3.1利用概率判断游戏的公平性(第2课时)同步练习(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时利用概率判断游戏的公平性
关键问答
①如何判断游戏的公平性?
1.①甲、乙两人用2张红心扑克牌和1张黑桃扑克牌做游戏,规则是:甲、乙各抽取一张,若两张牌是同一花色,则甲胜;若两张牌花色不同,则乙胜.这个游戏公平吗?答:__________.
2.把五张大小相同且分别写有1,2,3,4,5的卡片放在一个暗箱中,由甲随机从里面无放回地抽取两张,并记下两个数字之和,若两数字之和为偶数,则甲胜;若两数字之和为奇数,则乙胜.甲、乙获胜的概率分别为________.
命题点事件公平性的判断[热度:90%]
3.小明和小亮玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,若和为奇数,则小明胜;若和为偶数,则小亮胜.获胜概率大的是( )
A.小明B.小亮C.两人一样D.无法确定
4.在不透明塑料袋里装有一个白色的乒乓球和两个黄色的乒乓球.小明一次从袋里摸出两个球;小刚左手从袋里摸出一个球,然后右手从袋里摸出一个球;小华则先从袋里摸出一个球看一下颜色,又放回袋里,再从袋里摸出一个球.摸出的两个球都是黄色的获胜.你认为这个游戏( )
A.不公平,对小明有利B.公平
C.不公平,对小刚有利D.不公平,对小华有利
5.②2017·营口如图3-1-2,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.
图3-1-2
(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;
(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形,则小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或画树状图法)说明理由(纸牌用A,B,C,D 表示).
解题突破
②题干中的“不放回”说明了什么?在分析时应注意什么?
6.③2017·贺州在植树节期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于6,那么小王去,否则就是小李去.
(1)用树状图或列表法求出小王去的概率;
(2)小李说:“这种规则不公平.”你认同他的说法吗?请说明理由.
方法点拨
③游戏是否公平,关键是看游戏双方获胜的概率是否相等.
7.④小敏的爸爸买了一张某项体育比赛的门票,她和哥哥两人都很想去观看,可门票
只有一张,读九年级的哥哥想了一个办法,他拿了八张扑克牌,将数字分别为2,3,5,9的四张牌给了小敏,将数字分别为4,6,7,8的四张牌留给自己,并按如下规则做游戏:小敏和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌的数字相加,若和为偶数,则小敏去;若和为奇数,则哥哥去.
(1)请用画树状图或列表的方法求小敏去看比赛的概率.
(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.
方法点拨
④修改规则,使游戏变得公平的问题,对于概率不同的问题,可以通过修改事件来达到概率相同的目的,对于得分问题,既可以通过修改事件,又可以通过修改得分规则来达到目的.
8.2017·山西模拟小明一家人春节期间参与了“支付宝集五福”活动,小明和姐姐都缺一个“敬业福”,恰巧爸爸有一个可以送给其中一个人,两个人各设计了一个游戏,获胜者可得到“敬业福”,请用适当的方法说明这两个游戏对小明和姐姐是否公平.
在一个不透明盒子里放入标号分别为1,2,3,4,5,6的六个小球,这些小球除了标号数字不同外其余都相同,将小球摇匀.
游戏1的规则是:从盒子中随机摸出一个小球,摸到标号数字为奇数的小球,则判小明获胜,否则,判姐姐获胜.
游戏2的规则是:小明从盒子中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,姐姐再从盒子中随机摸出一个小球,并记下标号数字,若两次摸到小球的标号数字同为奇数或同为偶数,则判小明获胜,若两次摸到小球的标号数字为一奇一偶,则判姐姐获胜.
9.⑤甲、乙两人所持口袋中均装有三张除所标数值不同外其他完全相同的卡片,甲袋中的三张卡片上所标数值分别为0,-1,3,乙袋中的三张卡片上所标数值分别为-5,2,7,甲、乙两人均从自己的口袋中任取一张卡片,并将它们的数值分别记为m,n.
(1)请你用画树状图或列表的方法列出所有可能的结果;
(2)现制定这样一个游戏规则:若选出的m,n能使得方程x2+mx+n=0有实数根,则称甲胜;否则称乙胜.请问这样的游戏规则公平吗?请你用概率知识解释.
易错警示
⑤(1)不要混淆m,n的取值;(2)当关于x的一元二次方程ax2+bx+c=0(a≠0)有实数根时,b2-4ac≥0.
10.⑥在课外活动时间,小王、小丽、小华做“互相踢毽子”游戏,毽子从一人传到另一人就记为踢一次.
(1)若从小丽开始,经过两次踢毽后,毽子踢到小华处的概率是多少(用画树状图或列表的方法说明)?
(2)若经过三次踢毽后,毽子踢到小王处的可能性最小,请确定毽子是从谁开始踢的,并说明理由.
图3-1-3
解题突破
⑥从小丽开始,第一次踢毽,毽子能踢给哪些人?第二次踢毽,毽子又能踢给哪些人?
11.⑦“手心、手背”是在同学中广为流传的游戏.游戏时,甲、乙、丙三方每次出“手心”“手背”两种手势中的一种,规定:①出现三个相同的手势不分胜负,继续比赛;②出现一个“手心”和两个“手背”或者出现一个“手背”和两个“手心”时,则出一种手势者为胜,两种相同手势者为负.
(1)假定甲、乙、丙三人每次都是等可能地出“手心”或“手背”,请用画树状图或列表的方法求甲、乙、丙三位同学获胜的概率.
(2)若甲同学只出“手背”,乙、丙两位同学仍随机地出“手心”或“手背”,则甲同学获胜的可能性会减小吗?为什么?
解题突破
⑦第(1)小问和第(2)小问的限制条件有什么不一样?用画树状图法简单还是用列表法简单?