设此时气缸A 中活塞并未上升到气缸顶部,气体的压强p 2=4mg S A =2mg S B⑤ 设平衡时气体体积为V 2,由于初态末态都是平衡态,由理想气体状态方程有:p 1V 1T 0=p 2V 2T 0⑥ 由③④⑤⑥式得: V 2=34S 0h =38S A h ⑦ 这时气体的体积小于气缸A 的体积,与活塞未上升到气缸顶部的假设一致.缓慢加热时,气体先等压膨胀,B 中活塞不动,A 中活塞上升;A 中活塞上升至顶部后,气体等容升压;压强升至3mg S B时,B 中活塞开始上升,气体等压膨胀.设当温度升至T 时,该活塞恰好位于h 2处.此时气体的体积变为V 3=52S B h ⑧ 气体压强 p 3=3mg S B⑨ 设此时气缸内气体的温度为T ,由状态方程有:p 2V 2T 0=p 3V 3T⑩ 由⑤⑦⑧⑨⑩式得: T =5T 0 ⑪(3)升高恒温槽的温度后,加热过程中,A 活塞上升量为h -38h =58h ⑫ 气体对活塞所做的总功为W =4mg ·58h +3mg ·h 2=4mgh ⑬ 参考评分:第(1)问3分,①式2分,②式1分;第(2)问13分,③④⑤⑥式各2分,⑦⑧⑨⑩⑪式各1分;第(3)问4分,⑫⑬式各2分.16.(31届预赛14)1mol 的理想气体经历一循环过程1-2-3-1,如p -T 图示所示,过程1-2是等压过程,过程3-1是通过p -T 图原点的直线上的一段,描述过程2-3的方程为c 1p 2+c 2p =T ,式中c 1和c 2都是待定的常量,p 和T 分别是气体的压强和绝对温度.已知,气体在状态1的压强、绝对温度分别为P 1和T 1,气体在状态2的绝对温度以及在状态3的压强和绝对温度分别为T 2以及p 3和T 3.气体常量R 也是已知的.(1)求常量c 1和c 2的值;(2)将过程1-2 -3 -1在p -v 图示上表示出来;(3)求该气体在一次循环过程中对外做的总功.解析:(1)设气体在状态i (i =1、2、3)下的压强、体积和温度分别为p i 、V i 和T i ,由题设条件有:c 1p 22+c 2p 2=T 2 ①c 1p 32+c 2p 3=T 3 ②由此解得:c 1=T 2p 3-T 3p 2p 22p 3-p 32p 2=T 2p 3-T 3p 1p 12p 3-p 32p 1③ c 2=T 2p 32-T 3p 22p 2p 32-p 22p 3=T 2p 32-T 3p 12p 1p 32-p 12p 3④ (2)利用气体状态方程pV =RT 以及V 1=R T 1p 1、V 2=R T 2p 2、V 3=R T 3p 3⑤ 可将过程2—3的方程写为p V 2-V 3p 2-p 3=V +V 2p 3-V 3p 2p 2-p 3⑥ 可见,在p -V 图上过程2-3是以(p 2,V 2)和(p 3,V 3)为状态端点的直线,过程3-1是通过原点直线上的一段,因而描述其过程的方程为:p T =c 3 ⑦ 式中c 3是一常量,利用气体状态方程pV =RT ,可将过程3-1的方程改写为:V =R c 3=V 3=V 1 ⑧ 这是以(p 3,V 1)和(p 1,V 1)为状态端点的等容降压过程.综上所述,过程1-2-3-1在p -V 图上是一直角三角形,如图所示.(3)气体在一次循环过程中对外做的总功为:W =-12(p 3-p 1)(V 2-V 1) ⑨ 利用气体状态方程pV =RT 和⑤式,上式即:W =-12R (T 2-T 1)⎝⎛⎭⎫p 3p 1-1 ⑩ 参考评分:第(1)问8分,①②③④式各2分;第(2)问10分,⑤⑥式各2分,过程1-2-3-1在p -V 上的图示正确得6分;第(3)问2分,⑩式2分.17.(30届预赛14)如图所示,1摩尔理想气体,由压强与体积关系的p-V 图中的状态A 出发,经过一缓慢的直线过程到达状态B ,已知状态B 的压强与状态A 的压强之比为12,若要使整个过程的最终结果是气体从外界吸收了热量,则状态B 与状态A 的体积之比应满足什么条件?已知此理想气体每摩尔的内能为32RT ,R 为普适气体常量,T 为热力学温度.解析:令ΔU 表示系统内能的增量,Q 和W 分别表示系统吸收的热量和外界对系统所做的功,由热力学第一定律有:ΔU =Q +W ①令T 1和T 2分别表示状态A 和状态B 的温度,有:ΔU =32R (T 2-T 1) ②令p 1、p 2和V 1、V 2分别表示状态A 、B 的压强和体积,由②式和状态方程可得: ΔU=32(p 2V 2-p 1V 1) ③由状态图可知,做功等于图线下所围面积,即:W =-12(p 1+p 2)(V 2-V 1) ④要系统吸热,即Q >0,由以上格式可得:32(p 2V 2-p 1V 1)+12(p 1+p 2)(V 2-V 1)>0⑤按题意,p 2p 1=12,带入上式,可得:V 2V 1>32 ⑥参考评分:①②③式各3分,④式4分,⑤式3分,⑥式2分.18.(29届预赛14)由双原子分子构成的气体,当温度升高时,一部分双原子分子会分解成两个单原子分子,温度越高,被分解的双原子分子的比例越大,于是整个气体可视为由单原子分子构成的气体与由双原子分子构成的气体的混合气体.这种混合气体的每一种成分气体都可视作理想气体.在体积V =0.045m 3的坚固的容器中,盛有一定质量的碘蒸气,现于不同温度下测得容器中蒸气的压强如下:试求温度分别为1073K 和1473K 时该碘蒸气中单原子分子碘蒸气的质量与碘的总质量之比值.已知碘蒸气的总质量与一个摩尔的双原子碘分子的质量相同,普适气体常量R =8.31J·mol -1·K -1解析:以m 表示碘蒸气的总之,m 1表示蒸气的温度为T 时单原子分子的碘蒸气的质量,μ1、μ2分别表示单原子分子碘蒸气和双原子分子碘蒸气的摩尔质量,p 1、p 2分别表示容器中单原子分子碘蒸气和双原子分子碘蒸气的分压强,则由理想气体的状态方程有:p 1V =m 1μ1RT ① p 2V=m -m 1μ2RT②其中,R 为理想气体常量. 根据道尔顿分压定律,容器中碘蒸气的总压强p 满足:p =p 1+p 2 ③设α=m 1m 为单原子分子碘蒸气的质量与碘蒸气的总质量的比值,注意到μ1=12μ2 ④ 由以上各式解得:α=μ2V mR ·p T-1 ⑤ 带入有关数据可得,当温度为1073K 时,α=0.06 ⑥ 当温度为1473K 时,α=0051 ⑦ 参考评分:①②③⑤式各4分,⑥⑦式各2分.19.(26届预赛15)图中M 1和M 2是绝热气缸中的两个活塞,用轻质刚性细杆连结,活塞与气缸壁的接触是光滑的、不漏气的,M 1是导热的,M 2是绝热的,且M 2的横截面积是M 1的2倍.M 1把一定质量的气体封闭在气缸为L 1部分,M 1和M 2把一定质量的气体封闭在气缸的L 2部分,M 2的右侧为大气,大气的压强p 0是恒定的.K 是加热L 2中气体用的电热丝.初始时,两个活塞和气体都处在平衡状态,分别以V 10和V 20表示L 1和L 2中气体的体积.现通过K 对气体缓慢加热一段时间后停止加热,让气体重新达到平衡太,这时,活塞未被气缸壁挡住.加热后与加热前比,L 1和L 2中气体的压强是增大了、减小还是未变?要求进行定量论证.解析:解法(一)用n 1和n 2分别表示L 1和L 2中气体的摩尔数,p 1、p 2和V 1、V 2分别表示L 1和L 2中气体处在平衡状态时的压强和体积,T 表示气体的温度(因为M 1是导热的,两部分气体的温度相等),由理想气体状态方程有:p 1V 1=n 1RT ①p 2V 2=n 2RT ②式中R 为普适气体常量.若以两个活塞和轻杆构成的系统为研究对象,处在平衡状态时有:p 1S 1-p 2S 1+p 2S 2-p 0S 2=0 ③已知S 2=2S 1 ④有③④式得:p 1+p 2=2p 0 ⑤由①②⑤三式得:p 1=2n 1n 2p 0V 2V 1+n 1n 2V 2 ⑥若⑥式中的V 1、V 2是加热后L 1和L 2中气体的体积,则p 1就是加热后L 1中气体的压强.加热前L 1中气体的压强则为p 10=2n 1n 2p 0V 20V 10+n 1n 2V 2 ⑦ 设加热后L 1中气体体积的增加量为ΔV 1,L 2中气体体积的增加量为ΔV 2,因连接两活塞的杆是刚性的,活塞M 2的横截面积是M 1的2倍,故有:ΔV 1=ΔV 2=ΔV ⑧加热后L 1和L 2中气体的体积都是增大的,即ΔV >0.(若ΔV <0,即加热后活塞是向左移动的,则大气将对封闭在气缸中的气体做功,电热丝又对气体加热,根据热力学第一定律,气体的内能增加,温度将上升,而体积是减小的,故L 1和L 2中气体的压强p 1和p 2都将增大,这违反力学平衡条件⑤式)于是有V 1=V 10+ΔV ⑨V 2=V 20+ΔV ⑩由⑥⑦⑨⑩四式得:p 1-p 10=2n 1n 2p 0(V 10-V 20)ΔV ⎣⎡⎦⎤V 10+ΔV +n 1n 2(V 20+ΔV )⎝⎛⎭⎫V 10+n 1n 2V 20 ⑪由⑪式可知:若加热前V 10=V 20,则p 1=p 10,即加热后p 1不变,由⑤式知p 2亦不变;若加热前V 10<V 20,则p 1<p 10,即加热后p 1必减小,由⑤式知p 2必增大;若加热前V 10>V 20,则p 1>p 10,即加热后p 1必增大,由⑤式知p 2必减小.参考评分:得到⑤式3分,得到⑧式3分,得到⑪式8分,最后结论6分. 解法(二)设加热前L 1和L 2中气体的压强和体积分别为p 10、p 20和V 10、V 20,以p 1、p 2和V 1、V 2分别表示加热后L 1和L 2中气体的压强和体积,由于M 1是导热的,加热前L 1和L 2中气体的温度是相等的,设为T 0,加热后L 1和L 2中气体的温度也相等,设为T .因为加热前、后两个活塞和轻杆构成的系统都处在力学平衡状态,注意到S 2=2S 1,力学平衡条件分别为:p 10+p 20=2p 0 ①p 1+p 2=2p 0 ②由①②两式得:p 1-p 10=-(p 2-p 20) ③根据理想气体状态方程,对L 1中的气体有:p 1V 1p 10V 10=T T 0④ 对L 2中气体有:p 2V 2p 20V 20=T T 0⑤ 由④⑤两式得:p 1V 1p 10V 10=p 2V 2p 20V 20⑥ ⑥式可改写成:⎝⎛⎭⎫1+p 1-p 10p 10⎝⎛⎭⎫1+V 1-V 10V 10=⎝⎛⎭⎫1+p 2-p 20p 20⎝⎛⎭⎫1+V 2-V 20V 20 ⑦ 因连接两活塞的杆是刚性的,活塞M 2的横截面积是M 1的2倍,故有:V 1-V 10=V 2-V 20 ⑧把③⑧式带入⑦式得:⎝⎛⎭⎫1+p 1-p 10p 10⎝⎛⎭⎫1+V 1-V 10V 10=⎝⎛⎭⎫1-p 1-p 10p 20⎝⎛⎭⎫1+V 1-V 10V 20 ⑨ 若V 10=V 20,则由⑨式得p 1=p 10,若加热前L 1中气体的体积等于L 2中气体的体积,则加热后L 1中气体的压强不变,由②式可知加热后L 2中气体的压强亦不变;若V 10<V 20,则由⑨式得p 1<p 10,若加热前L 1中气体的体积小于L 2中气体的体积,则加热后L 1中气体的压强必减小,由②式可知加热后L 2中气体的压强必增大;若V 10>V 20,则由⑨式得p 1>p 10,若加热前L 1中气体的体积大于L 2中气体的体积,则加热后L 1中气体的压强必增大,由②式可知加热后L 2中气体的压强必减小;参考评分:得到①式和②式或得到③式得3分,得到⑧式得3分,得到⑨式得8分,最后结论得6分.。
29届全国中学生物理竞赛复赛(高清试题图片Word答案)
1234567第29届全国中学生物理竞赛复赛试卷参考答案一、由于湖面足够宽阔而物块体积很小,所以湖面的绝对高度在物块运动过程中始终保持不变,因此,可选湖面为坐标原点并以竖直向下方向为正方向建立x坐标系,以下简称系. 设物块下底面的坐标为,在物块未完全浸没入湖水时,x其所受到的浮力为g式中为重力加速度.物块的重力为设物块的加速度为,根据牛顿第二定律有将(1)和(2)式代入(3)式得将系坐标原点向下移动而建立新坐标系,简称系. 新旧坐标的关系为把(5)式代入(4)式得式表示物块的运动是简谐振动. 若,则,对应于物块的平衡位置. 由式可知,当物块处于平衡位置时,物块下底面在系中的坐标为0物块运动方程在系中可写为利用参考圆可将其振动速度表示为式中为振动的圆频率在(8)和(9)式中和分别是振幅和初相位,由初始条件决定. 在物块刚被释放Ax=0时,即时刻有,由(5)式得由(8)至(12)式可求得(13) 将(10)、(13)和(14)式分别代人(8)和(9)式得由(15)式可知,物块再次返回到初始位置时恰好完成一个振动周期;但物块的运动始终由(15)表示是有条件的,那就是在运动过程中物块始终没有完全浸没在湖水中. 若物块从某时刻起全部浸没在湖水中,则湖水作用于物块的浮力变成恒力,物块此后的运动将不再是简谐振动,物块再次返回到初始位置所需的时间也就不再全由振动的周期决定. 为此,必须研究物块可能完全浸没在湖水中的情况. 显然,在系中看,物块下底面坐标为时,物块刚好被完全浸没;由(5)式x b 知在系中这一临界坐标值为(17) 即物块刚好完全浸没在湖水中时,其下底面在平衡位置以下处. 注意到在Xb振动过程中,物块下底面离平衡位置的最大距离等于振动的振蝠,下面分两种A情况讨论:I.. 由(13)和(17)两式得在这种情况下,物块在运动过程中至多刚好全部浸没在湖水中. 因而,物块从初始位置起,经一个振动周期,再次返回至初始位置. 由(10)式得振动周期物块从初始位置出发往返一次所需的时间II.. 由(13)和(17)两式得A X b (21) 在这种情况下,物块在运动过程中会从某时刻起全部浸没在湖水表面之下. 设从t初始位置起,经过时间物块刚好全部浸入湖水中,这时. 由(15)和(17)11b式得(22) cos11取合理值,有 (23) arccos11由上式和(16)式可求得这时物块的速度为2 (24) V(t)1-11此后,物块在液体内作匀减速运动,以表示加速度的大小,由牛顿定律a有 (25) 设物块从刚好完全浸入湖水到速度为零时所用的时间为,有t2(26) 12由(24)-(26)得2(27)112()物块从初始位置出发往返一次所需的时间为22(28) 2()2arccos111II12()评分标准:本题17分.(6)式2分,(10)(15)(16)(17)(18)式各1分,(20)式3分,(21)式1分,(23)式3分,(27)式2分,(28)式1分.10二、 1. i.通过计算卫星在脱离点的动能和万有引力势能可知,卫星的机械能为负值. 由开普勒第一定律可推知,此卫星的运动轨道为椭圆(或圆),地心为椭圆的一个焦点(或圆的圆心),如图所示.由于卫星在脱离点的速度垂直于地心和脱离点的连线,因此脱离点必为卫星椭圆轨道的远地点(或近地点);设近地点(或远地点)离地心的距离为,r R 0.80R 卫星在此点的速度为.由开普勒第v a 二定律可知2式中为地球自转的角速度e令表示卫星的质量,根据机械能守m恒定律有1G(2)由2r20.80R(1)和(2)式解得可见该点为近地点,而脱离处为远地点. 【(3)式结果亦可由关系式:直接求得】同步卫星的轨道半径满足2R由(3)和(4)式并代入数据得4可见近地点到地心的距离大于地球半径,因此卫星不会撞击地球. ii.由开普勒第二定律可知卫星的面积速度为常量,从远地点可求出该常量为s2设和分别为卫星椭圆轨道的半长轴和半短轴,由椭圆的几何关系有 ab 110.280.80R (7) 220.800.2822 (8) 2T卫星运动的周期为(9) s代人相关数值可求出(10)9.5h 卫星刚脱离太空电梯时恰好处于远地点,根据开普勒第二定律可知此时刻卫星具有最小角速度,其后的一周期内其角速度都应不比该值小,所以卫星始终不比太空电梯转动得慢;换言之,太空电梯不可能追上卫星.设想自卫星与太空电梯脱离后经过,卫星到达近地点,而此时太空电梯已转过此(约14小时)1.5T点,这说明在此前卫星尚未追上太空电梯.由此推断在卫星脱落后的0-12小时内二者不可能相遇;而在卫星脱落后12-24小时内卫星将完成两个多周期的运动,同时太空电梯完成一个运动周期,所以在12-24小时内二者必相遇,从而可以实现卫星回收. 2.根据题意,卫星轨道与地球赤道相切点和卫星在太空电梯上的脱离点分别为其轨道的近地点和远地点.在脱离处的总能量为1GMmGMm2(11)m(R)x2xxe此式可化为32GM xx(12) 123e e e这是关于的四次方程,用数值方法求解可得R x4(13)4.7 3.010kmxe表示卫星与赤道相切点v【亦可用开普勒第二定律和能量守恒定律求得.令R xe即近地点的速率,则有2eex和 121GMm1GMm22(R)ex2R2R ex由上两式联立可得到方程532GM2GM xxx02323eee其中除外其余各量均已知, 因此这是关于的五次方程. 同样可以用数值方法解得.】RRR xxx卫星从脱离太空电梯到与地球赤道相切经过了半个周期的时间,为了求出卫星运行的周期,设椭圆的半长轴为,半短轴为,有xe (14) 222ex (15)因为面积速度可表示为12(16) sx2所以卫星的运动周期为(17) s代入相关数值可得 h(18) 6.8卫星与地球赤道第一次相切时已在太空中运行了半个周期,在这段时间内,如果地球不转动,卫星沿地球自转方向运行180度,落到西经处与赤道相切. 但由于地球自转,在这(180110)期间地球同时转过了角度,地球自转角速度,因此卫星与地球赤道T/2360/24h15/h相切点位于赤道的经度为西经(19)1801101212即卫星着地点在赤道上约西经121度处. 评分标准:本题23分.第1问16分,第i小问8分,(1)、(2)式各2分,(4)式2分,(5)式和结论共2分.第ii小问8分,(9)、(10)式各2分,说出在0-12小时时间段内卫星不可能与太空电梯相遇并给出正确理由共2分,说出在12-24小时时间段内卫星必与太空电梯相遇并给出正确理由共2分.5%第2问7分,(11)式1分,(13)式2分,(18)式1分,(19)式3分. (数值结果允许有的相对误差)三、 13解法一如图1所示,建直角坐标,轴与挡板垂直,轴与挡板重合. 碰撞前体系质心的速xy Oxy,方向沿x轴正方向,以表示系统的质心,以和表示碰撞后质心的速度分量,vPvv度为Py0Px表示墙作用于小球的冲量的大小. 根据质心运动定理有 JC (1)(2)由(1)和(2)式得(3)Px3m (4)可在质心参考系中考察系统对质心的角动量. 在球 O C x 与挡板碰撞过程中,质心的坐标为(5)(6)l P3CP球碰挡板前,三小球相对于质心静止,对质心的角C C 动量为零;球碰挡板后,质心相对质心参考系仍是C静止的,三小球相对质心参考系的运动是绕质心的转动,若转动角速度为,则三小球对质心的角动量P图(7)式中、和分别是、和三球到质ABClllAPBPCP心的距离,由图1可知(8)cos sin(9)sin(10)CP9由(7)、(8)、(9)和(10)各式得(11)3在碰撞过程中,质心有加速度,质心参考系是非惯性参考系,在质心参考系中考察动力学问题时,必须引入惯性力. 但作用于质点系的惯性力的合力通过质心,对质心的力矩等于零,不影响质点系对质心的角动量,故在质心参考系中,相对质心角动量的变化仍取决于作用于球C的冲量的冲量矩,即有(12)3【也可以始终在惯性参考系中考察问题,即把桌面上与体系质心重合的那一点作为角动量的参考点,则对该参考点(12)式也成立】由(11)和(12)式得 14 sin球相对于质心参考系的速度分量分别为(参考图1)CP球相对固定参考系速度的x分量为 C (16)由(3)、(6)、(13)和(16)各式得 J (17)Cx02根据题意有 (18)由(17)和(18)式得 2 (19)由(13)和(19)式得(20) l 球若先于球与挡板发生碰撞,则在球与挡板碰撞后,整ABC 个系统至少应绕质心转过角,即杆至少转到沿y 方向,如图2所示. 系统绕质心转过所需时间(21) 在此时间内质心沿x 方向向右移动的距离 B (22)若 (23)则球先于球与挡板碰撞. 由(5)、(6)、(14)、(16)、(18)、BA (21)、(22)和(23)式得 图2 3 (24)即(25) 评分标准: 本题25分.(1)、(2)、(11)、(12)、(19)、(20)式各3分,(21)式1分,(22)、(23)式各2分.(24)或(25)式2分. 15解法二 如图1所示,建直角坐标系,轴与挡板垂直,x Oxy y v 、、、、和 分vvvvvv 以轴与挡板重合,vy AyByCyAxBxCxAyBy 别表示球与挡板刚碰撞后、和三球速度的分量,ABCC vv B A O 根据题意有 AxBxx (1) v Cy 以表示挡板作用于球的冲量的大小,其方向沿轴x J C 的负方向,根据质点组的动量定理有 C(2)(3)图1 AyByCy以坐标原点为参考点,根据质点组的角动量定理有(4)因为连结小球的杆都是刚性的,故小球沿连结杆的速度分量相等,故有(5)(6)(7)(7)式中为杆与连线的夹角. 由几何关系有(8)(9)解以上各式得(10)(11)(12)(13)16(14)0By(15)cosCy0按题意,自球与挡板碰撞结束到球(也可能球)碰撞挡板墙前,整个系统不受外力作用,ABC系统的质心作匀速直线运动. 若以质心为参考系,则相对质心参考系,质心是静止不动的,、A和三球构成的刚性系统相对质心的运动是绕质心的转动. 为了求出转动角速度,可考察球BCB相对质心的速度.由(11)到(15)各式,在球与挡板碰撞刚结束时系统质心的速度2(16) 2vv AxBxCx sin Px03m 3AyByCy (17) 0 Py3m 这时系统质心的坐标为(18) cosP1 (19)sin P3不难看出,此时质心正好在球的正下方,至球的距离为,而球相对质心的速度 y PBBBP 12(20) sin BPxBxPx03 (21) 0BPy 可见此时球的速度正好垂直,故整个系统对质心转动的角速度 B BP (22) ylP 若使球先于球与挡板发生碰撞,则在球与挡板ABC y 碰撞后,整个系统至少应绕质心转过角,即杆至少ABπ/2转到沿y 方向,如图2所示. 系统绕质心转过所需时间 π/2 A 1π 2 (23)x O 在此时间内质心沿x 方向向右移动的距离 P B(24)Px 若 C (25) PP 17 图2则球先于球与挡板碰撞. 由以上有关各式得(26)即(27) 评分标准: 本题25分. (2)、(3)、(4)、(5)、(6)、(7)式各2分,(10)、(22)式各3分,(23)式1分,(24)、(25)式各2分,(26)或(27)式2分. 四、 参考解答: 1.虚线小方框内2n 个平行板电容器每两个并联后再串联,其电路的等效C 电容满足下式 t11n (1) C2Ct1即 2C (2) t1n 式中 S(3)虚线大方框中无限网络的等效电容满足下式 C t2(4)即 C (5)t22整个电容网络的等效电容为 CC2Ct1t2 (6)等效电容器带的电量(即与电池正极连接的电容器极板上电量之和)(7)当电容器a两极板的距离变为2d后,2n个平行板电容器联成的网络的等效满足下式电容C t1(8)由此得(9)t1整个电容网络的等效电容为(10)整个电容网络的等效电容器带的电荷量为(11)在电容器a两极板的距离由d变为2d后,等效电容器所带电荷量的改变为(12)电容器储能变化为(13)在此过程中,电池所做的功为(14)(3外力所做的功为(15)设金属薄板插入到电容器a后,a的左极板所带电荷量为,金属薄板左侧带电荷量为,右侧带电荷量为,a的右极板带电荷量为,与并联的电容器左右两极板带电荷量分别为和.由于电容器a和与其并联的电容器两极板电压相同,所以有(16)SSC由(2)式和上式得(17)d上式表示电容器a左极板和与其并联的电容器左极板所带电荷量的总和,也是虚线大方框中无限网络的等效电容所带电荷量(即与电池正极连接的电容器的C t2极板上电荷量之和). 整个电容网络两端的电压等于电池的电动势,即 19(18)(1)c2CC t2将(2)、(5)和(17)式代入(18)式得电容器a左极板带电荷量(5)(2)(19)(313)2kd(313)d评分标准:本题21分. 第1问13分,(2)式1分,(5)式2分,(6)、(7)、(10)、(11)、(12)式各1分,(13)式2分,(14)式1分,(15)式2分. 第2问8分,(16)、(17)、(18)、(19)式各2分. 五、参考解答: c a 如图1所示,当长直金属杆在ab位置以速度水平v向右滑动到时,因切割磁力线,在金属杆中产生由b指向a的感应电动势的大小为ll 1 2 (1)式中为金属杆在ab位置时与大圆环两接触点间的长LII 1 2 度,由几何关系有2222R(2)111100在金属杆由ab位置滑动到cd位置过程中,金属杆与大 b d 圆环接触的两点之间的长度可视为不变,近似为.2RL1图 1 将(2)式代入(1)式得,在金属杆由ab滑动到cd过程中感应电动势大小始终为(3)1以、和分别表示金属杆、杆左和右圆弧中的电流,方向如图1所示,以表示a、b两IIIU21ab端的电压,由欧姆定律有(4)ab110 (5)ab220式中,和分别为金属杆左、右圆弧的弧长.根据提示,和中的电流在圆心处产生的磁感llll1212应强度的大小分别为Il11 (6)1m2R1Il22(7)2m2R1方向竖直向上,方向竖直向下.BB12由(4)、(5)、(6)和(7)式可知整个大圆环电流在圆心处产生的磁感应强度为 20(8)无论长直金属杆滑动到大圆环上何处,上述结论都成立,于是在圆心处只有金属杆的电流I所产生磁场. 在金属杆由ab滑动到cd的过程中,金属杆都处在圆心附近,故金属杆可近似视为无限长直导线,由提示,金属杆在ab位置时,杆中电流产生的磁感应强度大小为 2I (9)3mR1100方向竖直向下.对应图1的等效电路如图2,杆中的电流 a(10)IIIRR 1 2 右左右左左右其中为金属杆与大圆环两接触点间这段金属杆的电阻,R R R左ab 和分别为金属杆左右两侧圆弧的电阻,由于长直金属杆非R右常靠近圆心,故 b (11)图 2 ab111右左利用(3)、(9)、(10)和(11)式可得v800kBm (12)3由于小圆环半径,小圆环圆面上各点的磁场可近似视为均匀的,且都等于长直金属杆在圆心处产生的磁场. 当金属杆位于ab处时,穿过小圆环圆面的磁感应通量为(13)当长直金属杆滑到cd位置时,杆中电流产生的磁感应强度的大小仍由(13)式表示,但方向相反,故穿过小圆环圆面的磁感应通量为(14)在长直金属杆以速度从ab移动到cd的时间间隔内,穿过小圆环圆面的磁感应通量的v改变为(15)由法拉第电磁感应定律可得,在小圆环中产生的感应电动势为大小为(16)在长直金属杆从ab移动cd过程中,在小圆环导线中产生的感应电流为(17)于是,利用(12)和(17)式,在时间间隔内通过小环导线横截面的电荷量为(18)i评分标准:本题25分. (3)式3分,(4)、(5)式各1分,(8)、(10)式各3分,(12)式3分, (15)式4分,(16)、(17)式各2分,(18)式3分. 六、参考解答: nn设重新关闭阀门后容器A中气体的摩尔数为,B中气体的摩尔数为,12则气体总摩尔数为(1) 12把两容器中的气体作为整体考虑,设重新关闭阀门后容器A中气体温度为,B中气体温度为,重新关闭阀门之后与打开阀门之前气体内能的变化可表12示为(2)由于容器是刚性绝热的,按热力学第一定律有(3) pV令表示容器A的体积, 初始时A中气体的压强为,关闭阀门后A中气体压强为,由理想气体状态方程可知 1pV (4)(5)由以上各式可解得由于进入容器B中的气体与仍留在容器A中的气体之间没有热量交换,因而在阀门打开到重新关闭的过程中留在容器A中的那部分气体经历了一个绝热Vp过程,设这部分气体初始时体积为(压强为时),则有10(6) 11011 22利用状态方程可得(7)由(1)至(7)式得,阀门重新关闭后容器B中气体质量与气体总质量之比RC(8)Rn评分标准:本题15分. (1)式1分,(2)式3分,(3)式2分,(4)、(5)式各1分,(6)式3分,(7)式1分,(8)式3分. 七、答案与评分标准: 1. 19.2 (4分,填19.0至19.4的,都给4分) 10.2 (4分,填10.0至10.4的,都给4分) 2. 20.3 (4分,填20.1至20.5的,都给4分) 4.2 (4分,填4.0至4.4的,都给4分) 八、参考解答:在相对于正离子静止的参考系S中,导线中的正离子不动,导电电子以速向下匀速运动;在相对于导电电子静止的参考系中,导线中导电电子不动,v度0向上匀速运动.下面分四步进行分析. v正离子以速度第一步,在参考系中,考虑导线2对导线1中正离子施加电场力的大小和方向.若S系中一些正离子所占据的长度为,则在系中这些正离子所占据的长l,由相对论中的长度收缩公式有度变为(1),由于离子设在参考系S和中,每单位长度导线中正离子电荷量分别为和的电荷量与惯性参考系的选取无关,故(2)由(1)和(2)式得(3)设在S系中一些导电电子所占据的长度为,在系中这些导电电子所占据l,则由相对论中的长度收缩公式有的长度为(4)同理,由于电子电荷量的值与惯性参考系的选取无关,便有(5)分别为在参考系S和中单位长度导线中导电电子的电荷量. 式中,和在参照系中,导线2单位长度带的电荷量为(6)它在导线1处产生的电场强度的大小为(7)q电场强度方向水平向左.导线1中电荷量为的正离子受到的电场力的大小为(8)电场力方向水平向左第二步,在参考系中,考虑导线2对导线1中正离子施加磁场力的大小和向上运动的正离子形成的电流为 v方向.在参考系中,以速度(9)导线2中的电流在导线1处产生磁场的磁感应强度大小为(10)磁感应强度方向垂直纸面向外.导线1中电荷量为的正离子所受到的磁场力的大小为 2v(11)方向水平向右,与正离子所受到的电场力的方向相反. 第三步,在参考系S中,考虑导线2对导线1中正离子施加电场力和磁场力的大小和方向.由题设条件,导线2所带的正电荷与负电荷的和为零,即(12)因而,导线2对导线1中正离子施加电场力为零(13)注意到在S系中,导线1中正离子不动(14)导线2对导线1中正离子施加磁场力为零(15)式中,是在S系中导线2的电流在导线1处产生的磁感应强度的大小.于是,B在S系中,导线2对导线1中正离子施加电场力和磁场力的合力为零. 第四步,已说明在S系中导线2对导线1中正离子施加电场力和磁场力的合力为零,如果导线1中正离子还受到其他力的作用,所有其它力的合力必为零(因为正离子静止).在系中,导线2对导线1中正离子施加的电场力和磁场力的合力的大小为因为相对系,上述可能存在的其它力的合力仍应为零,而正离子仍处在勻速运动状态,所以(16)式应等于零,故(17)由(8)、(11)和(17)式得 k2e (18)km 评分标准:本题18分. (1)至(18)式各1分. 26。
2016年北京市高考物理试卷和答案解析
2016年北京市高考物理试卷和答案解析LT明,地球周围地磁场的磁感线分布示意如图.结合上述材料,下列说法不正确的是()A.地理南、北极与地磁场的南、北极不重合B.地球内部也存在磁场,地磁南极在地理北极附近C.地球表面任意位置的地磁场方向都与地面平行D.地磁场对射向地球赤道的带电宇宙射线粒子有力的作用6.(6分)如图所示,一颗人造卫星原来在椭圆轨道1绕地球E运行,在P变轨后进入轨道2做匀速圆周运动.下列说法正确的是()A.不论在轨道1还是在轨道2运行,卫星在P 点的速度都相同B.不论在轨道1还是在轨道2运行,卫星在P 点的加速度都相同C.卫星在轨道1的任何位置都具有相同加速度D.卫星在轨道2的任何位置都具有相同动量7.(6分)某兴趣小组探究用不同方法测定干电池的电动势和内阻,他们提出的实验方案中有如下四种器材组合.为使实验结果尽可能准确,最不可取的一组器材是()A.一个安培表、一个伏特表和一个滑动变阻器B.一个伏特表和多个定值电阻C.一个安培表和一个电阻箱D.两个安培表和一个滑动变阻器8.(6分)雾霾天气对大气中各种悬浮颗粒物含量超标的笼统表述,是特定气候条件与人类活动相互作用的结果.雾霾中,各种悬浮颗粒物形状不规则,但可视为密度相同、直径不同的球体,并用PM10、PM2.5分别表示直径小于或等于10μm、2.5μm的颗粒物(PM是颗粒物的英文缩写).某科研机构对北京地区的检测结果表明,在静稳的雾霾天气中,近地面高度百米的范围内,PM10的浓度随高度的增加略有减小,大于PM10的大悬浮颗粒物的浓度随高度的增加明显减小,且两种浓度分布基本不随时间变化.据此材料,以下叙述正确的是()A.PM10表示直径小于或等于1.0×10﹣6m的悬浮颗粒物B.PM10受到的空气分子作用力的合力始终大于其受到的重力C.PM10和大悬浮颗粒物都在做布朗运动D.PM2.5浓度随高度的增加逐渐增大二、解答题9.(4分)热敏电阻常用于温度控制或过热保护装置中.图为某种热敏电阻和金属热电阻的阻值R随温度t变化的示意图.由图可知,这种热敏电阻在温度上升时导电能力(选填“增强”或“减弱”);相对金属热电阻而言,热敏电阻对温度变化的影响更(选填“敏感”或“不敏感”).10.(14分)利用图1装置做“验证机械能守恒定律”实验.①为验证机械能是否守恒,需要比较重物下落过程中任意两点间的.A.动能变化量与势能变化量B.速度变化量和势能变化量C.速度变化量和高度变化量②除带夹子的重物、纸带、铁架台(含铁夹)、电磁打点计时器、导线及开关外,在下列器材中,还必须使用的两种器材是A.交流电源B.刻度尺C.天平(含砝码)③实验中,先接通电源,再释放重物,得到图2所示的一条纸带.在纸带上选取三个连续打出的点A、B、C,测得它们到起始点O的距离分别为h A、h B、h C.已知当地重力加速度为g,打点计时器打点的周期为T.设重物的质量为m.从打O点到打B点的过程中,重物的重力势能变化量△E p=,动能变化量△E k=.④大多数学生的实验结果显示,重力势能的减少量大于动能的增加量,原因是A.利用公式v=gt计算重物速度B.利用公式v=计算重物速度C.存在空气阻力和摩擦力阻力的影响D.没有采用多次试验去平均值的方法.⑤根据以下方法研究机械能是否守恒:在纸带上选取多个计数点,测量它们到起始点O的距离h,计算对应计数点的重物速度v,描绘v2﹣h图象,并做如下判断:若图象是一条过原点的直线,则重物下落过程中机械能守恒.请你分析论证该同学的判断依据是否正确.11.(16分)如图所示,质量为m,电荷量为q 的带电粒子,以初速度v沿垂直磁场方向射入磁感应强度为B的匀强磁场,在磁场中做匀速圆周运动.不计带电粒子所受重力.(1)求粒子做匀速圆周运动的半径R和周期T;(2)为使该粒子做匀速直线运动,还需要同时存在一个与磁场方向垂直的匀强电场,求电场强度E的大小.12.(18分)如图所示,电子由静止开始经加速电场加速后,沿平行于版面的方向射入偏转电场,并从另一侧射出.已知电子质量为m,电荷量为e,加速电场电压为U0,偏转电场可看做匀强电场,极板间电压为U,极板长度为L,板间距为d.(1)忽略电子所受重力,求电子射入偏转电场时初速度v0和从电场射出时沿垂直版面方向的偏转距离△y;(2)分析物理量的数量级,是解决物理问题的常用方法.在解决(1)问时忽略了电子所受重力,请利用下列数据分析说明其原因.已知U=2.0×102V,d=4.0×10﹣2m,m=9.1×10﹣31kg,e=1.6×10﹣19C,g=10m/s2.(3)极板间既有电场也有重力场.电势反映了静电场各点的能的性质,请写出电势φ的定义式.类比电势的定义方法,在重力场中建立“重力势”的φG概念,并简要说明电势和“重力势”的共同特点.13.(10分)动量定理可以表示为△p=F△t,其中动量p和力F都是矢量.在运用动量定理处理二维问题时,可以在相互垂直的x、y两个方向上分别研究.例如,质量为m的小球斜射到木板上,入射的角度是θ,碰撞后弹出的角度也是θ,碰撞前后的速度大小都是υ,如图所示.碰撞过程中忽略小球所受重力.a.分别求出碰撞前后x、y方向小球的动量变化△p x、△p y;b.分析说明小球对木板的作用力的方向.14.(10分)激光束可以看作是粒子流,其中的粒子以相同的动量沿光传播方向运动.激光照射到物体上,在发生反射、折射和吸收现象的同时,也会对物体产生作用.光镊效应就是一个实例,激光束可以像镊子一样抓住细胞等微小颗粒.一束激光经S点后被分成若干细光束,若不考虑光的反射和吸收,其中光束①和②穿过介质小球的光路如图②所示,图中O点是介质小球的球心,入射时光束①和②与SO的夹角均为θ,出射时光束均与SO平行.请在下面两种情况下,分析说明两光束因折射对小球产生的合力的方向.a.光束①和②强度相同;b.光束①比②强度大.2016年北京市高考物理试卷参考答案与试题解析一、选择题(共8小题,每小题6分,满分48分)1.(6分)(2016•北京)处于n=3能级的大量氢原子,向低能级跃迁时,辐射光的频率有()A.1种B.2种C.3种D.4种【解答】解:现有大量的氢原子处于n=3的激发态,当这些氢原子向低能级跃迁时,辐射光子的频率为n==3种.选项C正确,BCD错误.故选:C.2.(6分)(2016•北京)下列说法正确的是()A.电磁波在真空中以光速C传播B.在空气中传播的声波是横波C.声波只能在空气中传播D.光需要介质才能传播【解答】解:A、电磁波在真空中的传播速度与光在真空中的传播速度相同,故A正确;B、空气中的声波是纵波,故B错误;C、声波不仅能在空气中传播,也能在固体、液体中传播,但不能在真空中传播,故C错误;D、光可以在真空中的传播,不需要介质,故D 错误;故选:A.3.(6分)(2016•北京)如图所示,弹簧振子在M、N之间做简谐运动.以平衡位置O为原点,建立Ox轴.向右为x的轴的正方向.若振子位于N点时开始计时,则其振动图象为()A.B.C.D.【解答】解:由题意:设向右为x正方向,振子运动到N点时,振子具有正方向最大位移,所以振子运动到N点时开始计时振动图象应是余弦曲线,故A正确,BCD错误.故选:A4.(6分)(2016•北京)如图所示,匀强磁场中有两个导体圆环a、b,磁场方向与圆环所在平面垂直.磁感应强度B随时间均匀增大.两圆环半径之比为2:1,圆环中产生的感应电动势分别为E a和E b,不考虑两圆环间的相互影响.下列说法正确的是()A.E a:E b=4:1,感应电流均沿逆时针方向B.E a:E b=4:1,感应电流均沿顺时针方向C.E a:E b=2:1,感应电流均沿逆时针方向D.E a:E b=2:1,感应电流均沿顺时针方向【解答】解:根据法拉第电磁感应定律E==S,题中相同,a圆环中产生的感应电动势分别为E a==S=π,b圆环中产生的感应电动势分别为E b==S=π,由于r a:r b=2:1,所以,由于磁场向外,磁感应强度B随时间均匀增大,根据楞次定律可知,感应电流均沿顺时针方向,故B正确,ACD错误;故选:B.5.(6分)(2016•北京)中国宋代科学家沈括在《梦溪笔谈》中最早记载了地磁偏角:“以磁石磨针锋,则能指南,然常微偏东,不全南也.”进一步研究表明,地球周围地磁场的磁感线分布示意如图.结合上述材料,下列说法不正确的是()A.地理南、北极与地磁场的南、北极不重合B.地球内部也存在磁场,地磁南极在地理北极附近C.地球表面任意位置的地磁场方向都与地面平行D.地磁场对射向地球赤道的带电宇宙射线粒子有力的作用【解答】解:A、地理南、北极与地磁场的南、北极不重合有一定的夹角,即为磁偏角;故A 正确;B、磁场是闭合的曲线,地球内部也存在磁场,地磁南极在地理北极附近,故B正确;C、磁场是闭合的曲线,地球磁场从南极附近发出,从北极附近进入地球,组成闭合曲线,不是地球表面任意位置的地磁场方向都与地面平行,故C错误;D、地磁场与射向地球赤道的带电宇宙射线粒子速度方向并不平行,所以对带电宇宙射线粒子有力的作用,故D正确;本题选错误的,故选:C.6.(6分)(2016•北京)如图所示,一颗人造卫星原来在椭圆轨道1绕地球E运行,在P变轨后进入轨道2做匀速圆周运动.下列说法正确的是()A.不论在轨道1还是在轨道2运行,卫星在P 点的速度都相同B.不论在轨道1还是在轨道2运行,卫星在P 点的加速度都相同C.卫星在轨道1的任何位置都具有相同加速度D.卫星在轨道2的任何位置都具有相同动量【解答】解:A.卫星由轨道1在P点进入轨道2做离心运动,要加速,所以在轨道1和在轨道2运行经过P点的速度不同,故A错误;B.在轨道1和在轨道2运行经过P点,都是万有引力提供向心力,由a=可知,卫星在P点的加速度都相同,故B正确;C.由a=可知,由于r不同,加速度的方向指向地球,方向不同,所以卫星在轨道1的任何位置的加速度都不同,故C错误;D.卫星在轨道2的任何位置的速度方向不同,所以动量不同,故D错误.故选:B.7.(6分)(2016•北京)某兴趣小组探究用不同方法测定干电池的电动势和内阻,他们提出的实验方案中有如下四种器材组合.为使实验结果尽可能准确,最不可取的一组器材是()A.一个安培表、一个伏特表和一个滑动变阻器B.一个伏特表和多个定值电阻C.一个安培表和一个电阻箱D.两个安培表和一个滑动变阻器【解答】解:通过改变电路的阻值从而获得多组数据,根据U﹣I图象与坐标轴的交点求解电动势和内阻.A.安培表测电流,伏特表测路端电压,滑动变阻改变电路的阻值从而获得多组数据,故A可取;B.伏特表测路端电压,电流可由路端电压和定值电阻求得,通过改变接入定值电阻的个数改变电路的电阻,故B可取;C.安培表测电流,再由电流和定值电阻可得路端电压,通过改变接入定值电阻的个数改变电路的电阻,故C可取;D.两个安培表和一个滑动变阻器,不管怎么组合,不能测出路端电压,故不能测出电动势和内阻,故D最不可取.本题选最不可取的一组器材,故选:D.8.(6分)(2016•北京)雾霾天气对大气中各种悬浮颗粒物含量超标的笼统表述,是特定气候条件与人类活动相互作用的结果.雾霾中,各种悬浮颗粒物形状不规则,但可视为密度相同、直径不同的球体,并用PM10、PM2.5分别表示直径小于或等于10μm、2.5μm的颗粒物(PM是颗粒物的英文缩写).某科研机构对北京地区的检测结果表明,在静稳的雾霾天气中,近地面高度百米的范围内,PM10的浓度随高度的增加略有减小,大于PM10的大悬浮颗粒物的浓度随高度的增加明显减小,且两种浓度分布基本不随时间变化.据此材料,以下叙述正确的是()A.PM10表示直径小于或等于1.0×10﹣6m的悬浮颗粒物B.PM10受到的空气分子作用力的合力始终大于其受到的重力C.PM10和大悬浮颗粒物都在做布朗运动D.PM2.5浓度随高度的增加逐渐增大【解答】解:A.由题意知:PM10表示直径小于或等于的10μm=10﹣5m悬浮颗粒,故A错误;BCD.由题意知,PM10、PM2.5是直径小于或等于10μm、2.5μm的颗粒物,在空气分子作用力的合力作用下做无规则运动,合力不可能始终大于其受到的重力,所以PM10和大悬浮颗粒物都在做布朗运动,PM10、PM2.5的浓度随高度的增加略有减小,故C正确,BD错误.故选:C.二、解答题9.(4分)(2016•北京)热敏电阻常用于温度控制或过热保护装置中.图为某种热敏电阻和金属热电阻的阻值R随温度t变化的示意图.由图可知,这种热敏电阻在温度上升时导电能力增强(选填“增强”或“减弱”);相对金属热电阻而言,热敏电阻对温度变化的影响更敏感(选填“敏感”或“不敏感”).【解答】解:图中横轴表示温度,纵轴表示电阻,随着温度的增加,金属热电阻的阻值略微增大,而热敏电阻的阻值显著减小.所以这种热敏电阻在温度上升时导电能力增强;相对金属热电阻而言,热敏电阻对温度变化的影响更敏感.故答案为:增强,敏感.10.(14分)(2016•北京)利用图1装置做“验证机械能守恒定律”实验.①为验证机械能是否守恒,需要比较重物下落过程中任意两点间的A.A.动能变化量与势能变化量B.速度变化量和势能变化量C.速度变化量和高度变化量②除带夹子的重物、纸带、铁架台(含铁夹)、电磁打点计时器、导线及开关外,在下列器材中,还必须使用的两种器材是ABA.交流电源B.刻度尺C.天平(含砝码)③实验中,先接通电源,再释放重物,得到图2所示的一条纸带.在纸带上选取三个连续打出的点A、B、C,测得它们到起始点O的距离分别为h A、h B、h C.已知当地重力加速度为g,打点计时器打点的周期为T.设重物的质量为m.从打O点到打B 点的过程中,重物的重力势能变化量△E p=﹣mgh B,动能变化量△E k=.④大多数学生的实验结果显示,重力势能的减少量大于动能的增加量,原因是CA.利用公式v=gt计算重物速度B.利用公式v=计算重物速度C.存在空气阻力和摩擦力阻力的影响D.没有采用多次试验去平均值的方法.⑤根据以下方法研究机械能是否守恒:在纸带上选取多个计数点,测量它们到起始点O的距离h,计算对应计数点的重物速度v,描绘v2﹣h图象,并做如下判断:若图象是一条过原点的直线,则重物下落过程中机械能守恒.请你分析论证该同学的判断依据是否正确.【解答】解:①验证机械能守恒定律原理是看减少的重力势能和增加的动能是否相等,所以需要比较重物下落过程中任意两点间的动能变化量与势能变化量;②电磁打点计时器使用低压交流电源;需选用刻度尺测出纸带上任意连点见得距离,表示重锤下落的高度;等式两边都含有相同的质量,所以不需要天平秤质量;③根据功能关系,重物的重力势能变化量的大小等于重力做的功的多少,打B点时的重力势能较打A点时的小,所以△E p=﹣mgh B;B点的速度为:v B=,所以动能变化量为:△E k=mv2=;④由于纸带在下落过程中,重锤和空气之间存在阻力,纸带和打点计时器之间存在摩擦力,所以减小的重力势能一部分转化为动能,还有一部分要克服空气阻力和摩擦力阻力做功,故重力势能的减少量大于动能的增加量,故C选项正确;⑤该同学的判断依据不正确.在重物下落h的过程中,若阻力f恒定,根据mgh﹣fh=mv2﹣0可得:v2=2(g﹣)h,则此时v2﹣h图象就是过原点的一条直线.所以要想通过v2﹣h图象的方法验证机械能是否守恒,还必须看图象的斜率是否接近2g.故答案为:①A;②AB;③mgh B;;④C;⑤不正确.11.(16分)(2016•北京)如图所示,质量为m,电荷量为q的带电粒子,以初速度v沿垂直磁场方向射入磁感应强度为B的匀强磁场,在磁场中做匀速圆周运动.不计带电粒子所受重力.(1)求粒子做匀速圆周运动的半径R和周期T;(2)为使该粒子做匀速直线运动,还需要同时存在一个与磁场方向垂直的匀强电场,求电场强度E的大小.【解答】解:(1)由洛伦兹力公式,粒子在磁场中受力F为F=qvB①粒子做匀速圆周运动所需向心力粒子仅受洛伦兹力做匀速圆周运动联立①②③得④④由匀速圆周运动周期与线速度关系:⑤联立④⑤得(2)粒子做匀速直线运动需受力平衡故电场力需与洛伦兹力等大反向即qE=qvB解得:E=vB答:(1)粒子做匀速圆周运动的半径R为和周期T为;(2)为使该粒子做匀速直线运动,还需要同时存在一个与磁场方向垂直的匀强电场,电场强度E的大小为vB.12.(18分)(2016•北京)如图所示,电子由静止开始经加速电场加速后,沿平行于版面的方向射入偏转电场,并从另一侧射出.已知电子质量为m,电荷量为e,加速电场电压为U0,偏转电场可看做匀强电场,极板间电压为U,极板长度为L,板间距为d.(1)忽略电子所受重力,求电子射入偏转电场时初速度v0和从电场射出时沿垂直版面方向的偏转距离△y;(2)分析物理量的数量级,是解决物理问题的常用方法.在解决(1)问时忽略了电子所受重力,请利用下列数据分析说明其原因.已知U=2.0×102V,d=4.0×10﹣2m,m=9.1×10﹣31kg,e=1.6×10﹣19C,g=10m/s2.(3)极板间既有电场也有重力场.电势反映了静电场各点的能的性质,请写出电势φ的定义式.类比电势的定义方法,在重力场中建立“重力势”的φG概念,并简要说明电势和“重力势”的共同特点.【解答】解:(1)电子在加速场中加速,根据动能定理,则有:eU0=解得:v0=电子在偏转电场中加速,做类平抛运动,将其运动分解成速度方向匀速直线运动,与电场强度方向做初速度为零的匀加速直线运动,则有:速度方向的位移为:L=v0t;电场强度方向的位移为:△y=由牛顿第二定律有:a==且E=综上所述,解得:△y=(2)已知U=2.0×102V,d=4.0×10﹣2m,m=9.1×10﹣31kg,e=1.6×10﹣19C,g=10m/s2.电子所受重力为:G=mg=9.1×10﹣30N电子受到的电场力为:F电=e=8×10﹣16N那么=≈10﹣14;由于F电>>G,所以重力忽略不计,(3)电场中某点电势φ定义为电荷在该点的电势能E P与其电荷量q的比值,即:φ=由于重力做功与路径无关,可以类比静电场电势的定义,将重力场中物体在某点的重力势能E G 与其质量m的比值,叫做“重力势”,即φG=.电势φ与重力势φG都是反映场的能的性质的物理量,仅由场自身的因素决定.答:(1)忽略电子所受重力,电子射入偏转电场时初速度,从电场射出时沿垂直版面方向的偏转距离;(2)根据≈10﹣14,从而可以忽略了电子所受重力.(3)电势φ的定义式为:φ=;电势和“重力势”的共同特点为:电势φ与重力势φG都是反映场的能的性质的物理量,仅由场自身的因素决定.13.(10分)(2016•北京)动量定理可以表示为△p=F△t,其中动量p和力F都是矢量.在运用动量定理处理二维问题时,可以在相互垂直的x、y两个方向上分别研究.例如,质量为m的小球斜射到木板上,入射的角度是θ,碰撞后弹出的角度也是θ,碰撞前后的速度大小都是υ,如图所示.碰撞过程中忽略小球所受重力.a.分别求出碰撞前后x、y方向小球的动量变化△p x、△p y;b.分析说明小球对木板的作用力的方向.【解答】解:a、把小球入射速度分解为v x=vsinθ,v y=﹣vcosθ,把小球反弹速度分解为v x′=vsinθ,v y′=vcosθ,则△p x=m(v x′﹣v x)=0,△p y=m(v y′﹣v y)=2mvcosθ,方向沿y轴正方向,b、对小球分析,根据△p=F△t得:,,则,方向沿y轴正向,根据牛顿第三定律可知,小球对木板的作用力的方向沿y轴负方向.答:a.分别求出碰撞前后x、y方向小球的动量变化△p x为0,△p y大小为2mvcosθ,方向沿y 轴正方向;b.小球对木板的作用力的方向沿y轴负方向.14.(10分)(2016•北京)激光束可以看作是粒子流,其中的粒子以相同的动量沿光传播方向运动.激光照射到物体上,在发生反射、折射和吸收现象的同时,也会对物体产生作用.光镊效应就是一个实例,激光束可以像镊子一样抓住细胞等微小颗粒.一束激光经S点后被分成若干细光束,若不考虑光的反射和吸收,其中光束①和②穿过介质小球的光路如图②所示,图中O点是介质小球的球心,入射时光束①和②与SO的夹角均为θ,出射时光束均与SO平行.请在下面两种情况下,分析说明两光束因折射对小球产生的合力的方向.a.光束①和②强度相同;b.光束①比②强度大.【解答】解:设光束1单位时间内射出的光子数为N1,光束2单位时间内射出的光子数为N2,该激光束单个光子的动量为P.规定向右为水平方向的正方向.向上为竖直方向的正方向.根据动量定理得对光束1有:水平方向:(N1△t)(P﹣Pcosθ)=F1x•△t竖直方向:(N1△t)(0﹣Psinθ)=F1y•△t 对光束2有:水平方向:(N2△t)(P﹣Pcosθ)=F2x•△t竖直方向:(N2△t)[0﹣(﹣Psinθ)]=F2y•△ta、光束①和②强度相同,有N1=N2.F x=F1x+F2x>0,方向向右F y=F1y+F2y=0所以F=F x,方向水平向右根据牛顿第三定律可知,小球所受的合力方向水平向左.b、若强度不同,且N1>N2.所以F x=F1x+F2x>0,方向向右F y=F1y+F2y<0,方向竖直向下根据力的合成可知,合力F方向为右下根据牛顿第三定律知,小球所受的合力方向为左上.答:a.光束①和②强度相同时,光束因折射对小球产生的合力的方向向左;b.光束①比②强度大时,小球所受的合力方向为左上.。
全国高中物理竞赛历年(2009-2013年)试题与详解答案汇编
法拉第电磁感应定律。
楞次定律。
自感系数。
互感和变压器。
6、交流电
交流发电机原理。交流电的最大值和有效值。
纯电阻、纯电感、纯电容电路。
整流和滤波。
三相交流电及其连接法。感应电动机原理。
7、电磁振荡和电磁波
电磁振荡。振荡电路及振荡频率。
电磁场和电磁波。电磁波的波速,赫兹实验。
电磁波的发射和调制。电磁波的接收、调谐,检波。
全国高中物理竞赛历年试题与详解答案汇编
———广东省鹤山市纪元中学
2014年5月
全国中学生物理竞赛提要
编者按:按照中国物理学会全国中学生物理竞赛委员会第九次全体会议的建议,由中国物理学会全国中学生物理竞赛委员会常务委员会根据《全国中学生物理竞赛章程》中关于命题原则的规定,结合我国目前中学生的实际情况,制定了《全国中学生物理竞赛内容提要》,作为今后物理竞赛预赛和决赛命题的依据,它包括理论基础、实验基础、其他方面等部分。其中理论基础的绝大部分内容和国家教委制订的(全日制中学物理教学大纲》中的附录,即 1983年教育部发布的《高中物理教学纲要(草案)》的内容相同。主要差别有两点:一是少数地方做了几点增补,二是去掉了教学纲要中的说明部分。此外,在编排的次序上做了一些变动,内容表述上做了一些简化。1991年2月20日经全国中学生物理竞赛委员会常务委员会扩大会议讨论通过并开始试行。1991年9月11日在南宁由全国中学生物理竞赛委员会第10次全体会议正式通过,开始实施。
功能原理。机械能守恒定律。
碰撞。
6、流体静力学
静止流体中的压强。
浮力。
7、振动
简揩振动。振幅。频率和周期。位相。
振动的图象。
参考圆。振动的速度和加速度。
第28届北京市高中力学竞赛决赛获奖名单
第二十八届北京市高中力学竞赛决赛(景山学校杯)获奖名单北京物理学会北京市中学生物理竞赛委员会2015年6月3日第28届北京市高中力学竞赛工作简报北京市高中力学竞赛是经市教委批准,在市科协领导下,由北京物理学会、北京市中学生物理竞赛委员会主办,学生自愿参加的物理学科课外活动。
竞赛活动的目的是激发中学生学习物理的兴趣,为学有余力的学生提供发展空间,为学有所长的学生提供施展才华的机会。
高中力学竞赛自1988年举办以来,每年举办一届,已连续举办了28届,对中学生在物理知识的学习、物理研究方法、创新能力的培养及在全国中学生物理竞赛和国际奥林匹克物理竞赛中获得优秀成绩方面都起到了积极的作用。
第28届北京市高中力学竞赛(景山学校杯)分预赛、决赛,采用全市统一试题、统一评分标准、统一考试时间。
预赛于5月9日举行(10000人参加),由各区县物理学会分会或中学物理教研室组织本赛区的考试、阅卷、评奖,并选拔出部分优秀学生参加全市决赛。
决赛于5月24日举行(760人参加),由北京市中学生物理竞赛委员会负责组织考试、阅卷、评奖。
通过预赛、决赛,评出北京市一等奖149名、二等奖195名、三等奖258名,优秀辅导教师奖若干名。
本届竞赛得到了北京景山学校、北京景山教育培训学校、各区县物理学会分会及中学物理教研室的大力支持,为此,北京物理学会、北京市中学生物理竞赛委员会向支持中学生物理竞赛工作的单位及个人表示衷心感谢。
北京物理学会北京市中学生物理竞赛委员会2015年6月3日第二十八届北京市高中力学竞赛决赛获奖名单(景山学校杯)一等奖(149名)1 王行致十一学校2 李岱轩十一学校3 高昊阳人大附中4 周研人大附中5 唐昊人大附中6 李嘉镛实验中学7 王竞先人大附中8 贾斯迈人大附中9 赵奕人大附中10 杨一龙人大附中11 陈昊北京四中12 顾煜贤十一学校13 刘晏铭十一学校14 孙娴蕴十一学校15 汪弘毅人大附中16 郭杨十一学校17 徐占敖十一学校18 王垠浩十一学校19 方文钊人大附中20 王天冶人大附中21 余江晖北京五中22 鄢语轩北京五中23 刘子森十一学校24 张伊凡实验中学25 安子訸北京四中26 辛晨阳十一学校27 闫琦十一学校28 陈嘉瑞北大附中29 李普天北京四中30 高志强实验中学31 王涵宇人大附中32 甄家晖实验中学33 付正北京二中34 刘宇轩实验中学35 胡雨石人大附中36 王晨冰人大附中37 岳顺禹实验中学38 曹增涵实验中学39 韩云飞十一学校40 李言成人大附中41 吴子桓首师大附中42 杨睿实验中学43 郭致远实验中学44 何淼鑫实验中学45 齐翰文北京十二中46 林鹏翔十一学校47 李拔萃十一学校48 施宏建十一学校49 张翊洲北京四中50 武益阳北师大附中51 田梓廷十一学校52 李敏行北京四中53 张雨昕北京二中54 冯济尘实验中学55 沈诣博人大附中56 陈晓宇人大附中57 朱邦瑞首师大附中58 王雨阳实验中学59 胡家祺十一学校60 张龙飞人大附中61 卢羽帆十一学校62 周晨昊北师大附中63 王舒羽十一学校64 张健伟北京一零一中65 高晗旭北师大附中66 王锴钊十一学校67 喻泓恺北京二中68 武之圣人大附中69 王阳昇北京四中70 黄玺北京四中71 李好雨实验中学72 许欣然北京四中73 吴非人大附中74 刘晨屹实验中学75 于孟桐北京四中76 张皓哲人大附中77 尹泽龙北京二中78 胡子啸人大附中79 李骜人大附中80 赵之力北京四中81 李昊人大附中82 欧捷夫实验中学83 张思畅北师大附中84 王星瀚实验中学85 何明义北大附中86 熊海清北京二中87 邓乔中北京四中88 祁晟景山学校89 刘梓锋北京五中90 贺新雨首师大附中91 冯思源首师大附中92 陈凌峰人大附中93 林婧北京十二中94 杨元祺北京一零一中95 李泽君实验中学96 王昕荷北大附中97 牛智睿北京四中98 王彧辰北京一零一中99 孔慈航实验中学100 丁如仪人大附中101 陈逸昆北京二中102 张世琛十一学校103 吴冠成北京一零一中104 林涵群北京四中105 邱厚德人大附中106 李一一北大附中107 杨名实验中学108 冯芊芊北京四中109 陀础熠北京八中110 杨舍人大附中111 王艺洲十一学校112 李宇衡十一学校113 陈天扬人大附中114 毛思哲牛栏山一中115 袁加熠人大附中116 金泽宇实验中学117 孙晨晔景山学校118 刘维克实验中学119 马宇钒北京四中120 王普乾十一学校121 杨帆十一学校122 张天骏北京四中123 王中子人大附中124 柏艾辰十一学校125 郭家豪人大附中126 李凯文北师大附中127 钟碧涛朝阳外国语学校128 段企真北京二中129 吴子健北京二中130 李钧泓景山学校131 张明轩北京二中132 初佳慧实验中学133 魏家晔实验中学134 何一帆北大附中135 杨易轩首师大附中136 刘一笑十一学校137 徐宣哲实验中学138 夏雨萱北京二中139 乔萌北大附中140 郭紫辰汇文中学141 王雨晴首师大附中142 姚瑞成实验中学143 于泽昊人大附中144 张博北京四中145 白玉明十一学校146 满佳成陈经纶中学147 周子淇北京二中148 齐允尧北京四中149 刘若阳北京四中二等奖(195名)150 任嘉轩北京八中151 李佩睿十一学校152 胡伊然北京二中153 耿嘉十一学校154 陈星合北师大附中155 刘海鹏北京八十中156 周庆庆北京一零一中157 姚惠涵人大附中158 范一喆人大附中159 周子惟北师大附中160 刘世骁北京十二中161 王泽北京四中162 殷蕾北京四中163 彭谞睿首师大附中164 孙伟鑫顺义一中165 李雪绮首师大附中166 董昕妍人大附中167 殷济帆实验中学168 芦泽川北京八十中169 鹿征麒实验中学170 谷宇辰实验中学171 卢楚祺实验中学172 邹天健北京一零一中173 任思瑜北京四中174 尹尚炜大兴一中175 孙思源景山学校176 黎子毅北京一零一中177 陈昶旭北京四中178 宋逸寒人大附中179 武建宇实验中学180 杨冬锴陈经纶中学181 张之禾北京八十中182 刘安澜北京二中183 张朴然北师大附中184 邹舒涵清华附中185 柯岩实验中学186 郭子奇实验中学187 李伟汉北京二中188 罗阳陈经纶中学189 李雪莹北师大附中190 孙义智北京二中191 王时聪十一学校192 刘宇鑫北京十二中193 郭啸北师大附中194 邓益超北大附中195 李道儒北大附中196 时易霆北京四中197 秦安祺北京二中198 陈逸飞北京二中199 侯天歌人大附中200 马凌炜北京二中201 朱炜钦北京一零一中202 赫峘北京一零一中203 廖雨晴北师大附中204 雷湘灵北师大附中205 尚辰北京十二中206 黄烁北京二中207 傅加豪北京四中208 顾亦晗北大附中209 李一丁北京二中210 鲁玥实验中学211 肖嘉瑜汇文中学212 魏羽龙景山学校213 吴凌风北京一零一中214 况宇庭陈经纶中学215 张宇铮北京五中216 彭烨子北京八十中217 张卓北京二中218 牛润萱景山学校219 李嘉恺北京二中220 王致远北京一零一中221 刘锐枫实验中学222 王若昕陈经纶中学223 项云松北京二中224 喻云昶北京五中225 杨秋宇北京十二中226 莫罗可心实验中学227 林梓涵北京四中228 李慧健北京八十中229 赵君北京十二中230 陈子瑄人大附中231 吴明辉十一学校232 王雅琦十一学校233 贺文迪人大附中234 陆昱帆十一学校235 许笑翌人大附中236 江俞璇景山学校237 潘礼宁实验中学238 张天宜朝阳外国语学校239 杜虹锦北京二中240 张惠深朝阳外国语学校241 郝荣辉陈经纶中学242 麻一凡北师大附中243 辛雨晨景山学校244 刘踱北京二中245 刘袆钒实验中学246 姜哲源清华附中247 胡天羿北京四中248 张旻昊北大附中249 王璇陈经纶中学250 朱依诺北京二中251 左婧怡北京四中252 张锦涵十一学校253 白雨辰景山学校254 王允文景山学校255 王沛景山学校256 李子俊清华附中257 于彦鹏北大附中258 徐然实验中学259 马天尧北师大附中260 黄逸帆?261 袁若为北京八十中262 陈启文景山学校263 胡时京北京一零一中264 于博淞北京八十中265 何春望景山学校266 胡晨旭清华附中267 张一民族大学附属中学268 孟祖平实验中学269 崔佳玉陈经纶中学270 李牧赜北京九中271 樊笑十一学校272 李卓北京八十中273 李祎帆北京二中274 马文畅牛栏山一中275 韩书朋实验中学276 楼宇北京四中277 张明远北京二中278 张泽辰景山学校279 周行健人大附中280 吴建坤北京四中281 常浩北京十二中282 李林淏十一学校283 戴正冠北京四中284 李星洲北京一零一中285 刘祎璠北京一零一中286 王雨萱北京二中287 程雪珂北京一零一中288 王紫宇北师大附中289 张嘉宸十一学校290 宣羽泽北京八中291 亓开实验中学292 彭丁宇景山学校293 徐天杨北京一零一中294 张文浩景山学校295 吕岩昊北京二中296 詹启宇北师大附中297 宋彬彬顺义一中298 张文轩北京八十中299 唐泽诚首师大附中300 龙博宇北京十二中301 李前辰北京八十中302 李沅宸北京八中303 王润童朝阳外国语学校304 黄子琦北京一零一中305 鞠业昭朝阳外国语学校306 杨航陈经纶中学307 武靖宜北京十二中308 刘家润北京二中309 徐超伦北京八十中310 钟睿琦首师大附中311 杨玥陈经纶中学312 王越千北京八中313 施嘉先人大附中朝阳学校314 张梦彤北大附中315 武晨滔燕山东风中学316 李承钊北师大附中317 缴婧然景山学校318 刘亦辰北京二中319 王天诚景山学校320 于皓川实验中学321 常菱芸北京二中322 陈嘉琪北京十二中323 高忱轩北京十二中324 李熙盈汇文中学325 张嘉林广渠门中学326 曹一然北京八中327 武宁北京十二中328 刘师佳北师大附中329 常佳慧北京十二中330 李逸凡清华附中331 王志邦北京十二中332 李璐晨首师大附属育新学校333 姜维正陈经纶中学334 陈炜昊北京二十中335 熊文月北京八十中336 袁熙人大附中337 闵语涵陈经纶中学338 张正天北师大附中339 宋伯超北师大附中340 强少华北京四中341 刘兆辉人大附中342 袁梦顺义一中343 杜念臻人大附中344 郑鹏宇北京一零一中三等奖(255名)345 陈嘉旋汇文中学346 吕伟昆北京一零一中347 李伯皓朝阳外国语学校348 金启涵景山学校349 吴迪北京一零一中350 崔铭宇北京四中351 金冬庭北京一零一中352 张广田通州区运河中学353 李梓棋北航附中354 陈弘毅北京四中355 脱陈东城?356 龙润灵北京十二中357 李新宇北京四中358 刘雨樵北京十二中359 吕雨松北大附中360 刘宇飞顺义区?361 张轩延庆一中362 孙可芊北京八十中363 石仰洲北京二中364 王镕祥北京五中365 荣健睿北京二中366 杨瀚思昌平二中367 孟李皎悦北京一零一中368 孙天宇北京八中369 王子涵汇文中学370 张垚北京四中371 王泰格朝阳外国语学校372 胡诗云北京一零一中373 王弋尘北大附中374 赵宇哲八一中学375 孙岳阳十一学校376 李辰童北师大附中377 任奕舟北京四中378 余秋辰北师大二附中379 沙嫣茹北京二中380 刘冠洋北京一零一中381 周苇如朝阳和平街一中382 杨婧坜汇文中学383 韩斐然北方交大附中384 刘一帆顺义区杨镇一中385 徐元新北京二十中386 姚凯祺北京八十中387 邓石琛北京五十中388 易泽雨景山学校389 王海枫北京八中390 刘衡清华附中朝阳学校391 杨祺铭北京一六一中392 张予嘉大兴一中393 刘胜杰北京十八中394 徐正楠实验中学395 黄丹琳北师大附中396 段牧知北京一零一中397 袁瑞泽人大附中398 张青然北师大附中399 杨关霖实验中学400 刘子暄首钢矿业一中401 王可蓥汇文中学402 顾博文北师大附中403 崔嵩工大附中404 董昊文牛栏山一中405 方宇北师大附中406 郭思萌景山学校407 王敬波北京八十中408 印嘉驹北京五中分校409 孙文峥密云二中410 于海跃怀柔一中411 吴晓航北工大附中412 王薇怡北京二中413 唐浩北京十八中414 刘承基北京八十中415 曹博文京源学校416 纪奇妍北京五十七中417 佘健弘人大附中418 蔡子远北京九中419 吴睿晨人大附中420 杜文北工大附中421 郭佳华广渠门中学422 高兴顺义一中423 刘嘉玮北京八十中424 刘思杨景山学校425 刘家豪顺义区牛栏山一中426 武哲宇北京十二中427 徐颢文育英学校428 金戈骁清华附中429 袁弋洋景山学校430 罗昊洋朝阳外国语学校431 王昊轩日坛中学432 赵炳南北师大二附中433 龙齐北京十二中434 于昊辰朝阳外国语学校435 刘文睿北京八中436 王凯顺义区杨镇一中437 范国昱汇文中学438 王迪暄八一中学439 佟菲北京八十中440 邓志超牛栏山一中441 葛嘉翔陈经纶中学442 高元恺汇文中学443 张宝丰潞河中学444 杨芳迪北工大附中445 王珏广渠门中学446 许嘉元汇文中学447 贾玉杉牛栏山一中448 刘静怡北师大附中449 薛羽彤北京十二中450 张宇庭大兴一中451 赵博群北师大附中452 郭逸霏北京九中453 赵耐奇顺义一中454 赵符锐汇文中学455 刘睿思房山区良乡中学456 车宇轩育才学校457 张子淳北京二中458 高般若中关村中学459 罗丹北京五中460 相峻洪密云二中461 刘骏翔育英学校462 吕艳清人大附中463 梁容博北师大附中464 廖德隆北师大附中465 江雨涵北京十二中466 刘雨洲潞河中学467 沙昊北京十一中468 高伟博顺义区杨镇一中469 于盼盼房山区良乡中学470 乔常钰怀柔一中471 林晓汉顺义一中472 王峥清华附中473 王安婷八一中学474 于瀚洋人大附中475 张晨旭丰台二中476 李凡芃牛栏山一中477 段宇彤通州区永乐店中学478 马腾跃通州区永乐店中学479 张晟北京十二中480 何寅聪汇文中学481 杨芷一育才学校482 刘堃昌平二中483 张伯苧昌平一中484 张文锦密云二中485 白英健北京五中486 王琪怀柔一中487 常然北京十二中488 王鑫昊大兴一中489 李沄北师大附中490 郭文昊广渠门中学491 张子勋汇文中学492 王啸房山中学493 王范祎祎北京一七一中494 赵冰婵北京十二中495 谭博莹清华附中496 崔倩顺义区杨镇一中497 高畅北京八十中498 许静涵北京八十中499 姜仲篪陈经纶中学500 孙亦凡北京十二中501 马云从北京二十中502 王红星房山区良乡中学503 刘亦奇北京二中504 赵思璋北京一七一中505 杨泰牛栏山一中506 韩吴桐北京八十中507 黄梓轩育才学校508 申若水北京一七一中509 陈敬梓京源学校510 刘庆昕北京十二中511 封华北京十二中512 王之昀八一中学513 马辰瑶首钢矿业一中514 周明邦西城外国语学校515 刘丰博密云二中516 王浩然牛栏山一中517 许皓通州区运河中学518 高增阳汇文中学519 张胤耕北京五十中520 张易和陈经纶中学521 孙艺佳潞河中学522 吴洪林北京一零一中523 朱邦钊北京一零一中524 阙文琦通州区运河中学525 蔡天岳汇文中学526 种雪洲大峪中学527 郭思维昌平二中528 尹煜晖房山区良乡中学529 徐曾晶赟首师大附属密云中学530 张品西城区?531 汪可茹清华附中532 胡可昕北京十二中533 王雪弘北京二十中534 冯锐杰八一中学535 刘鑫宇昌平二中536 宋昊霖汇文中学537 刘莽南昌平一中538 段云鹏潞河中学539 贺爽北京二十中540 李昌文北京十五中541 李东晨潞河中学542 谷星原回龙观育新学校543 耿佳乐大兴一中544 贾若峰汇文中学545 徐睿晨潞河中学546 张大智大兴一中547 杨睿北京二十中548 张如意育英学校549 张天佐汇文中学550 李佐都怀柔一中551 童煜钧八一中学552 曾培宇清华附中553 周子薇大兴一中554 马丽安潞河中学555 马温桧怀柔一中556 武养志汇文中学557 詹普扬育才学校558 孔凡松怀柔一中559 李子易大峪中学560 于名洋通州区永乐店中学561 解泽宇丰台二中562 郑青杨昌平二中563 杨翟北京一零一中564 张冬晨潞河中学565 于俊顺义区杨镇一中566 邱笑寒通州区永乐店中学567 李子明房山实验中学568 申煜顺义区杨镇一中569 张伟晨牛栏山一中570 高若凡密云二中571 赵名雪北京十五中572 蔡阳北京十四中573 郭志清首师大附属育新学校574 李畅北京六十六中575 姜上洲潞河中学576 罗达川汇文中学577 胡月京源学校578 李伟宣武外国语实验学校579 王润坚北京五十七中580 唐通景山学校远洋分校?581 杨子豪北师大大兴附中582 郑晨发北京九中583 卢文泽育才学校584 陈岩顺义区杨镇一中585 刘天马华八一中学586 梁东城密云二中587 徐斯文牛栏山一中588 张雨杉汇文中学589 许广彬通州区永乐店中学590 陈润洲北京一七一中591 孙博洋首师大附属密云中学592 苏飔彧八一中学593 梁肇南北京一零一中594 陈翰林宣武外国语实验学校595 孙杉杉牛栏山一中596 王维曦实验中学597 杨天放昌平实验中学598 宗子明北京十四中599 闫涛宣武外国语实验学校600 高睿延庆一中601 王乐为延庆三中602 郭清雪延庆一中北京物理学会北京市中学生物理竞赛委员会2015年6月3日报送:市教委基教处市科协青少部、学会部送发:北京物理学会理事北京市中学生物理竞赛委员会委员区县物理教研室获奖学生。
2016年北京市高中力学竞赛预赛试题
2016年北京市高中力学竞赛预赛试题2016年北京市高中力学竞赛预赛试题是高中生们备战物理竞赛的重要一环,这不仅是对知识的考察,更是对学生解决实际问题的能力和逻辑思维能力的考验。
以下是该年份的预赛试题,内容包含了力学的各个知识点,需要解决的问题涉及到一维运动、二维运动和动量守恒等多个方面。
一、选择题1.在相同的时间内,进入河中的石头与离开河中的石头有哪个质量较大?A.进入河中的石头B.离开河中的石头C.质量相同D.无法确定2.某旅游胜地规定游客需从一座高18米的塔上下降到一个低于地面10米的钢索平台上,假设游客的体重为60kg,下降过程中,钢索的弹性和空气阻力可以忽略不计。
游客下降到平台时的动能大约是多少?A. 1000 JB. 1500 JC. 1800 JD. 2000 J3.下列哪项不属于牛顿第二定律的正确表述?A.物体受到的合外力等于物体的质量与加速度的乘积。
B.物体受到的合外力等于质量和加速度的比值。
C.物体的加速度与作用在它上面的合外力成正比,与物体的质量成反比。
D.物体的加速度与作用在它上面的合外力成正比,与物体的质量无关。
4.假设初始时刻小球位于原点,以初速度V沿直线运动,经过时间T后小球位于位置x。
则小球在这段时间内的加速度大小是多少?A. V/TB. x/ T^2C. 2x/ T^2D. 2V/ T二、解答题1.小明从一个楼顶上水平抛出一个小球,小球以初速度v0竖直下落,落地时速度为v,求小球与楼顶的高度差。
解析:小球竖直下落,所以竖直方向上质量不变。
根据重力定律,小球落地时速度为v,即v = v0 + gt。
由此可得,从初速度v0到速度v,小球下落的时间t为t = (v - v0)/g。
而小球在竖直方向上做匀加速直线运动,根据运动学公式S = v0t + 1/2gt^2,代入已知条件可得,小球与楼顶的高度差为S = v0((v - v0)/ g) + 1/2g((v -v0)/g)^2 = v0(v - v0)/ g + (v - v0)^2/ (2g)。
第29届全国中学生物理竞赛决赛试题及答案(word版)
For personal use only in study and research; not for commercial use29届全国中学生物理竞赛决赛试题panxinw 整理一、(15分)如图,竖直的光滑墙面上有A 和B 两个钉子,二者处于同一水平高度,间距为l ,有一原长为l 、劲度系数为k 的轻橡皮筋,一端由A 钉固定,另一端系有一质量为m=gkl 4的小球,其中g 为重力加速度.钉子和小球都可视为质点,小球和任何物体碰撞都是完全非弹性碰撞而且不发生粘连.现将小球水平向右拉伸到与A 钉距离为2l 的C 点,B 钉恰好处于橡皮筋下面并始终与之光滑接触.初始时刻小球获得大小为20gl v 、方向竖直向下的速度,试确定此后小球沿竖直方向的速度为零的时刻.二、(20分)如图所示,三个质量均为m 的小球固定于由刚性轻质杆构成的丁字形架的三个顶点A 、B 和C 处.AD ⊥BC ,且AD=BD=CD=a ,小球可视为质点,整个杆球体系置于水平桌面上,三个小球和桌面接触,轻质杆架悬空.桌面和三小球之间的静摩擦和滑动摩擦因数均为μ,在AD 杆上距A 点a /4和3a /4两处分别施加一垂直于此杆的推力,且两推力大小相等、方向相反.1.试论证在上述推力作用下,杆球体系处于由静止转变为运动的临界状态时,三球所受桌面的摩擦力都达到最大静摩擦力;2.如果在AD 杆上有一转轴,随推力由零逐渐增加,整个装置将从静止开始绕该转轴转动.问转轴在AD 杆上什么位置时,推动该体系所需的推力最小,并求出该推力的大小.正视图如图所示,正视图下部为一高度为h的矩形,上部为一半径为R的半圆形.柱体上表面静置一质量同为m的均匀柔软的链条,链条两端距地面的高度均为h/2,链条和柱体表面始终光滑接触.初始时,链条受到微小扰动而沿柱体右侧面下滑.试求在链条开始下滑直至其右端接触地面之前的过程中,当题中所给参数满足什么关系时,1.柱体能在地面上滑动;2.柱体能向一侧倾倒;3.在前两条件满足的情形下,柱体滑动先于倾倒发生.四、(20分)如图所示,在一光滑水平圆桌面上有两个质量、电荷都均匀分布的介质球,两球半径均为a,A球质量为m,所带电荷量为Q,B球质量为4m,所带电荷量为-4Q.在初始时刻,两球球心距为4a,各有一定的初速度,以使得两球在以后的运动过程中不发生碰撞,且都不会从圆桌面掉落.现要求在此前提下尽量减小桌面面积,试求1.两球初速度的方向和大小;假设两球在运动过程中,其所带电荷量始终保持均匀分布:桌面也不发生极化效应.已知两个均匀带电球之间的静电相互作用力,等于电荷集中在球心的两个点电荷之间的相互作用力;静电力常量为k e.如图所示,一半径为R 的轻质绝缘塑料薄圆盘水平放置,可绕过圆盘中心的竖直固定轴无摩擦地自由转动.一半径为a 的轻质小圆线圈(a<<R)固定在盘面上,圆线圈与圆盘共轴.在盘边缘处等间隔地固定4个质量均为m 的带正电的金属小球,每个小球所带电荷量均为q .此装置处在一磁感应强度大小为B 0、方向竖直向上的均匀强磁场中.初始时圆盘静止,圆线圈中通有恒定电流I .方向沿顺时针方向(从上往下看).若切断圆线圈中的电流,则圆盘将发生转动.求薄圆盘稳定转动后,圆盘在水平方向对每个金属球小的作用力的大小.假设金属小球可视为质点,不计小圆线圈的自感和带电金属小球因运动所产生的磁场.已知固定在圆盘面上的半径为a 、通有电流I 的圆线圈在圆盘面内、距线圈圆心的距离为r 处(r>>a)产生的磁场的磁感应强度的大小为B=322r Ia k m ,式中k m 为已知常量,当线圈中的电流沿顺时针方向时,磁场方向垂直于圆盘平面且竖直向上.静电力常量为k e .如图,一水平放置的刚性密闭气缸,缸壁是绝热的,活塞把气缸内空间分为两个体积相同的密闭室A 和B .活塞由一层热容量很小(略去其影响)、导热良好的材料(与气缸壁有摩擦)和一薄层绝热材料(与气缸壁没有摩擦)压制而成,绝热层在A 室一侧.初始时,A 室和B 室充有绝对温度均为T 0的同种多原子分子理想气体,A 室气体压强是B 室气体压强的4倍.现释放活塞,活塞由于其导热部分与汽缸壁之间存在摩擦而运动缓慢,最后停止在平衡位置(此时活塞与缸壁间无静摩擦).已知气缸中的气体具有如下特性:在温度高于某个临界温度T d (>T 0)时,部分多原子气体分子将发生分解,一个多原子分子可以分解为另外两个相同的多原子分子.被分解的气体摩尔数与发生分解前气体总摩尔数之比a 满足关系a=)(d T T -β,其中β=2.00T 0-1.分解过程是可逆的,分解1摩尔分子所需能量φ=CT 0/l0,1摩尔气体的内能与绝对温度T 的关系为u=CT(C 是与气体的种类无关的常量).已知当压强为P 、体积为V 的这种气体绝热缓慢膨胀时,PV γ=常量,其中γ=4/3.1.对于具有上述特性的某种气体,若实验测得在上述过程结束时没有任何分子发生了分解,求这种分子发生分解的临界温度T d 的可能值;2.对于具有上述特性的另一种气体,若实验测得在上述过程结束时有a=l0.0%的分子分解了,求这种分子发生分解的临界温度T d .如图一所示的光学系统是由平行光管、载物台和望远镜组成.已知望远镜物镜L 0的焦距为l6.OOcm .在L 0的焦平面P 处,放置带十字叉丝线的分划板和亮十字物,如图二所示.在载物台上放置双面平行的平面镜M ,通过望远镜的目镜Le 观察时,能同时清楚地看到分划板上的十字叉丝线和十字物经过L 0折射、M 反射、再经L 0折射后在分划板上所成的十字像,十字像位于A 点,与上十字叉丝线的距离为5.2mm .绕载物台转轴(沿竖直方向)转动载物台,使平面镜转l80°,此时十字像位于B 点,与上十字叉丝线的距离为18.8mm .根据以上情况和数据可计算出,此时望远镜光轴与水平面的夹角为 rad ;据此结果,调节望返镜,使其光轴与载物台的转轴垂直.平行光管是由十字缝S 和凸透镜L 组成.去掉光学系统中的平面镜M ,并用钠光灯照亮S .沿水平方向移动S ,当S 到平行光管中的透镜L 距离为8.25cm 时,通过望远镜目镜能清楚地看到十字缝的像恰好成在分划板中心十字叉丝线上,由此可以推知,L 的焦距等于 cm .将载物台平面调至与载物台的转轴垂直,在载物台上放置长、宽、高均为3.OOcm 、折射率为1.52的分束棱镜abed(分束棱镜是由两块直角三棱镜密接而成,接触面既能透光又能反光)和待测凹球面镜0,0到L 的距离为l5.OOcm ,并保证分束棱镜的ab 面与图三中的XX ′轴垂直、凹球面镜的光轴与图三中的XX ′轴重合;再将望远镜绕载物台的中心轴转90°,如图三所示。
16~29届全国中学生物理竞赛热力学专题(含答案)解析
热力学专题(16)V,其中盛有2mol的空气和少量的水(水的体积可以忽略)。
平衡时一、(20分)一汽缸的初始体积为0气体的总压强是3.0atm,经做等温膨胀后使其体积加倍,在膨胀结束时,其中的水刚好全部消失,此时的总压强为2.0atm。
若让其继续作等温膨胀,使体积再次加倍。
试计算此时:1.汽缸中气体的温度;2.汽缸中水蒸气的摩尔数;3.汽缸中气体的总压强。
假定空气和水蒸气均可以当作理想气体处理。
(17)一、在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端开口.已知槽中水银液面以上的那部分玻璃管的长度l=76cm,管内封闭有n=1.0×10-3mol的空气,保持水银槽与玻璃管都不动而设法使玻璃管内空气的温度缓慢地降低10℃,问在此过程中管内空气放出的热量为多少?已知管外大气的压强为76cmHg,每摩尔空气的内能U=CVT,其中T为绝对温度,常量CV=20.5J·(mol·K)-1,普适气体常量R=8.31J·(mol·K)-1(18)二、(22分)正确使用压力锅的方法是:将己盖好密封锅盖的压力锅(如图复18-2-1)加热,当锅内水沸腾时再加盖压力阀S,此时可以认为锅内只有水的饱和蒸气,空气己全部排除.然后继续加热,直到压力阀被锅内的水蒸气顶起时,锅内即已达到预期温度(即设计时希望达到的温度),现有一压力锅,在海平面处加热能达到的预期温度为120℃.某人在海拔5000m的高山上使用此压力锅,锅内有足量的水.1.若不加盖压力阀,锅内水的温度最高可达多少?2.若按正确方法使用压力锅,锅内水的温度最高可达多少?3.若未按正确方法使用压力锅,即盖好密封锅盖一段时间后,在点火前就加上压力阀。
此时水温为27℃,那么加热到压力阀刚被顶起时,锅内水的温度是多少?若继续加热,锅内水的温度最高可达多少?假设空气不溶于水.p t与温度t的关系图线如图已知:水的饱和蒸气压w()复18-2-2所示.p z与高度z的关系的简化图线如图复大气压强()18-2-3所示.27t =℃时27t =3w (27) 3.610Pa p ︒=⨯;27t =0z =处5(0) 1.01310Pa p =⨯(19)一、(20分)某甲设计了1个如图复19-1所示的“自动喷泉”装置,其中A 、B 、C 为3个容器,D 、E 、F 为3根细管,管栓K 是关闭的.A 、B 、C 及细管D 、E 中均盛有水,容器水面的高度差分别为1h 和1h 如图所示.A 、B 、C 的截面半径为12cm ,D 的半径为0.2cm .甲向同伴乙说:“我若拧开管栓K ,会有水从细管口喷出.”乙认为不可能.理由是:“低处的水自动走向高外,能量从哪儿来?”甲当即拧开K ,果然见到有水喷出,乙哑口无言,但不明白自己的错误所在.甲又进一步演示.在拧开管栓K 前,先将喷管D 的上端加长到足够长,然后拧开K ,管中水面即上升,最后水面静止于某个高度处.(1).论证拧开K 后水柱上升的原因.(2).当D 管上端足够长时,求拧开K 后D 中静止水面与A 中水面的高度差. (3).论证水柱上升所需能量的来源. (20)(初)三、(20分)在野外施工中,需要使质量 m =4.20 kg 的铝合金构件升温。
2016校物理竞赛试题及解答
0
R 2 sin d S
z 2 R 2 2 Rz cos
0
z
2
R 2 2 Rz cos x R
由于轴对称性,P 点电场强度为
R 2 1 2 0 z 2
dU E Ez k dz R z cos 0 k z 2 R 2 2 Rz cos
8. 如图,电荷分别为 q1、q2 的两个正点电荷,某时刻分别以速度 v 1 、
v 2 ( v 1 的方向和 v 2 的方向垂直且 v1,v2 均远小于真空中光速)运动,
+
a
q1
v2
+ q2
v1
方 则电荷为 q2 的点电荷该时刻所受磁力的大小为________________. 向为____________.
z
2 O
14. 按照经典模型,可假设电子是一个质量均匀分布的球体,电荷均匀分布的球壳,并绕它 的一条直径转动,即自旋.已知电子的自旋动量矩 S
R
1 ,质量为 m,电荷为 e,电子的 2 2 半径为 R.求电子中心处磁感应强度的大小.(球体绕中心轴的转动惯量为 mR2) 5
I1
15. 载有稳恒电流 I1 的无限长直导线(看成刚体)下用一劲度系数为 k 的轻质弹簧 挂一载有稳恒电流 I2 的矩形线圈。设长直导线通电前弹簧长度为 L0. 通电后矩 形线圈将向下移动一段距离,求当磁场对线圈作的功满足 A = 0I1I2a / 2时,线 圈、弹簧、地球组成的系统的势能变化(忽略感应电流对 I2 的影响).
14. 解:(1) 设电子自转的角速度为
dI
S J J
2 mR 2 5
【精品】第29届全国高中生物理竞赛预赛冲刺模拟试题(一参考答案
第29届全国高中生物理竞赛预赛冲刺模拟试题(一)参考答案第29届全国高中生物理竞赛预赛冲刺模拟试题(一)参考答案一、选择题(每小题3分,共36分)1.C 2.D 3.AD 4.CD 5.BCD 6.ACD 7.BD 8.BC 9.AC 10.B 11.B 12.BD二、填空题(每小题5分,共30分)13.2/,/2gL g L 14.101215.3.6 16.电、240 17.0.9 2.518.g D v k 3161πρ= 12136)(Uv v v gd D q +=πρ三、计算题(共54分)19.解:由于链条相连,链轮A 与飞轮B 边缘的线速度相等B B A A R R ωω= 2分由齿数与轮缘长度成正比得BAB A N N R R =ππ22 2分又2D v B ⋅=ω2分DN vN A B A 2=ω 将48=A N N B =15代入得脚踏板做匀速圆周运动的最小角速度为s rad A /8.3=ω4分20.解:(1)滑块在平衡位置时摩擦力与弹力平衡,有kA mg =μ2分解得kmg A μ= 2分(2)滑块的振动图像为余弦的函数,滑块第一次经过平衡位置左侧2A处由θcos A x =得当2A x =时,︒=60θ2分 则滑块振动的时间为12564TTT t =+=3分滑块与皮带的相对路程为kmg vT A A vt s 23125)2(μ-=+-= 3分产生的热量为)23125(kmg vT mg Q μμ-=2分21.解:题目中给出E=9V ,E x 的大小不确定,所以要分两种情况讨论由灯泡的伏安特性曲线知:当I 1=20mA 时,有V U 31=灯 1分352=I mA 时,V U 92=灯 1分设两个电源的内阻与电流表内阻总和为R 内 (1)当内灯时R I U E E E E x x 11,+=-> 1分 当E x 反向连接时,内灯IR U E E x +=+2 1分灯泡短路时安培表的的读数为内R E E I x A -=1分联立解得A 。
29届物理预赛试题答案
第29届全国中学生物理竞赛预赛试题一、选择题. 1. 答案:D 2. 答案:C 3. 答案:B 4. 答案:AC 5. 答案:CD二、填空题和作图题. 6. 答案:82,206(各3分)7. 答案:i .当外电路与内电路电阻值相等时电源的输出功率最大,电阻条上消耗的功率也最大,因此需用6根电阻条并联。
(7分) ii .如图所示(任意6根电阻条并联均可)(3分)。
8. 答案:2gd c ν-(10分)解析:由能量守恒得h h mgd νν'=+,而光子能量2h mc ν'=,联立消除质量即得221gd c gd cννν'-=+,其中21gd c ,所以2gd cννν'-=。
9. 答案:()M m gμγ+,22()2g M m μγ+ (各5分)解析:由牛顿第二定律得ta M mγ=+,两物块刚发生相对运动的条件为a gμ>,解得()M m gt μγ+=;由动量定理得()Ft M m =+v ,代入F t γ=和t 解即得。
10. 答案:逐渐增大,最后趋向一恒定值。
(4分) 逐渐减小,最后变到零。
(4分)1212V V eνν--,122112V V νννν--(各4分)解析:滑动触头向右滑动时,加在光电管上的电压向正向增大,光电流随正向电压的增大先逐渐增大,当达到饱和光电流值后不再改变。
滑动触头向左滑动到某位置后,光电管加反向电压,反向电压随滑动触头向左滑动而增大,当确定遏止电压时,光电流减小为0。
由爱因斯坦光电效应方程可得0k h W E ν=+ 而k eV E =代入相关量解得1212V V h eνν-=-1221012V V W νννν-=-三、计算题.计算题的解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后结果的不能得分.有数值计算的,答案中必须明确写出数值和单位.11. 解:设球A 刚要离开地面时联接球B 的绳与其初始位置的夹角为θ,如图所示,这里球B 的速度为v ,绳对球B 的拉力为T ,根据牛顿第二定律和能量守恒,有2sin T mg mlθ-=v ①21sin 2m mgl θ=v ②当A 球刚要离开地面时,有 Tmg =③以h 表示所求高度差,有 sin h l θ=④ 由①②③④解得13h l =⑤评分标准:①②式各6分,③⑤式各3分。
2016年北京市高考物理试卷及解析
2016年北京市高考物理试卷一、选择题(共8小题,每小题6分,满分48分)1、(6分)处于n=3能级的大量氢原子,向低能级跃迁时,辐射光的频率有()A、1种B、2种C、3种D、4种2、(6分)下列说法正确的是()A、电磁波在真空中以光速C传播B、在空气中传播的声波是横波C、声波只能在空气中传播D、光需要介质才能传播3、(6分)如图所示,弹簧振子在M、N之间做简谐运动、以平衡位置O为原点,建立Ox轴、向右为x的轴的正方向、若振子位于N点时开始计时,则其振动图象为()A、B、C、D、4、(6分)如图所示,匀强磁场中有两个导体圆环a、b,磁场方向与圆环所在平面垂直、磁感应强度B随时间均匀增大、两圆环半径之比为2:1,圆环中产生的感应电动势分别为E a和E b,不考虑两圆环间的相互影响、下列说法正确的是()A、E a:E b=4:1,感应电流均沿逆时针方向B、E a:E b=4:1,感应电流均沿顺时针方向C、E a:E b=2:1,感应电流均沿逆时针方向D、E a:E b=2:1,感应电流均沿顺时针方向5、(6分)中国宋代科学家沈括在《梦溪笔谈》中最早记载了地磁偏角:“以磁石磨针锋,则能指南,然常微偏东,不全南也、”进一步研究表明,地球周围地磁场的磁感线分布示意如图、结合上述材料,下列说法不正确的是()A、地理南、北极与地磁场的南、北极不重合B、地球内部也存在磁场,地磁南极在地理北极附近C、地球表面任意位置的地磁场方向都与地面平行D、地磁场对射向地球赤道的带电宇宙射线粒子有力的作用6、(6分)如图所示,一颗人造卫星原来在椭圆轨道1绕地球E运行,在P变轨后进入轨道2做匀速圆周运动、下列说法正确的是()A、不论在轨道1还是在轨道2运行,卫星在P点的速度都相同B、不论在轨道1还是在轨道2运行,卫星在P点的加速度都相同C、卫星在轨道1的任何位置都具有相同加速度D、卫星在轨道2的任何位置都具有相同动量7、(6分)某兴趣小组探究用不同方法测定干电池的电动势和内阻,他们提出的实验方案中有如下四种器材组合、为使实验结果尽可能准确,最不可取的一组器材是()A、一个安培表、一个伏特表和一个滑动变阻器B、一个伏特表和多个定值电阻C、一个安培表和一个电阻箱D、两个安培表和一个滑动变阻器8、(6分)雾霾天气对大气中各种悬浮颗粒物含量超标的笼统表述,是特定气候条件与人类活动相互作用的结果、雾霾中,各种悬浮颗粒物形状不规则,但可视为密度相同、直径不同的球体,并用PM10、PM2.5分别表示直径小于或等于10μm、2.5μm的颗粒物(PM是颗粒物的英文缩写)、某科研机构对北京地区的检测结果表明,在静稳的雾霾天气中,近地面高度百米的范围内,PM10的浓度随高度的增加略有减小,大于PM10的大悬浮颗粒物的浓度随高度的增加明显减小,且两种浓度分布基本不随时间变化、据此材料,以下叙述正确的是()A、PM10表示直径小于或等于1.0×10﹣6m的悬浮颗粒物B、PM10受到的空气分子作用力的合力始终大于其受到的重力C、PM10和大悬浮颗粒物都在做布朗运动D、PM2.5浓度随高度的增加逐渐增大二、解答题9、(4分)热敏电阻常用于温度控制或过热保护装置中、图为某种热敏电阻和金属热电阻的阻值R随温度t变化的示意图、由图可知,这种热敏电阻在温度上升时导电能力(选填“增强”或“减弱”);相对金属热电阻而言,热敏电阻对温度变化的影响更(选填“敏感”或“不敏感”)、10、(14分)利用图1装置做“验证机械能守恒定律”实验、①为验证机械能是否守恒,需要比较重物下落过程中任意两点间的、A、动能变化量与势能变化量B、速度变化量和势能变化量C、速度变化量和高度变化量②除带夹子的重物、纸带、铁架台(含铁夹)、电磁打点计时器、导线及开关外,在下列器材中,还必须使用的两种器材是A、交流电源B、刻度尺C、天平(含砝码)③实验中,先接通电源,再释放重物,得到图2所示的一条纸带、在纸带上选取三个连续打出的点A、B、C,测得它们到起始点O的距离分别为h A、h B、h C、已知当地重力加速度为g,打点计时器打点的周期为T、设重物的质量为m、从打O点到打B点的过程中,重物的重力势能变化量△E p=,动能变化量△E k=、④大多数学生的实验结果显示,重力势能的减少量大于动能的增加量,原因是A、利用公式v=gt计算重物速度B、利用公式v=计算重物速度C、存在空气阻力和摩擦力阻力的影响D、没有采用多次试验去平均值的方法、⑤根据以下方法研究机械能是否守恒:在纸带上选取多个计数点,测量它们到起始点O的距离h,计算对应计数点的重物速度v,描绘v2﹣h图象,并做如下判断:若图象是一条过原点的直线,则重物下落过程中机械能守恒、请你分析论证该同学的判断依据是否正确、11、(16分)如图所示,质量为m,电荷量为q的带电粒子,以初速度v沿垂直磁场方向射入磁感应强度为B的匀强磁场,在磁场中做匀速圆周运动。
16~29届全国中学生物理竞赛电磁学专题答案解析
电磁学专题答案(16)三、参考解答根据题中所给的条件,当圆环内通过电流I 时,圆环中心的磁感应强度012B rμ=穿过圆环的磁通量可近似为 02BS Ir μφπ≈=(1)根据法拉第电磁感应定律,电流变化产生的感生电动势的大小02Ir t t μφπ∆∆==∆∆E (2) 圆环的电阻 02r IR I I tμπ∆==∆E (3)根据题设条件 0.05m r =,720410N A μπ=⨯⋅--,100A I =,61410A/s 310A/s It∆≤≈⨯∆--,代入(3)式得 23310R ≤⨯Ω- (4)由电阻与电阻率ρ、导线截面积S 、长度L 的关系L R Sρ= 及已知导线的直径1mm d =,环半径5cm r =,得电阻率2297.510m 8S d R R L rρ===⨯Ω⋅- (5)五、参考解答 解法一:1.(1)电阻图变形.此题连好的线路的平面图如图预解16-5-1所示. 现将电阻环改画成三角形,1、3、5三点为顶点,2、4、6三点为三边中点,如图预解1—5-2与图预解16-5-3所示.整个连好的线路相当于把n D 的三个顶点分别接到1n D -的三个中点上,图预解16-5-1变为图预解16-5-4.这样第1问归结为求图预解16-5-4中最外层三角环任意两顶点间的等效电阻。
(2)递推公式.为使图形简化,讨论如何将接好的两个电阻环化简成为一个单环。
由六个阻值为r 的电阻构成一个三角环,将其顶点接在另一由六个阻值为R 的电阻构成的三角环的中点上(如图预解16-5-5所示)。
图预解16-5-6是由六个阻值为R '的电阻构成的三角环。
若图预解16-5-5顶点1、3间的电阻与图预解16-5-6顶点l 、3间的电阻阻值相等,我们称图预解16-5-6中的R '为等效单环电阻.用符号“//”表示电阻的并联,如 1//(1/)(1/)B AB A R R R R =+由图预解16-5-5中的对称性可知l 、3两顶点间的电阻1,3R 等于图预解16-5-7中1、0间的电阻1,0R 的2倍,即131,0222{[////(2)]}//12//1112432//231433R R R r r R RR R R r r rR R Rr R r R R r R=+⎡⎤+⎢⎥=++⎢⎥⎣⎦+=++=+,= 1//3R r R =+ (1)同理,图预解16-5-6中1、3两顶点间的电阻1,3R 为1,342[(2)//]3R R R R '''== (2)由(1)、(2)式得等效单环电阻R '为31//44R R r R '=+ (3)2. 第一问现在考虑把1D 、2D 、3D 、4D 、5D 按相反的次序,由内向外依次连接的情况.首先将4D 接在5D 外面,求双环54D D -的等效单环电阻(2)R 〔即(3)式中的R '〕.这时r R =.由(3)式得到(2)R 为(2)317//448R R R R R =+= 其次,在双环54D D -外面接上3D ,这时(2)r R =.三环534D D D --的等效单环电阻(3)R 为(3)(2)3131713////4444815R R R R R R R R ⎛⎫=+=+= ⎪⎝⎭ 由此可得一般公式,(1)s +环的等效单环电阻1()s R +可由s R ()求出1()31//44s s R R R R +=+() (4) 于是131543313197////4444112R R R R R R R R =⎛⎫=+= ⎪⎝⎭()()+ 97112543131181////4444209R R R R R R R R =⎛⎫=+=⎪⎝⎭()()+由(2)式1,3(4/3)R R '=得出由一个环(5D )、两个环(54D D -)直至五个环(54321D D D D D ----)构成的线路1、3点间的电阻为(1)1,344'33R R R == (2)1,3477386R R R ⎛⎫== ⎪⎝⎭ (3)1,34135231545R R R ⎛⎫== ⎪⎝⎭ (4)1,349797311284R R R ⎛⎫== ⎪⎝⎭ (5)1,341817243209627R R R ⎛⎫==⎪⎝⎭ 答:所求的五个环的1与3间的等效电阻确为724627R .证毕。
第29届全国中学生高中物理竞赛复赛试题及答案
第29届全国中学生物理竞赛复赛试卷本卷共8题,满分160分。
一、(17分)设有一湖水足够深的咸水湖,湖面宽阔而平静,初始时将一体积很小的匀质正立方体物块在湖面上由静止开始释放,释放时物块的下底面和湖水表面恰好相接触。
已知湖水密度为ρ;物块边长为,密度为'ρ,且ρρ<'。
在只考虑物块受重力和液体浮力作用的情况下,求物块从初始位置出发往返一次所需的时间。
解:由于湖面足够宽阔而物块体积很小,所以湖面的绝对高度在物块运动过程中始终保持不变,因此,可选湖面为坐标原点并以竖直向下方向为正方向建立坐标系,以下简称系. 设物块下底面的坐标为,在物块未完全浸没入湖水时,其所受到的浮力为2b f b x g ρ= (x b ≤) (1)式中g 为重力加速度.物块的重力为3g f b g ρ'= (2) 设物块的加速度为,根据牛顿第二定律有3g b b a f f ρ'=- (3) 将(1)和(2)式代入(3)式得g a x b b ρρρρ'⎛⎫=-- ⎪'⎝⎭ (4) 将系坐标原点向下移动/b ρρ' 而建立新坐标系,简称X 系. 新旧坐标的关系为X x b ρρ'=- (5) 把(5)式代入(4)式得ga Xb ρρ=-' (6)(6)式表示物块的运动是简谐振动. 若0X =,则0a =,对应于物块的平衡位置. 由(5)式可知,当物块处于平衡位置时,物块下底面在系中的坐标为0x b ρρ'= (7) 物块运动方程在X 系中可写为()()cos X t A t ωϕ=+ (8) 利用参考圆可将其振动速度表示为()()sin V t A t ωωϕ=-+ (9) 式中ω为振动的圆频率ω=(10) 在(8)和(9)式中A 和分别是振幅和初相位,由初始条件决定. 在物块刚被释放时,即0t =时刻有x =0,由(5)式得(0)X b ρρ'=- (11)(0)0V = (12)由(8)至(12)式可求得A b ρρ'= (13) ϕ=π(14)将(10)、(13)和(14)式分别代人(8)和(9)式得()()cos X t b t ρωρ'=+π (15)()()V t t ω=+π (16)由(15)式可知,物块再次返回到初始位置时恰好完成一个振动周期;但物块的运动始终由(15)表示是有条件的,那就是在运动过程中物块始终没有完全浸没在湖水中. 若物块从某时刻起全部浸没在湖水中,则湖水作用于物块的浮力变成恒力,物块此后的运动将不再是简谐振动,物块再次返回到初始位置所需的时间也就不再全由振动的周期决定. 为此,必须研究物块可能完全浸没在湖水中的情况. 显然,在系中看,物块下底面坐标为时,物块刚好被完全浸没;由(5)式知在X 系中这一临界坐标值为b 1X X b ρρ'⎛⎫==-⎪⎝⎭(17)即物块刚好完全浸没在湖水中时,其下底面在平衡位置以下b X 处. 注意到在振动过程中,物块下底面离平衡位置的最大距离等于振动的振蝠A ,下面分两种情况讨论:I .b A X ≤. 由(13)和(17)两式得ρρ'≥2 (18)在这种情况下,物块在运动过程中至多刚好全部浸没在湖水中. 因而,物块从初始位置起,经一个振动周期,再次返回至初始位置. 由(10)式得振动周期22T ωπ== (19)物块从初始位置出发往返一次所需的时间I 2t T == (20) II .b A X >. 由(13)和(17)两式得2ρρ'< (21)在这种情况下,物块在运动过程中会从某时刻起全部浸没在湖水表面之下. 设从初始位置起,经过时间物块刚好全部浸入湖水中,这时()1b X t X =. 由(15)和(17)式得()1cos 1t ρρωρρ''+π=-(22) 取合理值,有1arccos 1t ρπρ⎤⎛⎫--⎥ ⎪'⎝⎭⎦ (23) 由上式和(16)式可求得这时物块的速度为1()1V t = (24)此后,物块在液体内作匀减速运动,以表示加速度的大小,由牛顿定律有a g ρρρ'-'='(25)设物块从刚好完全浸入湖水到速度为零时所用的时间为,有()120V t a t '-= (26) 由(24)-(26)得2t (27)物块从初始位置出发往返一次所需的时间为II122()arccos1t t tρπρ⎤⎛⎫=+=--⎥⎪'⎝⎭⎦(28)评分标准:本题17分.(6)式2分,(10)(15)(16)(17)(18)式各1分,(20)式3分,(21)式1分,(23)式3分,(27)式2分,(28)式1分.二、(23分)设想在地球赤道平面内有一垂直于地面延伸到太空的轻质电梯,电梯顶端可超过地球的同步卫星高度R(从地心算起)延伸到太空深处。
力学竞赛-力学竞赛13~28届-第北京市高中预赛试卷
火箭的质量逐渐减小,到第一级火箭脱落时速度为 v1.我们可以判定这个过
程中,火箭的运动情况是
A.火箭的平均速度大于
1 2
v1
B.火箭的平均速度小于
1 2
v1
C.火箭的加速度逐渐减小
D.火箭的加速度逐渐增大
7.在平直路面上匀加速行驶的火车中的乘客,向后方水平抛出一个小
பைடு நூலகம்
球.不计空气阻力,站在地面上的观察者看到小球运动的轨迹可能是:
C. mgh
D. 1 mv 2 2
1
4.如图 1 所示,用两根细绳把 A、B 两个小球悬挂在天花板上的同一
点 O,再用第三根细绳连接 A、B 两球.若用一 O
个力作用在 A 球上,使三根细绳均呈直线状态,
F4 F3
OB 绳恰好沿竖直方向,且两球均处于静止.则
A
F2
该力可能是图中的 A.F1
B.F2
B
F1
图1
C.F3
D.F4
5.地球同步卫星到地心的距离为 r,运行速率为 v1,加速度大小为 a1.放
在地球赤道上的物体随地球自转的加速度为 a2,地球第一宇宙速度为 v2,
地球半径为 R.则
A. a1 r a2 R
B. a1 a2
r2 R2
C. v1 v2
R2 r2
D. v1 R
v2
r
6.假设火箭竖直向上发射过程中推力一定,由于燃料的大量消耗,
A.卫星和物体的周期仍为 T B.卫星的周期大于 T,物体的周期小于 T C.卫星的周期小于 T,物体的周期大于 T D.卫星和物体的周期都大于 T
得 分 二、填空题(共 40 分,每小题 5 分)把答案填在题中的横
2016年高中物理竞赛力学试卷
2016年高中物理竞赛力学试卷时量120分钟 满分 200分一、(本题72分)选择题(每小题给出的四个选项中,只有一个选项正确,请将正确选项序号填入下表格中.每小题6分)1.科学史家丹皮尔说过:“地位仅次于天使的人类本是从宇宙的中心地球上俯览万物的,而今却变成了围绕着千万颗恒星之一旋转的一个偶然的小行星上面有机发展锁链中的一环。
”他之所以这样说,主要是基于( ) A.相对论弥补了对宏观世界认识的不足,改变了人类认识世界的角度和方式 B.进化论认为生物是不断进化和密切相关的,人类并不比其他生物更尊贵 C.日心说改变了对宇宙的看法,从而否定了人是“万物之灵” D.经典力学将天地运动统一起,因而人类不该俯视万物.2.如图所示,一只小鸟沿较粗的均匀树枝从右向左缓慢爬行,小鸟从A 运动到B 的过程中( )A.树枝对小鸟的合作用力先减小后增大B.树枝对小鸟的摩擦力先减小后增大C.树枝对小鸟的弹力减小后增大D.树枝对小鸟的弹力保持不变3.某电视台举办的一档群众娱乐节目,其中有一个环节是游戏者站在一个旋转较快的大平台边缘上,向大平台圆心处球筐内投篮球。
如果游戏者相对平台静止,则下面各俯视图中哪幅图中的篮球可能被投入篮筐(图中箭头指向表示投篮方向)()4.假设航天飞机在太空绕地球做匀速圆周运动。
一宇航员利用机械手将卫星举到机舱外,并相对航天飞机静止释放该卫星,则被释放的卫星将()A.向着地球做自由落体B.沿圆周轨道切线方向做直线运动C.停留在轨道被释放处D随航天飞机以相同的速度绕地球做匀速圆周运动5.某班活动玩乒乓颠球游戏,规定每次弹起的高度不低于0.2m,设球弹起后做竖直上抛运动,忽略空气阻力、球与球拍的接触时间,重力加速度取g=10m/s2,则下列说法正确的是()A.上升阶段中,乒乓球加速度的方向竖直向上B.乒乓球上升到最高点时,其加速度大小为零C.乒乓球两次弹起之间的时间间隔为0.4sD.最好成绩是每分钟颠球300次6.如图所示,从高处A到水面B处有两条长度相同的光滑轨道。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第29届北京市高中力学竞赛预赛试题
一、选择题
1.如图1所示,一斜劈静止于粗糙水平地面上,斜劈倾角为θ,质量为m 的物块在水平力F 作用下沿斜面向上匀速运动。
由此可以判断地面对斜劈的摩擦力
A .大小为F ,方向向左;
B .大小为F ,方向向右;
C .摩擦力大于F ,方向向左;
D .摩擦力大于F ,方向向右.
2.质点运动的图如图2所示,由图可知
A .0-t 1段做加速运动;
B .t 1-t 2段做加速运动;.
C .t 3后做匀速运动;
D .t 1时刻速度为0.
3.竖直上抛一个小球,设小球运动过程中所受空气阻力大小恒定,则小球的速度随时间变化的图线可能是图3中的
4.轻质弹簧上端固定在天花板上,用手托住一个挂在弹簧下端的物体,此时弹簧既不伸长也不缩短。
如果托住物体的手缓慢下移,直到移去手后物体保持静止。
在此过程中
A .物体的重力势能的减小量大于弹簧的弹性势能的增加量;
B .物体的重力势能的减小量等于弹簧的弹性势能的增加量;
C .物体的重力势能的减小量小于弹簧的弹性势能的增加量;
D .物体和弹簧组成的系统机械能守恒
5.质点做匀速圆周运动,所受向心力F 与半径R 的关系图线如图4所示,关于
a 、
b 、
c 、
d 四条图线可能正确的是
A .a 表示速度一定时,F 与R 的关系;
B .b 表示角速度一定时,F 与R 的关系;
C .c 表示角速度一定时,F 与R 的关系;
D .d 表示速度一定时,F 与R 的关系.
6.登月舱在接近月球时减速下降,当距离月球表面5.0m 时,关闭发动机,此时下降的速度为0.2m/s ,则登月舱落到月球表面时的速度大小约为(月球表面处的引力加速度为1.6m/s 2)
A .2.0m/s
B .3.0m/s
C .4.0m/s
D .5.0m/s 7.从高处水平抛出一个小球,初速度为v 0,小球落地时速度为v ,不计空气阻力,则小球在空中飞行的时间为
A .v -v 0g
B .v 2-v 022g
C .v 2-v 02g
D .v 2-v 022g
8.如图5所示,跳水运动员站在跳板的一端b静止,然后运动员把跳板压到
最低点a,被跳板弹起,直到离开跳板向上运动,到最高点c,再竖直下落到d,则
A.由a-b运动员处于超重状态;
B.由a-b-c运动员处于超重状态;
C.只有由c-d运动员处于失重状态;
D.由b-c-d运动员处于失重状态
9.发射人造卫星是将卫星以一定的速度送入预定轨道,发射场一般选择在尽可能靠近赤道的地方,这样选址的优点是,在赤道附近
A.地球的引力大;B.地球自转线速度较大;
C.重力加速度较大;D.地球自转角速度较大
10.如图6所示,楔形物体A位于水平地面上,其光滑斜面上有一物块B,物块B用平行于斜面的细线与楔形物体A连在一起
A.若对A施加水平向左的恒力使A和B一起向左加速运动时,B对A的压力
增大,A对地面的压力增大;
B.若对A施加水平向左的恒力使A和B一起向左加速运动时,细线的拉力减
小,A对地面的压力不变;
C.若对A施加水平向右的恒力使A和B一起向右加速运动时,B对A的压力
减小,细线的拉力增大;
D.若对A施加水平向右的恒力使A和B一起向右加速运动时,B对A的压力增大,细线的拉力增大11.如图7所示,A、B两个质量相等的木块之间用轻质弹簧连接,放在光滑水平面上,最初弹簧处于原长状态。
现对A施加水平恒力F,使A、B由静止开始运动,在运动到第一次A、B速度相等的过程中,下列说法正确的是
A.当A、B加速度相等时,A、B的动能差最小;
B.当A、B加速度相等时,A、B的动能差最大;
C.当A、B速度相等时,弹簧的弹性势能最小;
D.当A、B速度相等时,弹簧的弹性势能最大。
二、填空题
12.从地面上方A处水平抛出一个小球,抛出时对小球作功为W,球落地时的水平位移为s。
现将该球再次从A处水平抛出,欲使它落地时的水平位移为2s(不计空气阻力),那么抛出时应对小球作的功为。
13.已知地球半径为R,地面附近重力加速度为g。
在地面附近圆轨道上运行的卫星,一昼夜时间(用t表示)内可绕地球运行的圈数为。
14.质量分别是m1和m2的两个木块用轻弹簧相连,放在水平地面上,如图8所示,用细
线拴住m1,并用力将它缓慢竖直向上提起,当木块m2刚要离开地面时,细线突然断裂,则此时
木块m1的加速度为。
15.一物体在外力的作用下从静止开始做直线运动,外力方向不变,大小
随时间的变化如图9所示。
该物体在t1和2t1时刻的速度分别为v1和v2,则v1:
v2= ;合外力从开始至t1时刻做的功是W1,从t1至2t1时刻做的功是
W2,则W1: W2= 。
16.如图10所示,质量为m的小物块从半径为R的圆形轨道的A点由静止滑下,
滑到最低点B处时对轨道的压力为2mg,则物块由A滑到B的过程中,摩擦力对物块做
的功为。
17.如图11所示,质量均为m的木块A和B,叠放在水平桌面上。
A、B间及B与
地面间的动摩擦因数均为μ。
现对B施加水平拉力F将木块B从A下方抽出。
则拉力F的大小为。
18.如图12,A球从距地面h高处自由下落,与此同时将另一B球由地面正对着A球向上抛出,不计空气阻力,要使B球在下落过程中与A球相碰。
B球抛出的初速度v0应满足的条件是。
19.如图13,A、B两个楔形木块质量均为m,靠在一起放在水平地面上,A、B间接触面的倾角为θ。
现施水平力若不计一切摩擦,要低A、B间不发生滑动,则水平力F的大小不能超过。
三、证明和计算题
20.列车驶向倾角为θ的坡路,机车的重量是一节车厢的n倍,机车车轮与轨道间的最大静摩擦力是车轮对轨道压力的μs倍,机车和车厢的车轮都做纯滚动运动,受到轨道的运动阻力是车轮对轨道压力的k倍。
求机车最多能牵引多少节车厢在坡路上行驶。
21.圆锥摆如图14所示,摆球质量为m,摆线长为L。
开始摆球沿水平圆轨道运动,
摆线与竖直方向的夹角为37°。
由于空气阻力的作用,摆球运动的水平圆轨道的半径逐渐
缓慢减小,最终停止运动。
求圆锥摆从开始的运动状态到停止的过程中克服空气阻力所做的
功。
22.通常地面附近的重力加速度为g0,方向竖直向下。
若某处地下储有石油,则附近的重力加速度g的大小和方向会较g0出现微小差异,我们把此处的重力加速度在竖直方向上的分量与g0的
偏差,称为重力加速度反常△g。
重力探矿的原理就是利用这个现象。
(1)如果认为地球裏一个密度为ρ的均匀球体,半径为R,万有引力常数为G。
求地面附近的重力加速度的值g0。
(2)如图水平地面的P点正下方有一个体积为V的球形空腔内储有石油,空腔
的球心O距地面的深度为d(d<<R),P点附近有一点Q,Q到P的距离为x。
求Q
点处的重力加速度的反常△g。
(石油的密度远小于地壳的密度,为了计算简单,认
为储油空腔为真空)
23.车模小组对在平直路面上行驶的遥控小车进行功能测定,得到一组如下的数据:从小车速度为0.4m/s开始,立即启动发动机,小车即加速行驶,一段时间后,关闭发动机,此后小车又行驶了8s停下。
小车一共行驶了19.1m.己知小车行驶过程中所受到的阻力大小不变,其发动机的牵引力大小是阻力的3倍。
试讨论(1)小车行驶过程中的最大速度是多少?
(2)小车在这段运动过程的速度随时间变化的关系,并画出v-t图。
(3)小车通过的位移随速度变化的关系,并画出s-v图。