第4章铁芯线圈与变压器

合集下载

第讲 交流铁芯线圈电路和变压器

第讲 交流铁芯线圈电路和变压器

第讲交流铁芯线圈电路和变压器背景在电路设计和应用中,变压器和线圈通常是用于转换和传输电能的重要元器件。

它们可以实现电压升降、电能传递以及信号耦合等功能。

而其中,交流铁芯线圈电路和变压器的应用较为广泛,因此学习和掌握这些知识是非常重要的。

交流铁芯线圈电路交流铁芯线圈电路是将一个固定的直流电源直通到一对铁芯线圈(即“电感”),并在此基础上加上一个交流信号。

其中,铁芯可以是软磁材料或硬磁材料制成的。

在软磁材料中,磁通可以容易地改变方向,并且可以减小失真;而硬磁材料则更容易保持磁通的方向,但对于信号失真的问题则有些难以解决。

在铁芯线圈中,交流信号会导致其中的磁通不断变化,从而产生交流电磁感应电动势。

此时,电感的阻抗就会随着电流和信号频率的变化而发生变化,其阻抗值随信号频率的增加而增大。

因此,铁芯线圈常用于滤波和隔离等应用中。

变压器变压器是一种将交流电能从一个电路传输到另一个电路的装置,通常用于调整电路中电压或者电流的变化。

变压器是由两个或多个线圈连接在一起,其中一个线圈与电源相连,称为“输入线圈”(primary coil);而另一个线圈与负载电路相连,称为“输出线圈”(secondary coil)。

变压器的基本原理是利用电磁感应现象,使得输入线圈中的磁通沿着铁心产生磁通,从而引起输出线圈产生感应电动势。

由于变压器中的磁通是通过铁心传递的,因此变压器的铁心一般由软磁性材料(如硅钢)制成,以降低磁通的损耗。

在变压器中,输入线圈和输出线圈的匝数比例决定了变压器的转换比。

这种设计使得变压器可以在输出电路中调整电压和电流的值,而不需要使用其他的元器件(如调压器)。

因此,变压器应用非常广泛,例如电源适配器、放大器和UPS等。

本文简要介绍了交流铁芯线圈电路和变压器的工作原理和应用范围。

其中,交流铁芯线圈电路主要用于滤波和隔离等应用中;而变压器通过调整电路的电压和电流,被广泛应用于电源适配器、放大器和UPS等领域。

第4章 变压器思考题及答案

第4章  变压器思考题及答案

第4章思考题及答案4-1 变压器能否对直流电压进行变换?答:不能。

变压器的基本工作原理是电磁感应原理,如果变压器一次绕组外接直流电压,则在变压器一次绕组会建立恒定不变的直流电流i1,则根据F1= i1N1,我们知道直流电流i1会建立直流磁动势F1,该直流磁动势F1就不会在铁芯中产生交变的磁通,也就不会在二次绕组中产生感应电动势,故不会在负载侧有电压输出。

4-2变压器铁芯的主要作用是什么?其结构特点怎样?答:变压器铁芯的作用是为变压器正常工作时提供磁路,为变压器交变主磁通提供流通回路。

为了减小磁阻,一般变压器的铁芯都是由硅钢片叠成的,硅钢片的厚度通常是在0.35mm-0.5mm之间,表面涂有绝缘漆。

4-3为分析变压器方便,通常会规定变压器的正方向,本书中正方向是如何规定的?答:变压器正方向的选取可以任意。

正方向规定不同,只影响相应变量在电磁关系中的表达式为正还是为负,并不影响各个变量之间的物理关系。

变压器的一次侧正方向规定符合电动机习惯,将变压器的一次绕组看成是外接交流电源的负载,一次侧的正方向以外接交流电源的正方向为准,即一次侧电路中电流的方向与一次侧绕组感应电动势方向相同;而变压器的二次侧正方向则与一次侧规定刚好相反,符合发电机习惯,将变压器的二次绕组看成是外接负载的电源,二次侧的正方向以二次绕组的感应电动势的正方向为准,即二次侧电路中电流方向与二次侧负载电压方向相同。

感应电动势的正方向和产生感应电动势的磁通正方向符合右手螺旋定理,而磁通的正方向和产生该磁通的电流正方向也符合右手螺旋定理。

各个电压变量的正方向是由高电平指向低电平,各个电动势正方向则由低电平指向高电平。

4-4 变压器空载运行时,为什么功率因数不会很高?答:变压器空载运行时,一次绕组电流就称为空载电流,一般空载电流的大小不会超过额定电流的10%,变压器空载电流∙0I可以分为两个分量:建立主磁通∙mφ所需要的励磁电流∙μI 和由磁通交变造成铁损耗从而使铁芯发热的铁耗电流∙FeI 。

磁路与铁芯线圈电路(共14张PPT)

磁路与铁芯线圈电路(共14张PPT)
Φ=BS 磁通Φ又表示穿过某一截面S的磁力线根数,磁感应强度 B在数值上可以看成与磁场方向相垂直的单位面积所通过的 磁通,故又称磁通密度。磁通的国际单位为韦伯(Wb).
第3页,共14页。
3.磁场强度 磁场强度沿任一闭合路径l的线积分等于此闭合路径所包围的
电流的代数和。磁场强度 H的国际单位是安培/米( A/m)。 它的方向与磁感应强度B的方向相同。 4.磁导率
解 :(1)由变压比的公式,可以求出副边的匝数为 N2U U1 2N1232601100180
(2)由有功功率公式P2=U2I2cosφ,灯泡是纯电阻负载, cosφ=1,可求得副边电流.11A 36
由变流公式,可求得原边电流为
I1 I2N N1 2 1.1111180000.18
【例4-1】 有一台电压为220/36 V的降压变压器,副边接一盏36 V、40 W的灯泡,试求:(1)若变压器的原边绕组N1=1100匝,副边绕组匝
的,线圈总是装 在铁芯上。开关电器中 数应是多少?(2)灯泡点亮后,原、副边的电流各为多少?
F=NI =Σ I
电磁铁的衔铁上还装有弹簧 铁芯线圈可以通入直流电来励磁(如电磁铁),产生的磁通是恒定的,在线圈和铁芯中不会感应出电动势来,在一定的电压下,线圈中的电流
上式中线圈匝数与电流乘积称为磁通势,用字母F表示,即
F=NI 磁通势的单位是安培(A)。联立上面几个式子,则有
铁损主要由两部分组成 (1)涡流损耗 (2)磁滞损耗
HS NI L/ S
如果线圈中的铁芯换上导磁性能差的非磁性材料,而磁通势 c时,减小电流使H由Hm逐渐减小,B将
磁感应强度B与垂直于磁力线方向的面积S的乘积称为穿过该面的磁通Φ,即
第4章 磁路与铁芯线圈电路

第四章_自耦变压器

第四章_自耦变压器

例题: 例题: 双绕组变压器容量 s N = 500 KVA 而自耦变压器输出同等容量时的绕组容量 (设计容量或电磁容量)为多少? 设计容量或电磁容量)为多少? 自耦变压器的变比为: 自耦变压器的变比为:k = 1.5 A 自耦变压器设计容量: S NA
1 1 = (1 − ) S N = (1 − ) S N 1.5 KA
1、省料,造价低,外形尺寸小,重量轻 省料,造价低,外形尺寸小,
1 电磁容量: 电磁容量: S M = (1 − ) S NA KA
2、无功、有功损耗小,电压调整率小 无功、有功损耗小,
Z kA
1 = (1 − )Z k KA
R kA
1 = (1 − )Rk KA
,变比太大, k A 一般不超过 2,变比太大,高低压绕组 没有隔离,会不安全的,高压容易窜到低压。 没有隔离,会不安全的,高压容易窜到低压。
& & U2 = E2
& & & & U1 − E1 + I1R1 + jI1 X1 = & & U2 E2
V
二、电压互感器
& & & & U1 − E1 + I1 R1 + jI1 X 1 = & & U2 E2
≈0, 为励磁电流, I2≈0,I1为励磁电流,若
& I 1 ( R1 + jX 1 ) 很小
例题: 例题:同等容量的双绕组变压器和 自耦变压器比较短路电流大小。 自耦变压器比较短路电流大小。
双绕组变压器的 z k = 0.05 ,自耦变压器变比为 k A = 1.5
Z kA
1 = (1 − ) Z k = (1 − 1 ) Z k = 0.33Z k = 0.0165 KA 1.5

变压器铁芯线圈电路的功率损耗

变压器铁芯线圈电路的功率损耗

变压器铁芯线圈电路的功率损耗
1 变压器的功率损耗
变压器是一种用于改变电力电压的设备,它通过将高电压输入转
换为低电压输出来提供能量的传递,以满足特定的应用要求。

在变压
器中,铁心线圈电路用于将高压电流转换为低压电流。

然而,在变压
器中使用铁芯线圈电路也会产生功率损耗。

2 功率损耗的原因
铁芯线圈电路的功率损耗主要由两部分组成:磁损耗和电损耗。

磁损耗是通过磁饱和和铁芯损耗产生的,是指截止电感铁芯在开路情
况下物理损失的部分。

铁芯损耗是指在准饱和磁路中,由于磁铁变形
而引起的铁芯内的热损失。

电损耗是由于铁芯铁氧体引入电路中而产
生的损耗。

3 功率损耗的减少
可以采取一些措施来减少铁芯线圈电路的功率损耗,如使用低损
耗线圈、晶体管密封及采用对称结构来改善电器的绝缘特性等。

另外,应当尽量减少铁芯的损耗,它是减轻线圈的磁损耗的有效手段,因为
它的电路阻抗会减少。

此外,应采取措施减少芯片温升,如选择高效
变压器,采用良好的散热装置和结构以改善变压器的散热特性,同时
对变压器进行定期维护也可以减少功率损耗。

4 结论
变压器铁芯线圈电路的功率损耗主要由磁损耗和电损耗组成,可
以采取一些措施来减少功率损耗,例如使用低损耗线圈、晶体管密封
以及采用对称结构来改善电器的绝缘特性。

它也可以减少铁芯的损耗,选择高效变压器,采用良好的散热装置和结构以改善变压器的散热特性,同时对变压器进行定期维护也可以减少功率损耗。

变压器的结构及工作原理

变压器的结构及工作原理

变压器的结构及工作原理变压器是一种用于将电能从一种电压转换为另一种电压的电气设备。

它是电力系统中非常常见的设备之一,被广泛应用于发电厂、变电站、工业生产和民用电力系统中。

变压器的结构和工作原理十分重要,下面详细介绍。

一、变压器的结构变压器由两个或更多的线圈通过铁芯相互连接而成。

主要包括以下部分:1.铁芯:变压器的铁芯由硅钢片组成,可有效减小磁滞和涡流损耗。

铁芯的形状包括E型、I型和C型等,用于支撑和保护线圈。

2.一次线圈(主绕组):也称为原线圈或输入线圈,接收电源端的输入电能。

一次线圈一般由较粗的导线绕制而成。

3.二次线圈(副绕组):也称为输出线圈,输出变压器转换后的电能。

二次线圈一般由较细的导线绕制而成。

4.绝缘材料:用于在不同线圈之间提供电气绝缘,避免相互之间的短路。

5.冷却装置:用于散热,以保证变压器的工作温度不超过允许范围。

常见的冷却方式包括自然冷却(静风冷却)和强制冷却(风扇冷却、冷水冷却等)。

二、变压器的工作原理变压器基于电磁感应的原理工作,其主要过程是通过变化的磁场引起线圈中的电压变化。

1.变流原理:根据法拉第电磁感应定律,当一次线圈中的电流变化时,会在铁芯中产生一个变化的磁场。

这个磁场穿过二次线圈,并在其中引起电动势的产生。

根据电磁感应定律,产生的电动势与变化的磁场强度成正比。

2.变压原理:根据楞次定律,一次线圈和二次线圈中的电流方向是相互反的。

当一次线圈接通电源时,通过它的电流会在铁芯中产生一个磁场。

这个磁场会在二次线圈中引起电动势的产生,并使得二次线圈中的电流流动。

变压器的输入电压和输出电压之比等于输入线圈的匝数和输出线圈的匝数之比。

即:输入电压/输出电压=输入线圈匝数/输出线圈匝数3.近似理想性:在实际的变压器中,我们可以近似认为主线圈和副线圈之间没有电阻,也没有电感。

这样,变压器的损耗可以忽略不计,输出电压会完全等于输入电压。

4.变压器的效率:实际的变压器会有一定的损耗,主要包括铁损耗和铜损耗。

电工学原理 第4章 变压器

电工学原理 第4章 变压器
第4章 变压器
变压器是一种利用磁路传递电能的
设备。也就是说,变压器是利用电磁
感应原理,从一个电路向另一个电路
传递能量或传输信号的电器。
变压器的分类
升压变压器 降压变压器 电力变压器配电变压器 联络变压器 厂用变压器 变压器 整流变压器 1 中频变压器( -8kHz) 高频变压器(几十kHz-几百kHz) 特种变压器 自耦变压器 电炉变压器
S N U 2 N I 2 N U 1N I 1N
三相变压器的额定容量
4. 额定频率fN
S N 3U 2 N I 2 N 3U1N I1N
变压器的工作频率。我国标准的工业用电频率为50Hz。 5.额定效率 N
P2 P2 P1 P2 PF PCu
从空载到额定负载,副边电压的变化程度可用电压变 化率来表示,即 U2
E1m N1m 2fN1m E1 E1m / 2 4.44 fN1m E2 m N 2m 2fN 2m E2 E2 m / 2 4.44 fN2m
电压变换
据基尔霍夫电压定律,对原、副绕组列出端电压 方程式如下: i =i
220 4.44 f ( N1 N 2 ) m
N1 N 2
则穿过铁芯中的主磁通 m 不变,变压器工作 状态不变,所以 U 3 20V 。
I 3NU 3N 1 20 I1 I 2 0.091A U 1N U 2 N 220
(4)应将1、3相联接,2、4相联接,然后接入 110V电源,此时 U 3 20V 。
铜损可通过短路实验测得,铁损可通过空载实验测得。
4.2 变 压 器
变压器的基本结构与工作原理

化工仪表及自动化第4章流量

化工仪表及自动化第4章流量

图3-21 测量液体流量 时的取压点位置
图3-22 测量液体流量时的连接图 1—节流装置;2—引压导管;3—放空阀;4—平衡 阀;5—差压变送器;6—贮气罐;7—切断阀
78
第四章 流量检测及仪表
化学工业出版社
① 测量液体的流量时,应该使两根导压管内都充满同样 的液体而无气泡,以使两根导压管内的液体密度相等。 a) 取压点应该位于节流装置的下半部,与水平线夹角α 为0°~45°。 b) 引压导管最好垂直向下,如条件不许可,导压管亦应 下倾一定坡度(至少1∶20~1∶10),使气泡易于排出。 c) 在引压导管的管路中,应有排气的装置。
qv h
2
f
p
h
2V ( t f ) g
f A
流量与转子高度h成线性关系 式中的其它参数为常数
qm h
2V ( t f ) g f A
式中:φ为仪表常数;h为转子浮起的高度。
转子流量计的锥形管一般采用透明材料制成,在锥形管上刻有流量读数,用户只要根据
举例 如左图,标准孔板对尺寸和公差、粗糙 度等都有详细规定。 其中d/D应在0.2~0.8之间;最小 孔径应不小于 12.5mm ;直孔部分的厚 度 h =( 0.005 ~ 0.02 ) D ;总厚度 H < 0.05D ;锥面的斜角 α = 30°~ 45°等 等,需要时可参阅设计手册。
图3-19 孔板断面 示意图
若流体流量突然由小变大时,作用在转子上的向上的力就加大,转子上升,环隙 增大,即流通面积增大。随着环隙的增大,使流体流速变慢,流体作用在转子上 的向上力也就变小。这样,转子在一个新的高度上重新平衡。这样,转子在锥形 管中平衡位置的高低h与被测介质的流量大小相对应。

传感器原理及应用-第4章-4.1变磁阻式电感传感器

传感器原理及应用-第4章-4.1变磁阻式电感传感器

§4.1 变磁阻式电感传感器
一、变磁阻式传感器工作原理
变磁阻式传感器即自感式电感传感器:
利用线圈自感量的变化来实现测量的。
铁芯
传感器结构:线圈、铁芯和衔铁三部
线圈
分组成。
工作原理:铁芯和衔铁由导磁材料如
硅钢片或坡莫合金制成,在铁芯和衔铁之间 衔铁 有气隙,气隙厚度为δ,传感器的运动部分
与衔铁相连。当被测量变化时,使衔铁产生
3
差动变
2 截面式
4
§4.1 变磁阻式电感传感器
一、变磁阻式传感器工作原理 二、变磁阻式传感器基本类型 三、变截面式自感传感器输出特性 四、变间隙式自感传感器输出特性 五、差动式自感传感器 六、自感式传感器的等效电路 七、自感式传感器的测量电路
§4.1 变磁阻式电感传感器
六、自感式传感器的等效电路
L U L2
~
I
C

U
Z1
2
A

U 2
Z2
U 0
D
B
U o

Z2 Z1 Z1 Z2
U 2

Z Z
U 2

L U L2
当衔铁上下移动相同距 离时,电桥输出电压大小相 等而相位相反。
§4.1 变磁阻式电感传感器
七、自感式传感器的测量电路
2、变压器式交流电桥
§4.1 变磁阻式电感传感器
§4.1 变磁阻式电感传感器
五、差动式自感传感器
三种基本类型: 在实际使用中,常采用两个相同的传感线
圈共用一个衔铁,构成差动式自感传感器。
44
3
差动结构的特点:
(1)改善线性、提高灵敏度外;
(2)补偿温度变化、电源频率变化等的 影响,从而减少了外界影响造成的误差。

新人教版第4章第七节涡流 电磁阻尼和电磁驱动练习题及答案解析

新人教版第4章第七节涡流 电磁阻尼和电磁驱动练习题及答案解析

1.(2021年哈师大附中高二检测)下列应用与涡流有关的是()A.家用电磁炉B.家用微波炉C.真空冶炼炉D.探雷器解析:选ACD.家用电磁炉、真空冶炼炉、探雷器都是利用涡流工作,而家用微波炉是利用微波直接作用于食物.图4-7-82.高频感应炉是用来熔化金属对其进行冶炼的,如图4-7-8所示为冶炼金属的高频感应炉的示意图,炉内放入被冶炼的金属,线圈通入高频交变电流,这时被冶炼的金属就能被熔化,这种冶炼方法速度快,温度易控制,并能避免有害杂质混入被炼金属中,因此适于冶炼特种金属.该炉的加热原理是()A.利用线圈中电流产生的焦耳热B.利用线圈中电流产生的磁场C.利用交变电流的交变磁场在炉内金属中产生的涡流D.给线圈通电的同时,给炉内金属也通了电解析:选C.高频感应炉的线圈通入高频交变电流时,产生变化的磁场,变化的磁场就能使金属中产生涡流,利用涡流的热效应加热进行冶炼.故选项C正确.A、B、D错误.图4-7-93.如图4-7-9所示,金属球(铜球)下端有通电的线圈,今把小球拉离平衡位置后释放,此后关于小球的运动情况是(不计空气阻力)()A.做等幅振动B.做阻尼振动C.振幅不断增大D.无法判定解析:选B.小球在通电线圈的磁场中运动,小球中产生涡流,故小球要受到安培力作用阻碍它与线圈的相对运动,做阻尼振动.图4-7-104.老师做了一个物理小实验让学生观察:一轻质横杆两侧各固定一金属环,横杆可绕中心点自由转动,老师拿一条形磁铁插向其中一个小环,后又取出插向另一个小环,如图4-7-10所示,同学们看到的现象是()A.磁铁插向左环,横杆发生转动B.磁铁插向右环,横杆发生转动C.无论磁铁插向左环还是右环,横杆都不发生转动D.无论磁铁插向左环还是右环,横杆都发生转动解析:选B.右环闭合,在此过程中可产生感应电流,环受安培力作用,横杆转动,左环不闭合,无感应电流,无以上现象,选B.图4-7-115.如图4-7-11所示,光滑金属球从高h的曲面滚下,又沿曲面的另一侧上升,设金属球初速度为零,曲面光滑,则()A.若是匀强磁场,球滚上的高度小于hB.若是匀强磁场,球滚上的高度等于hC.若是非匀强磁场,球滚上的高度等于hD.若是非匀强磁场,球滚上的高度小于h解析:选BD.若是匀强磁场,则穿过球的磁通量不发生变化,球中无涡流,机械能没有损失,故球滚上的高度等于h,选项A错B对;若是非匀强磁场,则穿过球的磁通量发生变化,球中有涡流产生,机械能转化为内能,故球滚上的高度小于h,选项C错D对.一、选择题图4-7-121.如图4-7-12所示,在一个绕有线圈的可拆变压器铁芯上分别放一小铁锅水和一玻璃杯水.给线圈通入电流,一段时间后,一个容器中水温升高,则通入的电流与水温升高的是()A.恒定直流、小铁锅B.恒定直流、玻璃杯C.变化的电流、小铁锅D.变化的电流、玻璃杯解析:选C.通入恒定直流时,所产生的磁场不变,不会产生感应电流,通入变化的电流,所产生的磁场发生变化,在空间产生感生电场,铁锅是导体,感生电场在导体内产生涡流,电能转化为内能,使水温升高;涡流是由变化的磁场在导体内产生的,所以玻璃杯中的水不会升温.2.变压器的铁芯是利用薄硅钢片叠压而成的,而不是采用一整块硅钢,这是为了() A.增大涡流,提高变压器的效率B.减小涡流,提高变压器的效率C.增大铁芯中的电阻,以产生更多的热量D.增大铁芯中的电阻,以减少发热量解析:选BD.不使用整块硅钢而采用很薄的硅钢片,这样做的目的是增大铁芯中的电阻,来减少电能转化成铁芯的内能,提高效率,是防止涡流而采取的措施.图4-7-133.(2021年合肥高二检测)如图4-7-13所示,在光滑水平面上固定一条形磁铁,有一小球以一定的初速度向磁铁方向运动,如果发现小球做减速运动,则小球的材料可能是()A.铁B.木C.铝D.塑料解析:选C.木球、塑料球在光滑水平面上将做匀速运动,B、D错误;铁球受磁铁的吸引在光滑水平面上将做加速运动,A错误;铝球受电磁阻尼作用在光滑水平面上将做减速运动,C正确.图4-7-144.某磁场磁感线如图4-7-14所示,有铜圆板自图示A位置落至B位置,在下落过程中,自上向下看,圆板中的涡电流方向是()A.始终顺时针B.始终逆时针C.先顺时针再逆时针D.先逆时针再顺时针解析:选C.把圆板从A至B的全过程分成两个阶段处理:第一阶段是圆板自A位置下落到具有最大磁通量的位置O,此过程中穿过圆板磁通量的磁场方向向上且不断增大.由楞次定律判断感应电流方向(自上向下看)是顺时针的;第二阶段是圆板从具有最大磁通量位置O落到B位置,此过程穿过圆板磁通量的磁场方向向上且不断减小,由楞次定律判得感应电流方向(自上向下看)是逆时针的.图4-7-155.如图4-7-15所示,挂在弹簧下端的条形磁铁在闭合线圈内振动,如果空气阻力不计,则下列说法中正确的是()A.磁铁的振幅不变B.磁铁做阻尼振动C.线圈中产生方向不变的电流D.线圈中产生方向变化的电流解析:选BD.尽管不知道条形磁铁的下端是N极还是S极,但是,在条形磁铁上下振动的过程中,周期性地靠近(或远离)闭合线圈,使穿过闭合线圈的磁通量不断变化,从而产生感应电流.根据楞次定律可知,闭合线圈产生感应电流的磁场必然阻碍条形磁铁的振动,使其机械能不断减小,从而做阻尼振动;同时由于条形磁铁在靠近线圈和远离线圈时,穿过闭合线圈的磁通量方向不变,但磁通量的增减情况刚好相反.根据楞次定律可知,线圈中感应电流的方向不断地做周期性变化,即线圈中产生的感应电流是方向变化的电流.图4-7-166.如图4-7-16所示,矩形线圈放置在水平薄木板上,有两块相同的蹄形磁铁,四个磁极之间的距离相等,当两块磁铁匀速向右通过线圈时,线圈仍静止不动,那么线圈受到木板的摩擦力方向是( )A .先向左,后向右B .先向左、后向右、再向左C .一直向右D .一直向左解析:选D.当两块磁铁匀速向右通过线圈时,线圈内产生感应电流,线圈受到的安培力阻碍线圈相对磁铁的向左运动,故线圈有相对木板向右运动的趋势,故受到的静摩擦力总是向左.选项D 正确,A 、B 、C 错误.图4-7-177.如图4-7-17所示,在光滑绝缘水平面上,有一铝球以一定的初速度通过有界匀强磁场,则从球开始进入磁场到完全穿出磁场过程中(磁场宽度大于金属球的直径),小球( )A .整个过程都做匀速运动B .进入磁场过程中球做减速运动,穿出过程中球做加速运动C .整个过程都做匀减速运动D .穿出时的速度一定小于初速度解析:选D.小球的运动主要研究两个阶段:一是球进入磁场的过程,由于穿过小球的磁通量增加,在球内垂直磁场的平面上产生涡流,有电能产生,而小球在水平方向上又不受其他外力,所以产生的电能只能是由球的机械能转化而来,由能的转化与守恒可知,其速度减小;二是穿出磁场的过程,同理可得速度进一步减小,故选项D 正确.图4-7-188.如图4-7-18所示,条形磁铁从h 高处自由下落,中途穿过一个固定的空心线圈,开关S 断开时,至落地用时t 1,落地时速度为v 1;S 闭合时,至落地用时t 2,落地时速度为v 2,则它们的大小关系正确的是( )A .t 1>t 2,v 1>v 2B .t 1=t 2,v 1=v 2C .t 1<t 2,v 1<v 2D .t 1<t 2,v 1>v 2解析:选D.开关S 断开时,线圈中无感应电流,对磁铁无阻碍作用,故磁铁自由下落,a =g ;当S 闭合时,线圈中有感应电流阻碍磁铁下落,故a <g ,所以t 1<t 2,v 1>v 2.9.一个半径为r 、质量为m 、电阻为R 的金属圆环,用一根长为L 的绝缘细绳悬挂于O 点,离O 点下方L 2处有一宽度为L 4、垂直纸面向里的匀强磁场区域,如图4-7-19所示.现使圆环从与悬点O 等高位置A 处由静止释放(细绳张直,忽略空气阻力),摆动过程中金属环所在平面始终垂直磁场,则在达到稳定摆动的整个过程中金属环产生的热量是( )图4-7-19 A .mgL B .mg (L 2+r ) C .mg (34L +r ) D .mg (L +2r ) 解析:选C.线圈在进入磁场和离开磁场时,磁通量发生变化,产生感应电流,机械能减少.最后线圈在磁场下面摆动,机械能守恒.在整个过程中减少的机械能转变为焦耳热,在达到稳定摆动的整个过程中,金属环减少的机械能为mg (34L +r ).图4-7-2010. (2021年高考大纲全国卷Ⅱ)如图4-7-20,空间某区域中有一匀强磁场,磁感应强度方向水平,且垂直于纸面向里,磁场上边界b 和下边界d 水平.在竖直面内有一矩形金属线圈,线圈上下边的距离很短,下边水平.线圈从水平面a 开始下落.已知磁场上下边界之间的距离大于水平面a 、b 之间的距离.若线圈下边刚通过水平面b 、c (位于磁场中)和d 时,线圈所受到的磁场力的大小分别为F b 、F c 和F d ,则( )A .F d >F c >F bB .F c <F d <F bC .F c >F b >F dD .F c <F b <F d解析:选D.金属线圈进入与离开磁场的过程中,产生感应电流,线圈受到向上的磁场力即安培力,根据F =IlB ,E =Bl v ,I =E r 可得:F =B 2l 2v r ,由此可知线圈所受到的磁场力大小与速度大小成正比.当线圈完全进入磁场时,没有安培力,故F c =0;通过水平面b 时,有v 2b =2gh ab ,则v b =2gh ab ;通过水平面d 时设线圈刚完全进入时的速度为v ′b ,有v 2d-v ′2b =2gh bd ,则v d =v ′2b +2gh bd ,而h bd >h ab ,故v d >v b ,则F d >F b ,所以本题答案为D.二、非选择题图4-7-2111.如图4-7-21所示,光滑弧形轨道和一足够长的光滑水平轨道相连,水平轨道上方有一足够长的金属杆,杆上挂有一光滑螺旋管A .在弧形轨道上高为h 的地方,无初速度释放一磁铁B (可视为质点),B 下滑至水平轨道时恰好沿螺旋管A 的中心轴运动,设A 、B 的质量分别为M 、m ,若最终A 、B 速度分别为v A 、v B .(1)螺旋管A 将向哪个方向运动?(2)全过程中整个电路所消耗的电能.解析:(1)磁铁B 向右运动时,螺旋管中产生感应电流,感应电流产生电磁驱动作用,使得螺旋管A 向右运动.(2)全过程中,磁铁减少的重力势能转化为A 、B 的动能和螺旋管中的电能,所以mgh =12M v 2A +12m v 2B +E 电. 即E 电=mgh -12M v 2A -12m v 2B . 答案:(1)向右运动 (2)mgh -12M v 2A -12m v 2B 图4-7-2212.如图4-7-22所示,在光滑的水平面上有一半径r =10 cm 、电阻R =1 Ω、质量m =1 kg 的金属环,以速度v =10 m/s 向一有界磁场滑去.匀强磁场方向垂直于纸面向里,B =0.5 T ,从环刚进入磁场算起,到刚好有一半进入磁场时,圆环一共释放了32 J 的热量,求:(1)此时圆环中电流的瞬时功率;(2)此时圆环运动的加速度.解析:(1)设刚好有一半进入磁场时,圆环的速度为v ′,由能量守恒,得12m v 2=Q +12m v ′2 此时圆环切割磁感线的有效长度为2r ,圆环的感应电动势E =B ·2r ·v ′而圆环此时的瞬时功率P =E 2R =(B ·2r ·v ′)2R两式联立代入数据可得v ′=6 m/s ,P =0.36 W(2)此时圆环在水平方向受向左的安培力F =ILB ,圆环的加速度为a =ILB m =B 2(2r )2v ′mR =6×10-2 m/s 2,方向向左.答案:(1)0.36 W (2)6×10-2 m/s 2 向左。

变压器(高中物理教学课件)完整版

变压器(高中物理教学课件)完整版

典型例题
例3.如图所示,P是电压互感器,Q是电流互感器,
如果两个互感器的变压比和变流比都是50,电压
表的示数为220V,电流表的示数为3A,则输电线
路中的电压和电流分别是( A )
A.11000V,150A
B.1100V,15A
C.4.4V,16.7A
D.4.4V,0.06A
典型例题
例4.如图所示为一理想变压器,其原、副线圈匝
五.变压器的等效电路
1.等效电阻法 理想变压器原、副线圈的匝数分别为n1、n2原、副线圈 的电压分别为U1、U2, 副线圈负载电阻为 R, 等效电路如图所示,
求 R等效。
法一:U1 U2
n1 n2
U2
n2 n1
U1
左图:P
U
2 2
R
n2 2U12 n12 R
右图:P'
U12 R等效
P
n2 2U12 n12 R
1.变压比:U1 n1 或者U1 U2
U 2 n2
n1 n2
2.功率关系:因没有能量损失
P1 P2 U1I1 U 2I2
3.变流比:由功率关系U1I1
U2I2
I1 I2
U2 U1
I1 I2
n2 n1
或者n1I1
n2I2
4.频率关系:原副线圈频率不变
f1 f2
二.理想变压器变压规律
注意: ①若n1<n2,则U1<U2,这种变压器叫升压变压器 ②若n1>n2,则U1>U2,这种变压器叫降压变压器 ③原副线圈电压比与匝数比成—— 正比 ④原副线圈电流比与匝数比成—— 反比 ⑤原线圈电压与副线圈电压成—— 正比 ⑥原线圈电流与副线圈电流成—— 正比 ⑦变压器电压、频率由输入端决定 ⑧变压器电流、功率由输出端决定

电机学习题与解答_变压器

电机学习题与解答_变压器

第一部分: 变压器第一章 变压器基本工作原理和结构1-1从物理意义上说明变压器为什么能变压,而不能变频率?答:变压器原副绕组套在同一个铁芯上, 原边接上电源后,流过激磁电流I 0, 产生励磁磁动势F 0, 在铁芯中产生交变主磁通ф0, 其频率与电源电压的频率相同, 根据电磁感应定律,原副边因交链该磁通而分别产生同频率的感应电动势 e 1和e 2 , 且有dt d N e 011φ-=, dt d N e 022φ-=, 显然,由于原副边匝数不等, 即N 1≠N 2,原副边的感应电动势也就不等, 即e 1≠e 2, 而绕组的电压近似等于绕组电动势,即U 1≈E 1, U 2≈E 2,故原副边电压不等,即U 1≠U 2, 但频率相等。

1-2 试从物理意义上分析,若减少变压器一次侧线圈匝数(二次线圈匝数不变)二次线圈的电压将如何变化?答:由dt d N e 011φ-=, dt d N e 022φ-=, 可知 , 2211N e N e =,所以变压器原、副两边每匝感应电动势相等。

又U 1» E 1, U 2≈E 2 , 因此,2211N U N U ≈, 当U 1 不变时,若N 1减少, 则每匝电压11N U 增大,所以1122N U N U =将增大。

或者根据m fN E U Φ=≈11144.4,若 N 1 减小,则m Φ增大,又m fN U Φ=2244.4,故U 2增大。

1-3 变压器一次线圈若接在直流电源上,二次线圈会有稳定直流电压吗?为什么?答:不会。

因为接直流电源,稳定的直流电流在铁心中产生恒定不变的磁通,其变化率为零,不会在绕组中产生感应电动势。

1-4 变压器铁芯的作用是什么,为什么它要用0.35毫米厚、表面涂有绝缘漆的硅钢片迭成?答:变压器的铁心构成变压器的磁路,同时又起着器身的骨架作用。

为了铁心损耗,采用0.35mm 厚、表面涂的绝缘漆的硅钢片迭成。

1-5变压器有哪些主要部件,它们的主要作用是什么?答:铁心: 构成变压器的磁路,同时又起着器身的骨架作用。

传感器原理及应用-第4章 - 4.2 差动变压器式电感传感器

传感器原理及应用-第4章 - 4.2 差动变压器式电感传感器

§4.2 差动变压器式电感传感器
二、变隙式差动变压器
2、变隙式差动变压器输出特性
在忽略铁损(即涡流与磁滞损耗 忽略不计)、漏感以及变压器次级开 路(或负载阻抗足够大)的条件下的 等效电路。 不考虑铁芯与衔铁中的磁阻影响 时,变隙式差动变压器输出电压为
b a W2 U U 2 b a W1 1
M
基本种类
有变隙式、变面积式和螺线管式等。 应用最多的是螺线管式差动变压器。
初1 级 线 圈
3
次 级 线 圈
2
4
§4.2 差动变压器式电感传感器
一、螺线管式差动变压器
二、变隙式差动变压器
三、差动变压器式传感器测量电路
§4.2 差动变压器式电感传感器
一、螺线管式差动变压器
1、螺线管式差动变压器结构与原理
U2 r1 L1
2 2
§4.2 差动变压器式电感传感器
一、螺线管式差动变压器
2、螺线管式差动变压器输出特性
U2
M a M b U 1
r1 L1
2 2
§4.2 差动变压器式电感传感器
一、螺线管式差动变压器
二、变隙式差动变压器
三、差动变压器式传感器测量电路
根据电磁感应原理有
E E 2a 2b
变压器两次级绕组反 向串联,则差动变压器输 出电压为零。
§4.2 差动变压器式电感传感器
一、螺线管式差动变压器
2、螺线管式差动变压器输出特性
当次级两绕组反向串 联、次级开路时差动变压 器输出电压为 差动变压器输出电动势的大小和相 位可知道衔铁位移的大小和方向。
二、变隙式差动变压器
2、变隙式差动变压器输出特性

3 电机学_第三章、第四章 三相变压器及运行_西大电气

3  电机学_第三章、第四章 三相变压器及运行_西大电气
3.画出副方电势相量三角形,据连接组别,标出 ax,by,cz
4.在相量图中,同向绕组在同一铁芯柱上,注意 同名端
5.连接副方绕组
19:43:15
第三章
第三节 绕组连接法及其磁路系统对电势波形的影响
由于磁路饱和,磁化电流是尖顶波。分解为基波 分量和各奇次谐波(三次谐波最大)。
问题
在三相系统中,三次谐波电流在时间上同相位, 是否存在与三相绕组的连接方法有关。
大容量变压器一般有较大的短路电压。
•分析三次谐波电流不能流通所产生的影响。
19:43:15
第三章
第三节 绕组连接法及其磁路系统对电势波形的影响
一、三相变压器组Y,y连接
初级为Y连接,激磁电 流中所必需的三次谐 波电流分量不能流 通——磁化电流正弦 形
19:43:15
第三章
第三节 绕组连接法及其磁路系统对电势波形的影响
思考:
相电势中存在三次谐波电势, 则线电势的波形如何?
19:43:15
第三章
第二节 三相变压器的连接组
Y,d连接
1、Y,d11 Eab滞后EAB 330 Eab超前EAB30
19:43:15
第三章
第二节 三相变压器的连接组
Y,d连接
2、Y,d1 Eab滞后EAB 30 Eab超前EAB 330
19:43:15
第三章
第二节 三相变压器的连接组
在高压线路中的大容量变压器需接成Y,d
19:43:15
第三章
第三节 绕组连接法及其磁路系统对电势波形的影响
五、三相变压器D,y连接
3次谐波电流可流通,磁
通呈正弦形,从而每相 电势接近正弦波。 分析点:
一次侧相电流中是否有三次谐波电流?

变压器的设计原理

变压器的设计原理

变压器的设计原理变压器是电力系统中常见的电气设备,它起到改变电压的作用。

变压器的设计原理是基于法拉第电磁感应定律和电磁感应电动势的原理。

变压器由铁芯和线圈组成,通过电磁感应的作用,将输入电压转换成输出电压。

变压器的铁芯是由硅钢片叠压而成的,这是因为硅钢片具有高导磁性和低磁导率的特性。

铁芯的作用是增强磁场的强度,使得变压器能够更有效地进行能量转换。

铁芯还能够减小磁通散失,提高变压器的效率。

变压器的线圈分为输入线圈(也称为初级线圈)和输出线圈(也称为次级线圈)。

输入线圈通常由较少的匝数组成,而输出线圈则具有较多的匝数。

这样设计的目的是为了改变电压的大小。

根据法拉第电磁感应定律,当输入线圈中通过电流时,会在铁芯中产生磁场。

这个磁场会进一步感应出次级线圈中的电动势,从而实现电压的转换。

变压器的电压转换原理是基于电磁感应电动势的原理。

根据电磁感应电动势的公式,电动势的大小与磁感应强度的变化率成正比。

在变压器中,输入线圈中的电流通过铁芯产生磁场,次级线圈中的匝数较多,因此磁感应强度较大。

当输入线圈中的电流发生变化时,磁感应强度也会随之变化,从而产生感应电动势。

根据电磁感应电动势的原理,感应电动势的大小与磁感应强度的变化率成正比,因此输出电压的大小与输入电压的大小成正比。

变压器的设计原理还涉及到能量的传递和功率的转换。

根据能量守恒定律,变压器中的输入功率等于输出功率。

由于变压器的铁芯和线圈都是导体,所以在传递能量的过程中会有一定的能量损失。

这些能量损失主要包括铁芯的磁滞损耗、涡流损耗和线圈的电阻损耗。

为了提高变压器的效率,减小能量损失,需要采取一系列措施,如选择合适的材料、优化变压器的结构和降低电阻等。

总结起来,变压器的设计原理是基于电磁感应定律和电磁感应电动势的原理。

通过合理设计铁芯和线圈的结构,能够实现输入电压到输出电压的转换。

变压器的设计还需要考虑能量的传递和功率的转换,以提高变压器的效率。

通过合理的设计和优化,变压器在电力系统中发挥着重要的作用,实现了电压的变换和能量的传递。

变压器的构成与工作原理

变压器的构成与工作原理

变压器的定义、作用、工作原理、基本构成1、变压器定义、作用在交流电路中,将电压升高或降低的设备叫变压器,变压器能把任一数值的电压转变成频率相同的我们所需的电压值,以满足电能的输送,分配和使用要求。

例如发电厂发出来的电,电压等级较低,必须把电压升高才能输送到较远的用电区,用电区又必须通过降压变成适用的电压等级,供给动力设备及日常用电设备使用。

变压器首要构成构件是初级线圈、次级线圈和铁芯(磁芯),此外还有一些辅助部件。

线圈有两个或两个以上的绕组,其间接电源的绕组叫初级线圈,别的的绕组叫次级线圈。

它可以转换交流电压、电流和阻抗。

铁芯心的作用是加强两个线圈间的磁耦合。

为了削减铁内涡流和磁滞损耗,铁心由涂漆的硅钢片叠压而成;两个线圈之间没有电的联络,线圈由绝缘铜线(或铝线)绕成。

1.铁芯。

铁芯是变压器电磁感应的通路,由硅钢片组成,为了降低铁心中的发热损耗,铁心由厚度为0.23—0.5mm的硅钢片叠装而成。

采用硅钢片叠装可以减少涡流。

变压器的一、二次绕组都绕在铁芯上。

2.绕组。

绕组是变压器的电路部分,分高、低压绕组,即一、二次绕组。

绕组由绝缘的铜线或铝线绕成的多层线圈构成,套装在铁芯上。

3.油箱。

它是变压器的外壳,内装铁芯、绕组和变压器油,起一定的散热作用。

4.储油柜。

当变压器油的体积随温度的变化而膨胀或缩小时,储油柜起着储油和补油的作用,以保证油箱内充满油。

储油柜还能减少油与空气的接触面,防止油被过快氧化和受潮。

5.吸湿器。

储油柜内的油通过吸湿器与空气相通。

6.散热器。

它用来降低变压器的温度。

为提高变压器油冷却效果,可采用风冷、强(迫)油(循环)风冷和强油水冷等措施。

7.安全气道。

当变压器内部有故障、油温升高、油剧烈分解产生大量气体使油箱内压力剧增时,会将安全气道的玻璃冲碎,从而避免油箱爆炸或变形。

8.高、低压绝缘套管(瓷套管)。

它是将变压器高、低压引线引至油箱外部的绝缘装置,也起固定引线的作用。

9.分接开关。

工厂供电第6版 (刘介才)_第4章__工厂变配电所及其一次系统

工厂供电第6版 (刘介才)_第4章__工厂变配电所及其一次系统
11
12
第二节 电力变压器
一. 电力变压器及其分类
工厂变电所大多采用普通电力变压器。
在易燃易爆场所及安全要求特高的场所采用全封闭 变压器,在多雷区采用防雷变压器。
13
第二节 电力变压器
14
第二节 电力变压器
15
第二节 电力变压器
一. 电力变压器的结构、型号
(一)电力变压器的结构和型号 电力变压器的基本结构,包括铁心和绕组两大部分。 绕组又分高压和低压或一次和二次绕组。 普通三相油浸式电力变压器和环氧树脂浇注绝缘的三相干式 电力变压器
时分针与时针的相互关
系一样。图中一、二次 绕组标有黑点 “•” 的
a)一、二次绕组接线图 b)一、二次电压相量图 c)时钟示意图 33
端子为对应的“同名
端” 。
第二节 电力变压器
三、电力变压器的联结组别及其选择
(一)常用配电变压器的联接组别 变压器Dyn11联结
组的接线和示意图。
一次线电压与对应 的二次线电压之间
35
第二节 电力变压器
三、电力变压器的联结组别及其选择
(一)常用配电变压器的联接组别 Dyn11联结较Yyn0联结有下列优点 (2) Dyn11联结变压器的零序阻抗较之 Yyn0联结变压器的 零序阻抗小得多,有利于低压单相接地短路故障保护的动作 及故障的切除。
36
第二节 电力变压器
三、电力变压器的联结组别及其选择
工厂供电
刘介才
霍平
1
工厂供电
第四章工厂变配电所及其一次系统
本章首先介绍工厂变配电所的任务和类型,然后 重点讲述工厂变配电所的一次设备和主接线图, 对电力变压器、互感器和高低压一次设备着重介 绍其功能、结构特点、基本原理及其选择,对主 接线图着重讲述其基本要求及一些典型接线。 最 后讲述工厂变配电所的所址选择、布置、结构、 安装图及其运行维护和检修试验的基本知识。本 章是本课程的重点,也是从事工厂变配电所运行、 维护和设计必备的基础知识。

变压器原理与结构图

变压器原理与结构图

变压器原理与结构图
变压器是一种用于改变交流电压的电气设备,它基于电磁感应的原理工作。


压器主要由铁芯和线圈组成。

铁芯由硅钢片堆叠而成,线圈则包括主线圈和副线圈。

原理
当交流电流通过主线圈时,产生的磁场会封入副线圈中,从而在副线圈中诱发
感应电动势,导致电压改变。

根据电磁感应定律,感应电动势与磁场变化率成正比,而且与线圈匝数成正比。

结构图
下面是一个简单的变压器结构图:
| |
-----------------
| Primary |
-----------------
// ||
// ||
// \\/
// Iron Core
//
//
//
//
Secondary
在结构图中,可以看到主线圈和副线圈分别绕在铁芯上。

主要电压改变发生在
铁芯内部的磁场中,这样传递到副线圈产生输出电压。

变压器具有重要的应用,在电力系统中起着至关重要的作用。

通过合理设计变
压器的结构和匝数比例,可以实现不同电压等级之间的电能传输和变换。

总结
变压器是一种重要的电气设备,利用电磁感应原理实现电压的改变。

结构简单
但功能强大,广泛应用于各种电力系统中。

对变压器的原理和结构有着清晰的理解,有助于我们更好地应用和维护这一关键设备。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


b
c B-H
♦2、磁饱和性: H 增加,B几乎
不再增加的现象。如曲线的过c段。 o
电工与电子技术基础
a
H
沈阳城市学院
3.1.3 铁磁材料的磁性能
♦3、磁滞性 : B的变化滞后于H 的变化。 ♦磁滞回线:铁磁材料在交变磁场中反复
B
Br d
磁化,其B-H关系曲线是一条回形闭合
曲线,这条闭合线称为磁滞回线。 ♦剩磁性 :当线圈中电流减小到零(H=0)
+ u -
i

电源电压有效值与自感电压有效值近似相等。因此: U 2fNm U Lm 4.44 fNm
2 1.414
♦主磁通原理:对交流铁芯线圈而言,当外加电压有效值U与 频率f一定时,铁芯中工作主磁通的最大值φm将始终维持不变。
电工与电子技术基础
沈阳城市学院
电磁铁
利用电磁力实现某一机械发生动作的电磁元件。 结构 :线圈、铁心、衔铁
学习情境3 认识变压器
3.1 铁芯线圈、磁路 3.2变压器 3.3实用中的常见变压器
电工与电子技术基础
沈阳城市学院
学习情境3 认识变压器
了解变压器的基本结构组成 ; 了解变压器的用途; 了解变压器变换电压、变换电流及变换阻抗的工作原 理。
电工与电子技术基础
沈阳城市学院
学习情境3 认识变压器
电工与电子技术基础
沈阳城市学院
3.1.6 主磁通原理
线圈两端所加电压为正弦量 ,根据法拉第电磁感应定率,线
圈上的感应电压:
d (m sin t ) d uL N N Nm cost dt dt 2fNm sin(t 90) U Lm sin(t 90)
电工与电子技术基础
沈阳城市学院
3.1.1 磁路的基本物理量 磁感应强度
♦磁感应强度B : 表示磁场内某点磁场强弱和方向的物理量。 ♦B的方向: 与电流的方向之间符合右手螺旋定则。
♦B的单位: 特斯拉(T),和高斯(Gs)
1T =104Gs
♦均匀磁场: 各点磁感应强度大小相等,方向相同的 磁场,也称匀强磁场。
的单位:亨/米(H/m)
♦真空的磁导率为常数,用 0表示,有: 0 4π 107 H/m ♦相对磁导率 r: r / 0
非铁磁材料的相对磁导率约等于1;而铁磁材料的 r» 1。
磁场强度
B ♦磁场强度H:磁感应强度B与该处物质的磁导率之比: H H的单位:安/米(A/m)或安/厘米(A/cm)
控制系统中用作记忆元件、开关元件和逻辑元件。常用的有
镁锰铁氧体及1J51型铁镍合金等 。
电工与电子技术基础
沈阳城市学院
3.1.5 铁芯损耗
♦磁滞损耗:因磁滞现象而产生一些功率损耗,从而使铁磁材 料发热,这种损耗叫磁滞损耗。 ♦涡流损耗:由于涡流引起的功率损耗。 ♦减少涡流损耗措施:提高铁心的电阻率;铁芯用彼此绝缘的 钢片叠成;把涡流限制在较小的截面内。
+ u -
i

磁路部分: 由铁芯构成。
电工与电子技术基础
沈阳城市学院
3.1.2 磁路欧姆定律
磁路欧姆定律 把电路与磁路进行比较: 电路中的电流I、电动势E和电阻R对应于磁路中磁通Φ、磁动 势Fm和磁阻Rm。因此,磁路中的磁动势、磁通和磁阻三者之 间的关系可比照电路欧姆定律写作:
Fm NI S Rm l

c a Hc •g
b

O
时,铁磁材料中的B并不为零的现象。
♦剩磁:用 Br表示,图中的oc段和of段。 ♦娇顽磁力Hc:使 B = 0 所需的 H 值。图 中的od段和og段。
电工与电子技术基础
H
•f
e 磁滞回线
沈阳城市学院
3.1.4 铁磁材料的分类和用途
磁性材料分为三种类型: ♦软磁材料 具有较小的矫顽磁力,磁滞回线较窄。一般用来 制造电机、电器及变压器等的铁心。常用的有铸铁、硅钢片 、 铁氧体等。 ♦硬磁材料 具有较大的矫顽磁力,磁滞回线较宽。一般用来 制造永久磁铁。常用的有碳钢及铁镍铝钴合金等。 ♦矩磁材料 只要受较小的外磁场作用就能磁化到饱和,当外 磁场去掉,磁性仍保持,磁滞回线几乎成矩形。在计算机和
外 磁 场
铁磁材料的磁畴与磁化
电工与电子技术基础
沈阳城市学院
3.1.3 铁磁材料的磁性能
由实验测出铁磁材料的磁化曲线
B

b
c B-H
a o
电工与电子技术基础
H
沈阳城市学院
3.1.3 铁磁材料的磁性能
♦高导磁性 :在外磁场的作用下, 铁磁材料被强烈磁化而呈现出很 强的磁性。如曲线的ab 段。 高导 磁性被广泛地应用于电机、变压 器等电工设备中。 B
♦变压器:是一种静止电器,它通过线圈间的电磁感应,将一种电 压等级的交流电能转换成同频率的另一种电压等级的交流电能
电工与电子技术基础
沈阳城市学院
3.1 铁芯线圈、磁路
3.1.1 磁路的基本物理量 ♦电流 → 磁场→ 用磁力线描述 ♦磁路:磁场中磁力作用的通路。 ♦磁场的强弱和方向:在磁路中可以用磁力线定性描述。 ♦磁路的基本物理量:磁感应强度 、磁通、磁导率 和磁场强度。
上式表明,磁通Φ与磁动势Fm成正比,与磁阻Rm成反比。
Rm l / S 因磁导率μ是一个变量,因此磁阻Rm不是常数。
磁阻Rm
电工与电子技术基础
沈阳城市学院
3.1.3 Βιβλιοθήκη 磁材料的磁性能1 、高导磁性 ♦磁畴:铁磁材料内部的小天然磁性区域。 ♦在没有外磁场作用的普通磁性物质中,各个磁畴排列杂乱 无章,磁场互相抵消,整体对外不显磁性。 ♦在外磁场作用下,磁畴方向发生变化,使之与外磁场方向趋 于一致,物质整体显示出磁性来,称为磁化。 磁 畴
电工与电子技术基础

沈阳城市学院
3.1.1 磁路的基本物理量
磁通
♦磁通φ :垂直穿过某一面积S 的磁力线的总根数。 ♦单 位:韦伯(Wb)和麦克斯韦(简称麦,Mx)。1 Wb =108Mx
BS
或 S
B / S

电工与电子技术基础
沈阳城市学院
3.1.1 磁路的基本物理量
磁导率
♦磁导率 :用来衡量物质导磁性能的物理量。
1 A / m 102 A / cm
电工与电子技术基础
沈阳城市学院
3.1.2 磁路欧姆定律
铁芯的磁导率比周围空气或其它物质的磁导率高的多,磁通的 绝大部分经过铁芯形成闭合通路,磁通的闭合路径称为磁路。 磁通势:电流i与线圈匝数的乘积 (磁动势)
铁芯
电路部分: 由电源和 绕组构成
Fm=IN
磁通
相关文档
最新文档