分子生物学基因工程和基因体外表达
分子生物学名词解释
分子生物学:从广义来讲,分子生物学是从分子水平阐明生命现象和生物学规律的一门新兴的边缘学科。
它主要对蛋白质及核酸等生物大分子结构和功能以及遗传信息的传递过程进行研究。
DNA重组技术:DNA重组技术(又称基因工程)是将DNA片段或基因在体外经人工剪接后,按照人们的设计与克隆用载体定向连接起来,转入特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。
信号转导:是指外部信号通过细胞膜上的受体蛋白传到细胞内部,并激发诸如离子通透性、细胞形状或其它细胞功能方面的应答过程。
转录因子:是指一群能与基因5′端上游特定序列专一结合,从而保证目的基因以特定强度在特定时间和空间表达的蛋白质分子。
功能基因组:又称后基因组,是在基因组计划的基础上建立起来的,它主要研究基因及其所编码蛋白质的结构和功能,指导人们充分准确地利用这些基因的产物。
结构分子生物学:就是研究生物大分子特定空间结构及结构的运动变化与其生物学功能关系的科学。
生物信息学:是生物科学和信息科学重大交叉的前沿学科,它依靠计算机对所获得数据进行快速高效计算、统计分类以及生物大分子结构功能的预测。
染色体:是指存在于细胞核中的棒状可染色结构,由染色质构成。
染色质是由DNA、RNA和蛋白质形成的复合体。
染色体是一种动态结构,在细胞周期的不同阶段明显不同。
C-值(C-value):一种生物单位体基因组DNA的总量。
C-值矛盾(C-value paradox):基因组大小与机体的遗传复杂性缺乏相关性。
核心DNA(core DNA):结合在核心颗粒而不被降解的DNA。
连接DNA(linker DNA):重复单位中除核心DNA以外的其它DNA。
DNA多态性:指DNA序列中发生变异而导致的个体间核苷酸序列的差异,主要包括单核苷酸多态性和串联重复序列多态性两类。
DNA的一级结构:是指4种核苷酸的排列顺序,表示了该DNA分子的化学组成。
又由于4种核苷酸的差异仅仅是碱基的不同,因此又是指碱基的排列顺序。
现代分子生物学重点
现代分子生物学1、DNA重组技术:又称基因工程,是将DNA片段或基因在体外经人工剪接后,按照人们的设计与克隆载体定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。
2、基因组:指某种生物单倍染色体中所含有的基因总数,也就是包含个体生长、发育等一切生命活动所需的遗传信息的整套核酸。
3、功能基因组:又称后基因组,是在基因组计划的基础上建立起来的,它主要研究基因及其所编码蛋白质的结构与功能,指导人们充分准确地利用这些基因的产物。
1、简述分子生物学的基本含义:从广义来讲:分子生物学是从分子水平阐明生命现象和生物学规律的一门新兴的边缘学科。
它主要对蛋白质和核酸等生物大分子结构和功能以及遗传信息的传递过程进行研究。
从狭义来讲:分子生物学的范畴偏重于核酸(或基因)的分子生物学,主要研究基因或DNA的复制、转录、表达和调节控制等过程,当然其中也涉及到与这些过程有关的蛋白质与酶的结构和功能的研究2、早期主要有那些实验证实DNA是遗传物质?写出这些实验的主要步骤主要是两个实验:肺炎链球菌转化实验和噬菌体侵染细菌实验步骤:肺炎链球菌转化实验首先将光滑型致病菌(S型)烧煮杀灭活性以后再侵染小鼠,发现这些死细菌自然丧失了治病能力,再用活的粗糙型细菌(R型)来侵染小鼠,也不能使之发病,因为粗糙型细菌天然无治病能力。
讲经烧煮杀死的S型细菌和活的R型细菌混合在感染小鼠时,实验小鼠都死了,解剖小鼠,发现有大量活的S型(而不是R型)细菌,推测死细菌的中的某一成分转化源将无治病力的细菌转化成病原细菌。
噬菌体侵染细菌的实验:用分别带有S标记的氨基酸和P标记的核苷酸的细菌培养基培养噬菌体,自带噬菌体中就相应的含有S标记的蛋白质或P标记的核酸,分别用这些噬菌体感染没有被放射性标记的细菌,经过1~2个噬菌体DNA复制周期后发现,子代噬菌体中几乎不含带S标记的蛋白质,但含有30%以上的P标记,这说明在噬菌体传代过程中发挥作用的可能是DNA,而不是蛋白质。
分子生物学
名词解释:1.操纵子:原核生物基因的一个基本转录单位,由编码序列及上游的调控序列组成。
编码序列通常包括几个功能相关的结构基因,调控序列由启动序列(启动子)、操纵序列(操纵基因)及其他调节序列构成。
2.顺式作用元件:真核基因表达时调控转录过程的特殊DNA序列,与转录因子结合而起作用,通常包括启动子、增强子、沉默子等。
3.反式作用因子:与其他基因的顺式作用元件结合,调节基因转录活性的蛋白质因子,根据功能不同可分为基本转录因子和特异性转录因子。
4.启动子:位于结构基因上游,与RNA聚合酶识别,结合的特异性DNA序列,与基因转录起始有关。
5.同源重组:是指发生在同源序列间的重组,它通过链的断裂和再连接,在两个DNA分子同源序列间进行单链或双链片段的交换。
又称基本重组。
6.DNA克隆:指在体外对DNA分子按照既定目的和方案进行人工重组,将重组分子导入适当细胞内,使其在细胞内扩增和繁殖,从而获得该DNA分子大量拷贝的过程称为分子克隆,又叫基因克隆或重组DNA技术。
7.基因工程:在体外将目的基因和载体DNA按照既定的目的进行人工重组,并将重组体导入宿主细胞,经过无性生殖和表达得到所需的核酸、蛋白质或生物新品种。
包括转基因动物、植物、基因工程生产药物、基因诊断、基因治疗等。
8.限制性核酸内切酶:一类能够识别和切割双链DNA分子内特定的碱基顺序的核酸水解酶,绝大多数是从原核细胞中提取的,可分三大类,其中II型是分子克隆中最常用的工具酶。
9.PBR322:是研究最早、最清楚的质粒,其全部顺序为4363bp,含有一个复制原点,一个Amp和Tet标记,有限制酶酶切位点,可供外源性基因插入,利用这种遗传标记,有利于筛选出重组转化菌10.gDNA文库:基因组DNA文库,是指存在于转化菌内、由克隆载体所携带的所有基因组DNA的集合。
它涵盖了基因组全部遗传信息。
11.cDNA文库:细胞总mRNA的克隆,文库只包含表达蛋白质或多肽的基因。
分子生物学-名词解释
名词解释:核酸结构,性质与功能分子生物学:是从分子水平研究生命现象、生命的本质、生命活动及其规律的科学。
医学分子生物学:是从分子水平研究人体在正常和疾病状态下生命活动及其规律的一门科学。
它主要研究人体生物大分子和大分子体系的结构、功能、相互作用及其同疾病发生、发展的关系。
基因:是核酸分子中贮存遗传信息的遗传单位,是指DNA特定区段,是RNA和蛋白质相关遗传信息的基本存在形式。
大部分生物中构成基因的核酸是DNA, 少数生物(如RNA病毒)是RNA。
核酸的一级结构:核酸中核苷酸的排列顺序。
组成DNA分子的脱氧核糖核苷酸(dAMP, dGMP, dTMP, dCMP)的排列顺序。
组成RNA分子的核糖核苷酸(AMP, GMP, UMP, CMP)的排列顺序。
由于核苷酸间的差异主要是碱基不同,所以也称为碱基序列。
DNA的一级结构:四种脱氧核糖核苷酸(dAMP, dGMP, dTMP, dCMP)或四种碱基的排列顺序。
DNA三级结构:DNA分子在形成双螺旋结构的基础上,进一步折叠成超螺旋结构(supercoil) (原核细胞),或在蛋白质的参与下,进行精密的包装(真核细胞),所形成的空间结构。
超螺旋结构(superhelix 或supercoil):DNA双螺旋链再盘绕即形成超螺旋结构。
正超螺旋(positive supercoil)盘绕方向与DNA双螺旋方同相同;负超螺旋(negative supercoil)盘绕方向与DNA双螺旋方向相反。
结构基因:在基因片段中,贮存着一个特定的转录RNA分子的DNA序列,这段序列决定该RNA分子的一级结构,就称为结构基因。
外显子(exon):结构基因中在成熟RNA分子中保留的相对应的序列内含子(intron):是指RNA分子剪接时删除部分相对应的结构基因序列基因转录调控序列:与转录相关的、结构基因以外的序列启动子(promoter):是RNA聚合酶特异性识别和结合的DNA序列,位于结构基因转录起始点的上游,偶见位于转录起始点的下游。
分子生物学考点整理1
分子生物学考点整理符广勇朱兰第一章.绪论一、分子生物学概念分子生物学是从分子水平研究生命本质为目的的一门新兴边缘学科,是研究核酸、蛋白质等所有生物大分子结构与功能相互关系的科学,是人类从分子水平上真正揭开生物世界奥秘、由被动地适应自然界转向主动地改造和重组自然界的基础学科。
二、重组DNA技术又称基因技术,是20世纪70年代初兴起的技术科学,目的是将不同的DNA片段按照人们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。
三、基因表达的调控基因表达的调控主要表现在信号传导研究、转录因子研究及RNA剪辑三个方面。
四、转录因子转录因子是能与基因5`端上游特定序列专一结合,从而保证目的基因以特定的强度在特定的时间与空间表达的蛋白质分子。
第二章.染色体与DNA一、染色体上的蛋白质染色体上的蛋白质主要包括组蛋白和非组蛋白。
根据凝胶电泳性质可以把组蛋白分为H1、H2A、H2B、H3、H4。
这些组蛋白都含有大量的赖氨酸和精氨酸。
二、组蛋白的特性1.进化上的极端保守性不同种生物组蛋白的氨基酸组成是十分相似的,特别是H3、H4。
2.无组织特异性到目前为止,仅发现鸟类、鱼类及两栖类红细胞不含H1而带有H5,精细胞染色体的组蛋白是鱼精蛋白这两个例外。
3.肽链上氨基酸分布的不对称性碱性氨基酸集中分布在N端的半条链上。
4.组蛋白的修饰作用包括甲基化、乙酰化、磷酸化、泛素化及ADP核糖基化。
5.富含赖氨酸的组蛋白H5三、HMG蛋白叫高迁移率蛋白四、真核细胞DNA序列的分类1.不重复序列2.中度重复序列3.高度重复序列重复序列的意义:若某一重复序列出现错误,对基因的影响不大,稳定性较高;在短时间内可同时产生大量的基因产物。
重复序列的应用:应用于分子标记的作用:卫星DNA(便于分子标记)和微卫星DNA五、真核生物基因组与原核生物基因组的区别1.真核基因组庞大,原核生物基因组小2.真核基因组存在大量的重复序列,原核基因组没有重复序列3.真核基因组大部分是非编码序列,原核基因组大多是编码序列4.真核基因组的转录产物为单顺反子,原核基因组转录产物多为多顺反子5.真核基因是断裂基因,有内含子结构,原核基因为连续基因,几乎没有内含子结构6.真核基因组存在大量的顺式作用原元件,包括启动子、增强子和沉默子等,原核基因组基本没有增强子和沉默子7.真核基因组存在大量的DNA多态性,原核基因组很少有8.真核基因组具有端粒结构,原核基因组没有端粒结构六、重叠基因(Overlapping gene)指两个或两个以上的基因共有一段DNA序列,或是指一段DNA序列成为两个或两个以上的基因的组成部分。
PCR技术在分子生物学中的应用
PCR技术在分子生物学中的应用PCR(聚合酶链式反应)是一种基于DNA复制的体外扩增技术,它在分子生物学领域具有广泛的应用。
PCR技术通过利用DNA的天然复制机制,实现快速、精确、可靠的DNA扩增。
本文将介绍PCR技术在分子生物学研究中的重要应用。
一、基因突变检测与基因诊断PCR技术在基因突变检测与基因诊断中扮演着重要角色。
通过设计特异性引物,PCR可以选择性地扩增感兴趣的基因片段,从而检测基因突变的存在。
该技术对早期肿瘤、遗传性疾病等的诊断具有重要的意义。
例如,在乳腺癌诊断中,通过PCR技术可以检测BRCA1/2基因的突变,从而指导病人的治疗方案选择。
二、基因克隆与基因工程PCR技术在基因克隆与基因工程中也有广泛应用。
通过PCR扩增目标基因序列,可以获得大量目标DNA片段。
这些扩增的目标基因片段可以用来进行基因克隆、表达载体构建和基因突变等实验操作。
PCR技术的快速和高效,极大地推动了基因工程的发展。
三、DNA测序与基因组学研究PCR技术在DNA测序和基因组学研究中发挥着重要作用。
在DNA 测序中,PCR可以扩增目标片段,使其达到测序所需的起始浓度。
此外,PCR技术还可以用于扩增低浓度的目标DNA,从而增加测序结果的可靠性。
在基因组学研究中,PCR技术可以用于扩增DNA序列的特定区域,进而研究基因组的结构和功能。
四、病原体检测与疾病诊断PCR技术在病原体检测和疾病诊断中有着广泛的应用。
通过针对特定病原体的基因序列设计引物,PCR可以迅速检测到病原体的存在。
这种迅速、敏感的检测方法对于疾病的早期发现和治疗具有重要意义。
例如,在新型冠状病毒检测中,PCR技术被广泛应用于特异性检测病毒的基因序列。
五、分子人类学与亲子鉴定PCR技术在分子人类学和亲子鉴定中的应用也非常重要。
通过PCR 扩增人类基因组的特定区域,可以比较个体之间的遗传差异,从而揭示人类的遗传多样性与进化。
此外,PCR技术也可用于亲子鉴定,通过比较孩子和父母之间的基因序列差异,确定双亲关系。
基因工程的手段
基因工程的手段
基因工程(genetic engineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。
基因工程的手段主要包括以下几种:
1.基因克隆技术:这是基因工程的基础技术之一,通过将某个有
意义的DNA片段插入到载体DNA上,形成重组DNA分子,再将其导入细胞中,使细胞表达出与该DNA片段相关的功能蛋白
质。
2.基因敲除技术:利用RNA干扰或CRISPR/Cas9技术,将目标基
因的DNA序列进行改变或剪切,使其失去功能。
这种技术可以用于研究基因的功能,也可以用于治疗某些遗传性疾病。
3.基因编辑技术:这是近年来发展迅速的一种基因工程技术,主
要包括CRISPR/Cas9系统和锌指核酸酶技术等。
这些技术可以在基因组内进行精确的修改,包括插入、删除或替换特定的
DNA序列。
4.基因转移技术:将外源基因导入到受体细胞中,使其表达并产
生相应的效应。
这种技术可以用于改良作物品种、生产药物和疫苗等。
除了以上几种主要的基因工程技术外,还有一些辅助性的技术手段,如PCR技术、凝胶电泳技术、基因测序技术等,这些技术为基因工程的实施提供了重要的支持和保障。
需要注意的是,基因工程技术虽然具有巨大的潜力和应用价值,但同时也存在一定的风险和挑战。
因此,在应用基因工程技术时,需要严格遵守伦理和法规要求,确保技术的安全性和可控性。
第十章外源基因表达和基因工程药物
(二)顺式作用原件(启动子、增强子和沉默子) 直接影响基因表达活性 (三)转录因子的调控 (四)真核生物在转录后仍可控制mRNA的结构和 功能,其在转录后层次不同于原核生物
目标蛋白性质
是否需要糖基化
三维结构复杂程度
是
否
简单结构
真核表达 系统
原核表达 系统
复杂的三维结构
• 目的:针对难以或无法从自然界直接提取、 分离、纯化所获得的,或制造成本、产量 规模等受限制的,或利用化学方法无法合 成的多肽,蛋白质、酶这类生物分子药物, 利用细胞或组织或器官或生命体的复制、 转录、翻译及其调控系统以及翻译后加工、 修饰等体系,按人的意愿生物合成这些生 物分子,并从中将表达产物分离纯化至预 期程度,最终加工成药品。
测序;表达图谱 4. 法医—犯罪现场标本分析 5. 肿瘤—各种肿瘤检测 6. 其他……
二、目的基因与表达载体的重组
• 重组载体的构建:对目的基因和载体DNA 进行剪切、修饰,在连接酶的作用下连接 形成完整有复制能力的重组体。
(一)载体
• 对于外源基因的表达,第二个问题就是选 择合适的表达载体并将目的基因重组至表 达载体上。
第十章外源基因表达与基 因工程药物
第一节 概 述
• 外源基因的表达:利用细胞内相关酶系及其调控 系统,将外源基因转录成肽链或加工成活性蛋白 质的过程。
• 具体的说,利用分子生物学技术,在体外将编码 外源蛋白质的基因重组至适宜的表达载体上,通 过相关技术将其导入宿主细胞内,借助宿主细胞 的转录、翻译或翻译后修饰酶系及相应的调控系 统,在宿主细胞合成或分泌具有原有生物活性的 蛋白质。
• 目的基因和载体DNA分子的体外重组关键 在于:选择合适的重组位点、剪切位点; 以及剪切后适当的条件将目的基因和载体 DNA分子连接获得重组分子。
分子生物学名词解释
三、名词解释基因工程:在体外应用人工方法进行基因重组,然后把重组的基因导入宿主细胞,进行复制、转录及翻译的过程。
PCR技术:针对插入重组体中的目的基因,设计一对引物,进行菌落PCR,如能扩增出条带,则为阳性克隆。
限制性核酸内切酶:识别DNA的特异序列,并在识别位点或其周围切割双链DNA的一类内切酶。
基因工程载体:供插入目的基因并将其导入宿主细胞内表达或(和)复制的运载工具。
重组DNA技术:重组DNA技术简单概括为:“分、切、接、转、筛”1.分:分离目的基因2.切:对目的基因和载体适当切割3.接:目的基因与载体连接4.转:重组DNA转入受体菌5.筛:筛选出含有重组体的受菌体互补DNA:以mRNA为模板,利用反转录酶合成的与mRNA互补的DNA。
四、问答题1、简述基因工程的基本程序。
基本程序目的基因的获得(DNA片段)(分、切)↓DNA片段与载体基因的连接(体外重组)(接)↓连接产物(重组体)导入宿主细胞(转)↓重组体的扩增、筛选与鉴定(筛)↓目的基因在宿主细胞中的表达↓表达产物的分离纯化2、简述基因工程技术在医学上的应用。
(一)疾病基因的发现与克隆(二)生物制药(三)基因诊断(四)基因治疗(五)遗传病的预防三、名词解释1、受体:(receptor)细胞膜或细胞内的一些天然分子,能够识别和结合有生物活性的化学信号物质(配体,liganal),从而启动一系列信号转导,最后产生相应的生物学效应。
2、G蛋白:是一种鸟苷三磷酸(GTP)结合蛋白,一般是指与细胞表面受体偶联的异三聚体G蛋白。
3、MAPK:MAPK 通路是多种促增殖信号在细胞内信号转导的共同通路。
MAPK 的上游激酶MAPKK 或MEK 是一个DSPK,它能使MAPK 分子中的Thr 185 和Tyr 187 磷酸化而使该酶激活。
4、第二信使:细胞内的化学信号----第二信使5、PTK:酪氨酸蛋白激酶(protein tyrosine kinase, PTK )是一类能催化蛋白质酪氨酸残基(tyr或Y)磷酸化的蛋白激酶,共同特征是所极端具有典型的PTK结构域,该酶可催化自身或底物磷酸化。
分子生物学名词解释
分子生物学:研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学。
C值反常:也称c值谬误,指c值往往与种系进化复杂性不一致的现象,及基因组的大小与遗传复杂性之间没有必然的联系,某些较低等的生物c值却很大。
DNA重组技术:又称基因工程。
将不同的DNA片段按照预先的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状的技术。
GU-AG法则:多数细胞核mRNA前体中内含子的5’边界序列为GU,3’边界为AG,因此,GU表示供体衔接点的5’端,AG表示接纳点的3’端序列,习惯上,把这种保守序列模式称为GU-AG法则。
RNA干涉:是利用双链小RNA高效,特异性降解细胞内同源MRNA,从而阻断体内靶基因的表达,使细胞内出现靶基因缺失表性的方法。
摆动假说:crick为解释反密码子中子某些稀有成分的配对(如I)以及许多氨基酸中有两个以上密码子而提出的假设。
编码链/有义链:在DNA双链中,与mRNA序列(除t/u替换外)和方向相同的那条DNA,又称有义链模板链:指双链DNA中能够作为模板通过碱基互补原则指导mRNA前体的合成的DNA链,又称反义链操纵子:原核生物中由一个或多个相关基因以及转录翻译调控原件组成的基因表达单元。
反式作用因子:能直接或间接识别或结合在各类顺式作用元件中核心序列上参与调控靶基因转录效率的pro。
基因定点突变:向靶DNA片段中引入所需的变化,包括碱基的添加,删除,或改变基因家族:在基因组进化中,一个基因通过基因重复发生了两个或更多的拷贝,这些基因即构成一个基因家族,是具有显著相似性的一组基因,编码相似的蛋白质产物基因敲除技术:针对一个序列已知打包功能未知的基因,从DNA水平上设计实验,彻底破坏该基因的功能或消除其表达机制,从而推测该基因的生物学功能基因组DNA文库:某一生物体全部或部分基因的集合,将某个生物的基因组DNA或cDNA片段与适当的载体体外重组后,转化宿主细胞,所谓的菌落或噬菌体的集合即为……基因治疗:是将具有治疗价值的基因即“治疗基因“装配于带有在人体细胞中表达所必备元件的载体中,导入人体细胞,通过靶基因的表达来治疗遗传疾病聚合酶链反应:指通过模拟体内DNA复制方式在体外选择性的将DNA 某个特定区域扩增出来的魔斑核苷酸:在应急反应过程中,由大量GTP合成的ppGpp和pppGpp,它们的主要作用可能是影响RNA聚合酶与启动子结合的专一性,诱发应急反应,帮助细菌度过难关弱化子:原核生物操纵子中能明显减弱甚至终止转录作用的一段核苷酸序列同工tRNA:几个代表AA,能够被一个特殊的氨酰—tRNA合成酶识别的Trna顺式作用元件:存在于基因旁侧序列中能影响基因表达的序列,包括启动子,增强子等,本身不编码任何pro,仅提供一个作用位点,与反式作用因子相互作用参与基因表达调控原位杂交技术:用标记的核苷酸探针,经放射自显影或非放射检测体系,在组织,细胞及染色体水平上对核苷酸进行定位和相对定量研究的手段转座/移位:遗传信息从一个基因座转移至另一个基因座的现象,由可移问位因子介导的遗传物质的重排管家基因:维持细胞正常生长发育的必需基因,所以细胞中均需表达的一类基因转座子:是存在染色体上的可自主复制和移位的基本单位,参与转座子易位及DNA链整合的酶称为转座酶原癌基因:正常细胞中与病毒癌基因具有显著同源性的基因,本身没有致癌作用,但是经过致癌因子的催化下激活成为致癌基因,使正常细胞向恶性转化。
分子生物学5 分子生物学基本研究法
3、pBR322质粒载体
由三个不同来源的部分组成的:
第一部分来源于pSF2124质粒易位子Tn3的氨 苄青霉素抗性基因(AmpR);
第二部分来源于pSC101质粒的四环素抗性基 因(tetr);
5. 2 DNA操作技术 5. 2. 1核酸的凝胶电泳
自 从 琼 脂 糖 ( agarose ) 和 聚 丙 烯 酰 胺 (polyacrylamide)凝胶被引入核酸研究以来,按 分子量大小分离DNA的凝胶电泳技术,已经发展成 为一种分析鉴定重组DNA分子及蛋白质与核酸相互 作用的重要实验手段。
第一个核酸内切酶EcoRI是Boyer实验室在1972年发 现的,它能特异性识别GAATTC序列,将双链DNA分 子在这个位点切开并产生具有粘性末端的小片段。
图5-1 几种主要DNA内切酶所识别的序列及 其酶切末端。
Werner Arber, Hamilton Smith and Daniel Nathans were awarded the 1978 Nobel Prize for their work on REs.
多核苷酸激酶
把磷酸基团加到多聚核苷酸链的5'-OH末端 (进行末端标记实验或用来进行DNA的连接
末端转移酶
在双链核酸的3‘末端加上多聚或单核苷酸
DNA外切酶III
从DNA链的3'末端逐个切除单核苷酸
λ噬菌体DNA外切酶
从DNA链的5'末端逐个切除单核苷酸
碱性磷酸酯酶
切除位于DNA链末端的磷酸基团
嘌呤
分子生物学基因工程分子生物学与基因工程实验报告
分子生物学基因工程分子生物学与基因工程实验报告分子生物学与基因工程实验报告绿色荧光蛋白(GFP)基因的克隆和表达背景知识绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。
当受到紫外或蓝光激发时,GFP发射绿色荧光。
它产生荧光无需底物或辅因子发色团是其蛋白质一级序列固有的。
GFP由3 个外显子组成,长2.6kb;GFP 是由238 个氨基酸所组成的单体蛋白,相对分子质量为27.0kMr,其蛋白性质十分稳定,能耐受60℃处理。
1996 年GFP 的晶体结构被解出,蛋白质中央是一个圆柱形水桶样结构,长420 nm,宽240 nm,由11 个围绕中心α螺旋的反平行β折叠组成,荧光基团的形成就是从这个螺旋开始的,桶的顶部由3 个短的垂直片段覆盖,底部由一个短的垂直片段覆盖,对荧光活性很重要的生色团则位于大空腔内。
发色团是由其蛋白质内部第65-67位的Ser-Tyr-Gly自身环化和氧化形成.1996 年GFP 的晶体结构被解出,蛋白质中央是一个圆柱形水桶样结构,长420 nm,宽240 nm,由11 个围绕中心α螺旋的反平行β折叠组成,荧光基团的形成就是从这个螺旋开始的,桶的顶部由3 个短的垂直片段覆盖,底部由一个短的垂直片段覆盖,对荧光活性很重要的生色团则位于大空腔内。
绿色荧光蛋白(GFP)基因的克隆和表达一、实验目的学习掌握一种最常用的质粒DNA提取方法:碱裂解法。
该法用于从小量培养物中抽提质粒DNA,比较方便、省时,提取的质粒DNA质量较高,可用于DNA的酶切、PCR甚至测序。
学习利用核酸蛋白测定仪测算核酸的浓度和纯度。
掌握一种最常用的分离、鉴定、纯化DNA片段的比较方便、省时的技术:琼脂糖凝胶电泳的基本原理和操作方法。
学习使用限制型内切酶进行DNA酶切的原理和方法。
了解和掌握大肠杆菌感受态细胞的制备方法的原理和操作要点,以及质粒DNA转化大肠杆菌细胞的原理和方法。
分子生物学考点
名词解释:分子生物学:(molecular biology)从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学,主要指遗传的信息。
主要指遗传信息的传递(复制)、保持(损伤与修复)、基因的表达与调控。
半保留复制:由亲代DNA生成子代DNA时,每个形成的子代DNA中的一条链来自亲代DNA,另一条链则是新和成的,所以这种复制方式被称为DNA的半保留复制。
(semiconservative replication)半不连续复制:DNA复制时其中一条子链的合成是连续的,而另一条子链的合成是不连续的,故称半不连续复制。
(semidiscontinuous replication)C值反常现象:(value paradox)C值往往与种系的进化的复杂程度不一致的现象,某些低等生物却有较大的C 值,称为C值反常现象。
(C值是一种生物的单倍体基因DNA的总量。
)真核细胞基因组的最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能DNA所隔开,这就是著名的“C值反常现象”。
错配修复mismatch repairDNA的转座:或称移位(transposition),是由可移位因子(transposable element)介导的遗传物质重排现象。
转座子:(transposon,Tn)是存在于染色体DNA上可自主复制和移位的基本单位。
转绿的不对称性:在RNA合成中,DNA的2条链可作为转录的模板,称为转录的不对称性。
转录单元:(transcription unit)一段从启动子开始至终止子结束的DNA序列。
转录空泡:(transposition bubble)RNA-pol(核心酶)…DNA…RNA,DNA处于解链状态,且RNA链延伸。
转录前起始复合物:转录调控因子的辅助蛋白按照特定顺序结合于启动子上再与RNA聚合酶结合并形成复杂的复合物。
翻译:指将mRNA链上的核苷酸从一个特定的起始位点开始,按每三个核苷酸代表一个氨基酸的原则依次合成一条多肽链的过程。
基因工程 名词解释 (1)
1.基因工程:是指将一种或多种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿稳定遗传并表达出新产物或新性状的DNA体外操作程序。
2.限制性内切核酸酶:是一类能够识别双链DNA分子中的某种特定核苷酸序列,并由此处切割DNA双链的核酸内切酶。
3.粘性末端:指DNA分子在限制酶的作用下形成的含有几个核苷酸单链的末端,它们能够通过互补碱基间的配对而重新环化起来4.平末端:当限制酶从识别序列的中心轴线处切开时,切开的DNA两条单链的切口,是平整的,这样的切口叫平末端5.酶的星号活性:极度非标准反应条件下,当条件改变时许多限制酶的识别位点会改变,导致与切割序列的非特异性,这种现象称为星号活性6.载体:将外源DNA或基因携带进入宿主细胞进行扩增或表达的工具7.质粒的不相容性:两种质粒在同一宿主细胞中不能共存的现象8.PCR引物:在PCR反应中,与待扩增的DNA两侧碱基互补的寡核苷酸片段,其本质是单链DNA9.cDNA文库:指将某种生物体基因组转录的全部mRNA经反转录产生的cDNA片段,分别与克隆载体重组,储存于某种受体菌中,该群体就称该生物基因组的cDNA 文库10.基因组文库:指将某种生物体的全部基因组DNA用限制性内切酶或机械力量切割成一定长度范围的DNA片段,在与合适的载体在体外重组,并转化相应的宿主细胞,获得的所有阳性菌落,这个群体就称为该生物基因组文库11.DNA体外重组:将外源DNA用DNA连接酶在体外连接到合适的载体DNA上12.感受态细胞:经过适当处理后容易接受外源DNA进入的细胞13.受体细胞:从实验技术上讲是能摄取外源DNA并使其稳定维持的细胞14.报告基因:一种编码可被检测的蛋白质或酶的基因,也就是说是一-个其表达产物非常容易被鉴定的基因。
把它的编码序列和基因表达调节顺序相融合形成嵌合基因,或与其它目的基因相融合,在调控序.列控制下进行表达,从而利用它的表达产物来标定目的基因的表达调控,筛选得到7转化体15.简并序列:分子生物学中,同-种氨基酸具有两个或更多个密码子现象称为密码子的简并性,这样的序列就叫兼并序列16.目的基因:那些已被或者准备要分离、改造、扩增或表达的特定基因或DNA 片段17.同尾酶:来源不同,识别靶序列不同,但产生相同的粘性末端的核酸内切酶。
分子生物学名词解释
重要名词:(下划线的尤其重要)1.常染色质:细胞间期核内染色质折叠压缩程度较低,碱性染料着色浅而均匀的区域,是染色质的主体部分。
DNA主要是单拷贝和中度重复序列,是基因活跃表达部分。
2.异染色质:细胞间期核内染色质压缩程度较高,碱性染料着色较深的区域。
着丝粒、端粒、次缢痕,DNA主要是高度重复序列,没有基因活性。
3.核小体:核小体是染色体的基本组成单位,它是由DNA和组蛋白构成的,组蛋白H3、H4、H2B、H2A各两份,组成了蛋白质八聚体的核心结构,大约200bp的DNA盘绕在蛋白质八聚体的外面,相邻两个核小体之间结合了1分子的H1组蛋白。
4.组蛋白:是染色体的结构蛋白,其与DNA组成核小体。
根据其凝胶电泳性质可将其分为H1、H2A、H2B、H3及H4。
5.转座子:是在基因组中可以移动和自主复制的一段DNA序列。
6.基因:原核、真核生物以及病毒的DNA和RNA分子中具有遗传效应的核苷酸序列,是遗传的基本单位。
它包含结构蛋白和调控蛋白。
7.基因组:每个物种单倍体染色体的数目及其所携带的全部基因称为该物种的基因组。
8.顺反子:由顺/反检验定义的遗传单位,与基因等同,都是代表一个蛋白质的DNA 单位组成。
一个顺反子所包含的一段DNA与一个多肽链的合成相对应。
9.单顺反子和多顺反子:真核基因转录的产品是单顺反子mRNA,即一个基因一条多肽链,每个基因转录都有各自的调控原件。
多顺反子是指原核生物一个mRNA分别编码多条多肽链,而这些多肽链对应的DNA片段位于一个转录单位内,享用同一对起点和终点。
10.转录单位:即转录时,DNA上从启动子到终止子的一段序列。
原核生物的转录单位往往可以包含一个以上的基因,基因之间为间隔区,转录之后形成多顺反子mRNA,可以编码分歧的多肽链。
真核生物的转录单位一般只有一个基因,转录产品为单顺反子RNA,只编码一条多肽链。
11.重叠基因:是指两个或两个以上的基因共有一段DNA序列重叠基因有多种重叠方式,比方说大基因内包含小基因,几个基因重叠等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019/11/17
8
2019/11/17
9
2019/11/17
10
2019/11/17
11
2. DNA 聚合酶Ⅰ大片段
(large fragment of DNA polymerase I)
DNA聚合酶I用枯草杆菌蛋白酶(subtilisin) 裂 解后产生的大片段,这个片段也称为Klenow 片 段(Klenow fragment )。
2019/11/17
32
2019/11/17
33
(五) 病毒载体
逆转录病毒、腺病毒、腺相关病毒、 EB 病毒等作为基因转移的载体。多数病毒 载体均已质粒化,病毒载体质粒主要由病 毒启动子、包装元件、选择性遗传标记, 以及pBR322 的复制子组成。
2019/11/17
34
二、表达载体
(一) 原核表达载体
25
2019/11/17
26
( 二) λ 噬菌体
噬菌体(bacteriophage, phage) 是感染细菌 的病毒, 用作克隆载体的噬菌体有两种。
λ噬菌体 M13噬菌体
2019/11/17
27
2019/11/17
28
2019/11/17
29
λZiplox 载体
2019/11/17
30
(三)黏性质粒(cosmid )
end )。 如EcoR Ⅰ切割后产生5ˊ黏性末端:
5 -GAATTC-3 ' 3 ?-CTTAAG-5 '
2019/11/17
5 -G
ቤተ መጻሕፍቲ ባይዱ
AATTC-3
3 -CTTAA
G-5
6
PstⅠ切割后产生3ˊ黏性末端:
5 ?-CTGCAG -3 ? 3 ?-GACGTC -5 ?
5 ?-CTGCA
G -3 ?
能去除DNA或RNA 5ˊ端的磷酸根。制备 载体时,用碱性磷酸酶处理后,可防止载体自 身连接,提高重组效率。
2019/11/17
18
2019/11/17
19
6. 末端脱氧核苷酸转移酶
(terminal deoxynucleotidyl transferase, TdT )
2019/11/17
20
Ⅱ型 有 无 特异 可知、固定
Ⅲ型 有
有 特异 识别位点附近切割DNA , 切割位点很难预测。
2019/11/17
4
2.限制性内切酶的命名
EcoR Ⅰ E代表Escherichia 属 co代表coli 种 R 代表RY13 株
2019/11/17
5
3.限制性内切酶的识别和切割位点
通常是 4 ~ 6 个碱基对、具有回文序列 (palindrom )的DNA片段,大多数酶是错位 切割双链 DNA,产生 5ˊ或3ˊ黏性末端( sticky
表达载体中含有复制起始位点、抗性基 因 、克隆位点 、启动子 、核糖体结合位点和 转录终止信号。
第二节 基因克隆的载体
载体是携带目的基因,使其在宿主细 胞内复制或表达的DNA分子。
2019/11/17
21
一、常用的克隆载体
(一)质粒(plasmid ) 是存在于多数细菌和某些真核生物染
色体外的双链环状的DNA分子。一般只能 容纳小于10 kb 的外源DNA片段。
2019/11/17
22
作为克隆载体的质粒应具备下列特点:
是由λ噬菌体的黏性末端( cos区)与质 粒重新构建的载体,为双链、环状 DNA。其 克隆容量可达40~50 kb 。
2019/11/17
31
(四) M13噬菌体 (M13 phage)
一种大肠杆菌雄性特异丝状噬菌体。 感染细菌 后,经过复制转变为双链的复制型( RF )。复制型 M13 可用作克隆载体。
(1)分子量相对较小,能在细菌内稳定存 在,有较高的拷贝数。
(2)具有一个以上的遗传标志,便于对宿主
细胞进行选择,如抗生素抗性基因,
β-半乳糖苷酶基因(Lac Z)等。 (3)具有多个限制性内切酶的单一切点,便
于外源基因的插入。
2019/11/17
23
2019/11/17
24
2019/11/17
5ˊ→3ˊ聚合酶活性 3ˊ→5ˊ核酸外切酶活性 无5ˊ→3ˊ核酸外切酶活性
2019/11/17
12
Klenow片段的主要用途有:
(1) 补齐双链DNA 的3ˊ末端。
(2) 通过补齐3ˊ端,使3ˊ末端标记。
5ˊ-G-OH 3ˊ-CAATT-OH
Klenow
d *ATP,dTTP
5ˊ-GTT*A*A-OH 3ˊ-CAA T T-OH
第八章 基因工程与体外表达
2019/11/17
1
基因工程是指在体外对 DNA分子按 照既定的目的和方案,对 DNA进行剪切和 重新连接,然后把它导入宿主细胞,从而 能够扩增有关 DNA片段,表达有关基因产 物,进行 DNA序列分析,基因治疗,研究 基因表达的调节因子,以及研究基因的功 能等。
2019/11/17
15
4. T4 DNA连接酶(T4 DNA ligase )
催化双链 DNA 一端 3ˊ-OH 与另一双链 DNA的5ˊ端磷酸根形成 3ˊ→5ˊ磷酸二酯键, 使具有相同黏性末端或平端的 DNA两端连接 起来。
2019/11/17
16
2019/11/17
17
5. 碱性磷酸酶(alkaline phosphatase )
(3) 在cDNA 克隆中,第二股链的合成。
(4) DNA 序列分析。
2019/11/17
13
3. 逆转录酶(reverse transcriptase)
一种RNA 依赖的DNA聚合酶,即以RNA 为模板合成DNA, 合成方向为5ˊ→3ˊ延伸,无 3ˊ→5ˊ外切酶活性。
2019/11/17
14
2019/11/17
2
第一节 基因克隆的工具酶
一、限制性核酸内切酶 (restriction endonuclease ) 从双链 DNA内部特异位点识别并且裂
解磷酸二酯键。
2019/11/17
3
1. 限制性核酸内切酶的特点
类型 限制性 修饰作用 识别位点
切割位点
Ⅰ型 有 有 特异 识别位点下游100 到1000bp
3 ?-G
ACGTC -5 ?
有一些酶沿对称轴切断DNA,产生平端或 钝端(Blunt end ), 如Sma Ⅰ:
5 ?-CCCGGG -3 ? 3 ?-GGGCCC -5 ?
2019/11/17
5 ?-CCC 3 ?-GGG
GGG -3 ? CCC -5 ?
7
二、其他常用的工具酶
1. DNA聚合酶Ⅰ (DNA polymerase I)