2015届高考数学总复习 第二章 第六节对数与对数函数课时精练试题 文(含解析)

合集下载

2015届高考数学(理)一轮复习单元卷:对数与对数函数(苏教版)

2015届高考数学(理)一轮复习单元卷:对数与对数函数(苏教版)

对数与对数函数第Ⅰ组:全员必做题1.函数y =1-lg (x +2)的定义域为________.2.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=________.3.(2013·全国卷Ⅱ改编)设a =log 36,b =log 510,c =log 714,则a ,b ,c 的大小关系为________.4.设函数f (x )=⎩⎪⎨⎪⎧ log 12x ,x >0,log 2(-x ),x <0,若f (m )<f (-m ),则实数m 的取值范围是____________.5.(2014·常州期末)设函数y =f (x )在R 内有定义,对于给定的正数k ,定义函数f k (x )=⎩⎪⎨⎪⎧f (x ),f (x )>k ,k , f (x )≤k .若函数f (x )=log 3|x |,则当k =13时,函数f k (x )的单调减区间为________. 6.计算:(log 29)·(log 34)=________.7.函数y =log 12(x 2-6x +17)的值域是________. 8.设2a =5b =m ,且1a +1b=2,则m =________. 9.(2014·长春模拟)设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域.(2)求f (x )在区间⎣⎡⎦⎤0,32上的最大值.10.已知f (x )=log a x (a >0且a ≠1),如果对于任意的x ∈⎣⎡⎦⎤13,2都有|f (x )|≤1成立,试求a 的取值范围.第Ⅱ组:重点选做题1.(2013·徐州联考)函数y =log a (x -1)+1(a >0,且a ≠1)的图像恒过定点A ,若点A 在一次函数y =mx +n 的图像上,其中m ,n >0,则1m +2n的最小值为________.2.(2014·无锡模拟)若f (x )=lg x ,g (x )=f (|x |),则g (lg x )>g (1),x 的取值范围是________.答 案第Ⅰ组:全员必做题1.解析:由题意可知,1-lg(x +2)≥0,整理得lg(x +2)≤lg 10,则⎩⎪⎨⎪⎧x +2≤10,x +2>0,解得-2<x ≤8,故函数y =1-lg (x +2)的定义域为(-2,8].答案:(-2,8]2.解析:f (x )=log a x ,∵f (2)=1,∴log a 2=1.∴a =2.∴f (x )=log 2x .答案:log 2x3.解析:a =log 36=1+log 32,b =log 510=1+log 52,c =log 714=1+log 72,则只要比较log 32,log 52,log 72的大小即可,在同一坐标系中作出函数y =log 3x ,y =log 5x ,y =log 7x 的图像,由三个图像的相对位置关系,可知a >b >c .答案:a >b >c4.解析:当m >0时,f (m )<f (-m )⇒log 12m <log 2m ⇒m >1; 当m <0时,f (m )<f (-m )⇒log 2(-m )<log 12(-m )⇒-1<m <0.所以m 的取值范围是(-1,0)∪(1,+∞).答案:(-1,0)∪(1,+∞)5.解析:因为f (x )=log 3|x |,k =13,所以由f (x )>k 得log 3|x |>13,解得x <-33或x >33.同理由f (x )≤k 得-33≤x <0或0<x ≤33,所以f k (x )=⎩⎨⎧ log 3|x |,x <-33或x >33,13,-33≤x <0或0<x ≤33,所以函数f k (x )的单调减区间为(-∞,-33).(闭区间也对)答案:(-∞,-33)⎝⎛⎭⎫或(-∞,-33]6.解析:(log 29)·(log 34)=lg 9lg 2×lg 4lg 3=2lg 3lg 2×2lg 2lg 3=4. 答案:47.解析:令t =x 2-6x +17=(x -3)2+8≥8,y =log 12t 为减函数,所以有log 12t ≤log 128=-3. 答案:(-∞,-3]8.解析:由2a =5b =m ,得a =log 2m ,b =log 5m ,又1a +1b =2,即1log 2m +1log 5m=2, ∴1lg m=2,即m =10. 答案:109.解:∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得x ∈(-1,3), ∴函数f (x )的定义域为 (-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,函数f (x )在⎣⎡⎦⎤0,32上的最大值是f (1)=log 24=2. 10.解:当a >1时,f (x )=log a x 在⎣⎡⎦⎤13,2上单调递增,要使x ∈⎣⎡⎦⎤13,2都有|f (x )|≤1成立,则有⎩⎪⎨⎪⎧ log a 13≥-1,log a 2≤1,解得a ≥3. ∴此时a 的取值范围是a ≥3.当0<a <1时,f (x )=log a x 在⎣⎡⎦⎤13,2 上单调递减,要使x ∈⎣⎡⎦⎤13,2都有|f (x )|≤1成立,则有⎩⎪⎨⎪⎧log a 13≤1,log a 2≥-1,解得0<a ≤13. ∴此时,a 的取值范围是0<a ≤13. 综上可知,a 的取值范围是⎝⎛⎦⎤0,13∪[3,+∞).第Ⅱ组:重点选做题1.解析:取x -1=1得原函数的图像恒过定点A (2,1),代入直线方程得2m +n =1,所以1m +2n =2m +n m +2(2m +n )n =4+n m +4m n ≥8,当且仅当n m =4m n ,即2m =n =12时等号成立,故最小值为8.答案:82.解析:因为g (lg x )>g (1),所以f (|lg x |)>f (1),由f (x )为增函数得|lg x |>1,从而lg x >1或lg x <-1.解得0<x <110或x >10.答案:⎝⎛⎭⎫0,110∪(10,+∞)。

2015届高考数学总复习配套课件:2-6 对数与对数函数

2015届高考数学总复习配套课件:2-6 对数与对数函数

东 金 太
(2)由已知,得 x=log43,
阳 书
则 4x+4-x=4log43+4-log43=3+31=130.
业 有 限


菜 单 隐藏
第十六页,编辑于星期五:十点 十二分。
高考总复习 A 数学(文)
抓主干 考点 解密
研考向 要点 探究
对数函数图象及应用
悟典题
能力 提升
【例2】 (2014年济南模拟)若实数a,b,c满足loga2<logb2<logc2,
抓主干 考点 解密
研考向 要点 探究
悟典题 能力 提升
对数式的运算
提素能
高效 训练
【例 1】 求值:(1)lloogg8293;
(2)(lg 5)2+lg 50·lg 2;
山 东
(3)21lg3429-43lg 8+lg 245.
金 太 阳






菜 单 隐藏
第十三页,编辑于星期五:十点 十二分。
经过的特殊点等,由此确定函数解析式以及其中所含参数的取值范
山 东
围.









菜 单 隐藏
第二十页,编辑于星期五:十点 十二分。
高考总复习 A 数学(文)
抓主干 考点 解密
对数函数性质及应用
研考向 要点 探究
【例3】 (1)(2013年高考全国课标卷Ⅱ)设a=log32,b=log52,c
有 限


菜 单 隐藏
第二页,编辑于星期五:十点 十二分。
高考总复习 A 数学(文)
抓主干 考点 解密

2015年高考数学(苏教版,理)一轮题库:第2章 第6讲 对数与对数函数

2015年高考数学(苏教版,理)一轮题库:第2章 第6讲 对数与对数函数

第6讲对数与对数函数一、填空题1.已知函数f(x)=错误!则f错误!=________.解析因为f错误!=log2错误!=-2,所以f错误!=f(-2)=3-2=错误!.答案错误!2.函数y=ln(1-x)的图象大致为________.解析由1-x〉0,知x<1,排除①、②;设t=1-x(x〈1),因为t=1-x为减函数,而y=ln t为增函数,所以y=ln(1-x)为减函数,故选③。

答案③3.若实数x满足log3x=1+sin θ,则|x-1|+|x-9|的值为________.解析log3x=1+sin θ∈[0,2],x=31+sin θ∈[1,9],|x-1|+|x-9|=x-1+9-x=8.答案84.已知函数f(x)=错误!若f(3-2a2)>f(a),则实数a的取值范围为________.解析画图象可得f(x)是(-∞,+∞)上连续的单调减函数,于是由f(3-2a2)>f(a),得3-2a2<a,即2a2+a-3>0,解得a<-3 2或a>1。

答案错误!∪(1,+∞)5.已知函数f(x)=lg x.若f(ab)=1,则f(a2)+f(b2)=________.解析∵f(x)=lg x,f(ab)=1,∴lg(ab)=1,∴f(a2)+f(b2)=lg a2+lg b2=2lg a+2 lg b=2lg(ab)=2。

答案26.已知2a=5b=错误!,则错误!+错误!=________.解析∵2a=5b=错误!,∴a=log2错误!,b=log5错误!,利用换底公式可得:错误!+错误!=log错误!2+log错误!5=log错误!10=2.答案2[来源:学科网]7.设a>0且a≠1,函数f(x)=a lg(x2-2x+3)有最大值,则不等式log a(x2-5x+7)〉0的解集为________.解析∵函数y=lg(x2-2x+3)有最小值,f(x)=a lg(x2-2x+3)有最大值,∴0〈a〈1。

【创新设计】2015届高考数学一轮总复习 2.6 对数与对数函数题组训练 理 苏教版

【创新设计】2015届高考数学一轮总复习 2.6 对数与对数函数题组训练 理 苏教版

第6讲 对数与对数函数基础巩固题组 (建议用时:40分钟)一、填空题1.如果,那么x ,y,1的大小关系是________.解析 ∵是(0,+∞)上的减函数,∴x >y >1.答案 1<y <x2.(2014·某某调研)设f (x )为定义在R 上的奇函数,当x >0时,f (x )=log 3(1+x ),则f (-2)=________.解析 f (-2)=-f (2)=-log 33=-1. 答案 -13.函数y =log 12(3x -a )的定义域是⎝ ⎛⎭⎪⎫23,+∞,则a =______.解析 要使函数有意义,则3x -a >0,即x >a3,∴a 3=23,∴a =2. 答案 24.已知f (x )=⎩⎪⎨⎪⎧2a 2,x <2,log a x 2-1,x ≥2,且f (2)=1,则f (1)=________.解析 ∵f (2)=log a (22-1)=log a 3=1, ∴a =3,∴f (1)=2×32=18. 答案 185.函数y =log a (x -1)+2(a >0,a ≠1)的图象恒过一定点是________.解析 当x =2时y =2. 答案 (2,2)6.(2012·某某卷改编)已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是________.解析 a =log 23+log 23=log 233>log 22=1,b =log 29-log 23=log 233=a >1,c =log 32<log 33=1,所以a =b >c . 答案 a =b >c7.(2014·池州一模)函数y =log 2|x |的图象大致是______.解析 函数y =log 2|x |=⎩⎪⎨⎪⎧log 2x ,x >0,log 2-x ,x <0,所以函数图象为①.答案 ①8.(2013·某某二模)若a =ln 264,b =ln 2×ln 3,c =ln 2π4,则a ,b ,c 的大小关系是________.①a >b >c ;②c >a >b ;③c >b >a ;④b >a >c解析 ∵ln 6>ln π>1,∴a >c ,排除②,③;b =ln 2·ln 3<⎝ ⎛⎭⎪⎫ln 2+ln 322=ln 264=a ,排除④. 答案 ① 二、解答题9.已知f (x )=log 4(4x-1).(1)求f (x )的定义域; (2)讨论f (x )的单调性;(3)求f (x )在区间⎣⎢⎡⎦⎥⎤12,2上的值域.解 (1)由4x-1>0解得x >0, 因此 f (x )的定义域为(0,+∞).(3)f (x )在区间⎣⎢⎡⎦⎥⎤12,2上递增,又f ⎝ ⎛⎭⎪⎫12=0,f (2)=log 415, 因此f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域为[0,log 415].10.已知函数f (x )=log 12ax -2x -1(a 为常数). (1)若常数a <2且a ≠0,求f (x )的定义域;(2)若f (x )在区间(2,4)上是减函数,求a 的取值X 围. 解 (1)由题意知ax -2x -1>0,当0<a <2时, 解得x <1或x >2a;当a <0时,解得2a<x <1.故当0<a <2时,f (x )的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <1,或x >2a ; 当a <0时,f (x )的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a<x <1. (2)令u =ax -2x -1,因为f (x )=log 12u 为减函数,故要使f (x )在(2,4)上是减函数,只需u (x )=ax -2x -1=a +a -2x -1在(2,4)上单调递增且为正.故由⎩⎪⎨⎪⎧a -2<0,u 2=2a -22-1≥0,得1≤a <2.故a ∈[1,2).能力提升题组(建议用时:25分钟)一、填空题1.(2013·某某三模)两个函数的图象经过平移后能够重合,称这两个函数为“同形”函数,给出下列四个函数:f 1(x )=2log 2(x +1),f 2(x )=log 2(x +2), f 3(x )=log 2x 2,f 4(x )=log 2(2x ),则是“同形”函数的是________.①f 2(x )与f 4(x );②f 1(x )与f 3(x );③f 1(x )与f 4(x ); ④f 3(x )与f 4(x ).解析 因为f 4(x )=log 2(2x )=1+log 2x ,所以f 2(x )=log 2(x +2),沿着x 轴先向右平移2个单位得到y =log 2x 的图象,然后再沿着y 轴向上平移1个单位可得到f 4(x )=log 2(2x )=1+log 2x ,根据“同形”函数的定义,f 2(x )与f 4(x )为“同形”函数.f 3(x )=log 2x 2=2log 2|x |与f 1(x )=2log 2(x +1)不“同形”.答案 ①2.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且x ∈(-1,0)时,f (x )=2x +15,则f (log 220)=________.解析 由f (x -2)=f (x +2),得f (x )=f (x +4),因为4<log 220<5,所以f (log 220)=f (log 220-4)=-f (4-log 220)=答案 -13.(2014·某某模拟)已知函数f (x )=lnx1-x,若f (a )+f (b )=0,且0<a <b <1,则ab 的取值X 围是________.解析 由题意可知ln a 1-a +ln b1-b =0,即ln ⎝⎛⎭⎪⎫a 1-a ×b 1-b =0,从而a 1-a ×b 1-b =1,化简得a +b =1,故ab =a (1-a )=-a 2+a =-⎝ ⎛⎭⎪⎫a -122+14,又0<a <b <1,∴0<a <12,故0<-⎝ ⎛⎭⎪⎫a -122+14<14.答案 ⎝⎛⎭⎪⎫0,14二、解答题4.已知函数f (x )=-x +log 21-x1+x.(1)求f ⎝⎛⎭⎪⎫12 014+f ⎝ ⎛⎭⎪⎫-12 014的值;(2)当x ∈(-a ,a ],其中a ∈(0,1),a 是常数时,函数f (x )是否存在最小值?若存在,求出f (x )的最小值;若不存在,请说明理由. 解 (1)由f (x )+f (-x )=log 21-x 1+x +log 21+x1-x=log 21=0.∴f ⎝⎛⎭⎪⎫12 014+f ⎝ ⎛⎭⎪⎫-12 014=0.(2)f (x )的定义域为(-1,1), ∵f (x )=-x +log 2(-1+2x +1), 当x 1<x 2且x 1,x 2∈(-1,1)时,f (x )为减函数, ∴当a ∈(0,1),x ∈(-a ,a ]时f (x )单调递减, ∴当x =a 时,f (x )min =-a +log 21-a1+a .。

【创新设计】2015届高考数学第一轮复习 2-6 对数与对数函数题组训练 理(含14年优选题,解析)新人教A版

【创新设计】2015届高考数学第一轮复习 2-6 对数与对数函数题组训练 理(含14年优选题,解析)新人教A版

第6讲 对数与对数函数基础巩固题组(建议用时:40分钟)一、选择题1.如果log 12x <log 12y <0,那么( ).A .y <x <1B .x <y <1C .1<x <yD .1<y <x解析 ∵log 12x <log 12y <log 121,又y =log 12x 是(0,+∞)上的减函数,∴x >y >1. 答案 D2.(2014·深圳调研)设f (x )为定义在R 上的奇函数,当x >0时,f (x )=log 3(1+x ),则f (-2)= ( ).A .-1B .-3C .1D .3解析 f (-2)=-f (2)=-log 33=-1. 答案 A3.(2013·宣城二模)若a =ln 264,b =ln 2×ln 3,c =ln 2π4,则a ,b ,c 的大小关系是( ).A .a >b >cB .c >a >bC .c >b >aD .b >a >c解析 ∵ln 6>ln π>1,∴a >c ,排除B ,C ;b =ln 2·ln 3<⎝ ⎛⎭⎪⎫ln 2+ln 322=ln 264=a ,排除D. 答案 A4.若函数g (x )=log 3(ax 2+2x -1)有最大值1,则实数a 的值等于( ).A.12 B.14 C .-14D .4解析 令h (x )=ax 2+2x -1,由于函数g (x )=log 3h (x )是递增函数,所以要使函数g (x )=log 3(ax 2+2x -1)有最大值1,应使h (x )=ax 2+2x -1有最大值3,因此有⎩⎨⎧a <0,Δ=4+4a ≥0,-4a -44a =3,解得a =-14,此即为实数a 的值.答案 C5.已知f (x )=log a [(3-a )x -a ]是其定义域上的增函数,那么a 的取值范围是( ).A .(0,1)B .(1,3)C .(0,1)∪(1,3)D .(3,+∞) 解析 记u =(3-a )x -a ,当1<a <3时,y =log a u 在(0,+∞)上为增函数, u =(3-a )x -a 在其定义域内为增函数, ∴此时f (x )在其定义域内为增函数,符合要求. 当a >3时,y =log a u 在其定义域内为增函数, 而u =(3-a )x -a 在其定义域内为减函数, ∴此时f (x )在其定义域内为减函数,不符合要求.当0<a <1时,同理可知f (x )在其定义域内是减函数,不符合题目要求.故选B. 答案 B 二、填空题6.函数y =log 12(3x -a )的定义域是⎝⎛⎭⎫23,+∞,则a =______.解析 要使函数有意义,则3x -a >0,即x >a3,∴a 3=23,∴a =2. 答案 27.已知f (x )=⎩⎪⎨⎪⎧2a 2,x <2,log a (x 2-1),x ≥2,且f (2)=1,则f (1)=________. 解析 ∵f (2)=log a (22-1)=log a 3=1,∴a =3,∴f (1)=2×32=18. 答案 188.(2014·深圳中学模拟)定义在R 上的奇函数f (x ),当x ∈(0,+∞)时,f (x )=log 2x ,则不等式f (x )<-1的解集是________.解析 当x ∈(-∞,0)时,则-x ∈(0,+∞), 所以f (x )=-f (-x )=-log 2(-x ) ∴f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,0,0,-log 2(-x ),x <0,由f (x )<-1,得⎩⎪⎨⎪⎧ x >0,log 2x <-1或⎩⎪⎨⎪⎧ x =0,0<-1或⎩⎪⎨⎪⎧x <0,-log 2(-x )<-1,解得0<x <12或x <-2.答案 ⎩⎨⎧⎭⎬⎫x |0<x <12,或x <-2三、解答题9.已知f (x )=log 4(4x -1).(1)求f (x )的定义域; (2)讨论f (x )的单调性;(3)求f (x )在区间⎣⎡⎦⎤12,2上的值域. 解 (1)由4x -1>0解得x >0, 因此 f (x )的定义域为(0,+∞). (2)设0<x 1<x 2,则0<4x 1-1<4x 2-1,因此log 4(4x 1-1)<log 4(4x 2-1),即f (x 1)<f (x 2),f (x )在(0,+∞)上递增. (3)f (x )在区间⎣⎡⎦⎤12,2上递增,又f ⎝⎛⎭⎫12=0,f (2)=log 415, 因此f (x )在⎣⎡⎦⎤12,2上的值域为[0,log 415]. 10.已知函数f (x )=log 12ax -2x -1(a 为常数). (1)若常数a <2且a ≠0,求f (x )的定义域;(2)若f (x )在区间(2,4)上是减函数,求a 的取值范围.解 (1)由题意知ax -2x -1>0,当0<a <2时,解得x <1或x >2a ;当a <0时,解得2a<x <1.故当0<a <2时,f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x <1,或x >2a ; 当a <0时,f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2a<x <1. (2)令u =ax -2x -1,因为f (x )=log 12u 为减函数,故要使f (x )在(2,4)上是减函数,只需u (x )=ax -2x -1=a +a -2x -1在(2,4)上单调递增且为正. 故由⎩⎪⎨⎪⎧a -2<0,u (2)=2a -22-1≥0, 得1≤a <2.故a ∈[1,2).能力提升题组 (建议用时:25分钟)一、选择题1.(2014·河南洛阳二模)如果一个点是一个指数函数和一个对数函数的图象的交点,那么称这个点为“好点”.下列四个点P 1(1,1),P 2(1,2),P 3⎝⎛⎭⎫12,12,P 4(2,2)中,“好点”的个数为 ( ).A .1B .2C .3D .4解析 设指数函数和对数函数分别为y =a x (a >0,a ≠1),y =log b x (b >0,b ≠1).若为“好点”,则P 1(1,1)在y =a x 的图象上, 得a =1与a >0,且a ≠1矛盾;P 2(1,2)显然不在y =log b x 的图象上;P 3⎝⎛⎭⎫12,12在y =a x ,y =log b x 的图象上时,a =14,b =14; 易得P 4(2,2)也为“好点”.答案 B2.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且x ∈(-1,0)时, f (x )=2x +15,则f (log 220)=( ).A .1 B.45 C .-1D .-45解析 由f (x -2)=f (x +2),得f (x )=f (x +4),因为4<log 220<5,所以f (log 220)=f (log 220-4)=-f (4-log 220)=-f (log 245)=-(+15)=-1. 答案 C 二、填空题3.如果函数y =f (x )图象上任意一点的坐标(x ,y )都满足方程lg(x +y )=lg x +lg y , 那么y =f (x )在[2,4]上的最小值是________.解析 由lg(x +y )=lg x +lg y ,得⎩⎪⎨⎪⎧x >0,y >0,x +y =xy ,由x +y =xy 得y =f (x )=xx -1=x -1+1x -1=1+1x -1(x ≠1).则函数f (x )在(1,+∞)上单调递减,所以y =f (x )在[2,4]上的最小值是f (4)=1+14-1=43. 答案 43三、解答题4.已知函数f (x )=-x +log 21-x1+x . (1)求f ⎝⎛⎭⎫12 014+f ⎝⎛⎭⎫-12 014的值;(2)当x ∈(-a ,a ],其中a ∈(0,1),a 是常数时,函数f (x )是否存在最小值?若存在,求出f (x )的最小值;若不存在,请说明理由. 解 (1)由f (x )+f (-x )=log 21-x 1+x +log 21+x1-x=log 21=0.∴f ⎝⎛⎭⎫12 014+f ⎝⎛⎭⎫-12 014=0. (2)f (x )的定义域为(-1,1),∵f (x )=-x +log 2(-1+2x +1), 当x 1<x 2且x 1,x 2∈(-1,1)时,f (x )为减函数, ∴当a ∈(0,1),x ∈(-a ,a ]时f (x )单调递减, ∴当x =a 时,f (x )min =-a +log 21-a1+a .。

高考数学一轮复习 第二章 函数概念与基本初等函数 第6课时 对数与对数函数学案(含解析)(1)(20

高考数学一轮复习 第二章 函数概念与基本初等函数 第6课时 对数与对数函数学案(含解析)(1)(20

高考数学一轮复习第二章函数概念与基本初等函数第6课时对数与对数函数学案(含解析)(1)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高考数学一轮复习第二章函数概念与基本初等函数第6课时对数与对数函数学案(含解析)(1))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高考数学一轮复习第二章函数概念与基本初等函数第6课时对数与对数函数学案(含解析)(1)的全部内容。

对数与对数函数1.对数: (1) 定义:如果Na b =)1,0(≠>a a 且,那么称 为 ,记作 ,其中a 称为对数的底,N 称为真数。

① 以10为底的对数称为常用对数,N 10log 记作___________.② 以无理数)71828.2( =e e 为底的对数称为自然对数,N e log 记作_________. (2) 基本性质:① 真数N 为 (负数和零无对数);② 01log =a ;③ 1log =a a ; ④ 对数恒等式:N a N a =log . (3) 运算性质:① log a (MN)=___________________________; ② log a NM =____________________________;③ log a M n= (n ∈R).④ 换底公式:log a N = (a >0,a ≠1,m >0,m ≠1,N 〉0)⑤ log m na a nb b m= 。

2.对数函数:① 定义:函数 称为对数函数,1) 函数的定义域为( ;2) 函数的值域为 ;3) 当______时,函数为减函数,当______时为增函数;4) 函数x y a log =与函数)1,0(≠>=a a a y x且互为反函数。

高考数学一轮总复习第二章函数、导数及其应用第六节对数与对数函数练习文

高考数学一轮总复习第二章函数、导数及其应用第六节对数与对数函数练习文

高考数学一轮总复习第二章函数、导数及其应用第六节对数与对数函数练习文【最新考纲】 1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点.会画底数为2,10,12的对数函数的图象.3.体会对数函数是一类重要的函数模型.4.了解指数函数y =a x(a >0,且a≠1)与对数函数y =log a x(a >0,且a≠1)互为反函数.1.对数的概念如果a x=N(a >0且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.2.对数的性质、换底公式与运算性质(1)对数的性质:①a log a N =N ;②log a a b=b(a >0,且a≠1). (2)换底公式:log a b =log c blog c a(a ,c 均大于0且不等于1,b >0).(3)对数的运算性质:如果a >0,且a≠1,M >0,N >0,那么:①log a (M·N)=log a M +log a N ,②log a M N =log a M -log a N ,③log a M n=nlog a M (n∈R).3.对数函数的定义、图象与性质4.反函数指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数,它们的图象关于直线y=x对称.1.(质疑夯基)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)log2x2=2log2x.( )(2)函数y=log2(x+1)是对数函数.( )(3)函数y=lg(x+3)+lg(x-3)与y=lg[(x+3)(x-3)]的定义域相同.( )(4)当x>1时,若log a x>log b x,则a<b.( )答案:(1)×(2)×(3)×(4)√2.已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图,则下列结论成立的是( )A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1解析:由图象可知y =log a (x +c)的图象是由y =log a x 的图象向左平移c 个单位得到的,其中0<c <1.再根据单调性可知0<a <1.答案:D3.(2015·四川卷)lg 0.01+log 216的值是________. 解析:lg 0.01+log 216=lg 1100+log 224=-2+4=2. 答案:24.(2015·北京卷)2-3,312,log 25三个数中最大的数是________.解析:因为2-3=123=18<1,1<312=3<2,log 25>log 24=2,所以三个数中最大的数是lo g 25. 答案:log 255.函数f(x)=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x <1的值域为________.解析:当x≥1时,log 12x ≤0,当x <1时,0<2x<2,故值域为(0,2)∪(-∞,0]=(-∞,2). 答案:(-∞,2)两种关系1.a b=N ⇔log a N =b(a >0,a ≠1,N >0).2.指数函数y =a x(a >0,且a≠1)与对数函数y =log a x(a >0,且a≠1)互为反函数,应从概念、图象和性质三个方面理解它们之间的联系与区别.两点注意1.在无M >0的条件下,log a M n=nlog a |M|(n∈N *,且n 为偶数).2.解决与对数函数有关的问题时,务必先研究函数的定义域.对数函数的单调性取决于底数a ,应注意底数的取值范围.两类方法1.对数值的大小比较方法:(1)化同底后利用函数的单调性.(2)作差或作商法.(3)利用中间量(0或1).(4)化为同真数后利用图象比较.2.多个对数函数图象比较底数大小的问题,可通过图象与直线y =1交点的横坐标进行判定.一、选择题1.2lg 2-lg 125的值为( )A .1B .2C .3D .4 解析:2lg 2-lg 125=lg ⎝ ⎛⎭⎪⎫22÷125=lg 100=2.答案:B2.(2016·石家庄一模)已知a =312,b =log 1312,c =log 213,则( )A .a >b >cB .b >c >aC .c >b >aD .b >a >c解析:因为312>1,0<log 1312<1,c =log 213<0所以a >b >c. 答案:A4.函数f(x)=lg 1|x +1|的大致图象为( )解析:f(x)=lg 1|x +1|=-lg|x +1|的图象可由偶函数y =-lg|x|的图象左移1个单位得到.由y =-lg|x|的图象可知选D. 答案:D5.(2016·唐山统考)已知f(x)=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( ) A .(-∞,-1] B.⎝ ⎛⎭⎪⎫-1,12 C.⎣⎢⎡⎭⎪⎫-1,12 D.⎝ ⎛⎭⎪⎫0,12解析:要使函数f(x)的值域为R ,则有⎩⎪⎨⎪⎧1-2a >0,ln 1≤1-2a +3a ,∴⎩⎪⎨⎪⎧a <12,a ≥-1,∴-1≤a<12.答案:C 6.设f(x)=lg ⎝⎛⎭⎪⎫21-x +a 是奇函数,则使f(x)<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞) 解析:由f(x)是奇函数可得a =-1, ∴f(x)=lg 1+x1-x 的定义域为(-1,1).由f(x)<0,可得0<1+x1-x <1,解得-1<x <0.答案:A二、填空题7.(2014·安徽卷)⎝ ⎛⎭⎪⎫1681-34+log 354+log 345=________.解析:⎝ ⎛⎭⎪⎫1681-34+log 354+log 345=⎝ ⎛⎭⎪⎫23-3+log 31=278+0=278.答案:2788.函数y =log 12(x 2-6x +17)的值域是________.解析:x 2-6x +17=(x -3)2+8≥8,则y≤log 128=-3,即函数的值域为(-∞,-3].答案:(-∞,-3]9.(2015·天津卷)已知a >0,b >0,ab =8,则当a 的值为________时,log 2a ·log 2(2b)取得最大值.解析:由于a >0,b >0,ab =8,所以b =8a.所以log 2a ·log 2(2b)=log 2a ·log 2⎝ ⎛⎭⎪⎫16a =log 2a ·(4-log 2a)=-(log 2a -2)2+4,当且仅当log 2a =2,即a =4时,log 2a ·log 2(2b)取得最大值4. 答案:4 三、解答题10.已知函数f(x)=log a (x +1)-log a (1-x),a >0且a ≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明;(3)若a >1时,求使f(x)>0的x 的取值集合. 解:(1)f(x)=log a (x +1)-log a (1-x),则⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1. 故所求函数f(x)的定义域为{x|-1<x <1}. (2)由(1)知f(x)的定义域为{x|-1<x <1}, 且f(-x)=log a (-x +1)-log a (1+x) =-[log a (x +1)-log a (1-x)]=-f(x), 故f(x)为奇函数.(3)因为当a >1时,f(x)在定义域{x|-1<x <1}内是增函数,所以f(x)>0⇔x +11-x >1,解得0<x <1.所以使f(x)>0的x 的解集是{x|0<x <1}.11.设x∈[2,8]时,函数f(x)=12log a (ax)·log a (a 2x)(a >0,且a≠1)的最大值是1,最小值是-18,求a 的值.解:由题意知f(x)=12(log a x +1)·(log a x +2)=12(log 2a x +3log a x +2)=12(log a x +32)2-18. 当f(x)取最小值-18时,log a x =-32,又∵x∈[2,8],∴a ∈(0,1). ∵f(x)是关于log a x 的二次函数,∴函数f(x)的最大值必在x =2或x =8时取得. ①若12(log a 2+32)2-18=1,则a =2-13,此时f(x)取得最小值,x =(2-13)-32=2∉[2,8],舍去.②若12(log a 8+32)2-18=1,则a =12,此时f(x)取得最小值,x =⎝ ⎛⎭⎪⎫12-32=22∈[2,8],符合题意,∴a =12.。

【走向高考】2015届高考数学一轮总复习 2-7对数与对数函数课后强化作业 北师大版

【走向高考】2015届高考数学一轮总复习 2-7对数与对数函数课后强化作业 北师大版

"【走向高考】2015届高考数学一轮总复习 2-7对数与对数函数课后强化作业 北师大版 "基础达标检测一、选择题 1.函数y =1-1x -1的图像是( )[答案]B[解析]将y =-1x 的图像向右平移1个单位,再向上平移一个单位,即可得到函数y =1-1x -1的图像. 2.已知图①中的图像对应的函数为y =f (x ),则图②的图像对应的函数为( )A .y =f (|x |)B .y =|f (x )|C .y =f (-|x |)D .y =-f (|x |) [答案]C[解析]y =f (-|x |)=⎩⎪⎨⎪⎧f (-x ),x ≥0,f (x ),x <0.3.(文)(2013·某某高考)函数f (x )=ln(x 2+1)的图像大致是( )[答案]A[解析]本题考查函数的图像与性质. ∵f (-x )=ln[(-x )2+1]=ln(x 2+1)=f (x ), ∴f (x )是偶函数,排除C.∵x 2+1≥1, 则ln(x 2+1)≥0,且当x =0时f (0)=0, 所以排除B 、D ,选A.(理)(2013·某某高考)函数y =x 33x -1的图像大致是( )[答案]C[解析]本题考查函数图像的形状.函数的定义域为:3x -1≠0,∴x ≠0,排除A ; 取x =-1,则f (-1)=-113-1>0,排除B ;当x →+∞时,3x -1比x 3增大要快, ∴x 33x -1大于0而且趋向于0,排除D. 故选C.4.函数y=2x-x2的图像大致是()[答案]A[解析]本题考查了函数图像的性质,考查了学生的识图能力,以及对函数知识的把握程度和数形结合的思维能力,令2x=x2,y=2x与y=x2,由图看有3个交点,∴B、C排除,又x=-2时2-2-(-2)2<0,故选A.5.函数y=f(x)(x∈R)的图像如图所示,下列说法正确的是()①函数y=f(x)满足f(-x)=-f(x);②函数y=f(x)满足f(x+2)=f(-x);③函数y=f(x)满足f(-x)=f(x);④函数y=f(x)满足f(x+2)=f(x).A.①③B.②④C.①②D.③④[答案]C[解析]由图像可知,函数f(x)为奇函数且关于直线x=1对称;对于②,因为f(1+x)=f(1-x),所以f[1+(x+1)]=f[1-(x+1)],即f(x+2)=f(-x).故①②正确,选C.6.(2013·高考)函数f(x)的图像向右平移1个单位长度,所得图像与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x-1C.e-x+1D.e-x-1[答案]D[解析]∵曲线y=e x关于y轴对称的曲线为y=e-x,将y=e-x的图像向左平移1个单位即得到函数f(x)的图像,∴f(x)=e-(x+1),即f(x)=e-x-1.二、填空题7.设函数y=f(x)是最小正周期为2的偶函数,它在区间[0,1]上的图像如图中所示线段AB,则在区间[1,2]上,f(x)=________.[答案]x[解析]因为f(x)为偶函数,由偶函数的对称性可知,当x∈[-1,0]时f(x)=x+2,所以当x∈[1,2]时,x-2∈[-1,0],又f(x)是周期为2的偶函数,故当x∈[1,2]时,f(x)=f(x-2)=(x -2)+2=x.8.已知函数f(x)的图像如图所示,则函数g(x)=log2f(x)的定义域是________.[答案](2,8][解析]当f(x)>0时,函数g(x)=log2f(x)有意义,由函数f(x)的图像知满足f(x)>0的x∈(2,8].9.(2014·某某调研)设f(x)表示-x+6和-2x2+4x+6中较小者,则函数f(x)的最大值是________.[答案]6[解析]在同一坐标系中,作出y=-x+6和y=-2x2+4x+6的图像如图所示,可观察出当x=0时函数f(x)取得最大值6.三、解答题10.若1<x<3,a为何值时x2-5x+3+a=0有两解、一解、无解?[解析]原方程化为:a=-x2+5x-3,①作出函数y=-x2+5x-3(1<x<3)的图像如图,显然该图像与直线y =a 的交点的横坐标是方程①的解, 由图可知:当 3<a <134时,原方程有两解;当1<a ≤3或a =1314时,原方程有一解;当a >134或a ≤1时,原方程无解.能力强化训练一、选择题1.(2013·某某高考)函数y =f (x )的图像如图所示,在区间[a ,b ]上可找到n (n ≥2)个不同的数x 1,x 2,…,x n ,使得f (x 1)x 1=f (x 2)x 2=…=f (x n )x n,则n 的取值X 围为( )A .{2,3}B .{2,3,4}C .{3,4}D .{3,4,5}[答案]B[解析]如图所示f (x 1)x 1=f (x 2)x 2=…=f (x n )x n.可以看作点(x 1,f (x 1)),(x 2,f (x 2)),…,(x n ,f (x n ))与原点(0,0)连线的斜率.对于l 1,l 2,l 3满足条件的x 分别有2个、3个、4个,故选B.2.(文)(2014·宁都一中月考)已知a >b ,函数f (x )=(x -a )·(x -b )的图像如图所示,则函数g (x )=log a (x +b )的图像可能为( )[答案]B[解析]由函数f (x )=(x -a )(x -b )的图像可知,a >1,0<b <1,所以排除A ,D ;函数g (x )的图像是由函数u (x )=log a x 的图像向左平移b 个单位得到的,故选B.(理)(2014·某某调研)我们定义若函数f (x )为D 上的凹函数须满足以下两条规则:(1)函数在区间D 上的任何取值有意义;(2)对于区间D 上的任意n 个值x 1,x 2,…,x n ,总满足f (x 1)+f (x 2)+…+f (x n )≥nf (x 1+x 2+…+x n n ),那么下列四个图像中在[0,π2]上满足凹函数定义的是( )[答案]A[解析]要判断是不是凹函数,需要先明确凹函数的定义,由定义的第一点可以排除D ,在A ,B ,C 这三个选项中可以考虑特殊值法.取x 1=0,x 2=π2,则显然选项B ,C 不满足f (x 1)+f (x 2)≥2f (x 1+x 22),故选A.二、填空题3.(文)函数y =f (x )(x ∈[-2,2])的图像如图所示,则f (x )+f (-x )=________.[答案]0[解析]由图像可知f (x )为定义域上的奇函数.∴f (x )+f (-x )=f (x )-f (x )=0.(理)直线y =1与曲线y =x 2-|x |+a 有四个交点,则a 的取值X 围是________. [答案]⎝⎛⎭⎫1,54 [解析]如图,在同一直角坐标系内画出直线y =1与曲线y =x 2-|x |+a ,由图可知,a 的取值必须满足⎩⎪⎨⎪⎧a >14a -14<1,解得1<a <54.4.设f (x )是定义在R 上的周期为3的周期函数,如图表示该函数在区间(-2,1]上的图像,则f (2 014)+f (2 015)=________.[答案]3[解析]由于f (x )是定义在R 上的周期为3的周期函数,所以f (2014)+f (2015)=f (671×3+1)+f (672×3-1)=f (1)+f (-1),而由图像可知f (1)=1,f (-1)=2,所以f (2014)+f (2015)=1+2=3.三、解答题5.(文)已知函数f (x )=2x -a2x ,将y =f (x )的图像向右平移两个单位,得到y =g (x )的图像.(1)求函数y =g (x )的解析式;(2)若函数y =h (x )与函数y =g (x )的图像关于直线y =1对称,求函数y =h (x )的解析式. [解析](1)由题设,g (x )=f (x -2)=2x -2-a2x -2.(2)设(x ,y )在y =h (x )的图像上,(x 1,y 1)在y =g (x )的图像上,则⎩⎪⎨⎪⎧x 1=x ,y 1=2-y ,∴2-y =g (x ),y =2-g (x ), 即h (x )=2-2x -2+a2x -2.(理)设函数f (x )=x +1x 的图像为C 1,C 1关于点A (2,1)对称的图像为C 2,C 2对应的函数为g (x ).(1)求g (x )的解析式;(2)若直线y =m 与C 2只有一个交点,求m 的值和交点坐标.[解析](1)设点P (x ,y )是C 2上的任意一点,则P (x ,y )关于点A (2,1)对称的点为P ′(4-x,2-y ),代入f (x )=x +1x ,可得2-y =4-x +14-x ,即y =x -2+1x -4,∴g (x )=x -2+1x -4.(2)由⎩⎨⎧y =m ,y =x -2+1x -4,消去y ,得x 2-(m +6)x +4m +9=0,Δ=(m +6)2-4(4m +9), ∵直线y =m 与C 2只有一个交点, ∴Δ=0,解得m =0或m =4.当m =0时,经检验合理,交点为(3,0);word11 / 11 当m =4时,经检验合理,交点为(5,4).6.(2014·某某模拟)已知函数y =f (x )的定义域为R ,并对一切实数x ,都满足f (2+x )=f (2-x ).(1)证明:函数y =f (x )的图像关于直线x =2对称;(2)若f (x )是偶函数,且x ∈[0,2]时,f (x )=2x -1,求x ∈[-4,0]时的f (x )的表达式.[解析](1)证明:设P (x 0,y 0)是函数y =f (x )图像上任一点,则y 0=f (x 0),点P 关于直线x =2的对称点为P ′(4-x 0,y 0).因为f (4-x 0)=f [2+(2-x 0)]=f [2-(2-x 0)]=f (x 0)=y 0,所以P ′也在y =f (x )的图像上,所以函数y =f (x )的图像关于直线x =2对称.(2)当x ∈[-2,0]时,-x ∈[0,2],所以f (-x )=-2x -1.又因为f (x )为偶函数,所以f (x )=f (-x )=-2x -1,x ∈[-2,0].当x ∈[-4,-2]时,4+x ∈[0,-2],所以f (4+x )=2(4+x )-1=2x +7.而f (4+x )=f (-x )=f (x ),所以f (x )=2x +7,x ∈[-4,-2].所以f (x )=⎩⎪⎨⎪⎧2x +7,x ∈[-4,-2]-2x -1,x ∈[-2,0].。

(复习指导)第2章第6节 对数与对数函数Word版含解析(1)

(复习指导)第2章第6节 对数与对数函数Word版含解析(1)

第六节对数与对数函数一、教材概念·结论·性质重现1.对数的概念一般地,如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.2.对数的性质与运算法则(1)对数的运算法则如果a>0,且a≠1,M>0,N>0,那么①log a(MN)=log a M+log a N;②log a MN=log a M-log a N;③log a M n=n log a M (n∈R).(2)对数的性质①log a1=0;②log a a=1;③a log a N=N;④log a a N=N(a>0,且a≠1).(3)对数的换底公式log a b=log c blog c a(a>0,且a≠1;b>0;c>0,且c≠1).换底公式的三个重要结论(1)log a b=1 log b a.(2)loga mb n=nm log a b.(3)log a b·log b c·log c d=log a d.其中a>0,且a≠1,b>0,且b≠1,c>0,且c≠1,m,n∈R.(1)一般地,函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,定义域是(0,+∞).(2)对数函数的图象与性质 0<a <1a >1图象定义域 (0,+∞)值域R性质过定点(1,0),即x =1时,y =0当x >1时,y <0; 当0<x <1时,y >0当x >1时,y >0; 当0<x <1时,y <0减函数增函数对数函数图象的特征(1)由图可知,0<d <c <1<b <a .(2)对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a,1),⎝ ⎛⎭⎪⎫1a ,-1,函数图象只在第一、第四象限.指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线y =x 对称.二、基本技能·思想·活动体验1.判断下列说法的正误,对的打“√”,错的打“×”. (1)log a (MN )=log a M +log a N . (×) (2)log a x ·log a y =log a (x +y ).(×)(3)函数y=log2x及y=log133x 都是对数函数.(×) (4)对数函数y=log a x(a>0,且a≠1)在(0,+∞)上是增函数.(×)(5)函数y=ln 1+x1-x与y=ln(1+x)-ln(1-x)的定义域相同.(√)2.计算log29×log34+2log510+log50.25=()A.0 B.2C.4 D.6D解析:原式=2log23×(2log32)+log5(102×0.25)=4+log525=4+2=6.3.函数y=log a(x-1)+2(a>0,且a≠1)的图象恒过定点________.(2,2)解析:当x=2时,函数y=log a(x-1)+2(a>0,且a≠1)的值为2,所以图象恒过定点(2,2).4.函数y=lg|x|()A.是偶函数,在区间(-∞,0)上单调递增B.是偶函数,在区间(-∞,0)上单调递减C.是奇函数,在区间(0,+∞)上单调递减D.是奇函数,在区间(0,+∞)上单调递增B解析:y=lg|x|是偶函数,由图象知(图略),函数在(-∞,0)上单调递减,在(0,+∞)上单调递增.5.若函数y=f (x)是函数y=a x(a>0,且a≠1)的反函数,且f (2)=1,则f (x)=()A.log2x B.12x C.log0.5x D.2x-2A解析:由题意知f (x)=log a x(a>0,且a≠1).因为f (2)=1,所以log a2=1.所以a=2.所以f (x)=log2x.考点1 对数运算问题——基础性1.填空:(1)12lg 25+lg 2-lg 0.1-log 29×log 32的值是________. (2)已知2x =12,log 213=y ,则x +y 的值为________.(3)设2a =5b =m ,且1a +1b=2,则m =________.(1)-12 (2)2 (3)10 解析:(1)原式=lg 5+lg 2+12-2=1+12-2=-12.(2)因为2x =12,所以x =log 212, 所以x +y =log 212+log 213=log 24=2.(3)因为2a =5b =m >0,所以a =log 2m ,b =log 5m ,所以1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2.所以m 2=10.所以m =10.2.(2021·北京二中高三月考)在标准温度和大气压下,人体血液中氢离子的物质的量的浓度(单位mol/L ,记作[H +])和氢氧根离子的物质的量的浓度(单位mol/L ,记作[OH -])的乘积等于常数10-14.已知pH 值的定义为pH =-lg [H +],健康人体血液的pH 值保持在7.35~7.45之间,那么健康人体血液中的[H +][OH -]可以为(参考数据: lg 2≈0.30,lg 3≈0.48)( )A .12B .13C .16D .110C 解析:由题设有[H +][OH -]=[H +]210-14=1014[H +]2.又10-7.45≤[H +]≤10-7.35 ,所以10-0.9≤1014[H +]2≤10-0.7.所以-0.9≤lg1014[H +]2≤-0.7.又lg 12≈-0.3,lg13=-0.48,lg 16=-0.78,lg 110=-1,只有lg 16在范围之中.故选C .解决对数运算问题的常用方法(1)将真数化为底数的指数幂的形式进行化简. (2)将同底对数的和、差、倍合并.(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.(4)利用常用对数中的lg 2+lg 5=1.考点2 对数函数的图象及应用——综合性(1) 已知函数f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=ln(x +1),则函数f (x )的大致图象为( )C 解析:先作出当x ≥0时,f (x )=ln(x +1)的图象,显然图象经过点(0,0),再作此图象关于y 轴对称的图象,可得函数f (x )在R 上的大致图象,如选项C 中图象所示.(2)当0<x ≤12时,4x <log a x ,则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫0,22B .⎝ ⎛⎭⎪⎫22,1C .(1,2)D .(2,2)B 解析:易知0<a <1,函数y =4x 与y =log a x 的大致图象如图.由题意可知只需满足log a 12>412,解得a >22,所以22<a <1.故选B .1.将本例(2)中“4x <log a x ”变为“4x =log a x 有解”,则实数a 的取值范围为________.⎝⎛⎦⎥⎤0,22 解析:若方程4x =log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则函数y =4x 与函数y =log a x的图象在⎝ ⎛⎦⎥⎤0,12上有交点.由图象可知⎩⎨⎧0<a <1,log a 12≤2,解得0<a ≤22,即a 的取值范围为⎝⎛⎦⎥⎤0,22. 2.若本例(2)变为:已知不等式x 2-log a x <0对x ∈⎝ ⎛⎭⎪⎫0,12恒成立,则实数a 的取值范围为________.⎣⎢⎡⎭⎪⎫116,1 解析:由x 2-log a x <0得x 2<log a x .设f 1(x )=x 2,f 2(x )=log a x ,要使x ∈⎝ ⎛⎭⎪⎫0,12时,不等式x 2<log a x 恒成立,只需f 1(x )=x 2在⎝ ⎛⎭⎪⎫0,12上的图象在f 2(x )=log a x 图象的下方即可.当a >1时,显然不成立;当0<a <1时,如图所示.要使x 2<log a x 在x ∈⎝ ⎛⎭⎪⎫0,12上恒成立,需f 1⎝ ⎛⎭⎪⎫12≤f 2⎝ ⎛⎭⎪⎫12, 所以有⎝ ⎛⎭⎪⎫122≤log a 12,解得a ≥116,所以116≤a <1.即实数a 的取值范围是⎣⎢⎡⎭⎪⎫116,1.利用对数函数的图象解决的两类问题及技巧(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.1.下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( ) A .y =ln(1-x ) B .y =ln(2-x ) C .y =ln(1+x )D .y =ln(2+x )B 解析:易知y =ln x 与y =ln(-x )的图象关于y 轴对称,将y =ln(-x )的图象向右平移2个单位长度所得图象y =ln[-(x -2)]=ln(2-x )即与y =ln x 的图象关于直线x =1对称.2.已知函数f (x )=⎩⎨⎧log 2x ,x >0,3x ,x ≤0.关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.(1,+∞) 解析:问题等价于函数y =f (x )与y =-x +a 的图象有且只有一个交点,结合图象可知a >1.考点3 对数函数的性质及应用——应用性考向1 比较函数值的大小设a =0.50.4,b =log 0.40.3,c =log 80.4,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <b <a C .c <a <b D .b <c <aC 解析:因为0<a =0.50.4<0.50=1,b =log 0.40.3>log 0.40.4=1,c =log 80.4<log 81=0,所以c <a <b .比较对数值大小的常见类型及解题方法常见类型 解题方法底数为同一常数 可由对数函数的单调性直接进行判断 底数为同一字母 需对底数进行分类讨论底数不同,真数相同 可以先用换底公式化为同底后,再进行比较 底数与真数都不同常借助1,0等中间量进行比较考向2 对数方程或不等式问题(1)设函数f (x )=⎩⎨⎧log 2x ,x >0,log 12(-x ),x <0.若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)C 解析:⎩⎪⎨⎪⎧a >0,log 2a >-log 2a 或⎩⎪⎨⎪⎧a <0,-log 2(-a )>log 2(-a ), 解得a >1或-1<a <0.故选C .(2)方程log 2(x -1)=2-log 2(x +1)的解为________.x=5解析:原方程变形为log2(x-1)+log2(x+1)=log2(x2-1)=2,即x2-1=4,解得x=±5.又x>1,所以x= 5.简单对数不等式问题的求解策略(1)解决简单的对数不等式,应先利用对数的运算性质化为同底数的对数值,再利用对数函数的单调性转化为一般不等式求解.(2)对数函数的单调性和底数a的值有关,在研究对数函数的单调性时,要按0<a<1和a>1进行分类讨论.(3)某些对数不等式可转化为相应的函数图象问题,利用数形结合法求解.考向3对数函数性质的综合问题若函数f (x)=log2(x2-ax-3a)在区间(-∞,-2]上单调递减,则实数a 的取值范围是()A.(-∞,4) B.(-4,4]C.(-∞,-4)∪[-2,+∞) D.[-4,4)D解析:由题意得x2-ax-3a>0在区间(-∞,-2]上恒成立,且函数y=x2-ax-3a在(-∞,-2]上单调递减,则a2-(-2)a-3a>0,解得-2≥-2且(-2)4≤a<4.所以实数a的取值范围是[-4,4).故选D.解决对数函数性质的综合问题的注意点(1)要分清函数的底数a∈(0,1),还是a∈(1,+∞).(2)确定函数的定义域,无论研究函数的什么性质或利用函数的某个性质,都要在其定义域上进行.(3)转化时一定要注意对数问题转化的等价性.1.(2019·全国卷Ⅰ)已知a =log 20.2,b =20.2,c =0.20.3,则( ) A .a <b <c B .a <c <b C .c <a <bD .b <c <aB 解析:因为a =log 20.2<log 21=0,b =20.2>20=1,0<c =0.20.3<0.20=1,所以a <c <b .故选B .2.已知不等式log x (2x 2+1)<log x 3x <0成立,则实数x 的取值范围是________. ⎝ ⎛⎭⎪⎫13,12 解析:原不等式⇔⎩⎪⎨⎪⎧ 0<x <1,2x 2+1>3x >1①或⎩⎪⎨⎪⎧x >1,2x 2+1<3x <1②.解不等式组①,得13<x <12;不等式组②无解.所以实数x 的取值范围是⎝ ⎛⎭⎪⎫13,12.3.若函数 f (x )=log a (x 2-x +2)在区间[0,2]上的最大值为2,则实数a =________.2 解析:令u (x )=x 2-x +2,则u (x )在[0,2]上的最大值u (x )max =4,最小值u (x )min =74. 当a >1时,y =log a u 是增函数,f (x )max =log a 4=2,得a =2;当0<a <1时,y =log a u 是减函数,f (x )max =log a 74=2,得a =72(舍去).故a =2.。

菲翔学校高考数学一轮复习 第2章第6课时 对数与对数函数课时作业 文 试题

菲翔学校高考数学一轮复习 第2章第6课时 对数与对数函数课时作业 文  试题

墨达哥州易旺市菲翔学校第2章第6课时(本栏目内容,在学生用书中以活页形式分册装订!)一、选择题1.函数y=的定义域是()A.{x|0<x<2} B.{x|0<x<1或者1<x<2}C.{x|0<x≤2}D.{x|0<x<1或者1<x≤2}解析:要使函数有意义只需要解得0<x<1或者1<x≤2,∴定义域为{x|0<x<1或者1<x≤2}.答案:D2.设a=lge,b=(lge)2,c=lg,那么()A.a>b>c B.a>c>bC.c>a>b D.c>b>a解析:∵0<lge<1,∴lge>lge>(lge)2.∴a>c>b.答案:B3.假设函数y=f(x)是函数y=a x(a>0,且a≠1)的反函数,其图象经过点(,a),那么f(x)=() A.log2x B.C.log x D.x2解析:由题意f(x)=log a x,∴a=log a a=,∴f(x)=log x.答案:C4.0<log a2<log b2,那么a、b的关系是()A.0<a<b<1 B.0<b<a<1C.b>a>1 D.a>b>1解析:由得,0<<⇒log2a>log2b>0.∴a>b>1.答案:D5.函数y=log2的图象()A.关于原点对称B.关于直线y=-x对称C.关于y轴对称D.关于直线y=x对称解析:∵f(x)=log2,∴f(-x)=log2=-log2.∴f(-x)=-f(x),∴f(x)是奇函数.应选A.答案:A6.(2021·卷)设函数f(x)=假设f(a)>f(-a),那么实数a的取值范围是() A.(-1,0)∪(0,1) B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(0,1)解析:假设a>0,那么由f(a)>f(-a)得log2a>log a=-log2a,即log2a>0,∴a>1.假设a<0,那么由f(a)>f(-a)得log(-a)>log2(-a),即-log2(-a)>log2(-a),∴log2(-a)<0,∴0<-a<1,即-1<a<0.综上可知,-1<a<0或者a>1.答案:C二、填空题7.设g(x)=那么g=________.解析:g=ln<0,∴g=g=e ln=.答案:8.函数y=log3(x2-2x)的单调减区间是________.解析:令u=x2-2x,那么y=log3u.∵y=log3u是增函数,u=x2-2x>0的减区间是(-∞,0),∴y=log3(x2-2x)的减区间是(-∞,0).答案:(-∞,0)9.函数f(x)=,那么使函数f(x)的图象位于直线y=1上方的x的取值范围是________.解析:当x≤0时,由3x+1>1,得x+1>0,即x>-1.∴-1<x≤0.当x>0时,由log2x>1,得x>2.∴x的取值范围是{x|-1<x≤0或者x>2}.答案:{x|-1<x≤0或者x>2}三、解答题10.f(x)=log a(a x-1)(a>0,且a≠1).(1)求f(x)的定义域;(2)讨论函数f(x)的单调性.【解析方法代码108001018】解析:(1)由a x-1>0,得a x a>1时,x>0;当0<a<1时,x<0.∴当a>1时,f(x)的定义域为(0,+∞);当0<a<1时,f(x)的定义域为(-∞,0).(2)当a>1时,设0<x1<x2,那么1<a x1<a x2,故0<a x1-1<a x2-1,∴log a(a x1-1)<log a(a x2-1),∴f(x1)<f(x2),故当a>1时,f(x)在(0,+∞)上是增函数.类似地,当0<a<1时,f(x)在(-∞,0)上为增函数.11.f(x)=log a x(a>0且a≠1),假设对于任意的x∈都有|f(x)|≤1成立,试求a的取值范围.【解析方法代码108001019】解析:∵f(x)=log a x,那么y=|f(x)|的图象如右图.由图示,要使x∈时恒有|f(x)|≤1,只需≤1,即-1≤log a≤1,即log a a-1≤log a≤log a a,亦当a>1时,得a-1≤≤a,即a≥3;当0<a<1时,得a-1≥≥a,得0<a≤.综上所述,a的取值范围是∪[3,+∞).12.函数f(x)=log4(ax2+2x+3).(1)假设f(1)=1,求f(x)的单调区间;(2)是否存在实数a,使f(x)的最小值为0?假设存在,求出a的值;假设不存在,说明理由.解析:(1)∵f(1)=1,∴log4(a+5)=1,因此a+5=4,a=-1,这时f(x)=log4(-x2+2x+3).由-x2+2x+3>0得-1<x<3,函数定义域为(-1,3).令g(x)=-x2+2x+3.那么g(x)在(-∞,1)上递增,在(1,+∞)上递减,又y=log4x在(0,+∞)上递增,所以f(x)的单调递增区间是(-1,1),递减区间是(1,3).(2)假设存在实数a使f(x)的最小值为0,那么h(x)=ax2+2x+3应有最小值1,因此应有解得a=.故存在实数a=使f(x)的最小值等于0.。

高考数学一轮复习 第2章 函数、导数及其应用 第6讲 对数与对数函数讲义 理(含解析)-人教版高三全

高考数学一轮复习 第2章 函数、导数及其应用 第6讲 对数与对数函数讲义 理(含解析)-人教版高三全

第6讲对数与对数函数[考纲解读] 1.理解对数的概念及其运算性质,能用换底公式将一般对数转化成自然对数或常用对数,熟悉对数在简化运算中的作用.2.理解对数函数的概念及对数函数的相关性质,掌握其图象通过的特殊点.(重点、难点)3.通过具体实例了解对数函数模型所刻画的数量关系,并体会对数函数是一类重要的函数模型.y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数.[考向预测] 从近三年高考情况来看,本讲为高考中的一个热点.预测2020年高考主要以考查对数函数的单调性的应用、最值、比较大小为主要命题方向,此外,与对数函数有关的复合函数也是一个重要的考查方向,主要以复合函数的单调性、恒成立问题呈现.1.对数2.对数函数的图象与性质续表3.反函数指数函数y =a x (a >0,且a ≠1)与对数函数□01y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线□02y =x 对称.1.概念辨析(1)log 2x 2=2log 2x .( )(2)函数y =log 2(x +1)是对数函数.( )(3)函数y =ln 1+x1-x 与y =ln (1+x )-ln (1-x )的定义域相同.( )(4)当x >1时,若log a x >log b x ,则a <b .( ) 答案 (1)× (2)× (3)√ (4)×2.小题热身(1)已知a >0,a ≠1,函数y =a x与y =log a (-x )的图象可能是( )答案 B解析 y =log a (-x )的定义域是(-∞,0),所以排除A ,C ;对于选项D ,由y =a x的图象知0<a <1,由y =log a (-x )的图象知a >1,矛盾,故排除D.故选B.(2)设a =log 213,b =e -12 ,c =ln π,则( )A .c <a <bB .a <c <bC .a <b <cD .b <a <c 答案 C解析 a =log 213<0,b =e - 12 ∈(0,1),c =ln π>1,所以a <b <c .(3)有下列结论:①lg (lg 10)=0;②lg (ln e)=0;③若lg x =1,则x =10;④若log 22=x ,则x =1;⑤若log m n ·log 3m =2,则n =9.其中正确结论的序号是________.答案 ①②③④⑤解析 lg (lg 10)=lg 1=0,故①正确;lg (ln e)=lg 1=0,故②正确;③④正确;log m n ·log 3m =log 3nlog 3m·log 3m =log 3n =2,故n =9,故⑤正确.(4)若函数y =f (x )是函数y =2x的反函数,则f (2)=________. 答案 1解析 由已知得f (x )=log 2x ,所以f (2)=log 22=1.题型 一 对数式的化简与求值1.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3-x+1,x ≤0,则f [f (1)]+f ⎝⎛⎭⎪⎫log 312的值是________.答案 5解析 因为f (1)=log 21=0,所以f [f (1)]=f (0)=2. 因为log 312<0,所以f ⎝ ⎛⎭⎪⎫log 312=3-log 312 +1 =3log 32+1=2+1=3.所以f [f (1)]+f ⎝ ⎛⎭⎪⎫log 312=2+3=5.2.计算下列各式: (1)lg 2+lg 5-lg 8lg 50-lg 40;(2)log 34273log 5[4 12 log 210-(33) 23 -7log 72].解 (1)原式=lg 2×58lg 5040=lg54lg 54=1.=⎝ ⎛⎭⎪⎫34log 33-log 33·log 5(10-3-2) =⎝ ⎛⎭⎪⎫34-1log 55=-14.3.已知log 189=a,18b=5,试用a ,b 表示log 3645. 解 因为log 189=a,18b=5,所以log 185=b ,于是log 3645=log 1845log 1836=log 189×51+log 182=a +b 1+log 18189=a +b2-a.对数运算的一般思路(1)拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算性质化简合并.(2)合:将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.如举例说明2(1).(3)转化:a b=N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.如举例说明3中18b=5的变形.计算下列各式:(1)计算(lg 2)2+lg 2·lg 50+lg 25的结果为________; (2)若lg x +lg y =2lg (2x -3y ),则log 32 xy 的值为________;(3)计算:(log 32+log 92)·(log 43+log 83)=________. 答案 (1)2 (2)2 (3)54解析 (1)原式=lg 2(lg 2+lg 50)+lg 52=lg 2×lg 100+2lg 5=2(lg 2+lg 5)=2lg 10=2. (2)由已知得lg (xy )=lg (2x -3y )2,所以xy =(2x -3y )2,整理得4x 2-13xy +9y 2=0,即4⎝ ⎛⎭⎪⎫x y 2-13×x y+9=0,解得x y =1或x y =94.由x >0,y >0,2x -3y >0可得xy=1,不符合题意,舍去,所以log 32 x y =log 3294=2.(3)原式=⎝ ⎛⎭⎪⎫lg 2lg 3+lg 2lg 9·⎝ ⎛⎭⎪⎫lg 3lg 4+lg 3lg 8=⎝ ⎛⎭⎪⎫lg 2lg 3+lg 22lg 3·⎝ ⎛⎭⎪⎫lg 32lg 2+lg 33lg 2=3lg 22lg 3·5lg 36lg 2=54. 题型 二 对数函数的图象及应用1.(2019·某某模拟)函数f (x )=lg (|x |-1)的大致图象是( )答案 B解析 易知f (x )为偶函数,且f (x )=⎩⎪⎨⎪⎧lg x -1,x >1,lg -x -1,x <-1,当x >1时,y =lg x 的图象向右平移1个单位,可得y =lg (x -1)的图象,结合选项可知,f (x )的大致图象是B.2.当0<x ≤12时,4x<log a x ,则a 的取值X 围是( )A.⎝ ⎛⎭⎪⎫0,22 B.⎝ ⎛⎭⎪⎫22,1 C .(1,2) D .(2,2) 答案 B解析 构造函数f (x )=4x和g (x )=log a x ,画出两个函数在⎝ ⎛⎦⎥⎤0,12上的草图(图略),可知,若g (x )经过点⎝ ⎛⎭⎪⎫12,2,则a =22,所以a 的取值X 围为⎝ ⎛⎭⎪⎫22,1. 条件探究1 若举例说明2变为:若方程4x=log a x 在⎝ ⎛⎦⎥⎤0,12上有解,某某数a 的取值X围.解 若方程4x =log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则函数y =4x和函数y =log a x 在⎝ ⎛⎦⎥⎤0,12上有交点,由图象知⎩⎪⎨⎪⎧0<a <1,log a 12≤2,解得0<a ≤22. 条件探究2 若举例说明2变为:若不等式x 2-log a x <0对x ∈⎝ ⎛⎭⎪⎫0,12恒成立,某某数a的取值X 围.解 由x 2-log a x <0得x 2<log a x ,设f 1(x )=x 2,f 2(x )=log a x ,要使x ∈⎝ ⎛⎭⎪⎫0,12时,不等式x 2<log a x 恒成立,只需f 1(x )=x 2在⎝ ⎛⎭⎪⎫0,12上的图象在f 2(x )=log a x 图象的下方即可.当a >1时,显然不成立;当0<a <1时,如图所示,要使x 2<log a x 在x ∈⎝ ⎛⎭⎪⎫0,12上恒成立,需f 1⎝ ⎛⎭⎪⎫12≤f 2⎝ ⎛⎭⎪⎫12, 所以有⎝ ⎛⎭⎪⎫122≤log a 12,解得a ≥116,所以116≤a <1.即实数a 的取值X 围是⎣⎢⎡⎭⎪⎫116,1.条件探究3 若举例说明2变为:当0<x ≤14时,x <log a x ,某某数a 的取值X 围.解 若x <log a x 在x ∈⎝ ⎛⎦⎥⎤0,14时成立,则0<a <1,且y =x 的图象在y =log a x 图象的下方,如图所示,由图象知14<log a 14, 所以⎩⎪⎨⎪⎧0<a <1,a12 >14,解得116<a <1.即实数a 的取值X 围是⎝ ⎛⎭⎪⎫116,1.1.对数函数图象的特征(1)底数与1的大小关系决定了图象的升降,即a >1时,图象上升;0<a <1时,图象下降.(2)对数函数在同一直角坐标系中的图象如图,其中图象的相对位置与底数大小有关,图中0<c <d <1<a <b .在x 轴上侧,图象从左到右相应的底数由小变大; 在x 轴下侧,图象从右到左相应的底数由小变大. (无论在x 轴的上侧还是下侧,底数都按顺时针方向变大) 2.利用对数函数的图象可求解的三类问题(1)对数型函数图象的识别.解此类问题应从对数函数y =log a x 的图象入手,抓住图象上的三个关键点(a,1),(1,0),⎝ ⎛⎭⎪⎫1a,-1,特别地要注意a >1和0<a <1的两种不同情况.(2)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想求解.(3)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.如举例说明2.1.已知lg a +lg b =0(a >0且a ≠1,b >0且b ≠1),则函数f (x )=a x与g (x )=-log b x 的图象可能是( )答案 B解析 因为lg a +lg b =0,所以lg (ab )=0,所以ab =1,即b =1a,故g (x )=-log b x=-log 1ax =log a x ,则f (x )与g (x )互为反函数,其图象关于直线y =x 对称,结合图象知,B 正确.2.设实数a ,b 是关于x 的方程|lg x |=c 的两个不同实数根,且a <b <10,则abc 的取值X 围是________.答案 (0,1)解析 由图象可知0<a <1<b <10,又因为|lg a |=|lg b |=c ,所以lg a =-c ,lg b =c , 即lg a =-lg b ,lg a +lg b =0, 所以ab =1,于是abc =c ,而0<c <1. 故abc 的取值X 围是(0,1). 题型 三 对数函数的性质及应用角度1 比较对数值的大小1.(2018·某某高考)已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b 答案 D解析 因为e =2.71828…>2,所以a =log 2e>log 22=1;b =ln 2<ln e =1;又因为c =log 1213=log 23>log 22=1,又因为a =log 2e<log 23=c ,所以c >a >b .角度2 解对数不等式2.(2018·某某模拟)设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12 -x ,x <0,若f (a )>f (-a ),则实数a 的取值X 围是( ) A .(-1,0)∪(0,1) B .(-∞,-1)∪(1,+∞) C .(-1,0)∪(1,+∞) D .(-∞,-1)∪(0,1) 答案 C解析 若a >0,则log 2a >log 12 a ,即2log 2a >0,所以a >1.若a <0,则log 12 (-a )>log 2(-a ),即2log 2(-a )<0,所以0<-a <1,-1<a <0.综上知,实数a 的取值X 围是(-1,0)∪(1,+∞). 角度3 与对数函数有关的综合问题 3.已知函数f (x -3)=log ax6-x(a >0,且a ≠1). (1)判断f (x )的奇偶性,并说明理由; (2)当0<a <1时,求函数f (x )的单调区间.解 令x -3=u ,则x =u +3,于是f (u )=log a 3+u3-u (a >0,且a ≠1,-3<u <3),所以f (x )=log a 3+x 3-x(a >0,且a ≠1,-3<x <3).(1)因为f (-x )+f (x )=log a 3-x 3+x +log a 3+x3-x =log a 1=0,所以f (-x )=-f (x ).又定义域(-3,3)关于原点对称.所以f (x )是奇函数.(2)令t =3+x 3-x =-1-6x -3,则t 在(-3,3)上是增函数,当0<a <1时,函数y =log a t是减函数,所以f (x )=log a3+x3-x(0<a <1)在(-3,3)上是减函数, 即函数f (x )的单调递减区间是(-3,3).1.比较对数值大小的方法若底数为同一常数可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论若底数不同,真数相同 可以先用换底公式化为同底后,再进行比较 若底数与真数都不同 常借助1,0等中间量进行比较,如举例说明12.求解对数不等式的两种类型及方法 类型 方法形如 log a x >log a b 借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论形如 log a x >b 需先将b 化为以a 为底的对数式的形式,再借助y =log a x 的单调性求解3.解决与对数函数有关的综合问题单调性的步骤 一求求出函数的定义域二判判断对数函数的底数与1的关系,分a >1与0<a <1两种情况判断内层函数和外层函数的单调性,运用复合函数“同增异减”的原则判断函数的单调性,如举例说明3(2)1.(2016·全国卷Ⅰ)若a >b >1,0<c <1,则( ) A .a c<b cB .ab c<ba cC .a log b c <b log a cD .log a c <log b c 答案 C解析 解法一:由a >b >1,0<c <1,知a c>b c,A 错误; ∵0<c <1,∴-1<c -1<0,∴y =x c -1在x ∈(0,+∞)上是减函数,∴bc -1>ac -1,又ab >0,∴ab ·bc -1>ab ·ac -1,即ab c >ba c,B 错误;易知y =log c x 是减函数,∴0>log c b >log c a ,∴log b c <log a c ,D 错误;由log b c <log a c <0,得-log b c >-log a c >0,又a >b >1>0,∴-a log b c >-b log a c >0,∴a log b c <b log a c ,故C 正确.解法二:依题意,不妨取a =10,b =2,c =12.易验证A ,B ,D 错误,只有C 正确.2.已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0log 2x ,x >0,若f [f (x )]≥-2,则x 的取值X 围为( )A .[-2,1]B .[42,+∞)C .[-2,1]∪[42,+∞) D.[0,1]∪[42,+∞) 答案 C解析 解法一:①若x ≤0,则f [f (x )]=log 22x=x ≥-2,所以-2≤x ≤0.②若x >1,则f [f (x )]=log 2(log 2x )≥-2,log 2x ≥2-2,x ≥2 14 =42,所以x ≥42. ③若0<x ≤1,则f [f (x )]=2log 2x=x ≥-2, 所以0<x ≤1.综上知,x 的取值X 围是[-2,1]∪[42,+∞). 解法二:作出函数f (x )的图象如下:由图象可知,若f [f (x )]≥-2,则f (x )≥14或f (x )≤0.再次利用图象可知x 的取值X 围是[-2,1]∪[42,+∞). 3.函数f (x )=log 2x ·log 2(2x )的最小值为________.答案 -14解析 f (x )=12log 2x ·2log 2(2x )=log 2x (log 22+log 2x ) =log 2x +(log 2x )2=⎝⎛⎭⎪⎫log 2x +122-14, 所以当log 2x =-12,即x =22时,f (x )取得最小值-14.。

2015届高考数学一轮总复习 2-5对数与对数函数

2015届高考数学一轮总复习 2-5对数与对数函数

2015届高考数学一轮总复习 2-5对数与对数函数基础巩固强化一、选择题1.(2013·湖南省五市十校联考)已知函数f (x )=⎩⎪⎨⎪⎧log 2(x +1),x >32x -3+1,x ≤3满足f (a )=3,则f (a -5)的值为( )A .log 23 B.1716 C.32 D .1[答案] C[解析] ∵f (a )=3,∴⎩⎪⎨⎪⎧a ≤3,2a -3+1=3, ①或⎩⎪⎨⎪⎧a >3,log 2(a +1)=3. ② ①无解,由②得,a =7,所以f (a -5)=22-3+1=32,选C.2.(文)已知0<a <1,log a m <log a n <0,则( ) A .1<n <m B .1<m <n C .m <n <1 D .n <m <1[答案] A[解析] 由0<a <1得函数y =log a x 为减函数. 又由log a m <log a n <0=log a 1,得m >n >1,故应选A. (理)(2013·山东威海期末)下列四个数中最大的是( ) A .(ln2)2 B .ln(ln2) C .ln 2 D .ln2[答案] D[解析] 由0<ln2<1,得ln(ln2)<0,因此ln(ln2)是最小的一个;由于y =ln x 为增函数,因此ln 2<ln2;那么最大的只能是A 或D ;因为0<ln2<1,故(ln2)2<ln2.3.(文)(2013·宣城二模)若a =ln 264,b =ln2·ln3,c =ln 2π4,则a ,b ,c 的大小关系是( )A .a >b >cB .c >a >bC .c >b >aD .b >a >c[答案] A[解析] ∵ln6>lnπ>1,∴a >c ,排除B ,C ;b =ln2·ln3<(ln2+ln32)2=ln 264=a ,排除D ,故选A.(理)若x ∈(110,1),a =lg x ,b =lg 2x ,c =12lg x ,则a 、b 、c 的大小关系是( )A .a <b <cB .a <c <bC .c <a <bD .b <c <a[答案] B[解析] ∵110<x <1,∴-1<lg x <0,∴0<lg 2x <1,∵a -c =lg x -12lg x =12lg x <0,∴a <c ,故a <c <b ,故选B.4.(文)(2013·开封一模)已知f (x )是奇函数,且f (2-x )=f (x ),当x ∈(2,3)时,f (x )=log 2(x -1),则当x ∈(1,2)时,f (x )=( )A .-log 2(4-x )B .log 2(4-x )C .-log 2(3-x )D .log 2(3-x ) [答案] C[解析] 依题意得f (x +2)=f (-x )=-f (x ),f (x +4)=-f (x +2)=f (x ).当x ∈(1,2)时,x -4∈(-3,-2),4-x ∈(2,3),故f (x )=f (x -4)=-f (4-x )=-log 2(4-x -1)=-log 2(3-x ),选C.(理)(2013·乌鲁木齐第一次诊断)函数f (x )=log 2(1+x ),g (x )=log 2(1-x ),则f (x )-g (x )( ) A .是奇函数 B .是偶函数C .既不是奇函数又不是偶函数D .既是奇函数又是偶函数 [答案] A[解析] f (x )-g (x )的定义域为(-1,1),记F (x )=f (x )-g (x )=log 21+x 1-x ,则F (-x )=log 21-x1+x=log 2(1+x 1-x )-1=-log 21+x1-x=-F (x ),故f (x )-g (x )是奇函数.5.(文)函数f (x )=|log 12x |的图象是( )[答案] A[解析] f (x )=|log 12x |=|log 2x |=⎩⎪⎨⎪⎧log 2x (x ≥1),-log 2x (0<x <1).故选A. [点评] 可用筛选取求解,f (x )的定义域为{x |x >0},排除B 、D ,f (x )≥0,排除C ,故选A. (理)(2012·河南豫东、豫北十所名校段测)函数y =ln|1x |与y =-x 2+1在同一平面直角坐标系内的大致图象为( )[答案] C[解析] y =ln|1x |为偶函数,当x >0时,y =ln 1x =-ln x 为减函数,故排除A 、B ;y =-x 2+1≤0,其图象在x 轴下方,排除D ,故选C.6.(文)(2012·湖南文,7)设a >b >1,c <0,给出下列三个结论: ①c a >cb ; ②ac <b c ; ③log b (a -c )>log a (b -c ).其中所有的正确结论的序号是( ) A .① B .①② C .②③ D .①②③[答案] D[解析] 本题考查不等式性质,比较大小.c a -c b =c (b -a )ab ,∵a >b >1,c <0,∴c (b -a )ab >0,c a >cb ,①正确;a >b >1,ac <b c ,②正确;∵a -c >b -c >1,∴log b (a -c )>log b (b -c )>log a (b -c ),③正确. [点评] 比较大小的方法有作差法、单调性法等.(理)(2013·北京东城区检测)给出下列命题:①在区间(0,+∞)上,函数y =x -1,y =x 12 ,y =(x -1)2,y =x 3中有3个是增函数;②若log m 3<log n 3<0,则0<n <m <1;③若函数f (x )是奇函数,则f (x-1)的图象关于点A (1,0)对称;④已知函数f (x )=⎩⎪⎨⎪⎧3x -2,x ≤2log 3(x -1),x >2,则方程f (x )=12有2个实数根,其中正确命题的个数为( )A .1B .2C .3D .4 [答案] C[解析] 命题①中,在(0,+∞)上只有y =x 12,y =x 3为增函数,故①不正确;②中第1个不等式等价于log 31>log 3m >log 3n ,故0<n <m <1,②正确;③中函数y =f (x -1)的图象是把y =f (x )的图象向右平移1个单位得到的,由于函数y =f (x )的图象关于坐标原点对称,故函数y =f (x -1)的图象关于点A (1,0)对称,③正确;④中当3x -2=12时,x =2+log 312<2,当log 3(x -1)=12时,x =1+3>2,故方程f (x )=12有2个实数根,④正确.故选C.二、填空题 7.(文)函数y =log 23-x 2的定义域为________. [答案] {x |1≤x <2或-2<x ≤-1}[解析] 要使函数有意义,应满足log 23 (2-x 2)≥0,∵y =log 23 x 为减函数,∴0<2-x 2≤1,∴1≤x 2<2,∴1≤x <2或-2<x ≤-1.(理)函数f (x )=ln ⎝⎛⎭⎫1+1x -1的定义域是________.[答案] (-∞,0)∪(1,+∞)[解析] 要使f (x )有意义,应有1+1x -1>0,∴xx -1>0,∴x <0或x >1. 8.(文)(2013·河南鹤壁一模)若正整数m 满足10m -1<2512<10m ,则m =________.(lg2≈0.3010) [答案] 155[解析] 不等式10m-1<2512<10m 两边同时取以10为底的对数,则⎩⎪⎨⎪⎧m -1<512lg2,m >512lg2,∴154.112<m <155.112,∴m =155.(理)(2013·天津塘沽一模)若f (x )=ax -12,且f (lg a )=10,则a =________.[答案] 10或1010[解析]9.方程log 3(x 2-10)=1+log 3x 的解是________. [答案] x =5[解析] 原方程化为log 3(x 2-10)=log 3(3x ),由于log 3x 在(0,+∞)上严格单增,则x 2-10=3x ,解之得x 1=5,x 2=-2.∵要使log 3x 有意义,应有x >0,∴x =5.三、解答题10.(文)(2013·广西桂林一模)已知函数f (x )=log a (a x -1)(a >0且a ≠1). (1)证明函数f (x )的图象在y 轴的一侧;(2)设A (x 1,y 1)、B (x 2,y 2)(x 1<x 2)是f (x )图象上两点,证明直线AB 的斜率大于0. [证明] (1)由a x -1>0,得a x >1.当a >1时,解得x >0,此时f (x )的图象在y 轴右侧; 当0<a <1时,解得x <0,此时f (x )的图象在y 轴左侧. ∴对a >0且a ≠1的任意实数a ,f (x )的图象总在y 轴一侧.(理)(2013·北京朝阳期末)已知f (x )=log 3x 2+ax +b x ,x ∈(0,+∞),是否存在实数a ,b ,使f (x )同时满足下列条件:①在(0,1)上是减函数,在[1,+∞)上是增函数;②f (x )的最小值是1.若存在,求出a ,b 的值;若不存在,请说明理由.[解析] 假设存在实数a ,b 使命题成立,∵f (x )在(0,1)上是减函数,在[1,+∞)上是增函数,∴x =1时,f (x )取得最小值1, ∴log 31+a +b 1=1,∴a +b =2.∵f (x )在(0,1)上是减函数, 设0<x 1<x 2<1, ∴f (x 1)>f (x 2)恒成立,即x 21+ax 1+b x 1>x 22+ax 2+b x 2恒成立,整理得(x 1-x 2)(x 1x 2-b )x 1x 2>0恒成立.∵0<x 1<x 2<1,∴x 1-x 2<0,x 1x 2>0, ∴x 1x 2-b <0恒成立,即x 1x 2<b 恒成立, 而x 1x 2<1,∴b ≥1.同理,f (x )在[1,+∞)上是增函数, 可得b ≤1,∴b =1.又∵a +b =2,∴a =1. 故存在a =1,b =1同时满足题中条件.能力拓展提升一、选择题11.(文)(2012·广东深圳市一调)已知符号函数sgn(x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则函数f (x )=sgn(ln x )-ln 2x的零点个数为( )A .4B .3C .2D .1 [答案] C[解析] 由题意得f (x )=sgn(ln x )-ln 2x =⎩⎪⎨⎪⎧1-ln 2x , x >1,-ln 2x , x =1,-1-ln 2x , 0<x <1,则令1-ln 2x =0⇒x =e 或x =1e(舍去);令-ln 2x =0⇒x =1;当-1-ln 2x =0时,方程无解,所以f (x )=sgn(ln x )-ln 2x 有两个零点,故选C.(理)已知函数f (x )=(15)x -log 3x ,若实数x 0是方程f (x )=0的解,且0<x 1<x 0,则f (x 1)的值( )A .不小于0B .恒为正数C .恒为负数D .不大于0[答案] B[解析] 若实数x 0是方程f (x )=0的解,即x 0是函数y =(15)x 和y =log 3x 的图象的交点的横坐标,因为0<x 1<x 0,画图易知(15)x 1>log 3x 1,所以f (x 1)恒为正数.12.定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2014x +log 2014x ,则方程f (x )=0的实根的个数为( )A .1B .2C .3D .5 [答案] C[解析] 当x >0时,f (x )=0即2014x =-log 2014x ,在同一坐标系下分别画出函数f 1(x )=2014x ,f 2(x )=-log 2014x 的图象(图略),可知两个图象只有一个交点,即方程f (x )=0只有一个实根,又因为f (x )是定义在R 上的奇函数,所以当x <0时,方程f (x )=0也有一个实根,又因为f (0)=0,所以方程f (x )=0的实根的个数为3.13.(2013·湖南张家界一模)若log m n =-1,则m +3n 的最小值是( ) A .2 2 B .2 3 C .2 D.52[答案] B[解析] 由log m n =-1,得m -1=n ,则mn =1.由于m >0,n >0,∴m +3n ≥23mn =2 3.故选B. 二、填空题14.(文)(2013·安徽师大附中、安庆一中联考)已知函数f (x )的定义域为A ,若其值域也为A ,则称区间A 为f (x )的保值区间.若g (x )=x +m +ln x 的保值区间是[e ,+∞),则m 的值为________.[答案] -1[解析] 由题意得,g (x )的值域为[e ,+∞),由x ≥e 时,g ′(x )=1+1x >0,所以当x ≥e 时,g (x )为增函数,由题意可得g (e)=e +m +1=e ,解得m =-1.(理)对任意实数a 、b ,定义运算“*”如下:a *b =⎩⎪⎨⎪⎧a ,(a ≤b ),b ,(a >b ).则函数f (x )=log 12(3x -2)*log 2x的值域为________.[答案] (-∞,0][解析] 易知函数f (x )的定义域为(23,+∞),在同一直角坐标系中画出函数y =log 12 (3x -2)和y =log 2x 的图象,由a *b 的定义可知,f (x )的图象为图中实线部分,∴由图象可得f (x )=⎩⎨⎧log 2x ,(23<x ≤1),log 12(3x -2),(x >1).的值域为(-∞,0].15.(文)(2013·四川)lg 5+lg 20的值是________.[答案] 1[解析] lg 5+lg 20=lg 100=lg10=1.(理)(2013·北京)函数f (x )=⎩⎪⎨⎪⎧log 12 x ,x ≥12x , x <1的值域为________.[答案] (-∞,2)[解析] 当x ≥1时,log 12 x ≤log 12 1,即log 12 x ≤0;当x <1时,0<2x <21,即0<2x <2.故f (x )的值域为(-∞,2).三、解答题16.(文)已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.[解析] (1)由题意,3-ax >0对一切x ∈[0,2]恒成立,∵a >0且a ≠1,∴g (x )=3-ax 在[0,2]上是减函数,从而g (2)=3-2a >0得a <32.∴a 的取值范围为(0,1)∪⎝⎛⎭⎫1,32. (2)假设存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1. 由题设f (1)=1,即log a (3-a )=1,∴a =32,此时f (x )=log 32 ⎝⎛⎭⎫3-32x ,当x =2时,函数f (x )没有意义,故这样的实数a 不存在. (理)已知函数f (x )=log 12 2-axx -1(a 是常数且a <2).(1)求f (x )的定义域;(2)若f (x )在区间(2,4)上是增函数,求a 的取值范围. [解析] (1)∵2-axx -1>0,∴(ax -2)(x -1)<0,①当a <0时,函数的定义域为⎝⎛⎭⎫-∞,2a ∪(1,+∞); ②当a =0时,函数的定义域为(1,+∞); ③当0<a <2时,函数的定义域为⎝⎛⎭⎫1,2a .(2)∵f (x )在(2,4)上是增函数,∴只要使2-axx -1在(2,4)上是减函数且恒为正即可.令g (x )=2-axx -1,即当x ∈(2,4)时g ′(x )≤0恒成立且g (4)≥0. 解法一:g ′(x )=-a (x -1)-(2-ax )(x -1)2=a -2(x -1)2,∴当a -2<0,即a <2时,g ′(x )≤0.g (4)≥0,即1-2a ≥0,∴a ≤12,∴a ∈⎝⎛⎦⎤-∞,12. 解法二:∵g (x )=2-ax x -1=-a +2-ax -1,∴要使g (x )=-a +2-ax +1在(2,4)上是减函数,只需2-a >0,∴a <2,以下步骤同解法一.考纲要求1.理解对数的概念及其运算性质,会用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点. 3.知道对数函数是一类重要的函数模型.4.了解指数函数y =a x 与对数函数y =log a x 互为反函数(a >0,且a ≠1). 补充说明1.掌握对数函数图象过定点(1,0)且过(a,1);熟悉对数的性质、运算法则和换底公式;会用对数函数单调性比较对数式的大小和解对数不等式;熟练进行指对互化;清楚对数函数图象的分布规律.2.恒成立问题一般与函数最值有关,要与方程有解区别开来. 3.忽视对数函数的定义域是解题过程中常犯的错误,要引起足够重视. [例] 函数f (x )=log a (ax -3)在[1,3]上单调递增,则a 的取值范围是( ) A .(1,+∞) B .(0,1) C .(0,13)D .(3,+∞)[错解] 由于a >0,且a ≠1,∴y =ax -3是增函数,若函数f (x )为增函数,则y =log a x 必为增函数,所以a >1,故选A. [错因分析] 本题解答出错的根源就在于忽视了“函数在[1,3]上单调递增”这一条件,即要求函数f (x )在[1,3]上需有意义,也就是需使y =ax -3在[1,3]上恒大于零.[正确解答] 由于a >0,且a ≠1,∴y =ax -3为增函数,∴若函数f (x )为增函数,则y =log a x 必为增函数, 因此a >1.又y =ax -3在[1,3]上恒为正, ∴a -3>0,即a >3,故选D.4.(1)同底数的对数比较大小用单调性.(2)同真数的对数比较大小用图象或换底或转化为指数式. (3)作差或作商法(4)利用中间量0、1比较.5.对数函数图象在第一象限内底数越小,图象越靠近y 轴(逆时针底数依次变小),在直线x =1右侧,底大图低(区分x 轴上方与下方).6.在对数运算中,常常先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底和指对互化的运用.备选习题1.函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则1m +2n的最小值为( )A .6B .7C .8D .9 [答案] C[解析] ∵函数y =log a (x +3)-1的图象恒过点(-2,-1),∴-2m -n +1=0,即2m +n =1,于是1m +2n =(1m +2n )(2m +n )=2+2+n m +4m n ≥8.等号在n =12,m =14时成立.2.(2013·湖南)函数f (x )=ln x 的图象与函数g (x )=x 2-4x +4的图象的交点个数为( ) A .3 B .2 C .1 D .0 [答案] C[解析] 画出两函数的大致图象,可得两图象的交点个数为2. 3.已知函数f (x )=log a x 在[2,+∞)上恒有|f (x )|>1,则( ) A .0<a <12或1<a <2B .0<a <12或a >2C.12<a <1或1<a <2 D.12<a <1或a >2 [答案] C[解析] ①若a >1,则f (x )=log a x 在[2,+∞)上是增函数,且当x ≥2时,f (x )>0. 由|f (x )|>1得f (x )>1,即log a x >1. ∵当x ∈[2,+∞)时,log a x >1恒成立, ∴log a 2>1,∴log a 2>log a a ,∴1<a <2.②若0<a <1,则f (x )=log a x 在[2,+∞)上是减函数.11 同理可得12<a <1. [点评] 用数形结合法解更简便些.4.(2013·江西省七校联考)设a =0.64.2,b =70.6,c =log 0.67,则a ,b ,c 的大小关系是( )A .c <b <aB .c <a <bC .a <c <bD .a <b <c[答案] B[解析] 依题意,0<0.64.2<0.60=1,70.6>70=1,log 0.67<log 0.61=0,因此c <a <b ,选B.5.设f (x )=lg(21-x+a )是奇函数,且在x =0处有意义,则该函数是( ) A .(-∞,+∞)上的减函数B .(-∞,+∞)上的增函数C .(-1,1)上的减函数D .(-1,1)上的增函数[答案] D[解析] 由题意可知,f (0)=0,即lg(2+a )=0,解得a =-1,故f (x )=lg 1+x 1-x,函数f (x )的定义域是(-1,1),在此定义域内f (x )=lg 1+x 1-x =lg(1+x )-lg(1-x ),函数y 1=lg(1+x )是增函数,函数y 2=lg(1-x )是减函数,故f (x )=y 1-y 2是增函数.选D.。

高考数学一轮复习第二章函数导数及其应用第六节对数与对数函数学案文含解析新人教A版

高考数学一轮复习第二章函数导数及其应用第六节对数与对数函数学案文含解析新人教A版

高考数学一轮复习第二章函数导数及其应用第六节对数与对数函数学案文含解析新人教A 版第六节 对数对数函数2019考纲考题考情1.对数的概念 (1)对数的定义如果a x=N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数。

(2)几种常见对数(1)对数的性质 ①alog aN=N (a >0且a ≠1,N >0)。

②log a a N=N (a >0,且a ≠1)。

(2)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零,且不等于1,N >0)。

②log a b =1log b a,推广log a b ·log b c ·log c d =log a d 。

(3)对数的运算法则如果a >0,且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N 。

②log a M N=log a M -log a N 。

③log a M n=n log a M (n ∈R )。

④log am M n =n mlog a M (m ,n ∈R )。

3.对数函数的图象与性质4.y =a x与y =log a x (a >0,a ≠1)的关系指数函数y =a x与对数函数y =log a x 互为反函数,它们的图象关于直线y =x 对称。

1.指数与对数的等价关系:a x=N ⇔x =log a N 。

2.换底公式的三个重要结论 (1)log a b =1log b a; (2)log am b n=n mlog a b ;(3)log a b ·log b c ·log c d =log a d 。

3.对数函数的图象与底数大小的比较如图,作直线y =1,则该直线与四个函数图象交点的横坐标为相应的底数。

高考数学一轮总复习 专题2.6 对数及对数函数练习(含解析)文-人教版高三全册数学试题

高考数学一轮总复习 专题2.6 对数及对数函数练习(含解析)文-人教版高三全册数学试题

专题2.6 对数及对数函数真题回放1. 【2017高考某某文第6题】已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b << 【答案】C【考点】1.指数,对数;2.函数性质的应用【名师点睛】本题主要考查函数的奇偶性与指数、对数的运算问题,属于基础题型,首先根据奇函数的性质和对数运算法则,()2log 5a f =,再比较0.822log 5,log 4.1,2比较大小.2.【2017高考全国卷文第9题】已知函数()ln ln(2)f x x x =+-,则A . ()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称 【答案】C 【解析】试题分析:由题意知,(2)ln(2)ln ()f x x x f x -=-+=,所以()f x 的图象关于直线1x =对称,C 正确,D 错误;又112(1)'()2(2)x f x x x x x -=-=--(02x <<),在(0,1)上单调递增,在[1,2)上单调递减,A ,B 错误,故选C .【考点】函数性质【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+. 3. 【2017高考全国卷文第8题】函数2()ln(28)f x x x =-- 的单调递增区间是 A.(,2)-∞- B. (,1)-∞- C. (1,)+∞ D. (4,)+∞ 【答案】D4.【2015高考某某卷文第8题】 方程2)23(log )59(log 1212+-=---x x 的解为.【答案】2【解析】依题意)834(log )59(log 1212-⋅=---x x ,所以8345911-⋅=---x x ,令)0(31>=-t t x ,所以0342=+-t t ,解得1=t 或3=t ,当1=t 时,131=-x ,所以1=x ,而05911<--,所以1=x 不合题意,舍去;当3=t 时,331=-x ,所以2=x ,045912>=--,012312>=--,所以2=x 满足条件,所以2=x 是原方程的解. 【考点定位】对数方程.【名师点睛】利用24log 2=,)0,0(log log log >>=+n m mn n m a a a 将已知方程变形同底数2的两个对数式相等,再根据真数相等得到关于x 的指数方程,再利用换元法求解.与对数有关的问题,应注意对数的真数大于零.5.【2015高考某某卷文第8题】设函数()ln(1)ln(1)f x x x =+--,则()f x 是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数 C 、偶函数,且在(0,1)上是增函数 D 、偶函数,且在(0,1)上是减函数 【答案】A 【解析】【考点定位】利用导数研究函数的性质【名师点睛】利用导数研究函数()f x 在(a ,b)内的单调性的步骤:(1)求()'f x ;(2)确认()'f x 在(a ,b)内的符号;(3)作出结论:()'0f x >时为增函数;()'0f x <时为减函数.研究函数性质时,首先要明确函数定义域.6.【2015高考某某卷文第7题】在区间[]0,2上随机地取一个数x ,则事件“121-1log 2x ≤+≤()1”发生的概率为( ) (A )34(B )23 (C )13 (D )14【答案】A 【解析】由121-1log 2x ≤+≤()1得,11122211113log 2log log ,2,022222x x x ≤+≤≤+≤≤≤(),所以,由几何概型概率的计算公式得,332204P -==-,故选A .【考点定位】1.几何概型;2.对数函数的性质.【名师点睛】本题考查几何概型及对数函数的性质,在理解几何概型概率计算方法的前提下,解答本题的关键,是利用对数函数的单调性,求得事件发生的x X 围. 本题属于小综合题,较好地考查了几何概型、对数函数等基础知识. 7.【2015高考某某卷文第7题】已知定义在R 上的函数||()21()xm f x m 为实数为偶函数,记0.5(log 3),af 2b (log 5),c(2)f f m ,则,,a b c ,的大小关系为( )(A) b c a (B) b c a (C) b a c (D) b c a【答案】B 【解析】【考点定位】本题主要考查函数奇偶性及对数运算.【名师点睛】函数是高考中的重点与热点,客观题中也会出现较难的题,解决此类问题要充分利用相关结论.函数()0,1x my ab a a -=+>≠的图像关于直线x m = 对称,本题中求m 的值,用到了这一结论,本题中用到的另一个结论是对数恒等式:()log 0,1,0a Na N a a N =>≠>.考点分析考点 了解A 掌握B 灵活运用C指数与对数 B 指数函数的图像与性质B对数函数的图像与性质 B幂函数A融会贯通题型一 对数式计算 典例1(某某省实验中学2016-2017学年高二下学期月考)化简()()23231log 9log 48⎛⎫+= ⎪⎝⎭_____________.【答案】174【解析】()()22322332311lg3lg2117log 9log 4482lg2lg344⎛⎫⎛⎫⎛⎫+=+⨯=+= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭.故本题应填174. 【变式训练1】(某某省醴陵二中、醴陵四中2016-2017学年高二下学期期中)求下列表达式的值 (1)1324lg lg 8lg 2452493-+(2)()40.523927-7.5()(0.5)lg 25lg 4log 43-+-++- 【答案】1234【解析】根据实数指数幂的运算公式,即可求解上式的值.考点:实数指数幂的运算.【变式训练2】 (某某省2017届百所重点高中高三模拟试题文)设函数()39xxf x =+,则()3log 2f =______.【答案】6【解析】()2233log log 23log 39246f =+=+=知识: 对数的运算:①log MN a =log N M a a log + ②log N M NMa a alog log -= ③M n M a na log log =(M 、N >0, a >0, a ≠1)推广:M mnM a n a m log log =④换底公式:aNN b b a log log log =(a ,b >0,a ≠1,b ≠1)典例 2 (某某省简阳市2016-2017学年高一上学期期末)已知0.12a =72log 2c =,则,,a b c 的大小关系为( )A. c a b <<B. c b a <<C. b a c <<D. b c a << 【答案】A【解析】0.40.1221b =>>,7772log 2log 4log 71=<=,所以c a b <<.【变式训练1】(2015-2016学年某某花溪清华中学)设248log 3,log 6,log 9a b c ===,则下列关系中正确的是( )A .a b c >>B .a c b >>C .c b a >>D .c a b >> 【答案】A 【解析】:c b a >>,故选A.考点:对数【变式训练2】(某某省某某市牌头中学高一练习)已知0.90.7 1.1log 0.8,log 0.9, 1.1a b c ===,则,,a b c 的大小关系是( )A. a b c <<B. a c b <<C. b a c <<D. c a b <<知识:利用对数函数比较大小问题的处理方法:①看类型 ②同底用单调性 ③其它类型找中间量. 零和负数无对数,是求函数定义域的又一条原则.典例3 (某某省某某市牌头中学高一练习)324941log 7log 9log log 2a ⋅⋅=,则a =________ 【答案】22【变式训练】(必修1P63习题5改编)若log 34·log 48·log 8m=log 416,则m=.【解析】由已知有lg4lg3·lg8lg4·lg lg8m=2⇔lg m=2lg 3⇔m=9.解题技巧与方法总结当对数函数的底数与指数之间有倍数或者次方数的关系时,此类题目需要巧妙运用对数函数的换底公式,从而达到分子分母相消的目的,简化计算 题型二对数函数的图像与性质 命题点1 对数函数的图像典例1 (2015·某某一中)若函数()()1,023log ≠>-=a a x y a 的图象经过定点A ,则点A 的坐标是. 【答案】(1,0)【解析】当3x-2=1,即x=1时,无论a 为何值,y=0,故函数的图象过定点(1,0). 知识:对数函数(1)对数函数定义:形如y =x a log (a >0且a ≠1,x >0)的函数,叫做对数函数. (2)对数函数的图象与性质【变式训练】(某某省某某市2016-2017学年高一上学期期末考试)函()log (23)4(01)a f x x a a =-->≠且的图象恒过定点( )A.B.C.D.【答案】D典例 2 (2015-2016学年某某省某某中学高二下学期期末数学(文))函数()log 1(01)a f x x a =+<<的图象大致为()【答案】A【解析】由对数函数性质可知函数过定点()1,1,当0x >时为减函数,且函数满足()()f x f x -=,函数为偶函数,因此A 正确考点:函数图像与性质 解题技巧与方法总结利用图象解题具有形象直观性.作一些复杂函数的图象,首先应分析它可以从哪一个基本函数的图象变换过来.一般是先作出基本函数的图象,通过平移、对称、翻折等方法,得出所求函数的图象【变式训练】(某某省某某中学、某某中学2017届高三下学期联考数学(文))函数()af x x =满足()24f =,那么函数()()log 1a g x x =+的图象大致是( )A. B. C. D.【答案】C【解析】函数()()log 1a g x x =+的定义域为{|1}x x ≠-,可知选项为C.典例 3 (2015-2016学年某某某某沛县中学高二下学期质检二数学(理))已知函数()212log y x ax a =-+在区间()2,+∞上是减函数,则实数a 的取值X 围是.【答案】4a ≤ 【解析】解题技巧与方法总结对一些可通过平移、对称变换能作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合来求解.一些含对数的方程、不等式问题的求解,常转化为相应函数的图象问题,利用数形结合法求解.【变式训练】(2016-2017年某某某某临泉县一中高一理12月考)已知函数()()212log 23f x x ax =-+.(1)若()f x 定义域为R ,某某数a 的取值X 围; (2)若()f x 值域为R ,某某数a 的取值X 围;(3)是否存在a R ∈,使()f x 在(),2-∞上单调递增,若存在,求出a 的取值X 围;不存在,说明理由.【答案】(1)33a -<<;(2)3a ≤-或3a ≥;(3)不存在这样的实数a .考点:对数函数的图象与性质.【方法点晴】本题主要考查了对数函数的图象与性质及其应用,其中解答中涉及到对数函数的定义域、值域,对数函数的单调性及其应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中熟记对数函数的图象与性质,合理列出不等式是解答的关键,试题有一定的难度,属于中档试题. 知识:对数函数图象特征1,0≠>a a 时,)(log x y a -=与x y a log =的图象关于y 轴对称;x x x y a aalog 1log log 1-===,x y a1log =与x y a log =的图象关于x 轴对称; 对数函数y =x a log (a >0且a ≠1,x >0)都以y 轴为渐近线(当10<<a 时,图象向上无限接近y 轴,当1>a 时,图象向下无限接近y 轴). 命题点2对数函数的性质典例若函数()ln(4)f x ax =+在区间(2,4)上是减函数,则a 的取值X 围是________ 【答案】10a -≤<考点:对数函数的单调性【变式训练1】设定义在区间(,)b b -上的函数1()lg 12axf x x+=-是奇函数(,,2)a b R a ∈≠-且,则ba 的取值X 围是( )A. (2B. 22⎣C. (2D. (2 【答案】A【解析】由题,定义在区间(,)b b -上的函数1()lg12axf x x+=-是奇函数,()()f x f x ∴-=- 11lglg 01212ax axx x -+∴+=+- 11lg()01212ax ax x x -+∴⨯=+-2221142a x x a -=-∴=12()lg12x f x x +=-,令12012x x +>-,可得1122x -<<,102b ∴<≤ ∴b a 的取值X 围是(2【变式训练2】(2016~2017某某省某某市牌头中学练习17)已知函数211()log 1x f x x x+=--,求函数()f x 的定义域,并讨论它的奇偶性和单调性【答案】{}|110x x x -<<≠且 奇函数 在(1,0),(0,1)-是减函数 【解析】由0x ≠且101xx+>-得 定义域{}|110x x x -<<≠且(-)()f x f x =-奇函数212()log (1)1f x x x=--+- ()f x ∴在(1,0),(0,1)-是减函数命题点3对数函数的图像与性质典例1 (2016~2017高一数学人教A 版)已知(5)3,1()log ,1a a x a x f x x x --<⎧=⎨≥⎩是(),-∞+∞上的增函数,则a 的取值X 围为_________ 【答案】5,54⎡⎫⎪⎢⎣⎭【解析】()f x 是R 上的增函数,则当1x ≥时,log a y x =是增函数,1a ∴>当1x <时,函数(5)3y a x a =--是增函数,50,5a a ∴->∴< 由5)13log 1a a a -⨯-≤,得54a ≥,554a ∴≤< 考点:分段函数的单调性【变式训练1】(2017届某某某某一中高三上学期月考二数学理)已知20.5()log ()f x x mx m =--.(1)若函数()f x 的值域为R ,某某数m 的取值X 围;(2)若函数()f x 在区间上是增函数,某某数m 的取值X 围. 【答案】(1)0m ≥或4m ≤-;(2【解析】2400m m m ⇒∆=+≥⇒≥或4m ≤-.(2)由题意知2132(13)(13)0mm m ⎧≥-⎪⎨⎪----≥⎩2232m ⇒-≤≤. 考点:函数的值域,复合函数的单调性.【变式训练2】(2017届某某省武邑中学高三上学期周考文科)若函数)10(log )(<<=a x x f a 在区间]2[a a ,上的最大值是最小值的3倍,则a 等于( )A .42 B .22 C .41D .21 【答案】A考点:对数函数的图象和性质及运用.【易错点晴】指数函数对数函数是高中数学中重要的基本初等函数,指数函数与对数函数的图象和性质不仅是高中数学的重要内容,也是解答数学问题的重要思想和方法.解答本题时,要充分运用题设条件,借助当因10<<a ,故对数函数)10(log )(<<=a x x f a 是单调递减函数这一性质,分别求出函数)10(log )(<<=a x x f a 的最大值和最小值a a f x f a f x f a 2log )2()(,1)()(min max ====.再依据题设建立方程312log =a a ,最后通过典例2 已知函数21log ,1()11,0.2xx x f x x ⎧⎛⎫≠0⎪⎪+⎝⎭⎪=⎨⎛⎫⎪-< ⎪⎪⎝⎭⎩若()2(3)2f a f a ->,则实数a 的取值X 围是________.【答案】⎝⎛⎭⎪⎫-∞,-32∪(1,+∞)【解析】画图象可得()f x 是(-∞,+∞)上连续的单调减函数,于是由()2(3)2f a f a ->,得232a a -<,即2230a a +->,解得312a a <->或.【变式训练】已知函数3,()(1),0.x x f x ln x x ⎧≤0=⎨+>⎩若()2(2)f x f x ->,则实数x 的取值X 围是________. 【答案】(-2,1)【解析】画图象可知()f x 在(-∞,+∞)上是单调递增函数,于是由()2(2)f x f x ->,得22x x ->,即220x x +-<,解得21x -<<.解题技巧与方法总结解函数不等式时,要充分利用函数的单调性和奇偶性,转化为代数不等式(组),从而求解.对于不等式恒成立问题,通常利用分离参数的方法,转化为研究函数的最值(值域) 题型三对数函数的综合运用典例1(市西城区2017届高三4月统一测试(一模)理)为( )A. 0B. 1C. 2D. 3 【答案】C【变式训练】(2017~2018学年高中数学章末分层突破)()f x 是定义在R 上的奇函数,且当(0,)x ∈+∞时,2016()2016log x f x x =+,则函数()f x 的零点的个数是________【答案】3【解析】作出函数1220162016,log x y y x ==-的图像,可知函数2016()2016log xf x x =+在(0,)x ∈+∞内存在一个零点,又因为()f x 是定义在R 上的奇函数,所以()f x 在(,0)x ∈-∞上也有一个零点,又(0)0f =,所以函数()f x 的零点的个数是3个典例2 (2016~2017高一数学人教A 版)函数2()log (32)xf x =+的值域为( )A .()0,+∞B .[)0,+∞C .()1,+∞D .[)1,+∞ 【答案】C 【解析】322x +>22()=log (32)log 21x f x ∴+>=()f x ∴的值域为()1,+∞考点:指数、对数函数值域、复合函数值域【变式训练】函数()xf x a =+log (1)a x +在[01],上的最大值与最小值之和为a ,则a 的值为. 【答案】12典例3设函数12()421,()lg(4+1)xx f x g x ax x +=-+-=-,若对任意1x R ∈,都存在2x R ∈,使12()()f x g x =,则实数a 的取值X 围为( ) 【答案】4a ≤【解析】2()(2)221x xf x =-+⋅-,令2xt =,则22()21(1)0f t t t t =-+-=--≤,设()g x 值域为A ,因为对任意1x R ∈都存在2x R ∈使12()()f x g x =,所以(],0A -∞⊆,设241y ax x =-+的值域为B ,则(]0,1B ⊆,显然当0a =时,上式成立;当0a >时,1640a =-≥解得04a <≤,当0a <时,max 41614a y a -=≥即max 411y a=-≥恒成立,综上4a ≤ 知识:对数函数与指数函数的关系对数函数y =x a log (a >0且a ≠1,x >0)是指数函数xa y =)1,0(≠>a a 且的反函数.互为反函数的两个函数的图象关于直线x y =对称. 知识交汇1.(2017届某某省武邑中学高三上学期周考理科)函数)1)(111(log 5.0>+-+=x x x y 的值域为( )A .]2,(--∞B .),2[+∞-C .]2,(-∞D .),2[+∞ 【答案】A【解析】因4222111111=+≥+-+-=+-+x x x x (当且仅当11=-x ,即2=x 时取等号),故4log )111(log 5.05.0≤+-+=x x y ,即2-≤y ,故应选A.考点:基本不等式和对数函数的性质.【交汇技巧】本题考察基本不等式,复合函数的值域、对数函数的图像与性质等等,解答本题的关键是将真数部分凑成基本不等式的形式,求出真数部分所对应的值域,再求出整个复合函数的值域,本题需要注意运用基本不等式等号是否能取以及对数函数中真数大于零 2.(2015-2016学年某某省冀州市中学高一下开学考试)函数()lg(33)xxf x a -=+-的值域是R ,则实数a 的取值X 围是________. 【答案】[)2,+∞ 【解析】考点:1、基本不等式;2、对数函数的性质. 【交汇技巧】本题主要考查基本不等式与对数函数的性质问题,本题解题的关键“是函数的值域为R ”这一条件的等价转换,求函数的值域问题转化为集合间的关系问题3. (2016-2017学年某某省某某市高一上学期期末考试)已知a b >,函数f x x a x b =--()()()的图象如图所示,则函数ag x log x b=+()()的图象可能为( )A. B. C. D. 【答案】B考点:对数函数的图象与性质;二次函数的图象.【交汇技巧】本题主要考察二次函数的图像、对数函数的图像与性质,解答本题的关键是根据二次函数图像与x 轴交点的分布,从而得到a ,b 的X 围,再由对数函数的图像和性质确定函数图像单调性及渐近线4.(某某省定州市2016-2017学年高一上学期期末)已知()()2log 2log 3(0m m f x x x m =+->,且1)m ≠(1)当2m =时,解不等式()0f x <;(2)()0f x <在[]2,4恒成立,某某数m 的取值X 围. 【答案】(1)1{|2}8x x <<(2)()310,4,4⎛⎫⋃+∞ ⎪⎝⎭. 【解析】试题分析:(1)2m =时,原不等式变为()222log 2log 30x x +-<,解这个一元二次不等式可求【交汇技巧】本题主要考查一元二次不等式的解法,考查对数不等式的解法,考查恒成立问题的解法,考查分类讨论的数学思想方法.第一问由于m 是已知的,利用一元二次不等式的解法,求得23log 1x -<<,解这个对数不等式可求得不等式的解集.第二问同样利用一元二次不等式的解法,求得3log 1m x -<<,由于m 的X 围不确定,故要对m 分成两类,结合单调性来讨论.5.已知函数33,(0)()log (),(0)x x f x x x ⎧≥=⎨-<⎩,函数[]2()()()g x f x f x t =++,t R ∈,则下列判断不正确的是()A .若2t <-,则()g x 有四个零点B .若2t =-,则()g x 有三个零点C .若124t -<<,则()g x 有两个零点 D .若14t =,则()g x 有一个零点 【答案】A【解析】令(),1m f x m =≥时,()m f x =有两根,1m <时,()m f x =有一根【交汇技巧】本题重点考察根的存在性即根的分布问题,对于复合函数根的个数问题应“由表及里”,先探究外函数的根的分布,再根据外函数的根探究()f x m =的根的个数 练习检测1.(2017某某乌什县二中高一数学测试)解下列对数方程(1)22log (1)log (21)x x -=+(2)22log (52)2x x --=(3)1642log log log 7x x x ++=(4)233log [1log (14log )]1x ++=【答案】-2 -1或32.比较下列各题中两个值的大小: (1)5log ,9log 76; (2)6.0log ,log 23π;(3)7.0log ,7.0log 32;【答案】(1)1>9log 6,1<5log 7,∴5log >9log 76;(2)0>log 3π,0<6.0log 2,∴6.0log >log 23π;(3)0<2log <3log 7.07.0,∴7.0log =2log 1>3log 1=7.0log 27.07.03. 3.(某某高密市第三中学2017届高三一轮理)函数x y a log =,当43log )1(log 2a a x x ≤+-成立时,a 的取值X 围是_________.【答案】01a <<【解析】2314x x -+≥ 函数x y a log =,1a >时,单调递增,01a <<时,单调递减∴当43log )1(log 2a a x x ≤+-成立时, 01a ∴<< 4.(某某高密市第三中学2017届高三一轮理)不等式1)3(log 221-≤-x x 的解集是___________________.【答案】317317,,22x ⎡⎫⎛⎤+-∈+∞-∞⎪ ⎢⎥⎪ ⎣⎭⎝⎦5.(2016-2017学年某某省某某中学高二下学期期末文)函数212log (231)y x x =-+的递减区间为()A .(1,+∞) B.]3(,4-∞C .(-∞,1) D.3[,)4+∞【答案】A【解析】试题分析:令()()2231211x x x x t -+=--=,则函数12log y t =,(t >0).令t >0,求得12x <,或x >1,故函数y 的定义域为{x|12x <,或x >1}. 函数212log (231)y x x =-+的递减区间,根据复合函数的单调性规律, 本题即求t=(2x-1)(x-1)在区间(-∞,12)∪(1,+∞)上的增区间. 利用二次函数的性质可得,函数t 在函数y 的定义域内的增区间为(1,+∞),考点:复合函数的单调性6. 已知函数2x f x lnx =+(),若242f x (﹣)<,则实数x 的取值X 围. 【答案】(﹣,﹣2)∪(2,) 7.已知()f x 是定义在R 上的偶函数,且在[)0,+∞上为增函数,(1)0f =,则不等式2(log )0f x >的解集为________【答案】()10,2,2⎛⎫+∞ ⎪⎝⎭8.(2016-2017学年某某省南城一中高二上学期期中考试理科)已知2lg 8lg 2lg ,0,0=+>>y x y x ,则y x 311+的最小值是( ) A .34B .3C .2D .4 【答案】D【解析】 试题分析:()3lg2lg8lg2lg 22lg231x y x y x y +=∴⋅=∴+= ()11113322214333y x x y x y x y x y ⎛⎫∴+=++=++≥+= ⎪⎝⎭, 当且仅当33y x x y=时等号成立,取得最小值4 8.已知函数241(log 2)log 2y x x ⎛⎫=--⎪⎝⎭,2≤x≤8. (1)令t =log 2x ,求y 关于t 的函数关系式,并写出t 的X 围;(2)求该函数的值域.【答案】解:(1) 241(log 2)log 2y x x ⎛⎫=-- ⎪⎝⎭即该函数的值域为1,18⎡⎤-⎢⎥⎣⎦.。

2015届高考数学(文)一轮复习提能训练2-6《对数与对数函数》(人教A版)word版含详析

2015届高考数学(文)一轮复习提能训练2-6《对数与对数函数》(人教A版)word版含详析

[A 组 基础演练·能力提升]一、选择题 1.若x ∈(e-1,1),a =ln x ,b =⎝⎛⎭⎫12ln x ,c =e ln x,则a ,b ,c 的大小关系为( ) A .c >b >a B .b >c >a C .a >b >c D .b >a >c解析:依题意得a =ln x ∈(-1,0),b =⎝⎛⎭⎫12ln x ∈(1,2),c =x ∈(e -1,1),因此b >c >a ,选B. 答案:B2.(2013年高考湖南卷)函数f (x )=ln x 的图象与函数g (x )=x 2-4x +4的图象的交点个数为( )A .3B .2C .1D .0解析:画出两函数的大致图象,可得两图象的交点个数为2. 答案: B3.函数y =log 2|x |的图象大致是( )解析:函数y =log 2|x |=⎩⎪⎨⎪⎧log 2x ,x >0,log 2(-x ),x <0,所以函数图象为A. 答案:A4.(2014年宣城模拟)若a =ln 264,b =ln 2×ln 3,c =ln 2π4,则a ,b ,c 的大小关系是( )A .a >b >cB .c >a >bC .c >b >aD .b >a >c解析:∵ln 6>ln π>1,∴a >c ,排除B ,C ;b =ln 2·ln 3<⎝⎛⎭⎫ln 2+ln 322=ln 264=a ,排除D ,故选A.答案:A5.设函数f (x )=⎩⎪⎨⎪⎧log 2x x >0,log 12(-x ),x <0.若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)解析:由题意可得⎩⎪⎨⎪⎧a >0log 2a >-log 2a 或⎩⎪⎨⎪⎧a <0log 12(-a )>log 2(-a ),解得a >1或-1<a <0,因此答案:C6.当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22 B.⎝⎛⎭⎫22,1C .(1,2)D . (2,2)解析:利用指数函数和对数函数的性质求解.∵0<x ≤12,∴1<4x ≤2,∴log a x >4x >1,∴0<a <1,排除答案C ,D ;取a =12,x =12,则有412=2,log 1212=1,显然4x <log a x 不成立,排除答案A ;故选B.答案:B 二、填空题7.(2013年高考四川卷)lg 5+lg 20的值是________. 解析:原式=12lg 5+12(lg 4+lg 5)=12lg 5+lg 2+12lg 5=lg 2+lg 5=1. 答案:18.(2013年高考北京卷)函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥12x ,x <1的值域为________.解析:由x ≥1时,log 12x ≤0,x <1时,0<2x <2,∴f (x )的值域(-∞,2) 答案:(-∞,2)9.若不等式x 2-log a x <0在⎝⎛⎭⎫0,12内恒成立,则a 的取值范围是________. 解析:∵不等式x 2-log a x <0在⎝⎛⎭⎫0,12内恒成立, ∴0<a <1,且14<log a 12.∴⎩⎪⎨⎪⎧0<a <1,a 14>12,解得116<a <1.答案:⎝⎛⎭⎫116,1 三、解答题10.求值15⎝⎛⎭⎫lg 32+log 416+6lg 12+15lg 15. 解析:原式=15⎣⎡⎦⎤lg 32+2+lg ⎝⎛⎭⎫126+lg 15 =15⎣⎡⎦⎤2+lg ⎝⎛⎭⎫32·164·15 =15⎝⎛⎭⎫2+lg 110 =15[2+(-1)]=15. 11.求函数f (x )=log a (2x 2-5x +3)的单调区间. 解析:设y =log a u ,u =2x 2-5x +3. 由2x 2-5x +3>0,解得x <1或x >32.且u =2x 2-5x +3在(-∞,1)上是减函数,在⎝⎛⎭⎫32,+∞上是增函数. 当a >1时,y =log a u 是增函数,则函数f (x )的单调减区间是(-∞,1),单调增区间是⎝⎛⎭⎫32,+∞. 当0<a <1时,y =log a u 是减函数,则函数f (x )的单调增区间是(-∞,1),单调减区间是⎝⎛⎭⎫32,+∞. 12.(能力提升)已知函数f (x )=log 4(4x +1)+kx (k ∈R )为偶函数. (1)求k 的值;(2)若方程f (x )=log 4(a ·2x -a )有且只有一个根,求实数a 的取值范围. 解析:(1)∵f (x )为偶函数,∴f (-x )=f (x ), 即log 4(4-x +1)-kx =log 4(4x +1)+kx ,即(2k +1)x =0,∴k =-12.(2)依题意令log 4(4x +1)-12x =log 4(a ·2x -a ),即⎩⎪⎨⎪⎧4x +1=(a ·2x -a )·2x a ·2x -a >0, 令t =2x ,则(1-a )t 2+at +1=0,只需其有一正根即可满足题意. ①当a =1,t =-1时,不合题意.②上式有一正一负根t 1,t 2,即⎩⎪⎨⎪⎧Δ=a 2-4(1-a )>0,t 1t 2=11-a <0, 经验证满足a ·2x -a >0,∴a >1.③上式有两根相等,即Δ=0⇒a=±22-2,此时t=a2(a-1),若a=2(2-1),则有t=a2(a-1)<0,此时方程(1-a)t2+at+1=0无正根,故a=2(2-1)舍去;若a=-2(2+1),则有t=a2(a-1)>0,且a·2x-a=a(t-1)=a⎣⎡⎦⎤a2(a-1)-1=a(2-a)2(a-1)>0,因此a=-2(2+1).综上所述,a>1或a=-2-2 2.。

高考数学专题复习 对数及对数函数(原卷版+解析版)

高考数学专题复习   对数及对数函数(原卷版+解析版)

第六讲 对数及对数函数【套路秘籍】一.对数的概念 (1)对数的定义①一般地,如果a (a >0,a ≠1)的b 次幂等于N ,即a b=N ,那么称b 是以a 为底N 的对数,记作b =log a N ,其中,a 叫做对数的底数,N 叫做真数.②底数的对数是1,即log a a =1,1的对数是0,即log a 1=0. (2)几种常见对数4.对数的性质与运算法则 (1)对数的性质 ①log a Na=N (a >0且a ≠1,N >0);②log a a N=N (a >0且a ≠1). (2)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1,N >0);②log a b =1log b a (a ,b 均大于零且不等于1).(3)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a M N=log a M -log a N ; ③log a M n=n log a M (n ∈R ); ④log m na M =n mlog a M . 二.对数函数的定义1.形如y =log a x (a >0,a ≠1)的函数叫作对数函数,其中x 是自变量,函数的定义域是(0,+∞).2.对数函数的图象与性质3.反函数指数函数y =a x(a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线y =x 对称.【套路修炼】考向一 对数的运算【例1】(1)lg 22·lg 250+lg 25·lg 40=. (2)若3a=5b=225,则1a +1b = 。

(4)若log a 2=m ,log a 5=n ,则a 3m+n =( 。

【举一反三】1.已知a =log 32,那么log 38-2log 36用a 表示为. 2.若3x =4y=36,则2x +1y=.3. 设2a =5b=m ,且1a +1b=2,则m =.4.计算:(1-log 63)2+log 62·log 618log 64=.5.已知均不为1的正数a ,b ,c 满足a x =b y =c z,且1x +1y +1z=0,求abc 的值.6.设log a C ,log b C 是方程x 2-3x +1=0的两根,求log a bC 的值.7.方程33x -56=3x -1的实数解为.考向二 对数函数的判断【例2】函数f(x)=(a 2+a −5)log a x 为对数函数,则f(18)等于( ) A .3 B .−3 C .−log 36 D .−log 38【举一反三】1.下列函数是对数函数的是( )A .y =log 3(x +1)B .y =log a (2x)(a >0,a ≠1)C .y =lnxD .y =log a x 2(a >0,a ≠1) 2.下列函数,是对数函数的是 A .y=lg10xB .y=log 3x2C .y=lnxD .y=log13(x –1)3.在M=log (x –3)(x+1)中,要使式子有意义,x 的取值范围为A .(–∞,3]B .(3,4)∪(4,+∞)C .(4,+∞)D .(3,4)考向三 对数的单调性【例3】(1)函数f(x)=lg(6x −x 2)的单调递减区间为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(2013·浙江卷)已知x ,y 为正实数,则( )
A .2lg x +lg y =2lg x +2lg y
B .2lg (x +y )=2lg x ·2lg y
C .2lg x ·lg y =2lg x +2lg y
D .2lg (xy )=2lg x ·2lg y
解析: 由指数和对数的运算法则,易知选项D 正确. 答案:D
2.函数f (x )=2|log 2x |的图象大致是( )
解析:∵f (x )=2|log 2x |=⎩⎪⎨⎪

x ,x ≥1,1
x
,0<x <1,∴选C.
答案:C
3.给定函数:①y =x 12;②y =log 12
(x +1);③y =|x -1|;④y =2x +1
.其中在区间(0,1)
上单调递减的函数序号是( )
A .①②
B .②③
C .③④
D .①④
答案:B
4. (2012·海口模拟)已知a ,b ∈R ,则“log 2a >log 2b ”是 “⎝ ⎛⎭⎪⎫12a <⎝ ⎛⎭
⎪⎫12b
”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
解析:由a >b >0⇒⎝ ⎛⎭⎪⎫12a <⎝ ⎛⎭⎪⎫12b ,但由⎝ ⎛⎭⎪⎫12a <⎝ ⎛⎭
⎪⎫12b
⇒a >b ⇒ / log 2a >log 2b .故选A.
答案:A
5.(2012·重庆卷)已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( )
A .a =b <c
B .a =b >c
C .a <b <c
D .a >b >c
解析:a =log 23+log 23=log 233,b =log 29-log 23=log 233,因此a =b ,
而log 233>log 22=1,log 32<log 33=1,所以a =b >c ,故选B. 答案:B
6. (2013·河北石家庄质检)函数f (x )=log a x 与g (x )=b -x
(其中a >0,a ≠1,ab =1)的图象可能是( )
解析:若a >1,则f (x )=log a x 是(0,+∞)上的增函数,因为ab =1,所以1
b
=a >1,
于是g (x )=b -x
=⎝ ⎛⎭
⎪⎫1b
x 是R 上的增函数.故选C.
答案:C
7.(2013·揭阳二模)若点(a ,-1)在函数y =log 13x 的图象上,则tan 4π
a
的值为
________.
解析:将x =a ,y =-1代入函数解析式得:-1=log 1
3
a ,解得:a =3,
则tan 4πa =tan 4π3=tan ⎝
⎛⎭⎪⎫π+π 3=tan π3= 3. 答案: 3
8.(2013·山西四校联考)若函数f (x )=⎩
⎪⎨⎪⎧
log 2x ,x >0,
-2x
+1,x ≤0,则函数f (x )的零点为
__________.
解析:当x >0时,由log 2x =0得,x =1;当x ≤0时,由-2x
+1=0得x =0.所以函数的零点为0和1.
答案:0和1
9.(2013·北京东城区检测)已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1. (1)求f (x )的定义域;
(2)判断f (x )的奇偶性并予以证明;
(3)若a >1时,求使f (x )>0的x 的解集.
解析: (1)f (x )=log a (x +1)-log a (1-x ), 则⎩⎪⎨⎪⎧
x +1>0,1-x >0,
解得-1<x <1. 故所求函数f (x )的定义域为{x |-1<x <1}. (2)由(1)知f (x )的定义域为{x |-1<x <1}. 且f (-x )=log a (-x +1)-log a (1+x ) =-[log a (x +1)-log a (1-x )]=-f (x ),
故f (x )为奇函数.
(3)因为当a >1时,f (x )在定义域{x |-1<x <1}内是增函数,
所以f (x )>0⇔x +1
1-x
>1.解得0<x <1.
所以使f (x )>0的x 的解集是{x |0<x <1}.
10.设x ,y ,z ∈R +,且3x =4y =6z
.
(1)求证:1z -1x =1
2y

(2)比较3x,4y,6z 的大小.
证明:设3x =4y =6z
=k ,
因为x ,y ,z ∈R +,所以k >1,x =log 3k ,y =log 4k ,z =log 6k .
(1)1z -1x =1log 6k -1log 3k =log k 6-log k 3=log k 2
=12log k 4=12log 4k =12y . 即1z -1x =1
2y
成立. (2)解析:因为k >1,所以lg k >0,
所以3x -4y =lg k
lg 3×lg 4(lg 64-lg 81)<0,
4y -6z =lg k
lg 2×lg 6
(lg 36-lg 64)<0,
所以3x <4y <6z .。

相关文档
最新文档