钨极惰性气体保护焊
钨极惰性气体保护焊
分类
分类
钨极惰性气体保护焊分为手工焊、半自动焊和自动焊三类。手工钨极氩弧焊时,焊枪的运动和添加填充焊丝 完全靠手工操作;半自动钨极氩弧焊时,焊枪运动靠手工操作,但填充焊丝则由送丝机构自动送进;自动钨极氩 弧焊时,如工件固定电弧运动,则焊枪安装在焊接小车上,小车的行走和填充焊丝的送进均由机械完成。在自动 钨极氩弧焊中,填充焊丝可以用冷丝或热丝的方式添加。热丝是指填充焊丝经预热后再添加到熔池中去,这样可 大大提高熔敷速度。某些场合,例如薄板焊接或打底焊道,有时不必添加填充焊丝。
谢谢观看
放射性危害
放射性危害
氩弧焊和等离子弧焊割使用的钍钨电极含有1—1.2%的氧化钍,钍是一种放射性物质,在焊接过程中和与钍 钨棒的接触过程中,受放射线影响。
放射线以两种形式作用于人体:一是体外照射,二是通过呼吸和消化系统进入体内发生体内照射。从对掩氩 弧焊和等离子弧焊的大量调查和测定证明,它们的放射性危害性是较小的,因为每天消耗钍钨极棒仅100—200毫 克,放射剂量极微,对人体影响不大。
钨极惰性气体保护焊
在惰性气体的保护下,利用钨电极与工件间产生的电弧热熔化母材 和填充焊丝的焊接方法
01 分类
03 缺点 05 放射性危害
目录
02 优点 04 焊接方法
基本信息
钨极惰性气体保护焊是指在惰性气体的保护下,利用钨电极与工件间产生的电弧热熔化母材和填充焊丝(如 果使用填充焊丝)的一种焊接方法。焊接时保护气体从焊枪的喷嘴中连续喷出,在电弧周围形成气体保护层隔绝 空气,以防止其对钨极、熔池及邻近热影响区的有害影响,从而可获得优质的焊缝。保护气体主要采用氩气。
上述三种焊接方法中,手工钨极氩弧焊应用最广泛,半自动钨极氩弧焊则很少应用。
优点
(完整word版)钨极气体保护焊
气体保护焊是利用外加气体作为保护介质的一种电弧焊方法,其优点是电弧和熔池可见性好,操作方便:没有熔渣或很少熔渣,勿需焊后清渣,适应于各种位置的焊接。
但在室外作业时需采取专门的防风措施。
根据保护气体的活性程度,气体保护焊可以分为惰性气体保护焊和活性气体保护焊。
钨极氩气保护焊是典型的惰性气体保护焊,它是在氩气(Ar)的保护下,利用钨电极与工件间产生的电弧热熔化母材和填充焊丝(如果使用填充焊丝)的一种焊接方法,通常我们一般用英文简称TIG(Tungsten Inert Gas Welding)焊表示。
钨极氩弧焊原理、分类及特点1、原理钨极氩弧焊是用钨棒作为电极加上氩气进行保护的焊接方法,其方法构成如图1所示。
焊接时氩气从焊枪的喷咀中连续喷出,在电弧周围形成气体保护层隔绝空气,以防止其对钨极、熔池及邻近热影响区的有害影响,从而获得优质的焊缝。
焊接过程根据工件的具体要求可以加或者不加填充焊丝。
图1 钨极惰性气体保护焊示意图1-喷嘴 2-钨极 3-电弧 4-焊缝5-工件 6-熔池 7-填充焊丝 8-惰性气体2、分类这种焊接方法根据不同的分类方式大致有如下几种:上述几组钨极氩弧焊方法中手工操作应用最为广泛。
3、特点这种焊接方法由于电弧是在氩气中进行燃烧,因此具有如下优缺点:1)氩气具有极好的保护作用,能有效地隔绝周围空气;它本身既不与金属起化学反应,也不溶于金属,使得焊接过程中熔池的治金反应简单易控制,因此为获得高质量的焊缝提供了良好的条件。
2)钨极电弧非常稳定,即使在很小的电流情况下(<10A)仍可稳定燃烧,特别适合于薄板材料焊接。
3)热源和填充焊丝可分别控制,因而热输入容易调整,所以这种焊接方法可进行全位置焊接,也是实现单面焊双面成形的理想方法。
4)由于填充焊丝不通过电流,故不会产生飞溅,焊缝成形美观。
5)交流氩弧在焊接过程中能够自动清除工件表面的氧化碳作用,因此,可成功地焊接一些化学活泼性强的有色金属,如铝、镁及其合金。
钨极惰性气体保护焊(TIG)
焊接参数
01 02
焊接电流
电流的大小直接影响焊接熔池的深度和宽度,进而影响焊缝的强度和外 观。电流过小会导致熔深不足,焊缝强度不够;电流过大则可能导致焊 缝过深、咬边等缺陷。
焊接速度
焊接速度决定了单位时间内完成的焊接长度。速度过快可能导致焊缝未 完全熔合,速度过慢则可能导致焊缝过宽、过深。
03
电弧电压
缝氧化或气孔。
05
TIG焊接应用实例
航空航天领域应用
总结词
关键技术,高标准要求
详细描述
钨极惰性气体保护焊在航空航天领域应用广泛,主要用于飞机机身、机翼、发 动机部件等的焊接,由于航空材料的高质量和安全性要求,TIG焊接技术能够满 足其严格的标准和要求。
汽车制造领域应用
总结词
高效、高质量
详细描述
电弧电压决定了电弧的长度,进而影响焊接熔池的形状和大小。电压过
高可能导致电弧过长、不稳定,电压过低则可能导致电弧过短、不稳定。
焊接材料
母材质量
母材的化学成分、机械性能和表面状态等都会影响焊接质量。例 如,碳含量过高可能导致焊缝脆化;表面有油污、锈迹等会影响 焊接过程的稳定性和焊缝质量。
填充材料
填充材料的化学成分、纯度等也会影响焊接质量。例如,杂质过 多可能导致焊缝脆性增大;合金元素不足可能导致焊缝强度下降 。
在汽车制造领域,钨极惰性气体保护焊主要用于发动机、变速器、车架等关键部 件的焊接,由于汽车制造业对焊接质量和效率的高要求,TIG焊接技术能够提供 高效、高质量的焊接解决方案。
压力容器领域应用
总结词
高强度、高密封性
详细描述
在压力容器制造中,钨极惰性气体保护焊主要用于封头、筒体等关键部位的焊接,由于压力容器对焊接强度和密 封性的高要求,TIG焊接技术能够提供可靠、安全的焊接工艺。
钨极氩弧焊原理
钨极氩弧焊原理钨极氩弧焊是一种常用的气体保护电弧焊方法,它利用惰性气体——氩气作为保护气体,采用钨极作为电极,进行焊接。
这种焊接方法在航空航天、汽车制造、压力容器制造等领域得到了广泛应用。
下面我们来了解一下钨极氩弧焊的原理。
首先,钨极氩弧焊的原理是利用钨极和工件之间产生的电弧来进行熔化焊接。
在焊接过程中,钨极作为电极,通过电弧加热工件和焊丝,使其熔化并形成焊缝。
而氩气作为保护气体,能够有效地防止氧气和水蒸气等有害气体对熔化池的污染,从而保证焊接质量。
其次,钨极氩弧焊的原理还包括焊接电路和焊接参数的控制。
在焊接电路中,焊接电源通过电弧启动装置产生电弧,通过恒流或脉冲控制方式来控制焊接电流,从而实现对焊接过程的精确控制。
焊接参数的选择对焊接质量也有着重要影响,包括焊接电流、电压、氩气流量、电极直径等参数的合理选择,能够保证焊接过程的稳定性和焊接质量。
此外,钨极氩弧焊的原理还涉及到焊接过程中的保护气体流动和热传导。
氩气作为保护气体,需要通过气体流量控制装置提供给焊接区域,形成一定的气氛保护,防止氧化和氢裂解等现象的发生。
同时,热传导是焊接过程中热量传递的重要方式,通过控制焊接参数和焊接速度,能够实现热输入和热输出的平衡,从而保证焊接质量和焊接接头的性能。
总的来说,钨极氩弧焊的原理是利用钨极和氩气形成的电弧来进行焊接,通过控制焊接电路和焊接参数,实现对焊接过程的精确控制,同时保证焊接区域的气氛保护和热传导,从而实现高质量的焊接。
这种焊接方法在工业生产中有着重要的应用价值,能够满足对焊接质量和效率的要求,是一种值得推广和应用的焊接技术。
通过以上对钨极氩弧焊原理的介绍,相信大家对这种焊接方法有了更深入的了解。
钨极氩弧焊作为一种高质量、高效率的焊接方法,将继续在工业生产中发挥重要作用,为各行业的发展和进步提供坚实的技术支持。
钨极惰性气体保护焊
第一节 TIG焊原理及特点
一、TIG焊的基本原理及分类 1、TIG焊工作原理
2、TIG焊的分类 电流:直流 交流 脉冲 操作方式:手工 自动 二、TIG焊特点及应用 1、焊接质量好 2、适应能力强 3、焊接范围广 4、焊接效率低 5、焊接成本高
第二节 TIG焊的焊接材料
(3)交流钨极氩弧焊 电极正负极不断交换,正半周期钨极冷却, 负半周期有阴极清理作用,可以焊接Al、Mg 合金和其他金属材料。
2、钨极直径及端部形状 3、焊接电流
4、氩气流量和喷嘴直径
5、焊接速度
6、电弧电压 7、喷嘴与焊件间的距离 8、钨极伸出长度 一般为3~6mm,角焊缝为7~8mm。
一、TIG焊的钨极和焊丝 1、钨极 作用:传导电流、引燃电弧、维持电弧正常 燃烧。 要求:较大的许用电流,熔点高、损耗小, 引弧和稳弧性能好。 常用类型:纯钨极 钍钨极 铈钨极
钍钨极:红色 铈钨极:灰色 纯钨极:绿色 直径:0.5mm 1.0mm 1.6mm 2.0mm 2.5mm 3.2mm 4.0mm 5.0mm W Ce - 20
(3)直流分量及消除装置 产生:交流电焊接时,钨极材料与焊件特征 不一样,所以正反接法焊接电流大小 不一样,而有偏差,这一偏差为直流分 量。 危害:减焊接回路中串联二极管和电阻 在焊接回路中串联电容
2、焊枪 水冷式焊枪(QS) 气冷式焊枪(QQ)
2、焊丝 钢焊丝 有色金属焊丝 铜合金焊丝:HS 铝合金焊丝:S 二、TIG焊的保护气体 气瓶:灰色 字体:绿 色 容积:40L 最高工作压力:15mpa
第三节 TIG焊设备
一、TIG焊设备分类及组成 1、焊机 (1)焊接电源 电弧静特性:水平 电源外特性:下降 直流正接电流大于100A 直流反接电流小于100A (2)引弧及稳弧装置 电弧引燃困难,在使用交流电时,电弧稳定 性差。
《电弧焊与电渣焊》第6章 钨极惰性气体保护焊(TIG)
电压波形
编辑课件
电流波形
3. 方波(矩形波)交流电源
(1)方波电流过零后增长快, 再引燃容易,大大提高 了稳弧性能。
(2)选择最小而必要的K, 使其既能满足清除氧化 膜的需要,又能获得最 小的钨极损耗和可能的 最大熔深。
(3)正、负半波电流幅值可调,焊接铝、镁及其合合时, 无需另加消除直流分量装置。
编辑课件
2. 电弧电压 3. 焊接速度 4. 焊丝直径与填丝速度 5. 保护气体流量 6.钨极直径与形状 7.钨极伸出长度
前端呈尖锥角 前端呈平顶锥形
直流正接(ThW极)
直流反接(W极)
编辑课件
四、实际焊接时,确定焊接参数的顺序
根据被焊材料的性质,先选定焊接电流的种类、 极性和大小,然后选定钨极的种类和直径,再选定 焊枪喷嘴直径和保护气体流量,最后确定焊接速度。 在施焊的过程中根据情况适当地调整钨极伸出长度 和焊枪与焊件相对的位置。
编辑课件
2. 钨极材料
(1) 纯钨电极 一般在交流TIG焊中使用,当钨电极不需要保
持一定的前端角度形状时可以使用纯钨极。 (2) 钍钨极
一般用于TIG直流正接;由于钍元素具有一定的 放射性,因此应用受到一定限制。 (3) 铈钨极
它的使用性能在某些方面优于钍钨极;其缺点 是不适合于大电流条件下使用。 (4) 其他电极
选用氦气 ; (4)焊接不锈钢时可以在氩或氦中加入少量氢气 ; (5)焊接铜及其合金时,有些情况下也加入少量氮气。
编辑课件
一、钨 极
1. 对电极的要求及钨极性能
(1)对钨极的要求,一般应满足三个条件: (a)引弧及稳弧性能好; (b)耐高温、不易损耗; (c)电流容量大。
(2) 钨极性能: (a)钨(W)的电子逸出功为4.54eV,但其熔点高,在高温 时有强烈的电子发射能力,因此是一种目前最好的非 熔化电极的材料。 (b)当在钨中加入微量逸出功较小的稀土元素,或它们的 氧化物,能显著地提高电子发射能力。既易于引弧和 稳弧,又可提高其电流的承载能力。
钨极惰性气体保护焊TIG焊的原理及特点及焊接材料
钨极惰性气体保护焊TIG焊的原理及特点及焊接材料定义:使用钨极或者活化钨极作为电极的非熔化极惰性气体保护焊方法(TIG)(Tungsten Inert Gas)。
一、TIG焊的基本原理及分类1.TIG焊的工作原理利用钨极与焊件之间的电弧热,在惰性气体的保护下,熔化焊丝及焊件形成熔池,凝固后形成焊缝。
2.TIG焊的分类分为手工IG焊和自动IG焊。
二、TIG焊的特点及应用特点:(1)焊接质量好;(2)适应性强(电弧稳定、不飞溅、热源焊丝分别控制、全位置焊接、机械化自动化);(3)可焊金属多(惰性、阴极雾化);(4)生产效率低(钨极限制,电流小、熔深浅、熔敷速度小);(5)成本高。
应用:可用于焊接各种金属,尤其是活泼金属的焊接;在各个领域都有应用;能适应厚、薄件、超薄件(0.1mm)的焊接及全位置焊接;适合6mm以下,6mm以上用于打底焊。
薄件:不开坡口,不填丝,可采用脉冲焊;厚件:填充焊丝,开坡口,热丝焊。
三、TIG焊的焊接材料1.TIG焊的钨极和焊丝(1)电极材料TIG焊电极的作用是导通电流、引燃电弧并维持电弧稳定燃烧。
要求:1)由于焊接过程中要求电极不熔化,因此电极必须具有高的熔点,钨的熔点为3380°C以上,可满足要求。
损耗:正常:氧化、蒸发。
异常:短路时,特别是与熔池短路时。
2)电流容量大:即一定直径的钨极允许通过的最大电流。
允许通过的电流是有限的,过大则钨极熔化。
形成熔球,电弧漂移。
3)引弧及稳弧性能好,还要求电极具有较低的逸出功、较大的许用电流、较小的引燃电压。
纯钨(W): 直流焊时引弧相对较差, 易形成光滑的球端,电流负载能力低、寿命短钍钨(WTh): 引弧非常容易, 更高的负载能力,但稍带放射性铈钨(Wce): 性能优于钍钨,无放射性,寿命长,载流能力大(高5~8%);阴极电位低、电弧稳定。
镧 钨(WL ): 比钍钨或铈钨有更长的使用寿命, 但引弧性能不好。
电极的颜色:钍钨极-红色,铈钨极-灰色,纯钨极-绿色 常用直径:0.5mm 、1.0mm 、1.6mm 、2.0mm 、2.5mm 、3.2mm 、4.0mm 、5.0mm牌号:W Ce —20(2)焊丝采用TIG 焊焊接厚板时,需要开V 形坡口,并添加必要的填充金属。
焊接方法与设备钨极惰性气体保护焊第五章钨极惰性气体保护焊
3、氩弧焊适用焊接范围
2 氩弧表面熔凝
氩弧表面熔凝实际上是用电极与工 件之间产生的电弧热,使表面产生 局部的重新熔化,并在冷基体的作 用下快速凝固,从而使组织细化, 实现硬度和韧性的最佳结合。
适用范围:
氩弧熔凝最适用于铸铁、高碳高合金钢。 铸铁熔凝后形成莱氏体组织,进一步冷却, 将引起奥氏体向马氏体转变主要应用于模 具,提高了模具的表面强度、耐磨性和热 稳定性。
加热到相变以上(奥氏体转变温度以上,产生马氏 体等相变强化(即表面硬化或淬火硬化),由于氩 弧加热能量利用率高,速度快,温度梯度大,冷 却速度快,材料的相变过程时间短,奥氏体晶粒 来不及长大,可获超细晶粒的组织,而使材料表 层具有较高的强硬性和耐磨性。
适用范围:
适合于碳钢、中碳低合金钢、铸铁等材料的表 面强化。例如,对45钢和T7钢,经氩弧加热, 在钢的表面形成细针马氏体,45钢和T7钢的 表面硬度HRC分别达到62和66。因心部没有 受到加热温度的影响,仍保持原有45钢和T7 钢的较好塑性和韧性。在导轨,船用柴油机活 塞及一些工、模具上应用都取得了很好的效果。
合金粉末选择根据零部件的性能要 求和氩弧表面合金化的工艺要求来 定。如以耐磨为主,就应选W,Ti, B,Mo等元素及其碳化物;以耐 蚀为主,就应选Ni,Cr元素。
4 氩弧熔覆
按需要在基体材料表面预先涂覆一 层特殊性能的合金粉,并用氩弧加热将 其熔化,在基体表面形成具有某些特性 的覆层。它与氩弧表面合金化有类似之 处,但要防止涂覆层与基体过分地混合 熔融而得不到所需要的涂层,这一点是 与氩弧表面合金化不同的。
钨极惰性气体保护焊(TIG)
BG
37
4.焊接电压
随着U的增加,弧长增加,电弧的加热
范围增大,使得熔宽增加而熔深略有降低, 通常<20V。
5.焊接速度
在一定的钨极直径,焊接电流和气体 流量条件下,焊速过快会使保护气流偏离 钨极与熔池,从而影响气体保护效果,并 且,焊速显著影响焊缝成形,因此,应选 择合适的焊接速度。
BG
38
6.电极直径与喷嘴直径
清理的办法: (1)去处油污、灰尘----有机溶剂或专用 清洗液清洗; (2)除氧化膜----机械清理或化学清理。
BG
34
(二)焊接工艺参数及选择** TIG焊的焊接工艺参数主要包括:
气体流量、钨极直径、焊接电流、 焊接电压、焊接速度、电极直径与喷嘴 直径等。
BG
35
1.气体流量
为获得最佳的保护效果,气体流量 与喷嘴孔径的关系有一定的规律且交流焊 接比直流焊接所需的流量大。
位置:多用于打底(单面焊双面成 形),薄件及管-管、管-板也用于填充和 盖面焊。
BG
13
BG
14
BG
15
BG
16
BG
17
二. TIG焊的电流种类
直流:反接、正接 交流:正弦交流、
变极性方波交流 它们各有不同的特点和适 用场合,应正确选择。
BG
反接与正接 焊接效果图
18
(一) 直流TIG焊
阴极斑点总是优先在氧化
膜处形成(那里电子逸出功
低),阴极斑点又在邻近氧
化膜上发射电子,继而氧化
膜被清除。
BG
20
但这时大量电子从工件向钨极运 动,把大量能量交给钨极,导致其温 度升高而烧损。要避免烧损,只有减 小电流!
钨极惰性气体保护焊方法与设备的操作实验
钨极惰性气体保护焊方法与设备的操作实验一、实验目的1、了解TIG 焊设备的组成及其操作过程;2、了解铝合金焊接时电弧的阴极雾化作用;3、了解工艺参数对焊缝成形的影响;二、实验设备及材料(一) 钨极氩弧焊机(WSE-200逆变交直流氩弧焊机)(二) 氩气(三) 减压表(四) 电焊面罩(五) 砂纸(六) 铝板(七) 不锈钢板三、实验原理TIG 焊是在惰性气体的保护下,利用钨极和工件之间产生的焊接电弧熔化母材及焊丝的一种焊接方法。
焊接时,惰性气体从焊枪的喷嘴中喷出,把电弧周围一定范围的空气排出焊接区,从而为形成优质焊接接头提供了保障,见图1。
焊接时,保护气体可采用氩气、氦气或 图1 钨极惰性气体保护焊示意图 1一喷嘴; 2一钨极; 3一电弧; 4一焊缝; 5一焊件; 6一熔池; 7一填充焊丝; 8一氨气氩+氦混合气体,特殊场合也采用氩气+氢气或氦气+氢气混合气体。
焊丝根据焊件设计要求,可以填加或不填加。
如果填加焊丝,一般从电弧的前端加入或者直接预置在接头的间隙中。
TIG焊电弧燃烧过程中,由于电极不熔化,易维持恒定的电弧长度,焊接过程稳定;氩气、氦气的热导率小,又不与液态金属反应或溶解在液态金属中,故不会造成焊缝中合金元素的烧损;同时,填充焊丝不通过电弧区,不会引起很大的飞溅。
所以,整个焊接过程十分稳定,易获得良好的焊接接头质量。
TIG焊有直流、交流、脉冲等不同焊接方法,直流钨极氩弧焊没有极性变化,但电极接正还是接负,对电弧的性质及对母材的熔化有很多的影响。
1)直流反极性焊接钨电极接在直流电源的正端时称作直流反极性(DCRP)焊接。
反极性焊接时,钨极是电弧的阳极,受到大量的电子撞击,电极产热量大而被过热熔化,即使是粗径电极电流也只能在100A以下。
此时,由于钨极不具有发射电子的作用,所以可以使用纯钨极。
但是反极性接法时,电弧具有对母材表面的氧化膜进行清理的现象(清理作用)。
电极接正时,母材是阴极,从其表面发射出电子。
钨极氩弧焊特点
钨极氩弧焊特点
钨极氩弧焊是一种以钨极作为电极的气体保护电弧焊,其特点包括以下几个方面:
1. 惰性气体保护:钨极氩弧焊使用惰性气体(通常是氩气)作为保护气体,惰性气体可以有效地排除空气中的氧气和水分,减少金属的氧化和氮化,提高焊缝的质量。
2. 焊缝质量高:由于惰性气体的保护,钨极氩弧焊能够产生高质量的焊缝。
焊缝外观整齐、致密,焊缝金属的晶粒细小,接头强度高,塑性和韧性好。
3. 焊接过程稳定:钨极氩弧焊的电弧稳定,焊接过程中电弧不易熄灭,焊接参数容易控制,焊接质量稳定可靠。
4. 适用范围广:钨极氩弧焊适用于焊接各种金属材料,如碳钢、合金钢、不锈钢、铝及铝合金、镁及镁合金等。
尤其适用于焊接易氧化、氮化的金属材料。
5. 操作灵活方便:钨极氩弧焊设备简单,操作灵活方便,可以进行手工焊接和自动焊接。
焊接时无需进行焊条的更换,提高了生产效率。
6. 无飞溅:相比其他电弧焊方法,钨极氩弧焊产生的飞溅很少,因此在焊接后不需要进行大量的清理工作。
7. 可焊性好:钨极氩弧焊可以焊接薄板、薄壁管等形状复杂的构件,对于不同位置和角度的焊缝也具有良好的适应性。
8. 明弧焊接:钨极氩弧焊采用明弧焊接,操作者可以清楚地观察到电弧和熔池的情况,便于控制焊接过程。
总之,钨极氩弧焊具有惰性气体保护、焊缝质量高、焊接过程稳定、适用范围广、操作灵活方便等特点,是一种应用广泛的焊接方法,特别适用于对焊缝质量要求较高的场合。
钨极惰性气体保护焊
氩弧焊钨极惰性气体保护焊是使用钨极或活化钨作为非熔化极,采用惰性气体作为保护气体的电弧焊方法。
钨极惰性气体保护焊又称TIG焊。
一、TIG工作原理钨极被夹持在电极夹上,从TIG焊焊枪的喷嘴中伸出一定长度。
在伸出的钨极端部与焊件之间产生电弧,对焊件进行加热。
与此同时,惰性气体进入腔体,从钨极的周围通过喷嘴喷向焊接区,以保护钨极、电弧及熔池使其免受大气的侵害。
当焊接薄板时,一般不需要添加焊丝,可以利用焊件被焊部位自身熔化形成焊缝。
当焊接厚板或带有坡口的焊件时,可以从电弧的前方把填充金属以手动或自动的方式,按一定的速度向电弧中送进。
填充金属熔化后进入熔池,与母材熔化金属一起冷却凝固形成焊缝。
二、焊接电源TIG 焊焊接电源分直流电源和交流电源。
1、直流电源直流TIG焊时,电流不发生极性变化,但电极接正还是接负,对电弧的性质及母材的熔化有很大影响。
(1)直流反接当焊件接在直流电源的负端,而钨极接在直流电源的正端时,称为直流反接。
直流反接时电弧对母材表面的氧化膜有“阴极清理”作用,这种作用也被称为“阴极破碎”或“阴极雾化”作用。
(2)直流正接当钨极接在直流电源的负端,而工件接在直流电源的正端时,称为直流正接。
2、交流电源在生产时,焊接铝、镁及其合金时一般采用交流电源。
采用交流电源的原因是:t正半波:W(-),工件(+)阴极发热量小,许用电流大,热量损失小,利于电子发射,弧柱导电性好,电流大,电压低负半波:W(+),工件(-) 工件散热快,不利于电子热发射,引弧困难,电弧不稳定,电流小,电压低,可见两个半周波形不对称三、TIG焊设备1、钨极对钨极的要求:①引弧及稳弧性能好;②耐高温,不易损耗;③电弧容量大。
在焊接过程中钨极很容易烧损。
2、焊枪焊枪的作用是夹持钨极、传导焊接电流和输送并喷出保护气体。
对焊枪的要求:①夹持电极可靠,导热性好;②保护气体流出时保护可靠,减小气体紊乱程度;③具有良好的冷却性;④可达性好,便于操作;⑤结构简单,重量轻,耐用维修方便。