基于CAN总线的电动汽车整车参数测试网络(精)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于CAN总线的电动汽车整车参数测试
网络
基于CAN总线的电动汽车整车参数测试网络
类别:汽车电子
摘要:本文介绍了基于CAN总线的电动汽车车载参数测试网络的设计。通过8个基于微处理器的CAN节点采集146项电动汽车参数;通过1个基于PC104的CAN监测节点完成数据的显示和记录,并可通过移动存储器将记录的数据转储,由地面软件分析电动汽车运行过程中的各项参数指标。最后给出了系统在汕头国家电动汽车检测试验基地的试验数据。关键词:CAN总线节点采集参数 1、引言现代交通的迅猛发展带来的能源与环境危机已经成为世界性的难题。发展电动汽车,采用清洁能源,被认为是最好的解决方案之一。为此,各国投入了大量的人力物力进行电动汽车的研究,并取得了可喜成果。电动汽车不仅包括传统汽车的运行速度、行驶里程等参数,还包括电动汽车独有的能耗、电源电压、电流及电机转速等电气参数,参数多达100多项。掌握这些参数对于分析电动汽车整体运行性能有着重要意义。这些参数类型各异、位置分散,要想集中测量存在很大困难。因此,需要分散测量,再通过监控节点集中显示和记录的方式构造测试网络。控制器局域网CAN(controller area network)能有效支持分布式和实时控制的串行通讯,与其它现场总线相比,它具有简单可靠、速率高、无主从以及连接方便等诸多优点,是一种在汽车车载测控网络中成熟应用的总线形式。因此,我们选用CAN总线构造电动汽车整车参数测试网络。 2、 CAN总线网络总体结构 2.1 监测网络总体结构
图1系统总体结构框图电动汽车整车运行参数监测网络共由9个CAN 节点构成,包括1个负责网络调度与数据处理的PC104监控节点和8个单片机数据采集节点。8个数据采集节点包括1个车辆参数采集节点、1个动力电池参数采集节点、1个辅助电池参数采集节点、1个电机参数采集节点和4个电池参数采集节点。由于动力电池节点、辅助电池节点和电机节点采集的参数都是电压、电流以及充放电的能量,因此可以将这三个节点作为一类节点设计,统称为电量参数采集节点。动力电池由40节12V铅酸蓄电池串联而成,串联电池组的性能取决于每节电池的性能,40组电池参数在4个电池节点中分别进行测量,每个节点负责测试10节电池的参数,因此4个电池参数采集节点是另一类数据采集节点。此外,还有1个车辆参数采集节点,主要采集车辆的各种状态,包括车辆启动、停止,空调的开关状态,发动机的转速(针对混合动力车),电机转速。因此这个系统包括了3类数据采集节点,即电量节点、电池节点和车辆节点。整个系统的结构如图1所示。在整个的系统中,共有3类8个数据采集节点,完成146项参数的采集。采集的数据通过CAN总线将数据发送到监控节点,监控节点也通过微处理器完成总线上数据的接收。同时,该节点通过双口RAM和一台PC104计算机的ISA总线通讯,PC104通过双口RAM获取监控节点从总线上收到的数据,并将数据进行显示和记录。同时,PC104还
通过一个串行口直接接收GPS数据接收板的车辆速度、经纬度和时钟信息,并作为同步信息进行记录和显示,以便将汽车的实时性能与速度和运行地况联系起来。信息每0.5秒记录一次,采用变化记录的数据压缩算法,并以*.dat文件格式进行存储。 2.2 网络中传输的信息 CAN总线是通过信息帧传输数据的,可分为数据帧、远程帧、错误帧和超载帧。信息以报文为单位传输,不同的报文以标识符(ID)进行区分,标识符越小,报文的优先级越高。
监控节点发送信息的报文标识符为00H,用于向数据采集节点发送查询信息,采集节点收到监控节点的查询信息后,向总线上发送自己的一包数据,监控节点收到以后确认此节点工作正常。通过这种方式,监控节点可以随时查询网络中连接了那些数据采集节点。由于报文所带数据长度最大为8字节,对于测量参数较多的电量节点和电池节点,需要分配较多的报文标识符。每个电量节点分配2个标识符,每节电池分配1个标识符。因为与参数相联系的报文标识符是固定的,根据收到的标识符就可判断收到的是哪个参数。电动汽车整车参数监测网络中传送的报文标识符(ID)与参数的对应关系见表1:ID
长度
Byte1
Byte2
Byte3
Byte4
Byte5
Byte6
Byte7
Byte8
1
6
动力电压
动力电流
环境温度
2
8
动力电池充电量
动力电池放电量
3
4
辅助电压
辅助电流
4
8
辅助电池充电量
辅助电池放电量
5
4
电机电压
电机电流
6
8
电机反馈电量
电机耗电量
7
5
状态
发动机转速
电机转速
8~47
6
1~40号电池电压
1~40号电池温度
1~40号电池传感器状态
表1 报文标识符与参数对应表 3、数据采集节点的设计作为一个运行参数监测网络,数据采集是系统工作的基础。本系统共有3类8个数据采集节点,即车辆参数采集节点,3个电量参数采集节点和4个电池参数采集节点。下面将分别就3类节点的设计进行介绍。系统中所有的数据采集节点都采用如图2所示的结构,包括一个微处理器、一个CAN控制器和一个CAN收发器。微处理器采用INTEL公司的80C196KB,主要负责采集外界的各项参数,同时管理和调度节点的工作,当采集到一组合理的数据以后,通过操作CAN控制器向总线上发送数据。CAN控制器选用了SJA1000,它集成了CAN2.0A和
CAN2.0B的总线协议,负责完成数据的发送和接收。CAN收发器82C250是CAN 控制器和物理总线的接口,其内部驱动电路具有限流电路,提供对总线的差动发送和接收功能,同时采用了光电隔离同总线交换数据,有助于抑制汽车等恶劣电气环境下的瞬变干扰。 3.1 车辆参数采集节点的设计车辆节点采集的参数包括车辆启动、停止的状态,空调的开关状态,电机与发动机的转速信息,从采集参数的特征来看,分为开关量和频率量。对于开关量的采集,无需额外的传感器,只需要将电压信号通过光电耦合直接输入微处理器的输入口即可检测;对于频率量的转速,我们选用了霍尔传感器进行测量。在输出轴上贴磁钢片,当磁钢片通过霍尔元件时,霍尔传感器输出脉冲,此脉冲通过光电隔离输入到80C196的高速输入口,由于高速输入口可以自动记录脉冲跳变的时刻,可以对脉冲进行精确测量,而且高低频率都适用。车辆采集节点的结构框图如图3所示。 3.2 电量节点的设计对于电压电流等电参数来说,应用通常的A/D 变换很容易测量;但是对于电能参数,由于是电压电流的时间积分值,应用普通方法测量起来难度很大。因此对于电量测量选用集成电量测量芯片
CS5460A,该芯片可以同时测量电压、电流以及两者的功率和能量。CS5460A是带有串行SPI接口的单相双向功率/电能计量集成电路芯片,主要应用在单相电子式电能表和三相电子式电能表中。芯片完成一次校准后,将校准系数存到系统的EEPROM中,每次上电CPU从EEPROM中读出校准系数,并写入测量芯片中,然后通过SPI接口写入命令,即可进行相应电流电压和电能的测量。通过SPI接口,微处理器读出该芯片中的测量结果,更新EEPROM中的电能信息,并通过报文的方式发送到CAN总线上。