医学物理学课后答案

合集下载

医药物理学课后习题标准答案

医药物理学课后习题标准答案

《医药物理学》课后计算题答案第一章1-8 在边长为2.0×10-2m 的立方体的两平行表面上,各施加以9.8×102N 的切向力,两个力方向相反,使两平行面的相对位移为1.0×10-3m ,求其切变模量?解:由切应力S F =τ和切应变d x ∆γ=的关系式γτ=G 可得切变模量为2732222109.4100.1)100.2(100.2108.9----⋅⨯=⨯⨯⨯⨯⨯⨯==mN x S Fd G ∆ 1-9有一根8.0m 长的铜丝和一根4.0m 长的钢丝,横截面积均为0.50cm 2。

将它们串联后加500N 的张力,求每根金属丝的长度改变了多少?解:由于是串联,铜丝和钢丝受力均为500N ,由杨氏模量l S Fl l l S F E ∆∆εσ00//===可得长度的改变量SEFl l 0=∆,代入求得 铜丝的长度改变量为0.727mm m 107.27101.1100.585004-114-铜=×=××××==0SE Fl l Δ 钢丝的长度改变量为0.2mm m 102102100.545004-114-钢=×=××××==0SE Fl l Δ 1-10 试计算横截面积为5.0cm 2的股骨:(1)在拉力作用下骨折将发生时所具有的张力。

(骨的抗张强度为1.2×108Pa ) (2)在4.5×104N 的压力作用下它的应变。

(骨的杨氏模量为9×109Pa ) 解:(1)骨的抗张强度就是骨折将发生时所受的应力SFσ=,则所受的张力为 N S σF 44810×6=10×5×10×2.1==(2)有εσE =可知其应变01.0=×9××510×5.4==/==494-1010SEF E S F E σε1-11设某人下肢骨的长度约为0.60m ,平均横截面积6.0cm 2,该人体重900N 。

医学物理学第八版课后习题答案

医学物理学第八版课后习题答案

医学物理学第八版课后习题答案医学物理学第八版课后习题答案医学物理学是一门研究医学应用中的物理原理和技术的学科。

它涉及到医学成像、放射治疗、生物医学工程等领域。

作为一门复杂而重要的学科,医学物理学的学习过程中,习题是不可或缺的一部分。

下面将为大家提供医学物理学第八版课后习题的答案。

第一章:医学物理学基础知识1. 什么是医学物理学?医学物理学是一门研究医学应用中的物理原理和技术的学科。

它涉及到医学成像、放射治疗、生物医学工程等领域。

2. 介绍医学物理学的应用领域。

医学物理学的应用领域包括医学成像、放射治疗、生物医学工程等。

医学成像包括X射线成像、核医学成像、超声成像、磁共振成像等。

放射治疗涉及到肿瘤治疗中的辐射剂量计算、辐射防护等。

生物医学工程则涉及到医学仪器设备的研发和应用。

3. 什么是辐射物理学?辐射物理学是研究辐射的性质、相互作用以及辐射与物质之间的相互关系的学科。

在医学物理学中,辐射物理学是非常重要的基础知识。

4. 介绍医学物理学的测量单位。

医学物理学中的测量单位有很多,其中包括剂量单位、辐射单位、放射性测量单位等。

剂量单位包括格雷(Gy)和西弗(Sv)等。

辐射单位包括居里(Ci)和贝克勒尔(Bq)等。

放射性测量单位包括曝光量(R)和剂量当量(H)等。

5. 什么是剂量当量?剂量当量是指辐射对人体组织或器官造成的伤害的度量。

它是剂量与辐射的生物效应之间的关系。

剂量当量的单位是西弗(Sv)。

第二章:医学成像1. 介绍医学成像的分类。

医学成像可以分为X射线成像、核医学成像、超声成像和磁共振成像等。

每种成像技术都有其特定的原理和应用领域。

2. 什么是X射线成像?X射线成像是利用X射线通过人体组织产生影像的技术。

它常用于检查骨骼和某些软组织病变。

X射线成像的原理是X射线在不同组织中的吸收程度不同,通过对X射线的吸收情况进行记录和分析,可以得到人体内部的影像。

3. 什么是核医学成像?核医学成像是利用放射性同位素在人体内部发出的射线产生影像的技术。

(新)医学物理学习题答案

(新)医学物理学习题答案

第1章习题答案1-1 解:竖直上抛运动 gH 2max20v = ()s m gH /849102008.1223max 0=⨯⨯⨯==v1-2 解:匀变速直线运动 ()()g s m t a t 259.24680.103600/1000160020<⋅=-⨯=∆-=-v v (不超过) ()()m t s t 4008.1036001000160021210=⨯⎪⎭⎫ ⎝⎛+⨯⨯=∆⨯+=v v 1-3 解:以喷嘴作为坐标原点,竖直向上作为y 轴的正向 竖直上抛运动 ()m g v H 5.348.92262220max=⨯== ()gy v y v 220-=连续性方程 ()()gyv qy v q y S 220-==任一瞬间空间上升的水流体积 ()()l gy v g q dy gy v qdy y S V H H 38.1222maxmax020020=⎥⎦⎤⎢⎣⎡--=-==⎰⎰上升下降上升V V =()l V V V 7.24=+=下降上升总1-4 解:()()bt u bt u btbt b u u dt dx v --=----⎪⎭⎫ ⎝⎛-+==1ln 1ln 11 ()()btub bt b u dt dv a -=---==11 ()00=v()()()s m v /1091.6120105.71ln 100.3120333⨯=⨯⨯-⨯-=-1-5 解:()2122212R R N rNdr s R R -==⎰ππ ()()()()m in 6939416364132256650222122==-⨯⨯=-==∆s v R R N v s t ππ()s rad r v /26.00.53.1===ω ()222/338.00.53.1s rad r v ===α1-6 解: ()s m v /37430344=+=东()s m v /31430344=-=西()s m v /3433034422=-=北N F μθ≥cos1-7 解: 因θs i nF mg N += 故 θμμθsin cos F mg F +≥ (1) θμθμs i n c o s s s mgF -≥静(2) θμθμs i n c o s k k mgF -≥动(3) 0s i n c o s ≤-θμθs sμθ1tan ≥1-8 解:()()()()()()()N a g m M F am M g m M F 676006.08.915005000=+⨯+=++=+=+-桨桨()()()N a g m F mamg F 156006.08.91500=+⨯=+==-桨绳1-9 解: r m rMm G22ω= ()()()Kg G r T G rM 261138232321069.51067.61036.136002.142/2⨯=⨯⨯⨯⎪⎭⎫ ⎝⎛⨯===-ππω1-10 解: ⎰⎰⎰-=-==ωπω20c o s td t kA kxdt Fdt I ωωωωπkAt kA -=⎥⎦⎤⎢⎣⎡-=20sin1-11 解: ()s m /500i v-=()()s m t /45sin 8045cos 800j i v +=()()s N m m t ⋅+=-=j i v v I92.778.140()215278.1492.7arctan 89.160'=-=⋅=πϕs N I ()6168.914.084584502.089.16=⨯===∆=mg F N t I F1-12 一辆停在直轨道上质量为m 1的平板车上站着两个人,当他们从车上沿同方向跳下后,车获得了一定的速度。

大学物理,医学物理学加答案,完整版

大学物理,医学物理学加答案,完整版

第一章刚体转动1名词解释:a刚体在任何情况下大小、形状都保持不变的物体.b力矩给定点到力作用线任意点的向径和力本身的矢积,也指力对物体产生转动效应的量度,即力对一轴线或对一点的矩。

c转动惯量反映刚体的转动惯性大小d进动自转物体之自转轴又绕着另一轴旋转的现象,又可称作旋进2填空:(1) 刚体转动的运动学参数是角速度、角位移、角加速度。

(2) 刚体转动的力学参数是转动惯量、力矩。

(3) 陀螺在绕本身对称轴旋转的同时,其对称轴还将绕力矩回转,这种回转现象称为进动。

3. 问答:(1) 有一个鸡蛋不知是熟还是生,请你判断一下,并说明为什么?熟鸡蛋内部凝结成固态,可近似为刚体,使它旋转起来后对质心轴的转动惯量可以认为是不变的常量,鸡蛋内各部分相对转轴有相同的角速度,因桌面对质心轴的摩擦力矩很小,所以熟鸡蛋转动起来后,其角速度的减小非常缓慢,可以稳定地旋转相当长的时间。

生鸡蛋内部可近似为非均匀分布的流体,使它旋转时,内部各部分状态变化的难易程度不相同,会因为摩擦而使鸡蛋晃荡,转动轴不稳定,转动惯量也不稳定,使它转动的动能因内摩擦等因素的耗散而不能保持,使转动很快停下来。

(2) 地球自转的角速度方向指向什么方向?作图说明。

(3) 中国古代用指南针导航,现代用陀螺仪导航,请说明陀螺仪导航的原理。

当转子高速旋转之后,对它不再作用外力矩,由于角动量守恒,其转轴方向将保持恒定不变,即把支架作任何转动,也不影响转子转轴的方向。

(4) 一个转动的飞轮,如果不提供能量,最终将停下来,试用转动定律解释该现象。

由转动定律可知M=Jdw/dt转动着的轮子一般总会受到阻力矩的作用,若不加外力矩,克服阻力矩做功,轮子最终会停下来(受阻力矩作用W越来越小)第三章流体的运动1. 名词解释:a可压缩流体可压缩流体具有可压缩性的流体,b黏性描述流体黏性大小的物理量,c流场流体运动所占据的空间,d层流流体在管内流动时,其质点沿着与管轴平行的方向作平滑直线运动。

(完整word版)医学物理学习题答案详解

(完整word版)医学物理学习题答案详解
带入数据并整理得
三式联立求解,得
I1=-0.01A;I2=0.015A;I3=0.025A
则高斯面内的电荷量之和
7-9.
解:以细棒的轴线为对称轴,做出如图所高斯面
因上底和下底面无电场线通过,故
7-10.
解:
在带电直线上取线元dr,
8-8.
解:由图可知,电路中有1个独立节点,对f点所列的支路电流方程为:
根据基尔霍夫定律选定afcba和fedcf两个回路,并规定绕行方向为逆时针方向,分别列出回路方程:
1-6.
解:地球自转角速度 = ,转动惯量J= ,则角动量 ,转动动能
1-7.
解: ,将各已知量代入即可求解
第二章习题答案
2-1.
1.皮球在上升和下降阶段均受恒力(重力),因而皮球上下运动不是简谐振动.
2.小球在半径很大的光滑凹球面的底部摆动时,所受的力是指向平衡位置的回复力,且由于是小幅度摆动,回复力的大小和位移成正比(类似于单摆的小幅度摆动)。所以此情况下小球小幅度摆动是简谐振动。
第一章习题答案
1-4
解:对滑轮:由转动定律
对 :
对 :
又因为 得 联立上式得

1-5.
解:以质心为转轴分析,摩擦力矩为转动力矩。因A、B、C的质量和半径相同,故支持力 相同。由摩擦力 =μ ,摩擦力矩M= ·R可知,三者的摩擦力矩也相同。
圆盘A的转动惯量 = m ;实心球B的转动惯量 = m ;圆环C的转动惯量 = m .由M=Jα可知 > > ,所以B先到达,C最后到达.
6-8.
解:如图所示的循环过程是由两条等温线和两条绝热线组成,因此该循环为卡诺循环。循环的效率
7-3.
解:1.做一高斯面S1,其球心为大球和小球的球心,半径r1>R1

(新)医学物理学习题答案

(新)医学物理学习题答案

第1章习题答案1-1 解:竖直上抛运动 gH 2max20v = ()s m gH /849102008.1223max 0=⨯⨯⨯==v1-2 解:匀变速直线运动 ()()g s m t a t 259.24680.103600/1000160020<⋅=-⨯=∆-=-v v (不超过) ()()m t s t 4008.1036001000160021210=⨯⎪⎭⎫ ⎝⎛+⨯⨯=∆⨯+=v v 1-3 解:以喷嘴作为坐标原点,竖直向上作为y 轴的正向 竖直上抛运动 ()m g v H 5.348.92262220max=⨯== ()gy v y v 220-=连续性方程 ()()gyv qy v q y S 220-==任一瞬间空间上升的水流体积 ()()l gy v g q dy gy v qdy y S V H H 38.1222maxmax020020=⎥⎦⎤⎢⎣⎡--=-==⎰⎰上升下降上升V V =()l V V V 7.24=+=下降上升总1-4 解:()()bt u bt u btbt b u u dt dx v --=----⎪⎭⎫ ⎝⎛-+==1ln 1ln 11 ()()btub bt b u dt dv a -=---==11 ()00=v()()()s m v /1091.6120105.71ln 100.3120333⨯=⨯⨯-⨯-=-1-5 解:()2122212R R N rNdr s R R -==⎰ππ ()()()()m in 6939416364132256650222122==-⨯⨯=-==∆s v R R N v s t ππ()s rad r v /26.00.53.1===ω ()222/338.00.53.1s rad r v ===α1-6 解: ()s m v /37430344=+=东()s m v /31430344=-=西()s m v /3433034422=-=北N F μθ≥cos1-7 解: 因θs i nF mg N += 故 θμμθsin cos F mg F +≥ (1) θμθμs i n c o s s s mgF -≥静(2) θμθμs i n c o s k k mgF -≥动(3) 0s i n c o s ≤-θμθs sμθ1tan ≥1-8 解:()()()()()()()N a g m M F am M g m M F 676006.08.915005000=+⨯+=++=+=+-桨桨()()()N a g m F mamg F 156006.08.91500=+⨯=+==-桨绳1-9 解: r m rMm G22ω= ()()()Kg G r T G rM 261138232321069.51067.61036.136002.142/2⨯=⨯⨯⨯⎪⎭⎫ ⎝⎛⨯===-ππω1-10 解: ⎰⎰⎰-=-==ωπω20c o s td t kA kxdt Fdt I ωωωωπkAt kA -=⎥⎦⎤⎢⎣⎡-=20sin1-11 解: ()s m /500i v-=()()s m t /45sin 8045cos 800j i v +=()()s N m m t ⋅+=-=j i v v I92.778.140()215278.1492.7arctan 89.160'=-=⋅=πϕs N I ()6168.914.084584502.089.16=⨯===∆=mg F N t I F1-12 一辆停在直轨道上质量为m 1的平板车上站着两个人,当他们从车上沿同方向跳下后,车获得了一定的速度。

(完整word版)医学物理学习题答案详解

(完整word版)医学物理学习题答案详解

第一章习题答案1-4解:对滑轮:由转动定律 (TT )rJ 1 mr 2122对 m: mg TmaTm ( g a )111111对 m :TKmgmaTm ( aK g )222222得T 1T 2ma 联立上式得 amgK mg又因为 ar122mm 1m2 2(1K)m2m则 Tmg ma2mg11 m mm1122(1K )mmKTmg m g12mgK222m 2m m1221-5.解: 以质心为转轴剖析 ,摩擦力矩为转动力矩。

因 A 、B 、C 的质量和半径相同, 故支持力 F N相同。

由摩擦力F f = μ,摩擦力矩 M =F f· R 可知,三者的摩擦力矩也相同。

F N圆盘 A 的转动惯量 J A = 1 m r 2;实心球 B 的转动惯量 J B =2 m r 2 ; 圆环 C 的转动惯量 J C =25m r 2 .由 M =J α可知B>A>C ,所以 B 先抵达 ,C 最后抵达 .1-6.解 :地球自转角速度=24 2 ,转动惯量 J= 2mR 2 ,则角动量 L J,转动动能60 60512E k = J1-7.解: EF/S = l 0F,将各已知量代入即可求解ll/l 0 S l第二章习题答案2-1.①.②. 皮球在上涨和下降阶段均受恒力(重力 ),因此皮球上下运动不是简谐振动.小球在半径很大的圆滑凹球面的底部摇动时,所受的力是指向均衡地点的答复力,且因为是小幅度摇动,答复力的大小和位移成正比(近似于单摆的小幅度摇动)。

所以此状况下小球小幅度摇动是简谐振动。

第四章习题答案4-1.答:射流在静止气体中发射时,射流双侧的一部分气体随射流流动,进而在射流双侧形成局部低压区。

远处的气压未变,所以远处气体不停流向低压区,以增补被卷吸带走的气体,进而形成了射流的卷吸作用。

4-2.答:关于必定的管子,在流量必定的状况下,管子越粗流速越小;在管子两头压强差必定的状况下,管子越粗流速越快。

医学物理学习题解答(第3版)

医学物理学习题解答(第3版)

《医学物理学(第3版)》习题解答2009.10 部分题解2-10.解:已知 363102525m cm v -⨯==; a P .p 511051⨯= a P .p 521011⨯=()())J (..vp p 110251011105165521=⨯⨯⨯-⨯=-=ω∴-2-11.10-5s第三章 液体的表面现象3-1.解:设由n 个小水滴融合成一个大水滴,释放出的能量为P E ∆。

n 个小水滴的总表面积S 1=24r n ⋅⋅π,大水滴的表面积S 2=42R ⋅π,利用n 个小水滴的体积等于一个大水滴的体积,可求出n 即n ×334r ⋅π=334R ⋅π 所以n ×334r ⋅π=334R ⋅π; ()()936333310102102=⨯⨯==--r R n 个 将910个半径为2×310-mm 小水滴融合成一个半径为2mm 的大水滴时,其释放的能量等于表面能的减少,所以 )44()(2221R r n S S E P ⋅-⋅⨯=-=∆ππαα=3612931066.3)10414.3410414.3410(1073----⨯≈⨯⨯⨯-⨯⨯⨯⨯⨯J3-2解:由于肥皂泡非常薄,因此可忽略肥皂泡的厚度,取外内=R R =2d=0.05m 。

因为肥皂泡有内外两个表面,所以肥皂泡增加的表面积242R S π⨯=∆。

根据SW∆=α可得吹一个直径为10cm 的肥皂泡,需要做的功 4423108105421040---⨯=⨯⨯⨯⨯⨯=∆⋅=ππαS W J 又因为增加表面能等于外力所做的功 W E P =∆ 所以 4108-⨯==∆πW E P J根据拉普拉斯公式,可得球形液面的内外压强差 =-外内p p Rα2由于肥皂泡有内外两个表面,所以其内外压强差 =-外内p p 2.3100.510404423=⨯⨯⨯=--R α(P a ) 3-3.解:根据拉普拉斯公式,可得球形液面的内外压强差 =-外内p p Rα2 所以,当肺泡的半径为0.04mm 时,它的内外压强差为=-外内p p 353100.2100.4104022⨯=⨯⨯⨯=--R α(P a ) 3-4.解:根据拉普拉斯公式可得球形液面的内外压强差 =-外内p p Rα2 因为气泡在水下面只有一个球形表面,所以气泡的内外压强差=-外内p p Rα2 而 h g p p ⋅⋅+ρ0=外 所以,气泡内的压强 h g p p ⋅⋅+ρ0=内+Rα2 即 内p =1.013×105+310×9.8×10+5331001.2101.010732⨯=⨯⨯⨯--(P a ) 3=5.解:根据毛细现象的公式 θραcos 2rg h ⋅⋅=由于乙醇能完全润湿玻璃壁,所以接触角O=0θ,故 rg h ⋅⋅=ρα2所以 332107.2221015.08.97911090.32---⨯=⨯⨯⨯⨯⨯=⋅⋅⋅=r g h ρα (N/m) 3-6.解:根据毛细现象的公式 θραcos 2rg h ⋅⋅=由于水能完全润湿玻璃壁,所以接触角O =0θ,故 rg h ⋅⋅=ρα2所以 112r g h ⋅⋅=ρα 222r g h ⋅⋅=ρα⎪⎭⎫⎝⎛⨯-⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=-=-=∆---3333212121105.11105.018.9101073211222r r g gr gr h h h ραραρα =1.99×210-(m)=1.99(cm)3-7.解:根据毛细现象的公式 θραcos 2rg h ⋅⋅=;由于水能完全润湿毛细管,所以接触角O =0θ,因此水在毛细管中上升的高度为 rg h ⋅⋅=ρα2而管中水柱的高度r g R h ⋅⋅+='ρα223333103.5103.08.91010732103----⨯=⨯⨯⨯⨯⨯+⨯=(m)=5.3(cm)3-8.解::根据毛细现象的公式 θραcos 2rg h ⋅⋅=由于水和丙酮能完全润湿毛细管,所以接触角O =0θ,因此水和丙酮在毛细管上升的高度分别为rg h ⋅=水水ρα21 ① rg h ⋅=酮酮ρα22 ②②式除以①式可得 酮水水酮ρραα⋅=t h h 12 所以 3332212104.32107310105.2792104.1-⨯=⨯⨯⨯⨯⨯⨯⋅⋅---水水酮酮==αρραh h (N/m) 3-9.解:根据毛细现象的公式 θραcos 2rg h ⋅⋅=由于血液在毛细管产生完全润湿现象,所以接触角O =0θ,故 rg h ⋅⋅=ρα2所以,血液表面张力系数3332109.572105.08.91005.11025.22---⨯=⨯⨯⨯⨯⨯⨯=⋅⋅⋅=r g h ρα (N/m)第四章 振动和波动及超声波成像的物理原理4-2.解:已知 kg M 5=;()cm t cos x 44010π+π=(1) 由()cm t cos x 44010π+π=得m cm A 11010-==;)srad (π=ω40;mk 2=ω; m k 2ω= 则)J (.)J (.mA kA E 384394400105160021212122222=π=⨯⨯π⨯=ω==s .T 0504022=ππ=ωπ=; Hz Tf 201==; ()()sm 43t 40cos 4s m 4t 40sin 4vπ+ππ=π+ππ-= ()()2222sm 45t 40cos 160s m 4t 40cos 160a π+ππ=π+ππ-=(2) 当s .t 21=时,则()m .cos x 2110254214010--⨯=π+⨯π=;()sm .cos v π=π+⨯ππ=224321404)J (kx E );J (mv E p k 242222220105051600212120852121π=⨯⨯⨯π⨯==π=π⨯⨯==-(或)J (E E E k p 222202040π=π-π=-=)4-3.解:已知cm A 2=;0=t 时,刚好向x 反向传播;πω==250Hz f , 则 s rad π=ω100()ϕ+ω=t cos A x ,0=t 时 0=x 则 2πϕ±=又由 ()0sin 〈+-=ϕωωt A v , 得 2π=ϕ所以,振动方程为 cm 2t 100cos 2x ⎪⎭⎫ ⎝⎛π+π=速度方程为 s cm t sin v ⎪⎭⎫ ⎝⎛π+ππ-=2100200 s m t cos ⎪⎭⎫ ⎝⎛π+ππ=231002 ;s m 2v m π= 加速度方程为 222100200s m t cos a ⎪⎭⎫ ⎝⎛π+ππ-=;22m s m 200a π= 4-4. 解:(1)2A x =时,222121kA kx E p ==; 41218122==kA kAE E p 即势能占总能量的25%,动能占总能量的75% 。

医学物理学智慧树知到课后章节答案2023年下杭州医学院

医学物理学智慧树知到课后章节答案2023年下杭州医学院

医学物理学智慧树知到课后章节答案2023年下杭州医学院杭州医学院绪论单元测试1.量子矩阵力学的创建者、测不准原理提出者是泡利。

A:对 B:错答案:错2.提出了波函数的统计诠释的是马克斯·玻恩。

A:对 B:错答案:对3.医学物理学是物理学的重要分支科,是现代物理学与医学相结合所形成的交叉学科。

A:错 B:对答案:对第一章测试1.一质点作曲线运动,则下列表述正确的是 ( )A:在曲线运动中质点的加速度必定不为零B:若质点沿轴运动且加速度,其必作加速运动C:若质点的加速度为恒矢量,其运动轨迹必定为直线D:当质点作抛体运动时,其切向和法向加速度是不断变化的,因此也是不断改变的答案:在曲线运动中质点的加速度必定不为零2.一质点在平面内运动,已知质点位置矢量的表达式为,则质点作( )A:一般曲线运动B:匀速直线运动C:变速直线运动 D:抛物线运动答案:抛物线运动3.以下说法正确的是( )A:一人用水平恒力推静止在水平面上的物体,作用时间为,但没有推动,则该力产生的冲量为零B:一人用水平恒力推静止在水平面上的物体,作用时间为,但没有推动,则静摩擦力产生的冲量为零C:一人用水平恒力推静止在水平面上的物体,作用时间为,但没有推动,则静摩擦力产生的冲量大小为D:一人用水平恒力推静止在水平面上的物体,作用时间为,但没有推动,则该物体所受合力产生的冲量大小为答案:一人用水平恒力推静止在水平面上的物体,作用时间为,但没有推动,则静摩擦力产生的冲量大小为4.一个子弹以水平的速度入射到一个放在光滑桌面上的木块中,并留在木块中一起运动,则( )A:子弹和木块构成的系统在子弹入射前后的过程中动能不变B:子弹和木块构成的系统在子弹入射前后的过程中动量守恒C:子弹和木块之间的摩擦力在子弹入射前后的过程中对系统做功为零D:子弹和木块构成的系统在子弹入射前后的过程中机械能守恒答案:子弹和木块构成的系统在子弹入射前后的过程中动量守恒5.自由滑冰运动员在空中绕通过自身质心的水平轴转动。

大学物理医学物理学加答案完整版

大学物理医学物理学加答案完整版

第一章刚体转动1名词解释:a刚体在任何情况下大小、形状都保持不变的物体.b力矩给定点到力作用线任意点的向径和力本身的矢积,也指力对物体产生转动效应的量度,即力对一轴线或对一点的矩;c转动惯量反映刚体的转动惯性大小d进动自转物体之自转轴又绕着另一轴旋转的现象,又可称作旋进2填空:1 刚体转动的运动学参数是角速度、角位移、角加速度;2 刚体转动的力学参数是转动惯量、力矩;3 陀螺在绕本身对称轴旋转的同时,其对称轴还将绕力矩回转,这种回转现象称为进动;3. 问答:1 有一个鸡蛋不知是熟还是生,请你判断一下,并说明为什么熟鸡蛋内部凝结成固态,可近似为刚体,使它旋转起来后对质心轴的转动惯量可以认为是不变的常量,鸡蛋内各部分相对转轴有相同的角速度,因桌面对质心轴的摩擦力矩很小,所以熟鸡蛋转动起来后,其角速度的减小非常缓慢,可以稳定地旋转相当长的时间;生鸡蛋内部可近似为非均匀分布的流体,使它旋转时,内部各部分状态变化的难易程度不相同,会因为摩擦而使鸡蛋晃荡,转动轴不稳定,转动惯量也不稳定,使它转动的动能因内摩擦等因素的耗散而不能保持,使转动很快停下来;2 地球自转的角速度方向指向什么方向作图说明;3 中国古代用指南针导航,现代用陀螺仪导航,请说明陀螺仪导航的原理;当转子高速旋转之后,对它不再作用外力矩,由于角动量守恒,其转轴方向将保持恒定不变,即把支架作任何转动,也不影响转子转轴的方向;4 一个转动的飞轮,如果不提供能量,最终将停下来,试用转动定律解释该现象;由转动定律可知M=Jdw/dt转动着的轮子一般总会受到阻力矩的作用,若不加外力矩,克服阻力矩做功,轮子最终会停下来受阻力矩作用W越来越小第三章流体的运动1. 名词解释:a可压缩流体可压缩流体具有可压缩性的流体,b黏性描述流体黏性大小的物理量,c流场流体运动所占据的空间,d层流流体在管内流动时,其质点沿着与管轴平行的方向作平滑直线运动;e湍流流体的流速逐渐增大,当增大到某一临界值时,就会发现流体各部分相互掺混,甚至有漩涡出现,2. 填空:1 伯努利方程表明,任何一处流体的动能和势能之和总是恒定的;2 文丘里流量计是利用伯努力方程原理设计,测量的流量值与压强成正比;3 流体流动状态是根据雷诺数判断,当它<1000,流体的流动状态是层流 ;4 等截面管道中流体的流量与流速成正比,与黏度、横截面积成反比;3. 问答:1 血压测量时,为什么袖带要与心脏平齐血压是液体压强,与高度有关,由伯努力方程得当袖带与心脏齐平时,袖带与心脏在同一高度,这样测出的血压才与心脏的血压相接近;2 痰液吸引器的管子粗细对吸引痰液有什么影响为什么痰液吸引器是伯努利方程的应用;由连续性方程可知Sa·Va=Sb·Vb;管子细速度快压强小,由于空吸作用,当压强小于大气压时,痰液因受大气压的作用,被压进管子中;3 呼吸道阻力对呼吸通气功能有什么影响为什么大气压力与胸扩压力差不变时阻力越大,通气量越小;4 用柯氏音法测量无创血压,为什么用听诊手段来判断血压第四章机械振动1. 名词解释:a谐振动在振动中,物体相对于平衡位置的位移随时间按正弦函数或余弦函数的规律变化;b,阻尼振动振动系统受到阻力作用,系统将克服阻力做功,能量逐渐减少,振幅逐渐减少;c,受迫振动是振动系统在周期性的外力作用下,其所发生的振动受迫振动d共振受阻振动的振幅达到的最大值e谱线在均匀且连续的光谱上明亮或黑暗的线条2. 填空:1 谐振动的特征量是加速度、位移和速度 ;2 阻尼振动有过阻尼、欠阻尼和临界阻尼三种情况;3 从能量角度看,在受迫振动中,振动物体因驱动力做功而获得动能 ,同时又因阻尼作用而消耗机械能 ;4 当周期性外力的频率与弹簧振子的固有频率一致时,则弹簧振子发生了共振;3. 问答:1 输氧时,当氧气阀门打开时,氧气表上的指针会振动,最后指示稳定的压力,这是为什么因为指针突然受到增加的气压,振荡的平衡位置会移动,然后会以新的平衡位置为基准做阻尼振荡2 在阻尼振动中,下列哪种情况下振动衰减较快●物体质量不变,阻尼系数增大;●物体质量增大,阻尼系数不变;物体质量不变增大--------这种情况下振动衰减较快3 心电图可以做频谱分析吗其基频振动频率是多少上,一次心跳的波形分为几个阶段,每个阶段有自己的形态;可以做出,但不知道具体有什么意义;第五章机械波1. 名词解释:a机械波,机械振动在弹性介质中进行传播的过程b波面某一时刻振动相位相同的点连成的面;c,波长指沿着波的传播方向,在波的图形中相对平衡位置的位移时刻相同的相邻的两个质点之间的距离d能流单位时间内通过介质中某一面积的能量,e驻波同一介质中,频率和振幅均相等,振动方向一致,传播方向相反的两列波叠加后形成的波f多普勒效应由于声源与观察者的相对运动,造成接收频率发生变化的现象2. 填空:1 机械波产生的条件是 介质 和 波源 ;2 波是 能量 传递的一种形式,其强度用 密度 表示;3 机械波在介质中传播时,它的 衰减系数 和 波吸收系数 将随着传播距离的增加而减小,这种现象称为波的衰减;4 驻波中始终静止不动的点称为 波节 ,振幅最大的各点称为 波腹 ;5 在多普勒血流计中,当血流迎着探头,接受频率 增大 ,当血流背离探头,接受频率 减低 ;3. 问答:1 当波从一种介质透入到另一种介质时,波长、频率、波速、振幅等物理量中,哪些量会改变哪些量不会改变如果波被介质表面反射或吸收,那么振幅减小.一般频率不会变,而波速会有变化,因为u=λν的制约,所以波长会变.2 在医学超声检查时,耦合剂起什么作用为什么超声波在传播时,会遇到不同的声阻抗的物质发生反射和折射,声阻抗差大,反射的声波强度大透射波强度就小,为了让透射波的强度增大,就得减小反射波的反射;在探头和体表上间涂油,减小声阻抗差,增大透射波,形成更清晰的超声图像3 声强级与频率有关吗为什么没有关系,声强级是,对于机械波来说,和频率无关4. 计算:1 利用超声波可以在液体中产生120kW/cm 2的大强度超声波,设波源为简谐振动,频率为500kHz,液体密度为1g/cm 3,声速s,求液体质点振动的振幅;2 一振动频率为2040Hz 的波源以速度v 向一反射面接近,观察者在A 点听得声音的频率为2043Hz,求波源移动的速度v; 声速为340m/s第六章 气体分子运动论1. 名词解释:a 平衡态是一定的气体,在不受外界影响下经过一定的时间,系统达到一个稳定的宏观性质不随时间变化的状态b 状态参数是描写热力状态气体的体积,压强,温度的物理量c 自由度,完全确定一个物体空间位置所需要的独立坐标数目vd布郎运动被分子撞击的悬浮微粒做无规则运动的现象2. 填空:1 宏观物体的分子或原子都处于平衡态和非平衡态 ;2 分子运动的微观量包括速度、位移、动能等,宏观量包括压强、体积、温度等;3 气体温度是物体平均动能的度量;4 理想气体的内能完全决定于分子运动的总动能和总势能 ;3. 问答:1 汽车轮胎需要保持一定的压力,问冬天与夏天打入轮胎气体的质量是否相同为什么由于夏天的时候空气膨胀,轮胎内的空气会膨胀;体积增大胎内的压强增大;冬天的时候空气收缩,轮胎内的空气会收缩;体积减小胎内的压强减小;所以如果要达到相同的压强,夏天打入胎内的空气质量较少;但要注意:质量并不会随着温度的变化而变化;这里是为了达到相同的压强,才会舍得打入胎内的空气质量不同量;2 气体分子的平均速率、方均根速率、最概然速率各是怎样定义的它们的大小由哪些因素决定各有什么用处气体分子的平均速率是所有分子速率的算术平均值.,当温度升高时,增大,当摩尔质量μ增大时,变小.最概然速率υp表示气体分子的速率在υp附近的概率最大.,当温度升高时,υp增大,当摩尔质量μ增大时,υp变小.反映了速率分布的基本特征,即处于υp附近的速率区间内的分子数占总分子数的百分比最大,但并非是速率分布中的最大速率的值.方均根速率,反映了分子的平均平动动能的平均效果.方均根速率与成正比,与成反比.3 在同一温度下,如果氧分子与氢分子的平均动能相等,问氢分子的运动速率比氧分子高吗为什么氢分子的运动的平均速率比氧分子大原因是氢分子的分子量 2 氢分子的分子量32平均速率比 4:14 平均自由程与气体的状态、分子本身性质有何关系在计算平均自由程时,什么地方体现了统计平均平均自由程与气体的宏观状态参量温度、压强有关,也与微观物理量分子的有效直径有关;推导时,利用了麦克斯韦速率分布律中平均相对速率与算术平均速率的关系,得出分子的平均碰撞次数,进而得出分子的平均自由程;因此,平均自由程是在平衡状态下,对大量气体分子的热运动在连续两次碰撞间所经过路程的一个统计平均值;4. 计算:1 在27o C温度下,氧分子和氢分子的均方根速率和平均平动动能是多少由内能公式有分子的平均平动动能分子的方均根速率分子的平均总动能2 设温度为0时,空气摩尔质量为 kg/mol,求:当大气压减到地面的75%时的大气高度;第七章热力学基础1. 名词解释:a孤立系统,系统与外界既没有能量交换也没有物质交换b封闭系统,系统与外界无物质交换,但有能量交换c开放系统,系统与外界有能量与物质交换d内能,系统处于某一状态时所具有的能量e热容,物体在某一过程中温度升高降低1K时所吸收放出的能量f卡诺循环,整个循环过程是由两个准静态等温过程和两个等静态绝热过程构成h熵,对不可逆过程初态和末态的描述2. 填空:1 外界对系统传递的热量,一部分是使系统的热量增加,另一部分是用于系统对外界做功;2 卡诺循环是在准静态等温过程和准静态绝热过程之间进行工作的循环过程,其工作效率只与温度初末有关,要提高工作效率必须提高初始温度降低末态温度 ;3 热力学第二定律表明:热量不可能自动地从温度低的传向温度高的 ;4 在封闭系统中发生的任何不可逆过程,都导致了整个系统的熵的变化 ,系统的总熵只有在可逆过程中才是不变的,这就是熵增加原理;3. 问答:1 下面两个热机的p-V图,在a中,两个热机做功W1=W2,在b中,两个热机做功W1>W2,问a与b中,两个热机的效率是否相同为什么a b2 当物体放入冰箱内,该物体温度高,对冰箱制冷效果好还是物体温度低,对冰箱制冷效果好为什么对于制冷机,人们关心的是从低温热源吸取热量Q2要多,而外界必须对制冷机作的功A要少,故定义制冷系数w=Q2/A=Q2/Q1-Q2制冷系数可以大于1,且越大越好;对于卡诺制冷机,有Wr=T2/T1-T2 由此可见,若两热源的温度差越大,则制冷系数越小,从低温热源吸取相同的热量Q2时,外界对制冷机作的功A就有增大,这对制冷是不利的;制冷温度T2越低,制冷系数越小,对制冷也是不利的;3 茶杯中的水变凉,在自然情况下,是否可以再变热为什么一切与热有关的自然现象都与热力学第二定律有关,有熵增加原理可知,在封闭系统中发生的任何不可逆过程,都将导致整个系统的熵增加;4 控制饮食和增加身体运动是否可以控制人体体重为什么可以,身体相当于一个系统,控制饮食即减少了从外界吸收的热量,增加身体运动即增加的身体对外做功,由热力学第一定理知,人的体重会得到控制;4. 计算:1 有一台功率为15kW的制冷机,从10o C的冷藏室吸取热量,向20o C的物体放出热量,问每分钟从冷藏室吸取多少热量2 有一台热机工作在1000K和300K的热源之间,为了提高热机效率,有两种方案:1 将热源温度提高到1100K;2 将冷源温度降到200K;问两种方案哪一种更好理论效率为,则1T1=1100K,;2T2=200K,.第2种方案效率高.但是若以降低低温热源温度的方法来提高热机效率,需用制冷机降低环境温度,这种方法并不经济,所以,一般用提高高温热源温度的方法来提高热机工作效率.3 1kg水银,初始温度100o C,如果加热使其温度上升到100o C,问水银的熵变是多少水银的熔点39o C,溶解热104 J/kg o C,比热容138 J/kg o C熵变=ClnT3/T1+Q/T2=138ln373/173+10000/273-39=156J/K第八章静电场1. 名词解释:a电通量,通过电场中任意曲面的电场线的数目b电势,静电场的标势c等势面,电势相等的点连接起来构成的曲面d电偶极子,两个电量相等符号相反相距l的点电荷+q和-qe电偶极矩,从-q指向+q的矢量记为l‘f束缚电荷,电介质中的正负电荷,在电场力作用下只能在原子或分子范围内做微小位移g电介质极化,外电场作用下,电解质显示电性h位移极化,正负电荷受到相反方向的电场力因而正负电荷将发生微小的相对位移i心电向量,心脏各瞬间产生的电激动在立体的方向及大小j心电向量环,反映心脏各瞬间向量的变化2. 填空:1 在电场中描绘的一系列的曲线,使曲线上每一点的 切线 方向都与该点处的电场强度方向 相同 ,这些曲线称为电场线;2 导体静电平衡的必要条件是导体内任一点的电场强度为 0 ,而电介质静电平衡时介质内任一点的电场强度 不为0 ;3 带电导体表面处的电场强度与 电荷密度 成正比,因此,避雷针尖端可以吸引很多 电荷 ,并通过接地线放电;4 带电导体处于静电平衡时,电荷分布在 外表面 ,导体内部电荷为 0 ;3. 问答:1 如果在高斯面上的电场强度处处为0,能否可以判断此高斯面内一定没有净电荷反过来,如果高斯面内没有净电荷,是否能够判断面上所有各点的电场强度为0如果在高斯面上的E 处处为零,则,q=0;因此,可以肯定此高斯面内一定没有净电荷,即电荷的代数和为零;反过来,如果高斯面内没有净电荷,则可以肯定“穿进”此高斯面的电场线与“穿出”此高斯面的电场线相等,但不能肯定此高斯面上的E 处处为零;2 避雷针的尖端为什么是尖的因为在雷雨天气,高楼上空出现带电云层时,迅雷针和高楼顶部都被感应上大量电荷,由于避雷针针头是尖的,而静电感应时,导体尖端总是聚集了最多的电荷.这样,避雷针就聚集了大部分电荷.避雷针又与这些带电云层形成了一个电容器,由于它较尖,即这个电容器的两极板正对面积很小,电容也就很小,也就是说它所能容纳的电荷很少.而它又聚集了大部分电荷,所以,当云层上电荷较多时,避雷针与云层之间的空气就很容易被击穿,成为导体.这样,带电云层与避雷针形成通路,而避雷针又是接地的.避雷针就可以把云层上的电荷导人大地,使其不对高层建筑构成危险,保证了它的安全.3 在一均匀电介质球外放一点电荷q,分别用如图所示的两个闭合曲面S 1和S 2,求通过两闭合面的电场强度E 通量,电位移D 通量;在这种情况下,能否找到一个合适的闭合曲面,可以应用高斯定理求出闭合曲面上各点的场强4 从心肌细胞的电偶极矩出发阐述心电图的形成;4. 计算: 2 一平行板电容器有两层介质:r 1 = 4,d 1 = 2 mm ;r 2 = 2,d 1 = 3 mm,极板面积40cm 2,极板间电压200V,试计算:●每层介质中的电场能量密度; ● 每层介质中的总电能;SS q●电容器的总电能;第十章恒磁场1. 名词解释:a磁通量,磁场中通过某一曲面的磁感应线的数目b磁偶极子,具有等值异号的两个磁荷构成的系统c磁偶极矩,载流平面线圈的电流强度和线圈面积s的乘积d霍耳效应,当电流垂直于外磁场方向通过导体时在垂直于磁场和电流方向的导体两个端面之间出现电势差e磁介质,在磁场的作用下,其内部状态发生变化并反过来影响磁场存在或分布的物质f磁化 ,使原来不具有磁性的物质获得磁性2. 填空:1 物质磁性的本质是分子电流对外磁效应的总和 ,任何物质中的分子都存在有规律的排列时 ,该电流使物质对外显示出磁性;2 在磁场中,沿任一闭合回路磁感应强度矢量的线积分,等于真空导磁率乘以穿过以该闭合曲线为边界所张任意曲面的各磁通量的代数和;3 磁场是有旋场,其特性是磁场任一闭合曲面的磁通量等于零;4 磁介质在磁场的作用下内部状态发生地变化叫做磁化 ;在这种现象作用下,磁感应强度增加的磁介质称为强磁质 ,反之,称为弱磁质 ;3. 问答:1 设图中两导线中的电流均为8A,试分别求三个闭合线L1、L2、L3环路积分的值,并讨论以下几个问题:●在每一个闭合线上各点的磁感应强度是否相等为什么●在闭合线L2上各点的磁感应强度是否为零为什么对L1L2L1L3I1 I2因为空间磁感应强度为电流在该点激发的磁感应强度矢量和B=B1+B2 各点的B不相等.$各点的B不为零,只是环路积分等于零.2 在一个均匀磁场中,三角形线圈和圆形线圈的面积相等,并通有相同的电流;问:●这两个线圈所受的磁力矩是否相等●所受的磁力是否相等●它们的磁矩是否相等●当它们在磁场中处于稳定位置时,线圈中电流所激发出来的磁场方向与外磁场方向是相同、相反或垂直载流线圈在磁场中所受磁力矩为M=Pm×B,Pm=ISlnS相同I相同,则Pm大小相同.M是否相同取决于Pm与B的夹角是否相同.若Pm与B夹角为,则两线圈磁力矩最大且相等.线圈在磁场中受合力∵∴F=0.线圈所受磁力矩为零时,即Pm与B夹角ψ=0或ψ=π时,线圈处于稳定位置,ψ=0两者B方向相同,ψ=π相反.4. 计算:1 两根长直导线互相平行地放置在真空,如图所示,其中通以同向的电流I1=I2=10A,试求P点的磁感应强度;已知PI1=PI2=,PI1PI2PI I如解图所示.I1、I2在P 点的磁感应强度大小为;总磁感应强度为;方向与I1P 夹角为45°.第十二章 物理光学1. 名词解释:a 单色光,具有单一波长的光波b 相干光,频率相同且振动方向相同的光c 光程,介质在真空中传播的路程d 半波损失,光从折射率较小的介质光疏介质射向折射率较大的介质光密介质并在界面上发生反射时,反射光对入射光有相位突变pai,由于相位差pai 与光程差相对应,相当于反射光走了半个波长光程e 光的衍射,当光遇到与其波长相近的障碍物时能够绕开障碍物向前传播f 偏振光,光矢量的振动方向和大小有规律变化的光2. 填空:1 获得相干光的条件是:从 同一光源 的同一部分发出的光,通过某些装置进行 分束后才能符合相干条件的相干光;2 在下图中,光线在媒质n 2中的光程是 2N2d ,从ABCBA 的光程差是 d+N2d ;3 瑞利准则表明:对一种光学仪器来说,如果一个点光源的衍射图样的中央 最亮处 处正好与另一个点光源的衍射图样的第一个 最暗处 处相重合,这时,; 4 当起偏器与检偏器光轴有角度,检偏器透射光强是起偏器透射光强的 角余弦的平方 倍; 3. 问答: 1 汽车玻璃贴膜的厚度对单向透视特性有影响吗为什么汽车玻璃贴膜的厚度可能和一些透过光线的波长接近,这在光学上就会增加这些光线的反射和散射;从而影响汽车玻璃的单向透视性;2 手机上的照相机可以拍摄远景吗为什么不可以,由瑞利准则可知,要拍摄远景,需要提高分辨率,而光学仪器的分辨率1/0=D/入;则需要增大D 即镜头的直径,但是手机的镜头直径是一定的且很小;1n 1n 2nA BdC3 光学显微镜可以观察细胞器吗为什么不能,由瑞利准则1/0=D/入光学显微镜的入太小,导致0很小4 如何用实验确定一束光是自然光,还是线偏振光或圆偏振光旋转检偏器,若光强有变化,且有消光现象的为线偏振光;若光强无变化则为自然光或圆偏振光;下面进一步区分圆偏振光与自然光;在检偏器前放人一个四分之一波片,此时再转动检偏器;由于四分之一波片可将圆偏振光转变为线偏振光,而对自然光不起作用;因此,当转动检偏器时,若再无光强变化的为自然光;若有光强变化,且有消光现象的,必是圆偏振光;4. 计算:1 一单色光垂直照射在宽的单缝上,在缝后放置一焦距为的会聚透镜,已知在透镜观测屏上中央明条纹宽为,求入射光波长;2 水的折射率是,玻璃的折射率是,当光由水中射向玻璃反射时,起偏振角是多少当光由玻璃中射向水反射时,起偏振角又是多少第十五章量子物理基础1. 名词解释:黑体,辐射出射度,遏制电压,红限,能量子,量子数,基态,受激态,波函数2. 填空:1 当温度升高,黑体的能量辐射与温度成次方上升,辐射的电磁波长变短或长;2 普朗克能量量子化假设包括:和 ;3 爱因斯坦光子假设包括:和 ;4 光子的粒子性是通过和实验证实;5 戴维孙-革莫实验使人们知道当电子束射入晶体,可以通过电子探测器获得电子图,因此,人们确定电子具有性;6 微观粒子不可能同时具有确定的位置和动量,微观粒子不可能同时具有确定的和 ;3. 问答:1 医用红外热像仪常用于皮肤癌、乳腺癌等的诊断,阐述其物理原理;2 在光电效应实验中,如果:1 入射光强度增加1倍;2 入射光频率增加1倍;这两种情况的结果有何不同入射光强度增加1倍,相当于入射的光子数增加1倍,因而光电子数翻倍,光电流增加1倍;$入射光频率增加1倍,光电子的最大初动能也增加1倍3 如图所示,被激发的氢原子跃迁到低能级时,可激发波长为1、2、3的辐射,问这三个波长之间的关系如何4 在电子显微镜中观察细胞结构时,图像分辨力与保护细胞活性有矛盾吗为什么4. 计算: 1 钾的红限波长为620nm,求:●钾的逸出功; ● 在330nm 的紫外光照射下,钾的遏止电势差;(2) 人红细胞直径8m,厚2-3m,质量1013 kg;设测量红细胞位置的不确定性是m,计算其速率的不确定量是多少 12 3 E 1 E 2 E 3。

医学物理学课后解答

医学物理学课后解答

医学物理学课后解答习题⼆第⼆章物体的弹性2-1形变是怎样定义的?它有哪些形式?答:物体在外⼒作⽤下发⽣的形状和⼤⼩的改变称为形变。

形变包括弹性形变和范(塑)性形变两种形式,弹性形变指在⼀定形变限度内,去掉外⼒后物体能够完全恢复原状的形变,⽽范(塑)性形变去掉外⼒后物体不再能完全恢复原状的形变。

2-2杨⽒模量的物理含义是什么?答:在长度形变中,在正⽐极限范围内,张应⼒与张应变之⽐或压应⼒与压应变之⽐称为杨⽒模量。

杨⽒模量反映物体发⽣长度形变的难易程度,杨⽒模量越⼤,物体越不容易发⽣长度变形。

2-3动物⾻头有些是空⼼的,从⼒学⾓度来看它有什么意义?答:⾻骼受到使其轴线发⽣弯曲的载荷作⽤时,将发⽣弯曲效应。

所产⽣的应⼒⼤⼩与⾄中⼼轴的距离成正⽐,距轴越远,应⼒越⼤。

中⼼层附近各层的应变和应⼒都⽐⼩,它们对抗弯所起的作⽤不⼤。

同样,⾻骼受到使其沿轴线产⽣扭曲的荷载作⽤时,产⽣的切应⼒的数值也与该点到中⼼轴的距离成正⽐。

因此,空⼼的⾻头既可以减轻⾻骼的重量,⼜⽽不会严重影响⾻骼的抗弯曲强度和抗扭转性能。

2-4肌纤维会产⽣哪⼏种张⼒?整体肌⾁的实际张⼒与这些张⼒有何关系?答:肌纤维会产⽣两种张⼒,⼀种是缩短收缩的主动张⼒,另⼀种是伸长收缩的被动张⼒。

整块肌⾁伸缩时的张⼒是主动张⼒和被动张⼒之和。

2-5如果某⼈的⼀条腿⾻长0.6m,平均横截⾯积为3㎝2。

站⽴时,两腿⽀持整个⼈体重为800N,问此⼈每条腿⾻要缩短多少?已知⾻的杨⽒模量为1010N·m-2。

(8×10-5m)2-6松弛的⼆头肌,伸长5㎝时,所需要的⼒为25N,⽽这条肌⾁处于紧张状态时,产⽣同样伸长量则需500N的⼒。

如果把⼆头肌看做是⼀条长为0.2㎝,横截⾯积为50㎝2的圆柱体,求其在上述两种情况下的杨⽒模量。

(2×104N·m-2;4×105N·m-2)2-7在边长为0.02m的正⽅体的两个相对⾯上,各施加⼤⼩相等、⽅向相反的切向⼒9.8×102N,施加⼒后两⾯的相对位移为0.00lm,求该物体的切变模量。

医用物理学答案

医用物理学答案

医用物理学习题集答案及简短解答说明:黑体字母为矢量练习一位移速度加速度一.选择题 C B A二.填空题1. 2.2. 6 t ; t+t33. -ω2r或-ω2 (A cosωt i+B sinωt j)x2/A2+y2/B2=1三.计算题1.取坐标如图,船的运动方程为x=[l2(t)-h2]1/2因人收绳(绳缩短)的速率为v0,即d l/d t=-v0.有u=d x/d t=(l d l/d t)/ (l2-h2)1/2=- v0 (x2+h2)1/2/xa= d v/d t=- v0[x (d x/d t)/ (x2+h2)1/2]/x-[(x2+h2)1/2/x2] (d x/d t)=- v0{-h2/[ x2 (x2+h2)1/2]}[ - v0 (x2+h2)1/2/x]=- v02h2/ x3负号表示指向岸边.2. 取坐标如图,石子落地坐标满足x=v0t cosθ=s cosαy=v0t sinθ-gt2/2=s sinα解得tanα= tanθ-gt/(2v0cosθ)t=2v0sin(θ-α)/(g cosα)s=x/cosα= v0t cosθ / cosα=2v02sin(θ-α)cosθ/(g cos2α)当v0,α给定时,求s的极大值. 令d s/dθ=0,有0=d s/dθ=[2v02/(g cos2α)]··[cos(θ-α)cosθ- sin(θ-α)sinθ]=[2v02 cos(2θ-α)/(g cos2α)]cos(2θ-α)=02θ-α=π/2θ=π/4+α/2所以,当θ=π/4+α/2时, s有极大值,其值为s max=2v02sin(π/4-α/2)cos(π/4+α/2)/(g cos2α) = v02[sin(π/2)-sinα] /(g cos2α)= v02(1-sinα)/(g cos2α)练习二圆周运动相对运动一.选择题 B B D二.填空题1.79.5m.2.匀速率,直线, 匀速直线, 匀速圆周.3.4t i-πsinπt j, 4i-π2cosπt j,4m/s2,9.87m/s2.三.计算题1.M的速度就是r变化的速度,设CA=R.由r2=R2+l2-2Rl cosωtR/sinα=r/sinωt得2r d r/d t=2Rlωsinωt=2lωsinωt ·r sinα /sinωtv=d r/d t=lωsinα或v=d r/d t=lωR sinωt/r= lωR sinωt/( R2+l2-2Rl cosωt)1/22.取向下为X正向,角码0,1,2分别表示地,螺帽,升降机.依相对运动,有a12=a10-a20a12=g-(-2g)=3gh= a12t2/2t=[2h/(3g)]1/2=0.37sv0=a20t0=-2gt0x=v0t+gt2=-2gt0t+gt2代入t0=2s, t=0.37s, 得x=-13.8m螺帽上升了s=13.8m练习三转动定律角动量守恒定律一.选择题 C D B二.填空题1. 20.2. 38kg ·m2.3. .mR2/4, 4M sinα/(mR), 16M2t2sinα/(mR)2.三.计算题1.切向方向受力分析如图,系m1= 20g的物体时动力学方程为mg-T=0Tr-Mμ=0所以摩擦阻力矩Mμ=mgr=3.92×10-2m·N 系m2=50g的物体时物体加速下降,由h=at2/2得a=2h/t2=8×10-3m/s2α=a/r=4×10-2s-2动力学方程为m2g-T=m2aTr-Mμ=Jα得绳系m2后的张力T= m2(g-a)=0.4896N 飞轮的转动惯量J =(Tr-Mμ)/α=1.468kg·m22.(1)受力分析如图.F(l1+l2)=Nl1N= F(l1+l2)/l1Mμ=rfμ=rμN=μrF(l1+l2)/l1-Mμ= Jα-μrF(l1+l2)/l1 =(mr2/2)αα=-2μF(l1+l2)/(l1mr)=-40/3=-13.3 rad/s2t=-ω0/α=7.07s∆θ=ω0t+αt2/2=-ω02/(2α)~53转(2) ω''=ω0/2=ω0+α' t'α'=-ω0/(2t')=-7.5π=23.6rad/s2由前面式子α=-2μF(l1+l2)/(l1mr)可得F'=-α'l1mr/[2μ(l1+l2)]= ω0l1mr/[4μ(l1+l2) t']=177N练习四物体的弹性骨的力学性质一.选择题 B B B二.填空题1. 1×10-102. 2.5×10-5三. 计算题 1. 4.9×108 N ·m -22. 1.5×108 N ·m -23×108 N ·m -2练习五 理想流体的稳定流动一.选择题 A A C 二.填空题 1. 352. 0.75m/s,3m/s3. 10cm 三. 计算题1. 解: 由222212112121gh V P gh V P ρρρρ++=++2211S V S V = )(10401pa P P += m h h 121=- s m V /21= 1221S S = s m V V /4212==∴ )()(2121222112h h g V V P P -+-+=∴ρρ pa 510151.1⨯=pa P P 4021038.1⨯=-即第二点处的压强高出大气压强pa 41038.1⨯3. 解:由323322221211212121gh V P gh V P gh V P ρρρρρρ++=++=++01P P = 01=V 03P P = 3322S V S V =sm h h g V /3.13)(2313=-=∴s m V V /65.62132==∴pa V h h g P P 42221121006.1021)(⨯=--+=∴ρρs m S V Q /266.002.03.13333=⨯==练习六 血液的层流一.选择题 D C A 二.填空题 1. 2.78×10-3Pa 2. 163. 减小,增加 三. 计算题1.解:由v=[(P 1-P 2)/4ηL ](R 2-r 2)令r=0得 P 1-P 2=v ·4ηL/R 2=2301.0210005.141.0⨯⨯⨯⨯-=8.0N/m 22.解:根据泊肃叶公式lP P r Q η8)(214-π=而tm Q ∆∆=ρ1 gh P P ρ=-12 tm l gh r ∆∆=∴/824ρηπs Pa 60/106.61.085.08.910)9.1()102/1.0(36242⋅⨯⨯⨯⨯⨯⨯⨯=--π= 0.0395 Pa ·s练习七 简谐振动一.选择题 A C B二.填空题1. 2.0.2.A cos(2πt /T -π/2); A cos(2πt /T +π/3).3. 见图. 三.计算题1.解:A=0.1m ν=10 Hz ω=20π rad/s T=0.1s ф=(π/4+20πt) x(t =2s)=0.071m υ(t =2s)=-4.43m/s a(t =2s)=-278m/ s 22.解:(1)π (2)π/2(3)-π/3 (4)π/4练习八 简谐振动的叠加、分解及振动的分类 一.选择题 B E C 二.填空题1. x 2 = 0.02cos ( 4 π t -2π/3 ) (SI).2. 2π2mA 2/T 2.3. 5.5Hz ,1. 三.计算题1.(1)平衡时,重力矩与弹力矩等值反向,设此时弹簧伸长为∆x 0,有mgl /2-k ∆x 0l '= mgl /2-k ∆x 0l /3=0 设某时刻杆转过角度为θ, 因角度小,弹簧再伸长近似为θ l '=θ l/3,杆受弹力矩为M k =-l 'F k =-(l/3)[(∆x 0+θ l/3)k ] =-k (∆x 0l /3+θ l 2/3) 合力矩为 M G + M k = mgl /2-k (∆x 0l /3+θ l 2/3)=-k θ l 2/3 依转动定律,有-k θ l 2/3=J α= (ml 2/3)d 2θ /d t 2d 2θ /d t 2+ (k /m )θ=0即杆作简谐振动. (2) ω=m k T=2πk m (3) t=0时, θ=θ0, d θ /d t ⎢t=0=0,得振幅θA =θ0,初位相ϕ0=0,故杆的振动表达式为θ=θ0cos(m k t )2.因A 1=4×10-2m, A 2=3×10-2m ϕ20=π/4, ϕ10=π/2,有A =[A 12+A 22+2A 1A 2cos(ϕ20-ϕ10)]1/2=6.48⨯10-2m tg ϕ0=(A 1sin ϕ10+A 2sin ϕ20) /(A 1cos ϕ10+A 2cos ϕ20)=2.061ϕ0=64.11○ ϕ0=244.11○因x0=A cosϕ0=x10+x20=A1cosϕ10+A2cosϕ20=5.83⨯10-2m>0ϕ0在I、IV象限,故ϕ0=64.11○=1.12rad所以合振动方程为x=6.48⨯10-2cos(2πt+1.12) (SI)。

医用物理学课后习题参考答案

医用物理学课后习题参考答案

医用物理学课后习题参考答案练习一 力学基本定律(一)1.j i 55+;j i 54+;i 42.2/8.4s m ;2/4.230s m ;rad 15.3 3.(2);4.(3) 5.(1)由⎩⎨⎧-==22192ty t x 得)0(21192≥-=x x y ,此乃轨道方程 (2)j i r 1142+=,j i r 1721+=,,s m v /33.6=(3)i t i dt rd v 42-==,j dt v d a 4-== st 2=时,j i v 82-=, 6.(1)a dt dv = 2/1kv dtdv-=∴有⎰⎰-=-⇒-=-vv tkt v vkdt dv v2/102/12/122 当0=v 时,有kv t 02=(2)由(1)有2021⎪⎭⎫ ⎝⎛-=kt v vkvkt v k vdt x tk v 3221322/3000/2300=⎪⎭⎫⎝⎛--==∆⎰练习二力 学基本定律(二)1.kg m 2222.j i 431+;j i 321+3.(4)4.(1)5..(1) (2)r mg W f πμ2⋅-=∴j i v 62-=∴j a 4-=2020208321221mv mv v m E W k f -=-⎪⎭⎫ ⎝⎛=∆=rgv πμ163 2=∴(3)34)210(20=∆-=k E mv N (圈) 6.设人抛球后的速度为V,则人球系统抛球过程水平方向动量守恒)() (V u m MV v m M o ++=+∴ mM muv V +-=0人对球施加的冲量mM mMumv V u m I +=-+=0)( 方向水平向前练习三 刚体的转动(一)1.2.20-s rad ;1.48-s rad 2.034ω;2021ωJ 3.(1);4.(5)5.ααR a MR TR maT mg ===-221 R M m mg )2/(+=α;2/M m mga +=;6.(1)由角动量守恒得: 02211=+ωωJ J0222=+⋅ωJ RvMR )(05.0122--=-=S J mRv ω (2)πωω2)]([21=--t (s) 55.02π=t (rad) 1122πωθ==t (3)(s) 422ππωπ===vRT (r a d ) 0.2 2πωθ==∴T 练习四 刚体的转动(二)1.gl 3 2.06.0ω3.(1);πω4504.(3);5.1111a m T g m =- 2222a m g m T =- α)(2121J J r T R T +=- αR a =1 αr a =2联立解得:22212121)(rm R m J J gr m R m +++-=α 222121211)(r m R m J J Rg r m R m a +++-=222121212)(r m R m J J rgr m R m a +++-= g m r m R m J J r R r m J J T 12221212211)(++++++=g m r m R m J J r R R m J J T 22221211212)(++++++=6.23121202lmg ml =⋅ω lg30=ω 2222022131213121mv ml ml +⋅=⋅ωω lmv ml ml +=ωω2023131 gl v 321=练习五 流体力学(一)1.h 、P 、v 2.P 、v 3.(3) 4.(4)5.(1)粗细两处的流速分别为1v 与2v ;则 2211v S v S Q ==12131175403000--⋅=⋅==s cm cms cm S Q v ;121322*********--⋅=⋅==s cm cm s cm S Q v (2)粗细两处的压强分别为1P 与2P2222112121v P v P ρρ+=+)(1022.4)75.03(102121213223212221Pa v v P P P ⨯=-⨯⨯=-=-=∆ρρ P h g ∆=∆⨯⋅-)(水水银ρρ;m h 034.0=∆6.(1)射程 vt s =gh v ρρ=221 gh v 2 =∴ 又 221gt h H =- g h H t )(2-=)(2)(22 h H h gh H gh vt s -=-⋅==∴tt =0.5st t =0s (2)设在离槽底面为x 处开一小孔,则同样有:)(2121x H g v -=ρρ )(21x H g v -= 又 2121gt x = gxt 21= )()(2 111h H h s x H x t v s -==-==∴ h x =∴则在离槽底为h 的地方开一小孔,射程与前面相同。

医学物理学后习题答案.doc

医学物理学后习题答案.doc

医学物理学后习题答案在第一章1-8中,9.8×102N的切向力被施加到边长为2.0×10-2m 的立方体的两个平行表面上。

两个力方向相反,因此两个平行表面的相对位移为1.0×10-3m,并计算剪切模量?解决方案:剪切模量可从剪切应力和剪切应变的关系中获得,如1-剪切模量可从剪切应力和剪切应变的关系中获得,如1:由于串联,铜线和钢丝的应力均为500牛顿,长度的变化可从杨氏模量中获得,铜线长度的变化可通过将钢丝长度的变化替换为1-10来获得。

尝试计算横截面积为5.0cm2的股骨:(1)在拉力作用下发生骨折时的拉力。

(骨的抗拉强度为1.2×108帕)(2)它在4.5×104牛顿压力下的应变。

(骨的杨氏模量为9×109帕)溶液:(1)骨的抗拉强度是骨折发生时的应力,那么所接收的张力维(2)表示应变1-(1)在张力作用下骨折发生时的张力。

(骨的抗拉强度为1.2×108帕)(2)它在4.5×104牛顿压力下的应变。

(骨的杨氏模量为9×109帕)溶液:(1)骨的抗拉强度是骨折发生时的应力。

那么张力维(2)有它的应变1:根据问题的含义,骨头的杨氏模量是9×109帕。

通过将可用长度的变化代入已知条件,当具有1-12放松的肱二头肌伸展2.0厘米时,所需的力是10N。

当其处于挛缩状态并主动收缩时,需要200N的力来产生相同的伸展。

如果将其视为长度为0.20米、横截面积为50平方厘米的均匀圆柱体,则力的计算公式为:该弹性模量为杨氏模量,可从杨氏模量公式中获得。

第二章——这个弹性模量是杨氏模量,可以从杨氏模量公式中得到。

第二章:对于某个管道,管道越厚,在一定流量下流速越慢。

当管道两端的压力差不变时,管道越厚,流速越快。

2-如果管道两端的压力差不变,管道越厚,流速越快。

2.伯努利方程在水平管道中的应用替代了数据,获得了2-5个水在不均匀厚度的水平管道中稳定流动。

医学物理学智慧树知到课后章节答案2023年下山东大学

医学物理学智慧树知到课后章节答案2023年下山东大学

医学物理学智慧树知到课后章节答案2023年下山东大学绪论单元测试1.物理学所提供的技术和方法为医学研究和实践开辟了新途径,极大推动了包括生命科学和医学在内的其它自然科学的发展。

以下的医疗手段借助了物理学提供的技术和方法的为(多选):A: B超; B:推拿按摩; C:介入治疗 D: 红外成像; E:脑电图; F: PET; G:放射治疗; H: CT;答案: B超;;推拿按摩;;介入治疗; 红外成像;;脑电图;; PET;;放射治疗; ; CT;2.1940年,问世,使医学研究水平推进到亚细胞水平领域。

A: X射线衍射技术; B: 望远镜;。

C: 电子显微镜; D: 指南针;答案: 电子显微镜;3.对于物理学,下列说法正确的是:A:探索物质运动规律的科学 B:研究的空间尺度小 C:研究物质结构的科学 D:研究物质相互作用的科学答案:探索物质运动规律的科学;研究物质结构的科学;研究物质相互作用的科学第一章测试1.长为的金属丝受力作用时长度变为,此时金属丝的张应变为:A: B: C: D:答案:2.应力是:A:产生张应力的那个拉力。

B:作用在某物体两端上的力; C:作用在物体上任意一个界面上的力; D:作用在物体上任一单位截面积的力; 答案:产生张应力的那个拉力。

3.固体物质受到外力拉伸时,产生应变,外力必对固体做功,其结果是:A:变为固体势能的增加; B:做功变为热; C:做功使功能增大; D:使固体运动。

答案:变为固体势能的增加;4.已知水的体变模量为,若使水的体积缩小千分之一,其所需的压强为:A: B: C: D:答案:5.设某人的一条腿骨长0.6m,平均截面积为3cm2,当站立时两腿支撑整个体重800N时,问此人的一条腿骨缩短了多少?(骨的杨氏模量为1010N/m2)A: B: C: D:答案:第二章测试1.A:2.0 cm2 B:1.5 cm2; C: D:2.5 cm2答案:1.5 cm2;2.水在同一流管中做定常流动时,对于不同截面处的流量,下列说法正确的是:A:截面大处流量小 B:截面小处流量大 C:截面大处流量等于截面小处流量 D:截面大处流量大答案:截面大处流量等于截面小处流量3.一盛水大容器,水面到容器底面的的高度为H,容器的底部侧面有一面积为S的小孔,水从小孔开始流出时的流量为:A: B: C: D:答案:4.牛顿流体的黏度与下列哪些因素有关:A:流体本身 B:内摩擦力 C:温度 D:流速 E:流体截面积答案:流体本身;温度5.A:层流和湍流同时存在 B:层流 C: 不能确定 D:湍流答案:层流第三章测试1.一矩形金属线框结有表面张力系数为a的液膜,有一边是可滑动的,其长L为,如果用力F使滑动边匀速且无摩擦地拉开距离x,此时液膜的表面能比原来:A:增加了2 a Lx B:增加了FLx C:增加了 a Lx D:增加了2 FL E:没有增加答案:增加了2 a Lx2.给定液体的表面上一段分界线的长度时L,其表面张力的大小和方向是:A:表面张力与L成正比,力指向液面各个方向 B:表面张力与L成正比,力与l垂直且与液面垂直指向液体内部 C:表面张力与L成正比,力指向液体内部 D:表面张力与L成正比,力与L垂直且沿液面的切线方向答案:表面张力与L成正比,力与L垂直且沿液面的切线方向3.形成一半径为10cm的肥皂泡需要16×10-3Pa的压强,该肥皂泡液的表面张力系数为:A: B: C: D:答案:4.关于液体与固体的接触角以下说法正确的是:A:在液面与固体的接触处,分别作液体表面和固体表面的垂面,这两个垂面在液体内部的夹角q,称为液体与固体的接触角 B:在液面与固体的接触处,分别作液体表面和固体表面的切面,这两个切面在液体内部夹角q,称为液体与固体的接触角。

医学物理学第二版贺兵课后答案

医学物理学第二版贺兵课后答案

医学物理学第二版贺兵课后答案1、21.用托盘天平测量物体的质量时,将被测物体和砝码放反了,若天平平衡时,左盘放着100g和20g的砝码各一个,游码所在位置读数为6g。

则物体的质量是()[单选题] *A.114g(正确答案)B.118gC.122gD.126g2、公路旁安装隔音墙是为了在声源处减弱噪声[判断题] *对错(正确答案)答案解析:在传播过程中3、3.刹车时,用力捏紧车闸,以增大刹车块与车圈之间的压力,从而增大摩擦力.[判断题] *对(正确答案)错4、43.在试管中放少量碘,塞紧盖子放入热水中,当固态碘变为紫色的碘蒸气并充满试管后,将试管从热水中取出,放入凉水中,碘蒸气又会变为固态碘附在试管内壁上,关于碘的物态变化过程,下列说法正确的是()[单选题] *A.先升华后凝华(正确答案)B.先汽化后凝固C.先升华后凝固D.先汽化后凝华5、3.屋檐滴下的水滴下落可视为自由落体运动.[判断题] *对(正确答案)错6、94.由同种材料制成的A,B两个金属球,其中有一个是空心的,它们的质量分别为mA =128g、mB=72g,体积分别为VA=16cm3、VB=12cm3,则下列说法正确的是()[单选题] *A.A是空心球,B是实心球B.空心球的空心部分体积为3cm3(正确答案)C.实心球的密度是8kg/cm3D.空心球的密度是8g/cm37、当导体中的电流方向改变时,导体在磁场中的受力方向就会改变[判断题] *对错(正确答案)答案解析:在磁场方向不变的前提下8、87.把一个实心铁块放入盛满水的容器中,溢出水的质量是5g,若把铁块放入盛满酒精的容器中,则溢出酒精的质量是()(ρ酒精=8×103kg/m3,ρ水=0×103kg/m3)[单选题] *A.5gB.5gC.4g(正确答案)D.36g9、1.公式v2-v02=2ax适用于任何直线运动.[判断题] *对错(正确答案)10、4.只要物体做直线运动,物体就处于平衡状态.[判断题] *对错(正确答案)11、跳水运动员起跳时,跳板向下弯,人对跳板的作用力与跳板对人的作用力大小相等[判断题] *对(正确答案)错答案解析:它们是一对相互作用力12、45.关于电冰箱,下列说法正确的是()[单选题] *A.将水放入冷冻室,水会液化B.打开冷冻室的门会看到“白气”,这是汽化现象C.冷冻室侧壁有时会有霜,这是水蒸气凝固形成的D.食品在冷藏室里能保鲜,利用了制冷剂汽化吸热(正确答案)13、错竹筷漂浮在水面上,是由于筷子受到的浮力大于自身重力[判断题] *对错(正确答案)答案解析:漂浮时浮力等于重力14、图66是我国早期的指南针——司南,是把天然磁石磨成勺子的形状,把它放在水平光滑的“地盘”上,东汉学者王充在《论衡》中记载:“司南之杓(用途),投之于地,其柢(握柄)指南”。

智慧树答案医学物理学知到课后答案章节测试2022年

智慧树答案医学物理学知到课后答案章节测试2022年

绪论1.物理学所提供的技术和方法为医学研究和实践开辟了新途径,极大推动了包括生命科学和医学在内的其它自然科学的发展。

以下的医疗手段借助了物理学提供的技术和方法的为(多选):答案:推拿按摩;;B超;;介入治疗;红外成像;;PET;;脑电图;;CT;;放射治疗;2.1940年,问世,使医学研究水平推进到亚细胞水平领域。

答案:电子显微镜;3.对于物理学,下列说法正确的是:答案:探索物质运动规律的科学;研究物质相互作用的科学;研究物质结构的科学第一章1.长为的金属丝受力作用时长度变为,此时金属丝的张应变为:答案:2.应力是:答案:产生张应力的那个拉力。

3.固体物质受到外力拉伸时,产生应变,外力必对固体做功,其结果是:答案:变为固体势能的增加;4.已知水的体变模量为,若使水的体积缩小千分之一,其所需的压强为:答案:5.设某人的一条腿骨长0.6m,平均截面积为3cm2,当站立时两腿支撑整个体重800N时,问此人的一条腿骨缩短了多少?(骨的杨氏模量为1010N/m2)答案:;第二章1.答案:1.5 cm2;2.水在同一流管中做定常流动时,对于不同截面处的流量,下列说法正确的是:答案:截面大处流量等于截面小处流量3.一盛水大容器,水面到容器底面的的高度为H,容器的底部侧面有一面积为S的小孔,水从小孔开始流出时的流量为:答案:;4.牛顿流体的黏度与下列哪些因素有关:答案:温度;流体本身第三章1.一矩形金属线框结有表面张力系数为a的液膜,有一边是可滑动的,其长L为,如果用力F使滑动边匀速且无摩擦地拉开距离x,此时液膜的表面能比原来:答案:增加了2 a Lx2.给定液体的表面上一段分界线的长度时L,其表面张力的大小和方向是:答案:表面张力与L成正比,力与L垂直且沿液面的切线方向3.形成一半径为10cm的肥皂泡需要16×10-3Pa的压强,该肥皂泡液的表面张力系数为:答案:;4.关于液体与固体的接触角以下说法正确的是:答案:在液面与固体的接触处,分别作液体表面和固体表面的切面,这两个切面在液体内部夹角q,称为液体与固体的接触角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题二第二章物体的弹性2-1形变是怎样定义的?它有哪些形式?答:物体在外力作用下发生的形状和大小的改变称为形变。

形变包括弹性形变和范(塑)性形变两种形式,弹性形变指在一定形变限度内,去掉外力后物体能够完全恢复原状的形变,而范(塑)性形变去掉外力后物体不再能完全恢复原状的形变。

2-2杨氏模量的物理含义是什么?答:在长度形变中,在正比极限范围内,张应力与张应变之比或压应力与压应变之比称为杨氏模量。

杨氏模量反映物体发生长度形变的难易程度,杨氏模量越大,物体越不容易发生长度变形。

2-3动物骨头有些是空心的,从力学角度来看它有什么意义?答:骨骼受到使其轴线发生弯曲的载荷作用时,将发生弯曲效应。

所产生的应力大小与至中心轴的距离成正比,距轴越远,应力越大。

中心层附近各层的应变和应力都比小,它们对抗弯所起的作用不大。

同样,骨骼受到使其沿轴线产生扭曲的荷载作用时,产生的切应力的数值也与该点到中心轴的距离成正比。

因此,空心的骨头既可以减轻骨骼的重量,又而不会严重影响骨骼的抗弯曲强度和抗扭转性能。

2-4肌纤维会产生哪几种张力?整体肌肉的实际张力与这些张力有何关系?答:肌纤维会产生两种张力,一种是缩短收缩的主动张力,另一种是伸长收缩的被动张力。

整块肌肉伸缩时的张力是主动张力和被动张力之和。

2-5如果某人的一条腿骨长0.6m,平均横截面积为3㎝2。

站立时,两腿支持整个人体重为800N,问此人每条腿骨要缩短多少?已知骨的杨氏模量为1010N·m-2。

(8×10-5m)2-6松弛的二头肌,伸长5㎝时,所需要的力为25N,而这条肌肉处于紧张状态时,产生同样伸长量则需500N的力。

如果把二头肌看做是一条长为0.2㎝,横截面积为50㎝2的圆柱体,求其在上述两种情况下的杨氏模量。

(2×104N·m-2;4×105N·m-2)2-7在边长为0.02m的正方体的两个相对面上,各施加大小相等、方向相反的切向力9.8×102N,施加力后两面的相对位移为0.00lm,求该物体的切变模量。

(4.9X107N·m-2)2-8若使水的体积缩小0.1%,需加多大的压强?它是大气压1×105N,m-1’的多少倍?已知水的压缩率为50×10-6atm-1。

(20atm,20倍)习题三第三章流体的运动3-1若两只船平行前进时靠得较近,为什么它们极易碰撞?答:以船作为参考系,河道中的水可看作是稳定流动,两船之间的水所处的流管在两船之间截面积减小,则流速增加,从而压强减小,因此两船之间水的压强小于两船外侧水的压强,就使得两船容易相互靠拢碰撞。

3-2为什么一个装有烟囱的火炉,烟囱越高通风的效果越好?(即烟从烟囱中排出的速度越大)答:通常高处空气水平流动速度比较大,如果烟囱越高,则出口处的气体更容易被吸出。

3-3为什么自来水沿一竖直管道向下流时,形成一连续不断的冰流,而当水从高处的水龙头自由下落时,则断裂成水滴,试说明之。

答:水沿一竖直管道向下流时,由于管壁的摩擦力作用,使得各处水的速度一致,因而可形成连续不断的水流。

水自由下落时,由于水在不同高度处速度不同,因此难以形成连续的流管,故易裂开。

3-4有人认为从连续性方程来看,管子愈粗流速愈小,而从泊肃叶定律来看,管子愈粗流速愈大,两者似有矛盾,你认为如何?为什么?答:对于一定的管子,流量一定的情况下,根据连续性方程管子愈粗流速愈小;管子两端压强一定的情况下,根据泊肃叶定律管子愈粗流速愈大。

条件不同,结果不同。

3-5水在粗细不均匀的水平管中作稳定流动,已知截面S1处的压强为110Pa,流速为0.2m·s-1,截面S2处的压强为5Pa,求S2处的流速(内摩擦不计)。

(0.5m·s-1)3-6水在截面不同的水平管中作稳定流动,出口处的截面积为管的最细处的3倍,若出口处的流速为2m·s-1,问最细处的压强为多少?若在此最细处开一小孔,水会不会流出来。

(85kPa)3-7在水管的某一点,水的流速为2m·s-1,高出大气压的计示压强为104Pa,设水管的另一点的高度比第一点降低了1m,如果在第二点处水管的横截面积是第一点的1/2,求第二点处的计示压强。

(13.8kPa)3-8一直立圆柱形容器,高0.2m,直径0.1m,顶部开启,底部有一面积为10-4m2的小孔,水以每秒1.4×10-4m3的快慢由水管自上面放人容器中。

问容器内水面可上升的高度?若达到该高度时不再放水,求容器内的水流尽需多少时间。

(0.1;11.2s.)3-9试根据汾丘里流量计的测量原理,设计一种测气体流量的装置。

提示:在本章第三节图3-5中,把水平圆管上宽、狭两处的竖直管连接成U形管,设法测出宽、狭两处的压强差,根据假设的其他已知量,求出管中气体的流量。

解:该装置结构如图所示。

3-10用皮托管插入流水中测水流速度,设两管中的水柱高度分别为5×10-3m和5.4×10-2m,求水流速度。

(0.98m·s-1)3-11一条半径为3mm的小动脉被一硬斑部分阻塞,此狭窄段的有效半径为2mm,血流平均速度为50㎝·s-1,试求(1)未变窄处的血流平均速度。

(0.22m·s—1)(2)会不会发生湍流。

(不发生湍流,因Re=350)(3)狭窄处的血流动压强。

(131Pa)3-1220℃的水在半径为1×10-2m的水平均匀圆管内流动,如果在管轴处的流速为0.1m·s-1,则由于粘滞性,水沿管子流动10m后,压强降落了多少?(40Pa)3-13设某人的心输出量为0.83×10—4m3·s-1,体循环的总压强差为12.0kPa,试求此人体循环的总流阻(即总外周阻力)是多少N.S·m-5,?3-14设橄榄油的粘度为0.18Pa·s,流过管长为0.5m、半径为1㎝的管子时两端压强差为2×104Pa,求其体积流量。

(8.7×10—4m3·s-1)3-15假设排尿时,尿从计示压强为40mmHg的膀胱经过尿道后由尿道口排出,已知尿道长4㎝,体积流量为21㎝3·s-1,尿的粘度为6.9×10-4Pa·s,求尿道的有效直径。

(1.4mm)3-16设血液的粘度为水的5倍,如以72㎝·s-1的平均流速通过主动脉,试用临界雷诺数为1000来计算其产生湍流时的半径。

已知水的粘度为6.9×10-4Pa·s。

(4.6mm)3-17一个红细胞可以近似的认为是一个半径为2.0×10-6m的小球,它的密度是1.09×103kg·m—3。

试计算它在重力作用下在37℃的血液中沉淀1㎝所需的时间。

假设血浆的粘度为1.2×10-3Pa·s,密度为1.04×103kg·m—3。

如果利用一台加速度(ω2r)为105g的超速离心机,问沉淀同样距离所需的时间又是多少?(2.8×104s;0.28s)习题四第四章振动4-1什么是简谐振动?说明下列振动是否为简谐振动:(1)拍皮球时球的上下运动。

(2)一小球在半径很大的光滑凹球面底部的小幅度摆动。

4-2简谐振动的速度与加速度的表达式中都有个负号,这是否意味着速度和加速度总是负值?是否意味着两者总是同方向?4-3当一个弹簧振子的振幅增大到两倍时,试分析它的下列物理量将受到什么影响:振动的周期、最大速度、最大加速度和振动的能量。

4-4轻弹簧的一端相接的小球沿x 轴作简谐振动,振幅为A,位移与时间的关系可以用余弦函数表示。

若在t=o 时,小球的运动状态分别为(1)x=-A。

(2)过平衡位置,向x 轴正方向运动。

(3)过处,向x 轴负方向运动。

2A x =(4)过处,向x 轴正方向运动。

试确定上述各种状态的初相位。

4-5任何一个实际的弹簧都是有质量的,如果考虑弹簧的质量,弹簧振子的振动周期将如何变化?4-6一沿x 轴作简谐振动的物体,振幅为5.0×10-2m,频率2.0Hz,在时间t=0时,振动物体经平衡位置处向x 轴正方向运动,求振动表达式。

如该物体在t=o 时,经平衡位置处向x 轴负方向运动,求振动表达式。

[x=5.0×10—2cos(4πt—π/2)m;x=5.0×10-2cos(4πt+π/2)m]4-7一个运动物体的位移与时间的关系为,x=0.10cos(2.5πt+π/3)m,试求:(1)周期、角频率、频率、振幅和初相位;(2)t=2s 时物体的位移、速度和加速度。

[(1)0.80s;2.5π·s -1;1.25Hz;0.10m;π/3(2)-5×10-2m;0.68m/s;3.1m·s -2]2A x=4-8两个同方向、同频率的简谐振动表达式为,x 1=4cos(3πt+π/3)m 和x 2=3cos(3πt-π/6)m,试求它们的合振动表达式。

[x=5cos(3πt+0.128π)m]4-9两个弹簧振子作同频率、同振幅的简谐振动。

第一个振子的振动表达式为x 1=Acos(ωt+φ),当第一个振子从振动的正方向回到平衡位置时,第二个振子恰在正方向位移的端点。

求第二个振子的振动表达式和二者的相位差。

[x 2=Acos(ωt +φ—π/2),Δφ=-π/2]4-10由两个同方向的简谐振动:(式中x 以m 计,t 以s 计)x 1=0.05cos(10t 十3π/4),x 2=0.06cos(10t -π/4)(1)求它们合成振动的振幅和初相位。

(2)若另有一简谐振动x 3=0.07cos (10t+φ),分别与上两个振动叠加,问φ为何值时,x 1+x 3的振幅为最大;φ为何值时,x 1+x 3的振幅为最小。

[(1)1.0×l0-2m,-π/4;(2)当φ=2nπ+3π/4,n=1,2,…时,x 1+x 3的振幅为最大,当φ=2nπ+3π/4,n=1,2,…时,x 2+x 3的振幅为最小]习题五第五章波动5-1机械波在通过不同介质时,它的波长、频率和速度中哪些会发生变化?哪些不会改变?5-2振动和波动有何区别和联系?5-3,波动表达式y=Acos[(ω(t-x/u)+φ]中,x/u表示什么?φ表示什么?若把上式改写成y=Acos[(ωt—ωx/u)+φ],则ωx/u表示什么?5-4已知波函数为y=Acos(bt—cx),试求波的振幅、波速、频率和波长。

(A,b/c,b/2π,2π/c)5-5有一列平面简谐波,坐标原点按y=Acos(ωt+φ)的规律振动。

相关文档
最新文档