第三章流体的热力学性质1
第3章-流体的热力学性质
8
3.1 热力学性质之间的关系
由于
M
y
z
2z
x y x y x xy
z
2z
N
x y x y x y yx
S T
因
p V T V p V T p V
C p T
S S T
V p T p V p T V p
得第三dS方程:
T V
1 V
V T p
pV
z
RT
T
J
p H
第三章 流体的热力学性质
6
3.1 热力学性质之间的关系
3.1.2 单相流体系统热力学基本方程
dU=TdS-pdV
dH=TdS+Vdp
dA=-SdT-pdV
dG=-SdT +Vdp
上述方程也称为微分能量表达式。有关定义式:
10
3.1 热力学性质之间的关系
[证] Q dU pdV
U
U
dU
dT
dV
T V
V T
U
U
Q
dT
dV pdV
T V
V T
U
U
dT
的数学方法求得不可测定的热力学性质(H、U、S、
化工热力学-第3章(自学考试参考)
把压缩因子的普遍化式子代入到剩余焓和剩余熵普 遍化后的式子,就可得到:
H RfTr, P r, SRfTr, P r,
44
(2)计算方法
两种方法——普维法和普压法
1) 普维法 是以两项维里方程为基础计算 在恒压下对T求导:
Z 1 BP RT
Z TP
PTB
R T
P
RPT1TBP
TB2
B
f(T)
25
dH cpdT
H dH
=
H
0
T T0
C
p
dT
H
*
H
* 0
C
* p
dT
同理:
S* S0
T CpdTRln p
T T0
p0
H * , S * — 所求状态(T,p)的H和S,理想气体;
H0*, S0* — 任意选择的基准态(T0,P0)所对应H和S。
26
⒊ H R 和 S R 的计算式
1 V V T p
∴ V V
T p
19
有了H,S的基本计算式就可以解决热力 学其它函数的计算问题。
如:
U=H-PV A=U-TdS=H-PV-TS G=H-TS
20
计算原理及方法(Clculative Pinciple and Method of Thermodynamic Properties)
HR0pVRdpT0PVTRPdP (恒T)
SR
P 0
VR T
dP P
(恒T)
35
▪做图
VR
p
V R dp
0
P求
P
36
VR P1 P2 P3
V R T
热力化学第三章 纯流体的热力学性质计算
V dH C p dT V T dp T p
dS
Cp
(2)以T、p为变量的熵变
V dT dp T T p
定组成均相流体的焓熵与温度压力的关系式
3.2 焓变和熵变的计算
2. 理想气体的H、S随T、p的变化
3.3 剩余性质
2. 剩余焓熵的计算
恒温条件
G RT
R p 0
dp Z 1 p
p
(1)
图解积分法
(2)
H RT
R
2
0
Z dp T p p
S RT
R
p
0
dp Z dp R p Z 1 p T P p p 0
dp H dT T V
若有1 mol物质,则气-液、固-液和气-固平
衡的克拉佩龙方程分别为:
dp vap H m dT T vapVm
dp fus H m dT T fusVm
dp sub H m dT T subVm
纯物质的两相平衡系统
3.6 两相系统
2. 克劳修斯-克拉佩龙方程 气-液两相平衡,气体为理想气体,忽略液体体 积 dp vap H m vap H m d ln p vap H m
3.5 液体的热力学性质
当t=50℃ 时,V 0.018240 0.017535 0.017888 m3 kmol1
2
458 568 10 6 K 1 2
将有关数值代入△H、△S,得
S 75.310 ln 323 .15 513 10 6 0.017888 100 0.1 103 298 .15
第三章流体的热力学性质1
15
§3.2 热力学性质的计算
§3.2.1 Maxwell关系式的应用
1 熵的普遍关系 2 焓的普遍关系 3 内能的普遍关系
§3.2.2 焓、熵的计算
16
3.2.1 Maxwell关系式的应用
例3 一贮槽(坚硬且绝缘良好)分 成两部分,中间有隔板,把隔板抽 掉,气体趋向于平衡,求平衡温度。 设气体服从van der Waals eq.。
结论:
热量衡算是化工反应与分离中最重要的计算。 焓平衡数据S , H, U, G是关键的数据。
4
第三章 内容
§3.1 热力学性质间的关系 §3.2 热力学性质的计算 §3.3 两相系统的热力学性质及热力
学图表
5
3.1.2 封闭体系的基本微分方程
dU TdS PdV dH TdS VdP dA SdT PdV dG SdT VdP
a 1.345atm L2 / mol2
CV 3.0 cal /( mol K )
I
VI=1m3 n=0.5mol
II
VII=1m3 真空
T=313.6K
17
例4:证明状态方程
p(V-b)=RT表达的 流体:
解
法1:dH
C pdT
[V
T(
V T
)P
]dP
在一个等焓变化过 程中,温度是随 压力的下降而上 升。
23
水蒸气表
国际上规定,以液体水的三相点为计 算基准。水的三相点参数为:
T 273.16K P 611.2Pa V 0.00100022m3 / kg
规定三相点时液体水内能和熵值为零。
H U PV 0 611.2 0.00100022103 0.000614kJ / kg
高等化工热力学-第三章-EOS方程
3.2 状态方程
到目前为止,几乎所有的有实际应用价值的状态方程 都是经验方程(empirical equations)。每一个经验方程都 有各自的实用范围(applicable range)。 状态方程分类: 级数型方程(Virial Equations of State) 状态方程 立方型方程(Cubic Equations of State)
1 V V P T
V V T P
V V P T
dV dT dP V
对于液体,由于其具有不可压缩性,体积膨胀系数和等 温压缩系数是温度和压力的弱函数(weak function),因此, 在液体的温度和压力变化不大时,可以将体积膨胀系数和等 温压缩系数当作常数,则
virial系数的确定?????????321vdvcvbrtpvz????????????????11dcvv?vpvrtbbsince???????????2vv??rtpvbvlim???????101?????????????????1232vvdcbvztor??tvlimvzb????????1??011v1??tz?rtpb???????????????????????00lim11limsincethusa?????????321vvdvvcvvbrtrtpvzsimilarly??????????????????????????31vdvbvrtpvcv??bv??rtpvcvlim????????????101?????????????????1232vvdcbvzt????????ddzz6v2or???????????1cvt622??tvlimvzc????????1??220121tz2??????????????20lim21conclusion
化工热力学3-1Chapter3纯流体的热力学性质计算(1-2)
热力学的四个基本公式
对热力学四个基本公式的说明: (1) 虽然在四个基本公式的推导过程中采用了可逆过程,
如 d Qr = TdS 和 d W膨胀 = pdV ,但这些公式适用于包括可逆过
程和不可逆过程在内的任何过程。这是因为公式中的物理量皆 为状态函数,其变化值仅取决于始态和终态。
注意:只有在可逆过程中,上述公式中的 TdS 才代表热效 应,pdV 才代表膨胀功。若是不可逆过程,则根据热力学第二
y
(3 6)
02:12
11
§3.1 热力学性质间的关系 Chapter3.纯流体的热力学性质计算
3.1.2 点函数间的数学关系式
(1)全微分关系式与偏微分原理——Green定律
式(3-5)、(3-6)即为Green定律,其意义:
①若x、y、Z都是点函数,热力学即为状态函数或称 系统性质,且Z是自变量x、y的连续函数,则Z必有 全微分式且存在式(3-6);
dU=TdS-pdV (3-1) dH=TdS+Vdp (3-2) dA=SdTpdV (3-3) dG=SdT+Vdp (3-4)
注意基本微分方程的应用条件及其含义:
定量、定组成、单相、无非体积功的体系!
定量——封闭体系或稳流体系;
只有
定组成——无化学反应;
状态
单相——无相变
变化
02:12
无需 可逆 条件
dH=T·dS+V ·dp 等温时两边除dp (H/p)T=V+T (S/p)T
S p
T
V T
p
H p
T
V
T V T
p
H
T2 T1
cpdT
p2 p1
V
第三章-----纯流体的热力学性质
注:广度量与广度量相除变为强度量。
强度性质:表现出系统质的特性,与物质的量无关, 没有加和性。如P、T等。 2.按其来源分类
可直接测量的:P、V、T等。
不能直接测量的:U、H、S、A、G等。
可直接测量也可推算:Cp、Cv、Z等。
5
二、热力学基本方程
封闭系统热力学第一定律:
若过程可逆 只作体积功
H H p HT C pdT
T1 T2 p2 p1
V V - T dp T p
H C ig p dT
ig p T1 T2
H p C p dT
T1
p2
T2
2 3 4 C ig p A BT CT DT ET
a
T
T2
M MT M p
15
一、焓随温度和压力的变化关系
H f T , p
H Cp T p
H p T
H H dH d T dp T p p T
V H T V T dp p1 T p
p2
真实流体的p-V-T关系
H p C pdT
T1
T2
真实流体的热容关系
C p f T , p
真实流体的等压焓变 无法计算
19
四、真实流体的焓变
T1,p1
H
● ●
T2,p2
3 4
Cp T
p2
T1
dT
C A BT CT DT ET
ig p 2
S p
8
dz Mdx Ndy
第三章 纯流体的热力学性质
3.2 热力学性质的计算
⒉ H * 、S *的计算式
H*,S *— 所求状态(T,p)的H和S,理想气体; H0*,S0*— 任意选择的基准态(T0,P0)所对应H和S
3.2 热力学性质的计算
⒊ HR 和 SR的计算式 由 MR=M-M* HR=H−H* S R = S −S *
3.1 热力学性质间的关系
二、 热力学性质的基本关系式 注意: 四大微分方程的应用: 恒组成,恒质量体系——封闭体系 均相体系(单相) 平衡态间的变化 只有体积功
3.1 热力学性质间的关系
三. Maxwell关系式 (一)点函数间的数学关系 点函数 点函数就是函数能够通过自变量在图上用点 表示出来的函数. 点函数的数学关系式
3.2 热力学性质的计算
⒊ HR 和 SR的计算式 当 P 0 → 0 时, 真气行为 → 理气行为. H0 R = 0
3.2 热力学性质的计算
⒊ HR 和 SR的计算式 由前知
∴ 同理
3.2 热力学性质的计算
⒋ H,S的计算式
3.2 热力学性质的计算
⒋ H,S的计算式 由上述式子知,要计算一定状态(T,P)下, 真实气体的H,S值,需要有: ①基准态的H0∗、 S0∗值 ②理想气体 Cp = f ( T ) (查手册或文献) ③真实气体PVT关系: PVT实测数据 真实气体EOS 普遍化压缩因子Z
3.2 热力学性质的计算
1. H的基本关系式 对于单相,定组成体系,据相律 F=N-π+2 知,自由度 F = 1-1+2 = 2; 对于热力学函数可以用任意两个其他的热力学 函数来表示,一般选择容易测量的函数作为变 量,如: H= f(T,p) H= f(T,V) H= f(p,V)
第三章-纯流体的热力学性质
nU nV d nV nS ,n
式中:下标n表示所有化学物质的物质的量保持一定,和上式对比,可得:
nU nU P T , nS nV nS ,n nV ,n
对单相敞开系统,nU不仅是nS和nV的函数,而且也是各组成量的函数。
②在点2,水开始汽化,在汽化过程中温度保持不变。
③点3相当于完全汽化点。
④当供给更多的热量时,蒸汽沿着途径3-4变成过热。
从图中可看出:蒸汽过热的特点是温度上升和熵增加。 在压-焓图上整个过程用相当于锅炉压力的水平线(图(b))表示。
在两相区内,任何广度性质和干度x或湿度(1-x)的关系式如下:
M M 1 x M x
4.2 化学位和偏摩尔性质
4.2.1 化学位
根据式(1)~(4),组分i的化学位定义为:
nU nH nA nG i ni nS ,nV ,n ni nS , p ,n ni nV ,T ,n ni T , p ,n j j j j
d nA nSdT pdnV i dni 3
d nG nSdT nV dp i dni 4
以上方程式适用于开放或封闭的单相流体系统。 当ni全部保持不变时(dni=0)就简化成适用于定组成质量体系的方程式。 若将全微分方程的判据应用到式(1)~(4)各式的右端,则可得到16 个普遍方程式,其中四个是Maxwell方程,
U U l 1 x U g x
S Sl 1 x S g x
H H l 1 x H g x
式中x为气相的质量分数或摩尔分数(通常称为品质、干度)。
以上方程式可概括地写成:
热力学3章纯流体的性质
3.2.2 真实气体的热容
真实气体的热容是温度、压力的函数。 真实气体的热容是温度、压力的函数。C p
= C p (T , p )
①工程上常常借助理想气体的热容,通过下列关系计算同 工程上常常借助理想气体的热容, 样温度下真实气体的热容
Cp = C +C′ p p
′ = C(p0) (Tr , P ) +C(p1) (Tr , P ) Cp r r
理想气体
RT V= P
RT R V V T T = 0 = P P T P
dH = CPdT
液体
体积膨胀系数
1 V β= V T P
CP CP V dS = dT dT βVdP dP = T T T P
V dH = CPdT + V T dP = CPdT +V(1 βT)dP T P
V p dST = dp = dV T P T V
积分得等温熵差的计算通式: 积分得等温熵差的计算通式: 等温熵差的计算通式
p ST = ( S2 S1 ) = ∫ dV T V1 T V
V2
3.3.3.2 以T、P为自变量的状态方程 、 为自变量的状态方程 1. 等温熵差
HH V 1.5a ln = + Z 1 1.5 RT bRT V +b
*
方程及有关参数代入, 将RK方程及有关参数代入,即可计算出等温焓差。 方程及有关参数代入 即可计算出等温焓差。
2. 等温熵差的计算
dS = Cp
dT V dp T T P
将推导等温焓差时用的 (B)式,代入 式
式等温变化部分得: 式等温变化部分得: (等温 等温) 等温
V p dHT = Vdp T dp = d( pV ) pdV + T dV T p T V p = T pdV + d( pV ) T V
化工热力学讲义-3-第三章-纯流体的热力学性质
第三章 纯流体的热力学性质3.1热力学性质间的关系3.1.1单相流体系统基本方程 根据热力学第一、二定律,对单位质量定组成均匀流体体系,在非流动条件下,其热力学性质之间存在如下关系: pdV TdS dU -=;Vdp TdS dH +=pdV SdT dA --=;Vdp SdT dG +-=上述方程组是最基本的关系式,所有其他的函数关系式均由此导出。
上述基本方程给我们的启示是:p-V-T 关系数据可以通过实验测定,关键是要知道S 的变化规律,若知道S 的变化规律,则U 、H 、A 、G 也就全部知道了。
下面所讲主要是针对S 的计算。
3.1.2点函数间的数学关系式对于函数:()y x f z ,=,微分得:dy y z dx x z dz xy ⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂=如果x 、y 、z 都是点函数,且z 是自变量x 、y 的连续函数,Ndy Mdx +是z (x ,y )的全微分,则M 、N 之间有:该式有两种意义:①在进行热力学研究时,如遇到(1)式,则可以根据(2)式来判断dz 是否全微分,进而可判定z 是否为系统的状态函数;②如已知z 是状态函数,则可根据(2)式求得x 与y 之间的数学关系。
以下循环关系式也经常遇到:3.1.3Maxwell 关系式由于U 、H 、A 和G 都是状态函数,将(2)式应用于热力学基本方程,则可获得著名的Maxwell 方程:V S S p V T ⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂;p S S V p T ⎪⎭⎫⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂ T V V S T p ⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂;Tp p S T V ⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂能量方程的导数式:T S H S U pV =⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂;p V A V U T S -=⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂V p G p H TS =⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂;S T A T G V p -=⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ 在实际工程应用中,Maxwell 方程应用之一是用易于实测的某些数据来代替或计算那些难于实测的物理量。
化工热力学纯流体的热力学性质
习
题
Байду номын сангаас
2.解:始态1→终态2的焓变为ΔHT H2=H1+ΔHT 或者采用剩余焓HR计算
H1
状态1 T1,p1 理想气体
ΔHT
状态2 T1,p2 真实气体
H2
因为p1较 低,故可 以视为id.g
ΔH
id
HR
=0
ΔH T = ΔH id + H R = H R
理想气体 T1,p2
H2=H1+ΔHT=H1+HR
Chemical Engineering Thermodynamics
第三章 纯流体的 热力学性质
通过本章的学习,可以实现:由一个状态方程 EOS和Cpid 的信息推算任意状态下的热力学性 质(有些性质是基于参考态的相对值)。 真实气体热力学性质的计算方法一般有两种 偏离函数法(偏差函数法) 剩余性质法(残余函数法) 依据:H, U和S均为状态函数,与路程无关
ΔH = ∫ C dT = ∫ (0.571 + 0.0009T )dT
' 12 T2 T1 l p 9.4 88
ΔH’12=-48.33 kcal/kg≠0
与ΔH=0不符,说明必然有汽化发生 假设节流后为饱和蒸汽,则焓变为 ΔH”12= ΔH’12+ ΔHV ΔHV可根据克-克方程求出
ΔH V dp S = dT T (V V − V L )
⎛ dB 0 dB1 ⎞ SR = − pr ⎜ ⎟ ⎜ dT + ω dT ⎟ R r ⎠ ⎝ r
(3 - 62)
得到:
H1R = -2690.6 J/mol S1R = -4.668 J/mol.K
●过程二:理想气体变化过程
化工热力学-总复习1
总复习
16
第7章 蒸汽动力循环与制冷循环
总复习
气体的膨胀
对外不做功的绝热节流膨胀
H2 H1
J
T p
h
1 Cp
T
V T
p
对外做功的绝热可逆膨胀
V
JJ
0, 0,
冷 零
J 0, 热
S2 S1
效应
效 应TH 效应
p2
p1
J dp
s
T p
s
1 Cp
T V T
p
总 有 s 0, 冷效 应
液
相
区
气相区
汽液共存区
恒温线
A 饱和液相线AC
B 饱和气相线BC
3
第2章 流体的p-V-T关系
总复习
p-V-T关系及计算
R-K方程:已知V、T和质量,求压力。
公式:
p
RT V b
a
T 0.5V V
b
注意:(1)p、V、T单位,V为mol体积。
a b
0.42748R 2Tc 2.5 pc
0.08664RTc
功源有效能 ExW W 与功源总能量相等;
热量有效能 有效能损失
ExQ
Q 1 - T0 T
典型题:作业6-9、6-11,习题课 第六、七章第6题。
El Ex WS WL T0St
有效能效率
(等价于t )
EX
Ex Ex
获 得 提 供
1-
El
Ex
提
供
不可可逆逆过过程程EEXX
100% 100%
f p
ˆi
fˆi xi p
f与fˆi、与ˆi的 关 系
ln f
第三章流体的热力学性质焓和熵
T
p
T
V
由Maxwell关系式:
S
p
T
V T
p
H
p
T
V
T
V T
p
H=H(p,T), S=S(p,T)
dH
H T
p
dT
H p
T
dp
dS
S T
p
dT
S p
T
dp
最终得到:
dH
C p dT
V
T
V T
p
dp
dS
Cp
dT T
V T
p
T
II
(100MPa,25 ℃)
dS
C
l p
dT T
Vdp
I
(0.1MPa,50 ℃)
② (100MPa,50 ℃)
p
HI
Cl p1
T2
T1
1 T2
V (T2 ) p2 p1
SI
C
l p1
ln T2 T1
V (T2 ) p2
p1
当p=0.1MPa时
C
l p
75.305 75.314 2
(2.590)
0.10
1.700
2.470
0.50
1.514
2.186
2
1.293
1.759
4
1.290
1.591
6
1.395
1.544
8
1.560
1.552
10
1.777
1.592
12
2.073
1.658
14
2.432
1.750
15.41
流体的热力学性质
S
R
P
0
剩余焓和剩余熵的计算方法 ① 根据P-V-T实验数据计算
② 状态方程法
③ 普遍化关系法
流体的热力学性质: 3.2.3 状态方程法 (1)以T、P为自变量的状态方程 PV BP Z 1 RT RT
V H V T dP 0 T P
热力学性质计算
其它106个偏导数不能直接实验测定。 106个不可测偏导数 应用时必须将与6个可测的偏导数联系起来。联系纽带为热 力学基本方程和偏导数关系式和Maxwell方程。
流体的热力学性质:
热力学性质计算
• 理想气体的热容只是温度的函数,通常表示成温度的 幂函数,例如
C A BT CT DT
* p 2
3
• 常数A、B、C、D可以通过文献查取,或者通过实验测 定。通过前两种途径获取数据有困难时,这些常数也 可以根据分子结构,用基团贡献法推算。
流体的热力学性质:
热力学性质计算
• 真实气体的热容是温度、压力的函数。工程上常 常借助理想气体的热容,通过下列关系计算同样温度下真 实气体的热容
C p C C p p
第三章 流体的热力学性质
流体的热力学性质:
本章内容
本章内容
§2.1 纯物质的P-V-T行为 §2.2 状态方程(EOS) §2.3 普遍化计算 §2.4 混合物的状态方程——混合规则 §2.5 液体的容积性质 §2.6 热力学性质计算
流体的热力学性质:
热力学性质计算
• 学习化工热力学的目的在于应用,最根本的应用就是 热力学性质的推算。
• 理想气体
RT V P
RT R V V T T 0 P P T P
化工热力学1-3章小结
M y
x
ቤተ መጻሕፍቲ ባይዱ
N x
y
11
计算H、S基本关系式
真实气体H、S计算
dS Cp dT V dp
T
T p
dH
C p dT
V
T
V T
p
dp
理想气体H、S计算
dH * Cp*dT
ln p2 vapHm ( 1 1 )
p1
R T1 T2
16
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
化工热力学1-4章
小结
1
第二章 流体的pVT关系
一.p、V、T、Cp是流体的最基本性质, 也是热 力学计算基础
p-V-T图 二.pVT数据的计算
1.理想气体:pV=RT 低压、高温 2.真实气体:EOS法,普遍化关系法。
2
EOS法
维里方程,VDW,RK,SRK等 。有关真 实气体计算的状态方程式很多,目前已提 出的不下300种,实际应用的也有150种之 多。重点掌握维里方程。
普维法(计算) 2. 普遍化方法
普压法(查图计算) 3. EOS法
13
熵变和焓变的计算
物系从状态1→2,T0、p0状态为基准态 △H=H2R-H1R+Cpmh*(T2-T1)
△S=S2R-S1R+Cpms*ln(T2/T1)-Rln(p2/p1)
化工热力学3纯流体的热力学性质
肇庆学院
《化工热力学》 V dH C P dT V T dp T p 在特定条件下,可以将3-18式简化: T=const(等温) P=const (等压) 理想气体
1 V V T P
1 V k V P T
PV Z RT
肇庆学院
《化工热力学》
纯流体的热力学性质
3 热力学性质的基本关系式
• 四大微分方程 :
dU=TdS-pdV
dH=TdS+Vdp
(3-1)
(3-2)
dA=-SdT-pdV
dG=-SdT+Vdp
纯流体的热力学性质
dz = Mdx + Ndy
在x不变时,M对y求偏微分: 在y不变时,N对x求偏微分:
M y
(3-5)
z y x x y x
N z x y x y x y
Cp
S V p T p T
V dS dT dP T T p
理想气体的等压热容 有实验值!!!
(3-15a)
EOS
难测的S通过(3-15a)式,与 易测的PVT联系了起来!
肇庆学院
《化工热力学》
纯流体的热力学性质
S S dS dT dV T V V T TdS Q S T CV T V T V T V
又∵
S p V T T V
化工热力学讲义-5-第三章-纯流体的热力学性质
f iV f i l f i S
第二项积分则计算将液相由 piS 压缩至p时的逸度校正值。
上式可进一步写成: p f il fiS p L RT ln RT ln S S Vi dp RT ln S pi p pi pi 整理,最后:
Vi L f i p exp S dp pi RT
W
或:VW
(nV ) nW
(nV ) d (nV ) nW dnW
由于T、p和nE(乙醇的物质量)为常数,方程更合理地写成:
(nV ) VW nW T , p ,nE
显然,体积V为溶液性质M,从等式中得出,溶液中的偏摩尔 体积就是在T,p和 nE不变情况下,溶液总体积对nw的变化率。
d nA nSdT pdnV i dni 3
从式(4)可得两个有用的方程式:
nS i T P ,n ni T , P ,n j
nV i P n T ,n i T , P ,n j
d nG nSdT nV dp i dni 4
以上方程式适用于开放或封闭的单相流体系统。 当ni全部保持不变时(dni=0)就简化成适用于定组成质量体系的方程式。 若将全微分方程的判据应用到式(1)~(4)各式的右端,则可得到16 个普遍方程式,其中四个是Maxwell方程,
液体的摩尔体积在远离临界点时可视为不可压缩,故上式可简化:
Vi L p piS f i l piS iS exp RT
压力对Poynting校正因子的影响见下表:
Vi l 100m l m ol, T 300 K
p p / MPa
高等化工热力学-第三章-EOS方程
2 8N A r12 r13 C f12 f13 f 23r12r13r23dr12dr13dr23 3 0 0 r12 r13
式中,
f ij exp(uij / kT ) 1
Uij: 分子间位能, rij: 分子间距离,NA: Avogadro 常数,k: Boltzmann 常数。
3.2.2 立方型状态方程
Virial EOS 只能计算气体的PVT 关系。如果一个状态方 程要同时描述汽体 (vapor) 和液体 (liquid) 的PVT 行为,该方 程必须具有很宽的温度和压力的适用范围。立方型状态方程 (Cubic EOS)是目前最简单的一种能同时描述气体和液体的 PVT 行为的状态方程。
Conclusion: 如果有高精度的PVT 数据,就可以根据上述 公式,用图解法得到流体的B 和 C。
Virial 系数也可以通过关联其它状态方程得到。 R-K EOS
RT a P 0.5 V b T V (V b) V a 1 a Z 1.5 V b RT (V b) 1 b RT 1.5 (1 b)
PV B C Z 1 2 RT V V
维里方程的扩展形式
Virial EOS 的 扩 展 形 式 可 以 用 Benedict/Webb/Rubin (BWR) 方程表达(1940)
RT B0 RT A0 C 0 / T 2 bRT a a P 6 2 3 V V V V c 3 2 1 2 exp 2 V T V V This equation and its modifications, despite their complexity, are used in the petroleum and nature-gas industries for light hydrocarbons and a few other commonly encountered gases.