电动机顺序启动停止控制。
两台电动机顺序停止控制电路原理图
两台电动机顺序停止控制电路原理图
电路分析如下:
启动:
1、按控制按钮SB2 或SB4 可以分别使接触器KM1或KM 2 线圈得电吸合,主触点闭合,M1或M2通电电机运行工作。
2、接触器K M1、KM2的辅助动合接点同时闭合电路自锁。
停止:
1、按控制按钮SB3 按纽,接触器KM2线圈失电,电机M2停止运行。
2、若先停电机M1按下SB1按纽,由于KM2没有释放,KM2动合辅助触点与SB1的动合触点并联在一起并呈闭合状态,所以按钮SB1 不起作用。
只由当接触器KM2释放之后,KM2 的动合辅助触点断开,按钮SB1才起作用。
保护方法:
1、电动机的过载保护由热继电器FR1 和FR2分别完成。
2、FR2保护电动机M2,但FR1 动作保护后,M2电动机也必须停止工
两台电动机顺序停止控制电路接线示意图。
电动机顺序启动停止操纵
电动机顺序启动/停止操纵设计概述三相异步电动机的应用几乎涵盖了工农业生产和人类生活的各个领域,在这些应用领域中,三项异步电动机常常运行在恶劣的环境下,致使产生过流、短路、断相、绝缘老化等事故。
关于应用于大型工业设备重要场合的高压电动机、大功率电动机来讲,一旦发生故障所造成的损失无法估量。
在生产进程,科学研究和其他产业领域中,电气操纵技术应用十分普遍。
在机械设备的操纵中,电气操纵也比其他的操纵方式利用的更为普遍。
本系统的操纵是采纳PLC的编程语言——梯形语言,梯形语言是在可编程操纵器中的应用最广的语言,因为它在继电器的基础上加进了许多功能、利用灵活的指令,使逻辑关系清楚直观,编程容易,可读性强,所实现的功能也大大超过传统的继电器操纵电路。
可编程操纵器是一种数字运算操作的电子系统,它是专为在恶劣工业环境下应用而设计。
它采纳可编程序的存储器,用来在内部存储执行逻辑运算、顺序操纵,按时、计数和算术等操作的指令,并采纳数字式、模拟式的输入和输出,操纵各类的机械或生产进程。
长期以来,PLC始终处于工业自动化操纵领域的主战场,为各类各样的自动化操纵设备提供了超级靠得住的操纵应用。
它能够为自动化操纵应用提供平安靠得住和比较完善的解决方案,适合于当前工业企业对自动化的需要。
进入20世纪80年代,由于运算机技术和微电子技术的迅速进展,极大的推动了PLC的进展,使的PLC的功能日趋增强。
如PLC可进行模拟量操纵、位置操纵和PID操纵等,易于实现柔性制造系统。
远程通信功能的实现更使PLC 如虎添翼。
目前,在先进国家中,PLC已成为工业操纵的标准设备,应用面几乎覆盖了所有工业企业。
PLC是一种固态电子装置,它利用已存入的程序来操纵机械的运行或工艺的工序。
PLC 通过输入/输出(I/O)装置发出操纵信号和同意输入信号。
由于PLC综合了运算机和自动化技术,因此它进展日新月异,大大超过其显现时的技术水平。
它不但能够很容易地完成逻辑、顺序、按时、计数、数字运算、数据处置等功能,而且能够通过输入输出接口成立与各类生产机械数字量和模拟量的联系,从而实现生产进程的自动操纵。
电动机的顺序控制总结
电动机的顺序控制总结
电动机的顺序控制是指根据特定的步骤和条件来控制电动机的启动、运行和停止。
下面是电动机顺序控制的总结:
1. 启动顺序控制:电动机的启动通常需要按照一定的顺序进行,以确保电动机的安全运行。
首先需要检查电动机的接线是否正确,然后逐步启动控制电路、控制电源和电动机本身。
2. 运行顺序控制:在电动机运行过程中,可能需要根据不同的工艺要求来调整电动机的运行状态。
可以通过调整电动机的转速、改变电动机的方向或者改变电动机的运行模式来实现。
3. 停止顺序控制:电动机的停止通常也需要按照一定的顺序进行。
首先需要切断电动机的电源,然后逐步停止控制电路和控制电源。
4. 故障保护顺序控制:在电动机的运行过程中,可能会出现各种故障,例如过载、短路等。
为了保护电动机的安全运行,需要根据故障的不同以不同的顺序进行相应的故障保护操作,例如断开电源、停止控制电路等。
5. 总体顺序控制:以上所述的顺序控制操作可以组合成一个整体的顺序控制方案,在特定的工艺过程中按照设定的顺序来进行电动机的启动、运行和停止,以实现工艺过程的要求。
总之,电动机的顺序控制需要按照一定的步骤和条件进行,以
确保电动机的安全运行和工艺过程的顺利进行。
不同的顺序控制方案可以根据具体的需求进行设计和实施。
西门子PLC_电动机的顺序启动控制定时器.ppt
项目三:电动机顺序启动、逆序停止控制
项目三:电动机顺序启动、逆序停止控制 I/O分配表
输入
输出
输入继电 输入 作用 输出继电 输出
器
元件
器
元件
作用
I0.0
SB1 急停按 Q0.0
KM1 电机1运转交流接
钮
触器
I0.1
SB2 启动按 Q0.1
KM2 电机2运转交流接
钮
触器
项目三:电动机顺序启动、逆序停止控制
项目四:电动机延时启动、停止控制
I/O分配表
输入
输出
输入继电 输入 作用 输出继电 输出
器
元件
器
元件
作用
I0.0
SB1 停止按 Q0.0
KM1 电机运转交流接
钮触器I0.1SB2 启动按钮
项目四:电动机延时启动、停止控制
PLC接线图
SB1
KM1 FR
i0.0 Q0.0
SB2 i0.1
FU 220V
KM2 分断第二组电阻 交流接触器
KM3 分断第三组电阻 交流接触器电机
项目二: 三相绕线感应电动机转子绕组串电阻降压启动控制系统
PLC接线图:
SB1 SB2
24V
KM FR i0.0 Q0.0
KM1
Q0.1
i0.1
KM2
Q0.2
KM3
Q0.3
FU 220V COM
COM
项目二: 三相绕线感应电动机转子绕组串电阻降压启动控制系统
24V
COM
COM
项目四:电动机延时启动、停止控制
上节课需完成的项目: 项目一:电动机顺序启动、顺序停止控制 项目二:电动机的顺序启动、同时停止 项目三:电动机的顺序启动、逆序停止 项目四:电动机延时启动、停止控制
三台电机顺序启动,顺序停止的控制原理
三台电机顺序启动,顺序停止的控制原理三台电机顺序启动、顺序停止的控制原理是一种常见的电机控制方式。
这种方法可以有效地控制多台电机的启动和停止顺序,以避免电网负荷突增和电机启动时电压冲击等问题。
该控制方式通常由一个控制器或PLC(可编程逻辑控制器)来实现,同时需要使用适当的传感器和执行器。
顺序启动控制原理:1.控制信号获取:控制器通过接收外部的控制信号或者根据预设参数来决定启动顺序。
这些控制信号可以是手动操作、自动控制或者网络远程控制等方式得到。
2.启动顺序设定:控制器根据接收到的信号或参数设定电机的启动顺序。
一般情况下,电机的启动顺序是依次启动,先启动一台电机后,再启动下一台。
留有适当的时间间隔,以避免过大的冲击电流和电压波动。
3.启动信号发送:控制器根据启动顺序的设定,通过相应的输出口,发送电机启动信号。
这些启动信号一般是通过继电器、接触器或者固态继电器等来实现的。
4.电机启动:接收到启动信号的电机得到电源供电,启动它们的转子。
电机启动后,其负载会逐渐增加,电流也会逐渐增大。
这时需要考虑电源的容量和线路的承载能力,以避免电源过载或线路短路等安全问题。
5.电机启动间隔:在启动下一台电机之前,通常需要等待上一台电机达到满负载或指定转速。
这个间隔时间可以根据电机负载情况、电源供应能力和系统要求来进行灵活调整。
6.启动顺序结束:当所有电机都按照设定的启动顺序逐个启动后,顺序启动控制原理就完成了。
此时可以进行下一步操作或者由控制器进入其他工作状态。
顺序停止控制原理:1.控制信号获取:通过外部信号或者控制参数,控制器判断电机的停止顺序,并开始执行停止控制。
2.停止顺序设定:控制器根据接收到的信号或参数,设定电机的停止顺序。
一般情况下,电机的停止顺序与启动顺序相反,即先停止一台电机后,再停止下一台电机。
3.停止信号发送:控制器根据停止顺序的设定,通过相应的输出口,发送电机停止信号。
这些停止信号一般也是通过继电器、接触器或者固态继电器等来实现的。
两台电动机顺序起动逆序停止控制延时控制方法
两台电动机顺序起动逆序停止控制延时控制方法1.控制原理在这种控制方法中,电机1先以正转方式起动,经过一段时间延时后,电机2再以正转方式起动。
当需要停止时,先停止电机2,经过一段时间延时后,再停止电机1、通过延时控制,可以避免电机的冲击启动和停止,对电机和其相关设备的损伤较小。
2.控制装置这种控制方法所需的控制装置包括一个计时器(Timer)、两个接触器(Contactor)、一个控制按钮箱(Control Station)。
其中计时器设置两个时间延时参数,分别用来控制电机的起动和停止延时时间。
3.控制步骤(1)顺序起动:首先,按下控制按钮箱中的电机1启动按钮。
该按钮通过接触器1的触点控制电机1的启动。
电机1经过计时器设定的起动延时时间后,开始正转运行。
(2)逆序停止:当需要停止时,按下控制按钮箱中的电机2停止按钮。
该按钮通过接触器2的触点控制电机2的停止。
电机2经过计时器设定的停止延时时间后,停止运行。
(3)再次顺序启动:当再次需要启动时,按下控制按钮箱中的电机1启动按钮。
电机1经过计时器设定的起动延时时间后,开始正转运行。
(4)再次逆序停止:当需要停止时,按下控制按钮箱中的电机2停止按钮。
电机2经过计时器设定的停止延时时间后,停止运行。
4.控制参数设定(1)起动延时参数:根据具体需求和电机性能来设置。
需考虑到电机的起动时间和相关设备的启动稳定性要求。
通常,起动延时参数的设置范围为0-30秒。
(2)停止延时参数:同样要根据具体需求和电机性能来设置。
需考虑到电机反向停止的时间和相关设备的安全要求。
通常,停止延时参数的设置范围为0-30秒。
5.控制安全措施为了确保控制安全,需要进行以下安全措施:(1)使用符合安全标准的电器设备,如合适的计时器、接触器和按钮箱等。
(2)电路布线合理,避免漏电和短路现象。
(3)在电机起动和停止时,必须确保人员的安全,例如设置警示灯、警示声音或警戒线等。
(4)定期检查控制设备,保持其正常工作状态,如保持接触器的良好接触性能,防止因烧毁导致的无法控制等。
两台电动机顺序启动的PLC控制
(1)开启控制: 按下SB1按钮,M1电动机开启; 再按下SB2按钮,M2电动机开启;
(2)停止控制: 按下SB3按钮,M2电动机停止; 再按下SB4按钮,M1电动机停止;
(3)本电路要具有过载保护功能;
任务一:理一理
本电路最终实现旳功能: ___顺__序____开启, ___逆__序____停止。
A1
A2
N
L
注意工艺
PLC外围接线
任务四:写一写
第一步:绘制M1电动机启保停梯形图。
任务四:写一写
第二步:绘制M2电动机启保停梯形图。
任务四:写一写
第三步:M1先运转,M2后运转(顺序开启)。
提醒:
任务四:写一写
第四步:M2先停止,M1后停止(逆序停止)。
提醒:
项目五
PLC控制两台电动机旳 顺序开启和停止
1. 应用背景
诸多旳工业设备上装有多台电机,因为设备各部分旳工 作节拍不同,或者操作流程要求,各电机旳工作时序不同。
例如,通用机床一般要求主轴电机开启后再开启进给电 机。而带有液压系统旳机床一般需要先开启液压泵电动机后, 才干开启其他旳电动机。
2. 任务布置
任务二:分一分
名称 开启按钮 开启按钮 停止按钮 停止按钮 热继电器 热继电器
输入信号 符号 输入点编号
SB1
X0
SB2
X1
SB3
X2
SB称 接触器 接触器
输出信号 符号 输出点编号
KM1
Y0
KM2
Y1
I/O口分配
任务三:画一画
3
4
3
4
3
4
3
4
95
电气自动化技术《2.3.2 顺序启动、顺序停止控制电路》
3、电路的保护环节
〔1〕短路保护 由熔断器FU1、FU2完成。 〔2〕过载保护 由热继电器FR1、FR2完成。 〔3〕欠压和失压保护 由接触器M1、M2完成。
谢谢!
任务3 三相笼型异步电动机顺序启停控制电路
任务3 学习三相笼型异步电动机顺序启停控制电路
在生产机械中,往往有多台电动机,各电动机的作用不同,需要按照顺 序控制环节设计,才能保证整个工作过程的合理性和可靠性。
例如,62W型万能铣床上要求主轴电动机起动后,进给电动才能起动; 平面磨床中,要求砂轮电动机起动后,冷却泵电的还有哪些生产机械或家用电器用到了顺序控制环节? ②按照什么样的顺序动作呢?
232 顺序启动、顺序停车控制电路
工程中有多台电动机拖动的设备,考虑到平安以及工艺方面的要求,多 台电动机经常需要“顺序启动、顺序停车〞进行控制。典型的顺序启动、顺 序停车控制电路如以以下图。
顺序启动、顺序停车控制电路
1、工作原理
• 启动过程:合上QS,SB2±→M1,M1常开触头〔自锁同时实现顺序启动〕→ 电动机M1启动;SB4±→M2,M2常开触头〔自锁〕→电动机M2启动。
• 停车过程:SB1±→M1-,M1常开触头-〔实现顺序停车〕→电动机M1先停车; SB3±→M2-→电动机M2后停车。
2、电路的控制环节
三台电动机顺序启动
三台电动机顺序启动、逆序停止
某传动带设备,分别有三台电动机拖动,要求电机统一为单方向旋转。
控制要求如下:按下启动按钮,第一台电动机M1启动,运行10s后,第二台电动机M2启动,M2运行10s后,第三台电动机M3启动。
按下停止按钮,第三台电动机M3停止,M3停止10s后,第二台电动机M2停止,M2停止10s后,第一台电动机M1停止。
三台电动机顺序启动、逆序停止原理图
1.分析三台电动机顺序启动、逆序停止控制电路的原理,根据控制要求确定I/O地址。
2.绘制出PLC接线图。
3.编写程序
4.安装调试。
电动机顺序启动停止控制
电动机顺序启动/停止控制设计概述三相异步电动机的应用几乎涵盖了工农业生产和人类生活的各个领域,在这些应用领域中,三项异步电动机常常运行在恶劣的环境下,导致产生过流、短路、断相、绝缘老化等事故。
对于应用于大型工业设备重要场合的高压电动机、大功率电动机来说,一旦发生故障所造成的损失无法估量。
在生产过程,科学研究和其他产业领域中,电气控制技术应用十分广泛。
在机械设备的控制中,电气控制也比其他的控制方法使用的更为普遍。
本系统的控制是采用PLC的编程语言——梯形语言,梯形语言是在可编程控制器中的应用最广的语言,因为它在继电器的基础上加进了许多功能、使用灵活的指令,使逻辑关系清晰直观,编程容易,可读性强,所实现的功能也大大超过传统的继电器控制电路。
可编程控制器是一种数字运算操作的电子系统,它是专为在恶劣工业环境下应用而设计。
它采用可编程序的存储器,用来在内部存储执行逻辑运算、顺序控制,定时、计数和算术等操作的指令,并采用数字式、模拟式的输入和输出,控制各种的机械或生产过程。
长期以来,PLC始终处于工业自动化控制领域的主战场,为各种各样的自动化控制设备提供了非常可靠的控制应用。
它能够为自动化控制应用提供安全可靠和比较完善的解决方案,适合于当前工业企业对自动化的需要。
进入20世纪80年代,由于计算机技术和微电子技术的迅速发展,极大的推动了PLC的发展,使的PLC的功能日益增强。
如PLC可进行模拟量控制、位置控制和PID控制等,易于实现柔性制造系统。
远程通信功能的实现更使PLC 如虎添翼。
目前,在先进国家中,PLC已成为工业控制的标准设备,应用面几乎覆盖了所有工业企业。
PLC是一种固态电子装置,它利用已存入的程序来控制机器的运行或工艺的工序。
PLC 通过输入/输出(I/O)装置发出控制信号和接受输入信号。
由于PLC综合了计算机和自动化技术,所以它发展日新月异,大大超过其出现时的技术水平。
它不但可以很容易地完成逻辑、顺序、定时、计数、数字运算、数据处理等功能,而且可以通过输入输出接口建立与各类生产机械数字量和模拟量的联系,从而实现生产过程的自动控制。
三台电动机顺序启停PLC控制编程
三台电动机顺序启停PLC控制编程摘要:电工技能鉴定分为五级考核,职业院校高职学生的应届生考核三级(高级工),电工鉴定分为理论考试和技能考试。
其中技能考试主要考核对继电接触器控制系统、PLC控制系统、电子电路、变频器控制等的安装、调试、故障排除为主,其中PLC控制系统安装与调试题目中三台电动机的顺序启停PLC控制为高频题目。
关键词:电工鉴定;技能考核;电机顺序启停;PLC控制;编程本文将以西门子S7-200PLC机为例讲解三台电动机的顺序启停PLC控制的编程方法。
控制要求如下:某一生产线的末端有一台三级皮带传送机,分别由M1、M2、M3三台电动机拖动,启动时要求10s的时间间隔,并按M1、M2、M3的顺序启动;停止时按15s的时间间隔,并按M3、M2、M1的顺序停止,皮带传送机的启动和停止分别由启动按钮和停止按钮来控制,三级皮带传送机如下图所示。
要求:1.工作方式设置:手动时要求按下手动启动按钮,做一次上述过程,自动时按下自动启动按钮,能够重复循环上述过程。
2.有必要的电气保护和互锁。
PLC设计步骤如下:一、输入/输出分析:该控制要求中有3个被控设备MM1、KM2、KM3,分别用于控制电动机M1、M2和M3,也就是输出设备;而输入设备有三个,分别是手动启动按钮SB1、手动停止按钮SB2、自动启动按钮SB3三个。
二、I/O地址分配三、PLC外部接线图1.主电路:主电路组成:三相电分别通过熔断器FU1之后分三路又分别经过主控交流接触器KM1、KM2和KM3的主触点并分别经过热继电器FR1、FR2、FR3的热元件来分别控制传送机使用的三台电动机M1、M2和M3,其中KM1、KM2、KM3的主触点分别用于控制三台电动机的通电与断电;三支熔断器FU1用作主电路的短路保护,热继电器FR1、FR2、FR3分别用作三台电动机M1、M2、M3的过载保护。
同时其中的一相和零线给S7-200PLC主机供电,FU2用作控制电路的短路保护。
两台电动机顺序启动停止控制设计
按钮开关的结构:由按钮帽、复位弹簧、固定触点、可动触点、外壳和支柱连杆等组成。
常开触头(动合触头):是指原始状态时(电器未受外力或线圈未通电),固定触点与可动触点处于分开状态的触头。
常开(动合)按钮开关,未按下时,触头是断开的,按下时触头闭合接通;当松开后,按钮开关在复位弹簧的作用下复位断开。在控制电路中,常开按钮常用来启动电动机,也称启动按钮。
图 3.2控制电路图
3.
(1)电动机的过载保护由FR1和FR2分别完成。
(2)FR2保护电动机M2,但FR1动作保护后,M2电动机也必须停止工。
课程设计的心得体会
电力拖动作为我们的主要专业课之一,虽然在大三开学初我对这门课并没有什么兴趣,觉得那些程序枯燥乏味,但在这次课程设计后我发现自己在一点一滴的努力中对电力拖动的兴趣也在逐渐增加。
关键词:异步电机M1和M2、常开常闭开关、熔断器、继电器;
第一章
1.1课题
与单相异步电动机相比,三相异步电动机运行性能好,并可节省各种材料。按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。绕线式三相异步电动机的转子和定子一样也设置了三相绕组并通过滑环、电刷与外部变阻器连接。调节变阻器电阻可以改善电动机的起动性能和调节电动机的转速。
当向三相定子绕组中通过入对称的三相交流电时,就产生了一个以同步转速n1沿定子和转子内圆空间作顺时针方向旋转的旋转磁场。由于旋转磁场以n1转速旋转,转子导体开始时是静止的,故转子导体将切割定子旋转磁场而产生感应电动势(感应电动势的方向用右手定则判定)。由于转子导体两端被短路环短接,在感应电动势的作用下,转子导体中将产生与感应电动势方向基本一致的感生电流。转子的载流导体在定子磁场中受到电磁力的作用(力的方向用左手定则判定)。电磁力对转子轴产生电磁转矩,驱动转子沿着旋转磁场方向旋转。通过上述分析可以总结出电动机工作原理为:当电动机的三相定子绕组(各相差120度电角度),通入三相对称交流电后,将产生一个旋转磁场,该旋转磁场切割转子绕组,从而在转子绕组中产生感应电流(转子绕组是闭合通路),载流的转子导体在定子旋转磁场作用下将产生电磁力,从而在电机转轴上形成电磁转矩,驱动电动机旋转,并且电机旋转方向与旋转磁场方向相同。
两台电动机顺序启动控制实验思考题
两台电动机顺序启动控制实验思考题篇一:实验思考题:两台电动机顺序启动控制1. 为什么需要进行两台电动机的顺序启动控制?在工业生产中,常常需要对两台电动机进行顺序启动控制,以保证生产流程的顺利进行。
例如,在一台电动机启动的同时,另一台电动机需要开始工作,或者当一台电动机启动后,另一台电动机才能启动。
在这种情况下,需要进行两台电动机的顺序启动控制。
2. 如何进行两台电动机的顺序启动控制?两台电动机的顺序启动控制可以通过编程控制来实现。
具体来说,可以通过编写控制程序,控制两台电动机的启动时间和启动顺序。
控制程序可以根据生产需要进行设置,例如当一台电动机启动后,另一台电动机需要多长时间才能启动,或者当一台电动机停止运行时,另一台电动机需要多长时间才能停止运行等。
3. 如何进行电动机的顺序启动控制?电动机的顺序启动控制可以通过软启动器来实现。
具体来说,软启动器可以通过控制电压和电流的大小,控制电动机的启动时间和启动速度。
在电动机启动时,软启动器可以逐渐增加电压和电流的大小,使电动机逐渐加速,直到达到正常运行速度。
这样可以减少电动机的启动时间和能量消耗,提高电动机的使用寿命。
4. 如何进行电动机的顺序停止控制?电动机的顺序停止控制也可以通过编程控制来实现。
具体来说,可以通过编写控制程序,控制两台电动机的停止时间和停止顺序。
控制程序可以根据生产需要进行设置,例如当一台电动机停止运行时,另一台电动机需要多长时间才能停止运行,或者当一台电动机启动时,另一台电动机需要多长时间才能停止运行等。
5. 如何进行电动机的顺序启动和停止控制?电动机的顺序启动和停止控制可以通过软启动器和控制程序来实现。
具体来说,软启动器可以通过控制电压和电流的大小,控制电动机的启动时间和启动速度。
控制程序可以根据生产需要进行设置,例如当一台电动机启动后,另一台电动机需要多长时间才能启动,或者当一台电动机停止运行时,另一台电动机需要多长时间才能停止运行等。
用PLC实现三台电动机顺序启停控制
T38
S0.3
( SCRT )
( SCRE ) S0.3 SCR
SM0.0 I0.1
Q0.2
(
)
S0.4 ( SCRT )
( SCRE ) S0.4 SCR
SM0.0 80
T39 IN TON
PT 100ms
T39
S0.5
( SCRT )
( SCRE ) S0.5 SCR
SM0.0
Q0.1 ( R)
S0.2
Q0.1 ( S)
1 T38
IN TON T38
150 PT 100ms
S0.3
Q0.2
(
)
I0.1 S0.4
T39 IN TON
80 PT 100ms
T39
S0.5 T40
Q0.1 ( R)
1 T40
IN TON
60 PT 100ms
程序
1.进入初始步 2.各步程序
步开始 控制对象 步转移 步结束
用PLC实现三台电动机顺序启停控制
1.任务描述
按下启动按钮,第一台电动机M1启动,10秒后,第二台电动机M2启动,再 过15秒,第三台电动机M3启动,按下停止按钮,第三台电动机M3停止,8秒 后,第二台电动机M2停止,再过6秒,第一台电动机M1停止。
2. 任务分析
按下启动按钮,第一台电动机M1启动,10秒后,第二台电动机M2启动,再 过15秒,第三台电动机M3启动,按下停止按钮,第三台电动机M3停止,8秒 后,第二台电动机M2停止,再过6秒,第一台电动机M1停止。
T39
S0.5 T40
Q0.1 ( R)
1 T40
IN TON
60 PT 100ms
两台电动机顺序起动逆序停止控制延时控制方法
两台电动机顺序起动逆序停止控制延时控制方法电动机的起动和停止是电动机控制系统中非常重要的环节,直接影响到电动机的安全性和运行效率。
在一些特定的应用场景中,需要两台或多台电动机按照一定的顺序起动和停止。
本文将介绍一种常见的控制方法,即两台电动机顺序起动逆序停止控制延时控制方法。
1.方法原理2.方法步骤2.1起动控制首先,设定电动机的起动条件,例如温度、压力等。
当满足起动条件时,开始起动第一台电动机。
2.2延时控制设置合适的延时时间,以保证第一台电动机起动后,第二台电动机能够按照预定的顺序起动。
延时时间应根据实际需求和系统特点进行优化调整。
2.3第二台电动机起动在延时时间结束后,启动第二台电动机。
第二台电动机的起动可以通过定时器或延时继电器来实现。
2.4停止控制当不再需要工作时,需要按照逆序进行停止控制。
首先,停止第二台电动机。
延时时间结束后,停止第一台电动机。
3.应用场景3.1水泵系统在供水系统中,通常会使用多台水泵进行工作。
为了确保系统的稳定性和安全性,需要按照一定的顺序起动和停止水泵。
3.2制冷系统在制冷系统中,通常会使用多台压缩机组成。
为了提高系统的运行效率和安全性,在制冷周期开始时,需要按照一定的顺序起动压缩机。
3.3空调系统在空调系统中,通常会使用多台风机进行工作。
为了提供稳定的通风效果,需要按照一定的顺序启动和停止风机。
4.控制延时时间的优化在设计控制系统时,延时时间的设定是非常关键的。
如果延时时间设置过短,容易导致电动机的顺序起动或逆序停止不能完全按照预期进行;如果延时时间设置过长,则会增加系统的响应时间,不利于系统的快速启动和停止。
因此,在实际应用中,需要根据具体情况对延时时间进行优化调整。
可以根据电动机的特性、工作环境的变化以及系统的响应要求等因素进行评估和分析,选择合适的延时时间。
5.结论两台电动机顺序起动逆序停止控制延时控制方法是一种常见的控制方法,通过设置延时时间实现电动机的顺序起动和停止。
基于PLC的两台电动机顺序启动顺序停止控制设计
基于PLC的两台电动机顺序启动顺序停止控制设计1.引言在工业控制系统中,电动机的顺序启动和顺序停止非常重要。
控制两台电动机的顺序启动和顺序停止可以减少电网的冲击和电动机的损坏,提高电动机系统的可靠性和稳定性。
本文基于PLC(可编程逻辑控制器)设计了一种简单且可靠的两台电动机顺序启动顺序停止控制方案。
2.设计原理2.1电动机的顺序启动电动机的顺序启动是指先启动一个电动机,等待其达到稳定工作状态后再启动另一个电动机。
这是为了避免两个电动机同时启动导致电网电压下降和电动机的旋转矩过大。
常用的顺序启动方法是使用时间继电器或PLC控制两个电动机。
2.2电动机的顺序停止电动机的顺序停止是指先停止一个电动机,等待其停止后再停止另一个电动机。
这是为了防止电动机停止后反向旋转导致设备损坏。
通常使用接触器或PLC实现电动机的顺序停止。
3.方案设计3.1硬件设计本方案使用PLC作为核心控制器,使用接触器作为电动机的主控开关。
具体系统硬件设计如下:-PLC:选择一款适合的PLC,具备足够的输入输出口和对时间的控制功能。
-电动机:选用两台功率相同的电动机,安装适当的行业标准的电气保护装置。
-接触器:使用两个接触器,分别控制两个电动机的启动和停止。
3.2软件设计PLC编程软件常用的有Ladder Diagram(梯形图)和SFC(顺序功能图)等。
本方案使用Ladder Diagram进行编程,具体步骤如下:3.2.1顺序启动-声明两个变量M1和M2,分别代表电动机1和电动机2- 设置一个启动按钮START,当按下启动按钮时,M1置true,电动机1启动。
- 设置一个延时定时器T1,当M1为true时开始计时。
- 当定时器T1达到设定时间后,M2置true,电动机2启动。
-监测电动机1和电动机2的运行状态,当两台电动机均达到稳定状态时,顺序启动完成。
3.2.2顺序停止- 设置一个停止按钮STOP,当按下停止按钮时,M2置false,电动机2停止。
三台电机按顺序启动、停止PLC程序
三台电机按顺序启动、停止PLC程序在工业生产过程中,常常需要对多台电机进行协调控制。
这种情况下,常常采用PLC程序作为控制方式,实现多台电机的按顺序启动、停止等功能。
下面,我将详细介绍如何编写相应的PLC程序。
首先,需要明确本案例中的系统要求:有三台电机,每台电机按照指定的顺序启动,等待一段时间后按照相反的顺序停止。
同时,需要实现手动、自动两种控制模式,手动模式下可单独启动、停止每台电机,自动模式下需按照设定顺序自动启停。
接下来,我们需要对这些要求进行细分,并逐一完成PLC程序的编写。
第一步,起始部分。
在程序的开头,需要进行程序的初始化,包括对每台电机的启停信号进行清零,取得手动/自动模式选择状态等。
第二步,手动模式实现。
手动模式下,用户可以单独启动、停止每台电机,这项功能可以通过编写操作界面来实现,具体方式可以根据不同用户需求而定。
在程序中,手动模式的实现需要监听操作界面的用户操作,然后相应地进行每台电机的启停控制。
如果用户选择启动某个电机,则向该电机发送启动信号;如果用户选择停止某个电机,则向该电机发送停止信号。
第三步,自动模式实现。
自动模式下,每台电机需要按照预设的顺序进行启动和停止。
这里我们可以采用定时器和计数器的方式进行控制。
首先,设定一个定时器,该定时器用于计算每台电机的运行时间,以便到达预定时间后进行自动停止。
其次,设定一个计数器,用于记录当前电机是处于启动状态还是停止状态,以便在下一步进行判断。
第四步,顺序启动。
在自动模式下,需要实现每台电机的顺序启动。
我们可以采用计数器的方式,在启动下一台电机之前,等待前一台电机运行一段预定的时间后再进行启动。
比如,第一台电机先进行启动,并设定定时器计时运行时间T1,在T1时间到达之前不进行下一台电机的启动。
等待T1时间后,判断计数器是否达到最大值3,如果没有,则给下一台要启动的电机发送启动信号,并设定计时器和计数器,以便按相应的时间间隔和顺序启动下一台电机。
两台电动机顺序起动顺序停止电路
两台电动机顺序起动顺序停止电路GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-两台电动机顺序起动、顺序停止电路原理图顺序启动、停止控制电路是在一个设备启动之后另一个设备才能启动运行的一种控制方法,常用于主、辅设备之间的控制,如上图当辅助设备的接触器KM1启动之后,主要设备的接触器KM2才能启动,主设备KM2不停止,辅助设备KM1也不能停止。
但辅助设备在运行中应某原因停止运行(如FR1动作),主要设备也随之停止运行。
工作过程:1、合上开关QF使线路的电源引入。
2、按辅助设备控制按钮SB2,接触器KM1线圈得电吸合,主触点闭合辅助设备运行,并且KM1辅助常开触点闭合实现自保。
3、按主设备控制按钮SB4,接触器KM2线圈得电吸合,主触点闭合主电机开始运行,并且KM2的辅助常开触点闭合实现自保。
4、KM2的另一个辅助常开触点将SB1短接,使SB1失去控制作用,无法先停止辅助设备KM1。
5、停止时只有先按SB3按钮,使KM2线圈失电辅助触点复位(触点断开),SB1按钮才起作用。
6、主电机的过流保护由FR2热继电器来完成。
7、辅助设备的过流保护由FR1热继电器来完成,但FR1动作后控制电路全断电,主、辅设备全停止运行。
常见故障;1、KM1不能实现自锁:分析处理:一、KM1的辅助接点接错,接成常闭接点,KM1吸合常闭断开,所以没有自锁。
二、KM1常开和KM2常闭位置接错,KM1吸合式KM2还未吸合,KM2的辅助常开时断开的,所以KM1不能自锁。
2、不能顺序启动KM2可以先启动;分析处理:KM2先启动说明KM2的控制电路有电,检查FR2有电,这可能是FR2接点上口的7号线,错接到了FR1上口的3号线位置上了,这就使得KM2不受KM1控制而可以直接启动。
3、不能顺序停止KM1能先停止;分析处理:KM1能停止这说明SB1起作用,并接的KM2常开接点没起作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电动机顺序启动/停止控制设计概述三相异步电动机的应用几乎涵盖了工农业生产和人类生活的各个领域,在这些应用领域中,三项异步电动机常常运行在恶劣的环境下,导致产生过流、短路、断相、绝缘老化等事故。
对于应用于大型工业设备重要场合的高压电动机、大功率电动机来说,一旦发生故障所造成的损失无法估量。
在生产过程,科学研究和其他产业领域中,电气控制技术应用十分广泛。
在机械设备的控制中,电气控制也比其他的控制方法使用的更为普遍。
本系统的控制是采用PLC的编程语言——梯形语言,梯形语言是在可编程控制器中的应用最广的语言,因为它在继电器的基础上加进了许多功能、使用灵活的指令,使逻辑关系清晰直观,编程容易,可读性强,所实现的功能也大大超过传统的继电器控制电路。
可编程控制器是一种数字运算操作的电子系统,它是专为在恶劣工业环境下应用而设计。
它采用可编程序的存储器,用来在内部存储执行逻辑运算、顺序控制,定时、计数和算术等操作的指令,并采用数字式、模拟式的输入和输出,控制各种的机械或生产过程。
长期以来,PLC始终处于工业自动化控制领域的主战场,为各种各样的自动化控制设备提供了非常可靠的控制应用。
它能够为自动化控制应用提供安全可靠和比较完善的解决方案,适合于当前工业企业对自动化的需要。
进入20世纪80年代,由于计算机技术和微电子技术的迅速发展,极大的推动了PLC的发展,使的PLC的功能日益增强。
如PLC可进行模拟量控制、位置控制和PID控制等,易于实现柔性制造系统。
远程通信功能的实现更使PLC 如虎添翼。
目前,在先进国家中,PLC已成为工业控制的标准设备,应用面几乎覆盖了所有工业企业。
PLC是一种固态电子装置,它利用已存入的程序来控制机器的运行或工艺的工序。
PLC 通过输入/输出(I/O)装置发出控制信号和接受输入信号。
由于PLC综合了计算机和自动化技术,所以它发展日新月异,大大超过其出现时的技术水平。
它不但可以很容易地完成逻辑、顺序、定时、计数、数字运算、数据处理等功能,而且可以通过输入输出接口建立与各类生产机械数字量和模拟量的联系,从而实现生产过程的自动控制。
特别是超大规模集成电路的迅速发展以及信息、网络时代的到来,扩展了PLC的功能,使它具有很强的联网通讯能力,从而更广泛地应用于众多行业。
设计要求利用可编程逻辑控制器,完成一个电动机顺序启动/停止控制的设计。
具体要求如下:1.NFB:ON,停车指示灯PL4亮,按PB4无作用,PBl、PB2操作顺序不受限制。
2.按PBl时,M1电动机正转[MCl、PLl动作],PL4熄灭。
此时按PB2无作用,按PB3时则Ml电动机停止运转,PL4亮。
3.按PB2时,M1电动机逆转[MC2、PL2动作],PL4熄灭。
此时按PB 1无作用,按PB3时则M1电动机停止运转,PL4亮。
4.M1电动机正转或逆转时,再按PB4后,M2电动机才会运转[MC3、PL3动作],此时按PB3无作用。
5.此时按PB5,M2电动机停止运转。
6.M2电动机停止运转时按PB3,M1电动机才会停止运转,PL4亮。
7.Ml电动机正转或逆转时,TH—RY l动作,M1电动机停止,响,PL4亮。
此时按PB4,M2电动机无法启动。
8.M1、M2电动机均运转时。
若TH—RY2动作,M2停止运转Bz响。
按PB3则M1电动机停止运转,PL4亮。
若TH—RYl动作,则M1、M2全部停止运转,BZ r1向,PL4亮。
9.热继电器全部复位后,BZ停响,恢复正常操作状态。
10.PL1、PL2、PL3、PL4作为运转及停止指示,不能以PLc输出点直接控制。
11.MCl与MC2在PLC外部接线时,要做连锁控制。
1系统总体方案设计2.1 系统硬件配置及组成原理图本设计是采用PLC作为控制器来实现的,采用PLC而不用继电器的理由有以下三点:1.控制方式。
继电器的控制是采用硬件接线实现的,是利用继电器机械触点的串联或并联极延时继电器的滞后动作等组合形成控制逻辑,只能完成既定的逻辑控制。
PLC采用存储逻辑,其控制逻辑是以程序方式存储在内存中,要改变控制逻辑,只需改变程序即可。
2.控制速度。
继电器控制逻辑是依靠触点的机械动作实现控制,工作频率低,毫秒级,机械触点有抖动现象。
PLC是由程序指令控制半导体电路来实现控制,速度快,微秒级,严格同步,无抖动。
3.延时控制。
继电器控制系统是靠时间继电器的滞后动作实现延时控制,而时间继电器定时精度不高,受环境影响大,调整时间困难。
PLC用半导体集成电路作定时器,时钟脉冲由晶体振荡器产生,精度高,调整时间方便,不受环境影响。
显然用PLC来实现电动机的顺序启动/停止控制比用继电器要好上很多。
根据设计要求,系统的方框图设计如图1所示:图 1 系统结构原理图2.2 系统变量定义及分配一、系统所用到的主要元件有:(I).熔断器熔断器是一种过电流保护电器。
熔断器主要由熔体和熔管两个部分及外加填料等组成。
使用时,将熔断器串联于被保护电路中,当被保护电路的电流超过规定值,并经过一定时间后,由熔体自身产生的热量熔断熔体,使电路断开,起到保护的作用。
1.熔断器分类(1) 螺旋式熔断器RL:在熔断管装有石英砂,熔体埋于其中,熔体熔断时,电弧喷向石英砂及其缝隙,可迅速降温而熄灭。
为了便于监视,熔断器一端装有色点,不同的颜色表示不同的熔体电流,熔体熔断时,色点跳出,示意熔体已熔断。
螺旋式熔断器额定电流为5~200A,主要用于短路电流大的分支电路或有易燃气体的场所。
(2) 有填料管式熔断器RT:有填料管式熔断器是一种有限流作用的熔断器。
由填有石英砂的瓷熔管、触点和镀银铜栅状熔体组成。
填料管式熔断器均装在特别的底座上,如带隔离刀闸的底座或以熔断器为隔离刀的底座上,通过手动机构操作。
填料管式熔断器额定电流为50~1000A,主要用于短路电流大的电路或有易燃气体的场所。
(3) 无填料管式熔断器RM:无填料管式熔断器的熔丝管是由纤维物制成。
使用的熔体为变截面的锌合金片。
熔体熔断时,纤维熔管的部分纤维物因受热而分解,产生高压气体,使电弧很快熄灭。
无填料管式熔断器具有结构简单、保护性能好、使用方便等特点,一般均与刀开关组成熔断器刀开关组合使用。
(4) 有填料封闭管式快速熔断器RS:有填料封闭管式快速熔断器是一种快速动作型的熔断器,由熔断管、触点底座、动作指示器和熔体组成。
熔体为银质窄截面或网状形式,熔体为一次性使用,不能自行更换。
由于其具有快速动作性,一般作为半导体整流元件保护用。
2.熔断器在电动机中的应用①单台直接起动电动机熔体额定电流=(1.5~2.5)×电动机额定电流。
②多台直接起动电动机总保护熔体额定电流=(1.5~2.5)×各台电动机电流之和。
③降压起动电动机熔体额定电流=(1.5~2)×电动机额定电流。
④绕线式电动机熔体额定电流=(1.2~1.5)×电动机额定电流。
(II)、热继电器:热继电器是由流入热元件的电流产生热量,使有不同膨胀系数的双金属片发生形变,当形变达到一定距离时,就推动连杆动作,使控制电路断开,从而使接触器失电,主电路断开,实现电动机的过载保护。
继电器作为电动机的过载保护元件,以其体积小,结构简单、成本低等优点在生产中得到了广泛应用。
1、热继电器的作用是:主要用来对异步电动机进行过载保护,他的工作原理是过载电流通过热元件后,使双金属片加热弯曲去推动动作机构来带动触点动作,从而将电动机控制电路断开实现电动机断电停车,起到过载保护的作用。
鉴于双金属片受热弯曲过程中,热量的传递需要较长的时间,因此,热继电器不能用作短路保护,而只能用作过载保护2、热继电器的选择方法热继电器主要用于保护电动机的过载,因此选用时必须了解电动机的情况,如工作环境、启动电流、负载性质、工作制、允许过载能力等。
1、原则上应使热继电器的安秒特性尽可能接近甚至重合电动机的过载特性,或者在电动机的过载特性之下,同时在电动机短时过载和启动的瞬间,热继电器应不受影响(不动作)。
2、当热继电器用于保护长期工作制或间断长期工作制的电动机时,一般按电动机的额定电流来选用。
例如,热继电器的整定值可等于0.95~1.05倍的电动机的额定电流,或者取热继电器整定电流的中值等于电动机的额定电流,然后进行调整。
3、当热继电器用于保护反复短时工作制的电动机时,热继电器仅有一定范围的适应性。
如果短时间内操作次数很多,就要选用带速饱和电流互感器的热继电器。
4、对于正反转和通断频繁的特殊工作制电动机,不宜采用热继电器作为过载保护装置,而应使用埋人电动机绕组的温度继电器或热敏电阻来保护。
(III)、交流接触器(1).交流接触器主要的组成a.电磁系统,包括吸引线圈、动铁芯和静铁芯;b.触头系统,包括三副主触头和两个常开、两个常闭辅助触头,它和动铁芯是连在一起互相联动的;c.灭弧装置,一般容量较大的交流接触器都设有灭弧装置,以便迅速切断电弧,免于烧坏主触头;d.绝缘外壳及附件,各种弹簧、传动机构、短路环、接线柱等。
(2).交流接触器的工作原理当线圈通电时,静铁芯产生电磁吸力,将动铁芯吸合,由于触头系统是与动铁芯联动的,因此动铁芯带动三条动触片同时运行,触点闭合,从而接通电源。
当线圈断电时,吸力消失,动铁芯联动部分依靠弹簧的反作用力而分离,使主触头断开,切断电源。
(3).交流接触器的分类交流接触器的种类很多,其分类方法也不尽相同。
按照一般的分类方法,大致有以下几种。
a.按主触点极数分可分为单极、双极、三极、四极和五极接触器。
单极接触器主要用于单相负荷,如照明负荷、焊机等,在电动机能耗制动中也可采用;双极接触器用于绕线式异步电机的转子回路中,起动时用于短接起动绕组;三极接触器用于三相负荷,例如在电动机的控制及其它场合,使用最为广泛;四极接触器主要用于三相四线制的照明线路,也可用来控制双回路电动机负载;五极交流接触器用来组成自耦补偿起动器或控制双笼型电动机,以变换绕组接法。
b.按灭弧介质分可分为空气式接触器、真空式接触器等。
依靠空气绝缘的接触器用于一般负载,而采用真空绝缘的接触器常用在煤矿、石油、化工企业及电压在660V和1140V 等一些特殊的场合。
c.按有无触点分可分为有触点接触器和无触点接触器。
常见的接触器多为有触点接触器,而无触点接触器属于电子技术应用的产物,一般采用晶闸管作为回路的通断元件。
由于可控硅导通时所需的触发电压很小,而且回路通断时无火花产生,因而可用于高操作频率的设备和易燃、易爆、无噪声的场合。
(IV)、时间继电器时间继电器是一种利用电磁原理或机械原理实现延时控制的控制电器。
1.时间继电器原理在交流电路中常采用空气阻尼型时间继电器 ,它是利用空气通过小孔节流的原理来获得延时动作的。
它由电磁系统、延时机构和触点三部分组成。