信号与系统第二章
信号与系统课件:第二章 LTI系统
2.1 离散时间LTI系统: 卷积和
(1)用移位单位抽样信号表示离散时间信号 (2)卷积和在离散时间信号LTI系统中的表征 (3)卷积和的计算 (4) 离散时间信号LTI系统的性质
(1)用单位抽样信号表示离散时间信号
x[n] ... x[1] n 1 x[0] n x[1] n 1... x[n][0] x[n 1][1]
(1)初始条件为n<0时,y(n)=0,求其单位抽样响应;
(2)初始条件为n≥0时,y(n)=0,求其单位抽样响应。
解:(1)设x(n) (n),且 y(1) h(1) 0 ,必有
y(n) h(n) 0, n 0
依次迭代
y(0) h(0) (0) 1 y(1) 1 0 1
2
当系统的初始状态为零,单位抽样响应h(n)就 能完全代表系统,那么对于线性时不变系统,任意 输入下的系统输出就可以利用卷积和求得。
差分方程在给定输入和边界条件下,可用迭代 的方法求系统的响应,当输入为δ(n)时,输出 (响应)就是单位抽样响应h(n)。
例:常系数差分方程
y(n) x(n) 1 y(n 1) 2
x[n]u[n] x[k]u[n k] x[k]
k
k
(ii)交换律:
yn xnhn hn xn
例子: 线性时不变系统中的阶跃响应 sn
sn unhn hnun
阶跃输入
输 单位抽样信号 入 响应的累加
n
sn hk
k
(iii)分配律:
xnh1n h2 n xnh1n xnh2 n
y(1) h(1) (1) 1 y(0) 0 1 1
2
22
y(2) h(2) (2) 1 y(1) 0 1 1 (1)2
《信号与系统》第2章1
信号与系统讲稿
二. 系统模型的建立是有一定条件的:
1. 对于同一物理系统在不同条件之下,可以得到不 同形式的数学模型。(参考书中P29) 2. 对于不同的物理系统,经过抽象和近似有可能得到 形式上完全相同的数学模型。(参考书中P29)
建立数学模型
解数学模型
对解加于物理解释
三. 时域分析方法
时域分析:在分析过程中,所涉及到的函数都是时间的 函数。 (1) 经典方法:求解微分方程 (2) 卷积积分。(重点内容)
在 t = 0 时刻换开关,由于电感的电流不能跳变,所以: i( 0+ ) = i( 0 ) = 0 A
di(t ) 而i (0 ) dt
L 1 1 u ( t ) u L (t ) u L (0 ) L t 0 t 0 t 0 L
且u L (0 ) 20 u C (0 )
信号与系统讲稿
对于电阻,有信号就有可能发生跳变。 第一种情况:在没有冲激电流(或阶跃电压)强迫 作用于电容的情况下,电容两端电压uC( t )不发生跳变; 在没有冲激电压(或阶跃电流)强迫作用于电感的情 况下,流过电感的电流iL( t )不发生跳变。 即: uC( 0+ ) = uC( 0 )、iL( 0+ ) = iL( 0 ) 第二种情况:在有冲激电流(或阶跃电压)强迫作 用于电容以及有冲激电压(或阶跃电流)强迫作用于 电感时, uC(0)和iL( 0 )发生跳变,这种情况只能借助 于对微分方程在[ 0,0+ ]内取积分或用奇异函数平衡 法来决定。 (2) 利用方程和起始条件uC( 0 )、iL( 0 ),通过奇异 函数平衡法决定初始条件。
1 i R (t ) u R (t ) 或 u R (t ) R i R (t ) R
信号与系统 第二章repeat
④
0
e2t
k
2 t 4 e d t 2 dt e d t 2 k dt 0
19
课堂练习:计算下列各式
sin 2t sin 2t dt 4d t ① 2d t dt 4 d t dt 4 t 2t
t 设齐次解: ht C1e U t C2d t
代入方程: C1etU t C1d t C2d t C1etU t C2d t 2d t 比较系数: C1 C2 0, C2 2, C1 2 所以:
ht 2etU t 2d t
25
课堂练习
1. 已知激励为零时刻加入,求该系统的零输入响应。(2.13)
y(t ) 3 y(t ) 2 y(t ) f (t ),
yx (t ) (2et e2t )U (t )
y(0 ) 1, y(0 ) 0
2C1 C2 2C3 1 C1 C2 3C3 2C4 0 C3 3C4 0 C4 1, C3 3, ht 7e2tU t 3d t d t
f t d t t0 dt f t0 f t d ( n) t t0 dt (1)n f ( n) t0
(2)相乘性质:
f t d t f 0 d t f 0 d t
2. 已知 yt 3 yt 2 yt f t f t ,
3. 4.
求 ht .
y(t ) 3 y(t ) 2 y(t ) f (t ) f (t ) y(t ) 7 y(t ) 12 y(t ) f (t )
信号与系统第2章信号的复数表示
3
j
π
j
π
4
C1 + C 2 = (1 + 1) + j ( 3 + 1) = 2 + j ( 3 + 1)
2 C1 = 2 + j ( 2 3 ) = 2 2 e
j
= 4e
j
π
3
C1 C 2 = 1 + j 3 + j 3 3 = (1 3 ) + j ( 2 3 )
= 2 2e
j(
π
3
+
π
4
)
= 2 2e
j(
7π ) 12
2 复数中定义 j = 1 ,故 D = (a1a2 b1b2 ) + j(a1b2 + b1a2 )
换一种形式表示复数的乘法
D = C1 C2 = C1 e C2 e = C1 C2 e
j1 j2
= C1 C2 e j1 e j2
j (1 +2 )
复数的加法和乘法在复平面内的表示
复数加法
2、复平面形式
可以在复平面中表示复数
虚轴 b |C| a
复数C可表示成一个矢量
实轴
由图可以看出,矢量 的长度为复数的模,与 实轴的夹角为复数的辐 角
2.3 复数形式的运算
1、复数的数乘和共轭
数乘: k 为实数
虚轴 j
kC C
实轴
kC = ka + jkb
| kC | e j k ≥ 0 kC = | kC | e j ( +π ) k < 0
2、复数的加法和乘法
C1 、 C2 为复数, C1 = a1 + jb1 , C2 = a2 + jb2
信号与系统第二章
2.0 引 言
2.1 连续时间基本信号 2.2 卷积积分 2.3 系统的微分算子方程 2.4 连续系统的零输入响应 2.5 连续系统的零状态响应 2.6 系统微分方程的经典解法
2.0 引 言
信号与系统分析的基本任务:
在给定系统和输入的条件下,求解系统的
输出响应。
f2( ) c
f2(-)
1
2、反转:
-1
c
0
3、平移: 将f(-)沿时间轴平移t,t为参变量
f2(-) c
t>0时向右平移, t<0时向左平移
f2(t-) c
-1
0
f 2 (( t )) f 2 (t )
f2(t-) c
-1
0 t-1 t
t-1
t
-1
0
0
0
2 0
1
0
2 0
f1() f2(1-) 1 g(t)
f1() f2(2-)
0
2
0
0
t
以上可以归纳为下列情况:
f1( )
2
f1(t) f2(t)
g(t)
0
2
0
t
当t<0时,f1()f2(t-)=0,所以g1(t)=0
当0t2时,f1()与f2(t-) 有部分重迭, 积分限 0t,g2(t)为:
t-2
t 0
用图解法进行分段积分,求出g(t)
f1( ) 2 0 1 2 2 0
f1( ) 2 2 f2(1-) 0
f1( ) 2 2 0
f1 ( )
信号与系统-第2章
f (t)
K
两式相加:
cosωt =
1 2
(e
jωt
+
e
jωt )
(2-4)
0 K
t
两式相减:
sinωt =
1 2j
(e
jωt
-e
jωt )
(2-5)
(3) 复指数信号: f(t) = Ke st = Ke (σ+ jω)t
= Keσt (cosωt + j sinωt)
当 σ > 0 时为增幅振荡 ω = 0 时为实指数信号 σ < 0 时为衰减振荡
2
01
t
f(
1 2
t)
=
1 2
t
0
0<t <4 其它
f(12 t)
2 0
4t
注意: 平移、反折和展缩都是用新的时间变量去代换原来的
时间变量, 而信号幅度不变.
t +2 -2<t<0 例2-5:已知 f(t) = -2t + 2 0<t<1
f (t)
2
0
其它
-2 0 1
t
求 f(2t-1),
f(
1 2
(1) 相加和相乘
信号相加: f t f1t f2 t fn t 信号相乘: f t f1t f2 t fn t
0 t<0 例2-1:已知 f1(t) = sint t ≥ 0 , f2(t) =-sint, 求和积.
解: f1(t) + f2(t) =
-sint 0
t<0 t≥0
0
t<0
f1(t) f2(t) = -sin2t t ≥ 0 也可通过波形相加和相乘.
∞ t=0 作用: 方便信号运算.
信号与系统第2章
第二章 傅立叶变换
(5) 微分特性 如果 那么
(6)积分特性 如果 那么
如果F(0)=0
第二章 傅立叶变换
(7)卷积定理 1.时域卷积定理 如果 那么 (8)频域卷积定理 如果
那么
第二章 傅立叶变换
11周期信号的傅里叶变换
周期信号的频谱------用傅里叶级数表示。 非周期信号的频谱——用傅里叶变换表示。 周期信号的频谱可以用傅里叶变换表示吗? (1)正弦、余弦信号的傅里叶变换 直流信号的博立叶变换为
n1 ) 2 n1 2
2 E sin( An T
2 E sin( An T
2
)
2
这里
2 1 T
Hale Waihona Puke n1第二章 2 E sin( An T
傅立叶变换
2
)
2
若: 2 An 0 (1) 2 (2) 2
该式表明:周期信号f(t)的傅里叶变换F(ω )是由一些冲击函数组成的, 并位于基波ω 1的整数倍处,冲击强度为f(t)的指数傅里叶级数的系数Cn 的2π 倍。
第二章 傅立叶变换
例4. 求周期单位冲激序列的傅里叶级数与傅里叶变换。
傅里叶级数为
第二章 傅立叶变换
例5. 求周期矩形脉冲信号的傅里叶级数和傅里叶变换 矩形脉冲信号f(t)的 傅里叶系数为:
第二章 傅立叶变换
例1已知矩形脉冲f1(t)如图(a)所示,其相位谱如图(b)所示, 将f1(t)右移τ /2得到如图(c)所示f2(t),试画出其相位谱。
由题意可知
根据时移特性,可得f2(t)的频谱函数 为
第二章 傅立叶变换
f2(t)幅度谱没有变化,其相位谱比图(b)滞后τ ω /2、如图(d)所示。要
信号与系统第二章习题与答案
第二章习题与答案1.求以下序列的z 变换并画出零极点图和收敛域。
分析:Z 变换概念∑∞-∞=-==n nzn x z X n x Z )()()]([,n 的取值是)(n x 的有值范围。
Z 变换的收敛域 是知足∞<=∑∞-∞=-M zn x n n)(的z 值范围。
解:(1) 由Z 变换的概念可知:∞====<<<<z z az a z az a z a az ,0 1, 11,1 零点为:极点为:即:且收敛域:)(21)()2(n u n x n⎪⎭⎫⎝⎛=)1(21)()3(--⎪⎭⎫⎝⎛-=n u n x n)1(,1)()4(≥=n nn x 为常数)00(0,)sin()()5(ωω≥=n n n n x 10,)()cos()()6(0<<+=r n u n Ar n x n Φω)1||()()1(<=a an x nnn nzaz X -∞-∞=⋅=∑)(nn n nn n z a za-∞=---∞=-∑∑+=1nn n nn n z a z a -∞=∞=∑∑+=01))(1()1()1)(1(1111212a z az a z a az az a za az az ---=---=-+-=-解:(2) 由z 变换的概念可知:n n nz n u z X -∞-∞=∑=)()21()( ∑∞=-=0)21(n n n z 12111--=z 211121><⋅z z 即:收敛域: 0 21==z z 零点为:极点为:解:(3)nn n z n u z X -∞-∞=∑---=)1()21()(∑--∞=--=1)21(n n n z∑∞=-=12n n n z zz212--= 12111--=z 21 12 <<z z 即:收敛域:0 21 ==z z 零点为:极点为: 解: (4) ∑-⋅∞==11)(n nz n z X∑∞--=-=•••11)(1)(n n z n n dz z dX 21)(11z z z n n -=-=∑∞=-- ,1||>z。
信号与系统讲义-2
f (t) u 3 10
p
u pf (t) 2p 10
u(t) (Ae5t B)U(t)
2 du(t) 10u(t) df (t)
dt
dt
u(t) 5Ae5t U(t) (A B)(t)
2(A B) 1 B0
u(t) 1 e5tU(t)V 2
H
(
p)
2p2 8p 3 ( p 1)( p 3)2
求系统的响应 y(t)。
解: D(p) (p 1)(p 3)2 0 p1 1 p2 p3 3
y0 (t) K1e t K 2e3t K 3te3t
y0 (0 ) K1 K2 =2 y0 (0 ) K1 3K 2 K3=1
3、共轭复根:(欠阻尼) 即 R 2 L C
uc Aet cos(dt ) Us
R 2L
,
d
02 2 , 0
1 LC
4
三、 RLC串联电路全响应
d 2uc dt 2
R L
duc dt
1 LC
uc
1 LC Us
(二阶常系数线性非齐次微分方程)
t<0 , K在2,有 uc (0 ) U0
C
uc Aep1t Be p2t Us
2、重根:(临界阻尼) 即
R2
L C
(自然频率、固有频率)
uc (A Bt)ept Us
3、共轭复根:(欠阻尼) 即 R 2 L C
uc Aet cos(dt ) Us
R 2L
d 02 2
《信号与系统》第二章总结
其中rzsh (t )和rzsp (t )分别为如下方程的齐次解和特解 zsp d n rzs (t ) d n −1rzs (t ) dr (t ) C0 + C1 + L + Cn −1 zs + Cn rzs (t ) dt n dt n −1 dt d m e(t ) d m −1e(t ) de(t ) = E + E1 + L + Em −1 + Em e(t ), m −1 0 dt m dt dt (k ) rzs (0− ) = 0
则h(t )为t ≥ 0+时满足起始态为零的微分齐次方程的解
n α t 当n > m时,h(t ) = ∑ Ak e k u (t ) k =1 (设特征方程的根为n个单根α k)
当n ≤ m时,h(t )还须含δ ( m − n ) (t )、δ ( m − n −1) (t )、 、δ (t ), L 而各项系数由Em决定
•连续时间系统的时域分析法:不通过任何变换,直接求解 求解系 求解 统的微分 微分、积分方程 方程。 微分 方程 •连续时间系统的时域分析方法:经典法,卷积法,算子法。
设n阶复杂系统激励信号为e(t ),响应信号为r (t )
其n阶微分方程为 d n r (t ) d n −1r (t ) dr (t ) C0 + C1 + L + Cn −1 + Cn r (t ) n n −1 dt dt dt d m e (t ) d m −1e(t ) de(t ) = E0 + E1 + L + Em −1 + Em e(t ) m m −1 dt dt dt
信号与系统第二章ppt课件
30
第2章 连续信号与系统的时域分析 31
最后整理得
第2章 连续信号与系统的时域分析
波形如题解图2.6(b)所示。
32
第2章 连续信号与系统的时域分析
3
(2) 因为
第2章 连续信号与系统的时域分析
所以
4
第2章 连续信号与系统的时域分析
2.2 写出下列复频率s所表示的指数信号est的表达式,并画 出其波形。
(1) 2; (2) -2; (3) -j5; (4) -1+j2。
5
第2章 连续信号与系统的时域分析
解 (1) f1(t)=e2t,波形如题解图2.2(a)所示。 (2) f2(t)=e-2t, 波形如题解图2.2(b)所示。显然, f1(t)和f2(t)都 是实指数信号。 (3) f3(t)=e-j5t=cos5t-j sin5t。f3(t)是虚指数信号,其实部、 虚部分别是等幅余弦、正弦信号。实部信号波形如题解图2.2(c) 所示。 (4) f4(t)=e(-1+j2)t=e-t·ej2t=e-t(cos2t+j sin2t)。f4(t)是复指数信 号,其实部和虚部分别是幅度按指数规律衰减的余弦和正弦信 号。实部信号波形如题解图2.2(d)所示。
(4) 由于tε(t)|t=-∞=0,有 所以
38
第2章 连续信号与系统的时域分析
2.8 已知f1(t)和f2(t)如题图2.4所示。设f(t)=f1(t)*f2(t),试求 f(-1)、f(0)和f(1)的值。
题图 2.4
信号与系统第二章
(Exponential and Sinusoidal Signals )
一. 连续时间复指数信号与正弦信号 连续时间正弦信号 (周期信号)
ω ω0 为频率,Φ为相位, 0=2π/T0
x(t)=Asin(ω0 t + Φ)
∃ T0 , s.t. x(t + T0 ) = x(t) Asin(ω0 (t + T0 ) + φ) = Asin(ω0t + φ) ∴ω0T0 =2π
离散时间信号的频率表示为 ω0 ,其量纲是弧度。
离散时间正弦信号不一定是周期的,因此,离散 时间虚指数信号也不一定是关于n的周期信号。
3. 一般复指数信号:
x[n] = Cα n
令 C = C e jθ α = α e jω0 则
x[n] = C α en j(ω0n+θ )
= C ⋅ α n ⋅[cos(ω0n +θ) + j sin(ω0n +θ)] 其实部与虚部都是幅度按实指数规律变化的正弦 序列。
k =-∞
k =0
δ[n − k]
1
• • • •••• •• • k
n
δ [n]具有提取信号 x[n]中某一点的样值的作用。 x[n]δ [n] = x[0]δ [n] x[n]δ [n − n0 ] = x[n0 ]δ [n − n0 ]
5
二. 连续时间单位阶跃与单位冲激
1. 单位阶跃 u(t)
可见,只有当 2π/ Ω0为有理数时, sinΩ0n才是周期信号. 周期为??
1
0.8
0.6
0.4
0.2
0
-0.2
-0.4
-0.6
信号与系统第二章
§2.1 经典时域解法
2 连续时间信号与系统的时域分析
2.1.1 微分方程式的建立与求解
1.物理系统的模型
•许多实际系统可以用线性系统来模拟。
•若系统的参数不随时间而改变,则该系统可以用
线性常系数微分方程来描述。
2 连续时间信号与系统的时域分析
•根据实际系统的物理特性列写系统的微分方程。 •对于电路系统,主要是根据元件特性约束和网络
2 连续时间信号与系统的时域分析
2 冲激函数匹配法 配平的原理:t =0 时刻微分方程左右两端的δ(t) 及各阶导数应该平衡.
【例】
d y t 3 y t 3 t 已知y0 , 求y0 dt
ut : 表示0 到0 相对单位跳变函数
该过程可借助数学描述
所以系统响应的完全解为
需要注意的: 特解的函数形式由系统所加的激励决定,齐次解 的函数形式完全取决于特征方程的根。 由于构成系统的各元件本身所遵从的规律、系统 的结构与参数决定了微分方程的阶次与系数,因此, 齐次解只与系统本身特性有关。
2 连续时间信号与系统的时域分析
2.1.2 从 到 状态的转换
2 连续时间信号与系统的时域分析
齐次解:由特征方程→求出特征根→写出齐次解形式 注意重根情况处理方法。 特 解:根据微分方程右端函数式形式,设含待定系 数的特解函数式→代入原方程,比较系数 定出特解。
完全解:齐次解和特解相加, 齐次解中的待定系数可通过初始条件求得.
在系统分析中,响应区间定义为激励信号 加 入后系统的状态变化区间。系统响应的求解区间为
a 3 即 b 9 c 9
即 y0 y0 9
2 连续时间信号与系统的时域分析
冲激函数匹配法实现过程中应注意的问题: (1) 对于冲激函数只匹配 及其各阶导数项, 微分方程两端这些函数项都对应相等。 (2) 匹配从方程左端 的最高阶项开始,首 先使方程右端冲激函数最高阶次项得到匹配,在已 匹配好的高阶次冲激函数项系数的条件下,再匹配 低阶项。 (3) 每次匹配方程低阶冲激函数项时,如果方 程左端所有同阶次冲激函数各项系数之和不能和右 端匹配,则由左端 高阶项中补偿。
信号与系统(第二章)
•但由于自变量 的系数不同, 但由于自变量t 的系数不同, 但由于自变量 则达到同样函数值2的时间不同。 则达到同样函数值 的时间不同。 的时间不同 •时间变量乘以一个系数等于改 时间变量乘以一个系数等于改 变观察时间的标度。 变观察时间的标度。
1
O
f (2t ) 2 1
O
T 2
t
2T
t
, a > 1 压缩保持信号的时间缩短 f (t ) → f (at ) , 0 < a < 1 扩展保持信号的时间增长
13 页
τ < 0,左移 超前 超前) ,左移(超前
例:
f (t ) 1
−1 O t −1 O
f(t+1)的波形? 的波形? 的波形
ft) f ((t+ 1)
1 t
1
1
宗量相同,函数值相同, 宗量相同,函数值相同,求新坐标
t = 0 t +1 = 0 t = −1 f (t ) = 1 f (t +1) = 1 f (t +1) = 1
X
O
t
第
欧拉(Euler)公式
1 jωt −jωt sin(ωt ) = e − e 2j
1 jωt −jωt cos(ωt ) = e + e 2
7 页
(
)
(
)
e
jω t
= cos(ωt ) + jsin(ωt )
X
第
6.复指数信号
f (t ) = Kest = Keσ t cos(ω t ) + jKeσt sin(ω t ) (−∞< t < ∞)
宗量3t+5 宗量
信号与系统-第二章线性时不变系统
n
1
k
f1 (k )
f2 (0
k)
3,
k
f1 (k )
f2 (1 k)
3,
n0 n 1
k
f1 (k )
f2(2 k)
1,
0,
n2 n14 3
三. 卷积和的计算:(3)列表法
分析卷积和的过程,可以发现有如下特点:
① x(n与) 的h(所n)有各点都要遍乘一次;
② 在遍乘后,各点相加时,根据 x(k)h(n k), k
x (t) x(t)
20
x(t) x (t)
x(k)
t
0
k (k 1)
引用 (t,) 即:
(t)
1
/ 0
0t otherwise
则有:
(t
)
1 0
0t otherwise
21
第 个k 矩形可表示为: x(k) (t k)
这些矩形叠加起来就成为阶梯形信号 x,(t)
即: x (t) x(k) (t k) k 当 时0 , k d
un 4 ak
an3
1un 4
k 0
a 1
9
例4: x(n) nu(n) 0 1 h(n) u(n)
x(k) ku(k)
1
0
k ...
h(n k) u(n k)
1
k
0
n
y(n) x(n) h(n)
x(k)h(n k) ku(k)u(n k)
k
k
u(n) n k 1 n1 u(n)
例2 :
1 x(t) 0
h( )
2T
0t T otherwise
信号与系统第二章习题答案
(− 3C1 + 3C2 )δ (t ) + (C1 + C2 )δ ' (t ) − (− 2C1 + C 2 )δ (t ) = δ (t )
h (t ) = C1e −2t + C2 e t ε (t )
对上式求一阶、二阶导数,得
(
)
h ' (t ) = − 2C1e −2t + C 2e t ε (t ) + C1e −2t + C2 e t δ (t )
(
)
(
t
)
h '' (t ) = 4C1e −2 t + C2 e t ε (t ) + − 2C1e −2t + C 2e t δ (t ) + − 2C1e − 2t
d 2e (t ) d 2i1 (t ) di1 (t ) di 2 (t ) = 4 + 6 + 2 dt 2 dt 2 dt dt
将⑴式、⑸式代入⑽式中,得到:
⑾
对⑾式求导,得到:
⑿
再将⑴式代入⑿式中,得到 i1 (t ) 的微分方程为:
64
d 2e (t ) d 2i1 (t ) di1 (t ) = 4 + 6 + 4i1 (t ) dt 2 dt 2 dt
⑼
再将⑴式代入⑼式中,得到 i 2 (t ) 的微分方程为:
2
d 2i 2 (t ) di 2 (t ) de(t ) + 3 + 2i 2 (t ) = 2 dt dt dt
⑽
对⑹式求一阶导,得到:
di (t ) di (t ) du (t ) de(t ) = 4 1 +2 2 + c dt dt dt dt di (t ) de(t ) = 4 1 + 6i1 (t ) + 2i2 (t ) dt dt
信号与系统第二章 总结
第二章 总结一﹑LTI 连续系统响应(一)微分方程经典解法=解开方式:全解y (t )=通解)(特解)(t y t y p n + 1﹑通解(齐次解):令右侧为零由特征方程n a +n λ1-n a +1-n λ…+0a a 01=+λ确定通解形式,再由n 个+0初始条件确定系数。
总结:齐次解模式由系统决定,系数由n 个初始条件决定,有时与f (t )有关。
2﹑特解:函数形式与f (t )有关,根据f (t )形式选择特定形式后,代入原微分方程,球的系数。
3﹑全解:) y (t )=)()(t y t y p n + 响应。
)又称强迫响应或受迫(响应;)又称自由响应或固有(t y t y p n (二)初始条件与-00+(1)经典系统的响应应限于到正无穷范围。
+0(2)不能将{)(-n 0y }作为微分方程初始条件。
(3){)(+0y n }由{)(-n 0y }导出,{)(+0y n }又称导出初始条件。
(三)零输入响应与零状态响应y (t )=)()(t y t y zs zi + 定义求解:(1)求解zi y :微分方程→特征方程→特征根→zi y (t )模式→数由{)(-n 0y }确定。
(2))(t y zs 求解:经典法﹑卷积积分法。
二﹑卷积积分卷积积分及其图解计算(1)定义: (2)图解计算:∑=n 1i i i t y a )()(∑=m 1j j j t f b )()(()()()τττd 21⎰∞∞--=t f f t f ττ ),()(.111积分变量改为f t f →)()()()(.22222τττ-−−→−-−−→−→t f f f t f 平移翻转τττd )(.)(.321-⎰∞∞-t f f 乘积的积分:总结:翻卷(翻转+平移)→乘积→积分三﹑卷积的性质:(一)卷积的代数性质:(1) 交换性:(2) 分配性:(3) 结合律: (二)延时特性:卷积的延迟量等于相卷积的两函数卷积之和(三)函数与冲激函数卷积)()()(t f t t f =*δ卷积奇偶性:同偶异奇(四)卷积的导数与积分:1﹑卷积导数:[)()(t f t f 21*]´=)()(t f t f 21*´=)()(,t f t f 21* 推广:)()()()()()(t f t f t f t f n 2n 121-*=* 2、卷积积分)()()()()()(t f dx x f dx x f t f dx x f x f 2t 1t 212t 1*=*=*⎰⎰⎰∞-∞-∞- 若y (t )=)()(t f t f 21*,则)()()()()()(t f t f t y j -i 2j 1i *= (五)相关函数dt t f t f dt t f t )()()(f R 212-112•+=-•=⎰⎰∞∞-∞∞τττ)()( dt t f t f dt t f t )()()(-f R 212-121τττ+•=•=⎰⎰∞∞-∞∞)()( )-(R 2112ττR =)( )()(ττ-R R 1221=自相关函数:若)()()(t f t f t f 21==,则R (τ)称为自相关函数。
信号与系统第二章
0
0
y '' zs ( t ) d t
0
0
y ' zs ( t ) d t
0
0
y zs ( t ) d t 2 6
0
0
(t ) d t
2.2
冲激响应和阶跃响应
一、冲激响应
由单位冲激函数δ(t)所引起的零状态响应称为单位冲 激响应,简称冲激响应,记为h(t)。h(t)=T[{0},δ(t)] 例1 描述某系统的微分方程为 y”(t)+5y’(t)+6y(t)=f(t) 求其冲激响应h(t)。 解 根据h(t)的定义 有 h”(t) + 5h’(t) + 6h(t) = δ(t) h’(0-) = h(0-) = 0 先求h’(0+)和h(0+)。
f ( )
f ( )
fˆ (t )
…
f(0)
“1”号脉冲高度f(△) ,宽度为 0 1 2 … -1 △,用p(t - △)表示为: f(△) △ p(t - △) “-1”号脉冲高度f(-△) 、宽度为△,用p(t +△)表示为: f ( - △) △ p(t + △) 这些脉冲的和近似的等于f(t) ˆ f (t ) f (n)p (t n)
g
( j)
(0 ) 0, j 0,1, 2...n 1
由于等号右端只含ε(t),故除g(n)(t)外,其他各阶导数均 ( j) ( j) 连续 g (0 ) g (0 ) 0, j 1, 2..., n 1 由于δ(t) 与ε(t) 为微积分关系,故 t g(t)= T [ε(t) ,{0}] g ( t ) h ( ) d
《信号与系统》第二章讲
第二章 连续时间系统的时域分析2.1 系统模型为便于对系统进行分析,需要建立系统的模型,在模型的基础上可以运用数学工具对系统进行研究。
一. 模型:模型是系统物理特性的数学抽象,以数学表达式或具有理想特性的符号组合图形来表征系统特性。
由电路图可列出方程:dt t de C t i dt t di RC dtt i d LC t e t Ri dt t di L dt t i Ct)()()()()()()()(122=++=++⎰∞-即:这就是系统的数学模型。
二. 系统模型的建立是有一定条件的:1. 对于同一物理系统在不同条件之下,可以得到不同形式的数学模型。
(参考书中P29)2. 对于不同的物理系统,经过抽象和近似有可能得到形式上完全相同的数学模型。
(参考书中P29)建立系统模型只是进行系统分析工作的第一步,为求得给定激励条件下系统的响应,还应当知道激励接入瞬间系统内部的能量储存情况。
如果系统数学模型、起始状态以及输入激励信号都已确定,即可运用数学方法求解其响应。
一般情况下我们对所求得结果可以作出物理解释赋予物理意义。
综上所述,系统分析的过程,是从实际物理问题抽象为数学模型,经过数学解释后再回到物理实际的过程。
也即:建立数学模型解数学模型对解加于物理解释三. 时域分析方法时域分析:在分析过程中,所涉及到的函数都是时间的函数。
(1)经典方法:求解微分方程(2)卷积积分法(重点内容)2.2 线性时不变系统微分方程的建立分析对象:线性的、时不变系统(非时变系统)教学目标:熟练掌握建立线性系统的微分方程的方法。
重点:电路系统建立微分方程的基本依据。
难点:用网孔电流法及节点电位法列状态方程。
一.一. 电路系统建立微分方程的基本依据1.元件特性约束(电路元件的伏安特性)(1)电阻器:-R由欧姆定律:)( )()(1)(tiRtutuRtiRRRR⋅==或若电阻特性参数与时间无关,即R与流过电阻器的电流或施加的电压大小无关,则此电阻称为时不变电阻或线性电阻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
uL
(t)
L
di(t) dt
iC
(t)
C
du(t) dt
对图1(a),有
RC
duC (t) dt
uC
(t)
uS
(t)
即
uC (t)
1 RC
uC (t)
1 RC
uS (t )
h(t) ds(t) dt
t
s(t) h( )d
(3)利用转移算子求h(t)
定义算子
p d , dt
pn
dn dt n
,
1 t
p
算子的运算规则: (1)可因式分解: (2)算子方程中左右两端的算子p不能随意消去: (3)算子p和1/p的位置不能互换:
如图所示的二阶系统,其描述方程如下
a、自由响应:取决于系统性质,即特征根;
b、强迫响应:取决于输入信号的形式;
按响应的变化形式:
a、瞬态响应:当t无限增长,响应最终趋于零;
b、稳态响应:响应恒定或为某个稳态函数。
例2-1 一阶系统
uC (t) 2uC (t) 2uS (t)
当uC(0)=4V, uS(t)=1+e3t 时,则完全响应为: uC (t) 4e2t e2t 2e3t1 零输入响应 零状态响应 (储能响应)(受激响应)
图1
1、阶跃响应
LTI系统在零状态下,由单位阶跃信号引起的 响应称为单位阶跃响应,简称阶跃响应,记
为s( t )。
图2
对于一阶系统方程
y(t) ay(t) k (t)
则零状态响应:
则阶跃响应:
y(t) s(t) eat t k ( )ea d 0 k (1 eat )ε(t) a
(3) 特征根是成对共轭复根 si i ji , i n / 2
yh (t) e1t (K1 cos1t K1 sin 1t) L eit (Ki cosit Ki sin it)
3、零输入响应与零状态响应
• 零输入响应(储能响应 ): 从观察的初始时刻起不再施加输入信号,仅由该时 刻系统本身的起始储能状态引起的响应称为零输入 响应(ZIR)。
1、LTI系统的微分方程的建立
描述线性时不变(LTI)系统的输入-输出特性的是 线性常系数微分方程。 从系统的模型(微分方程)出发,在时域研究输入 信号通过系统后响应的变化规律,是研究系统时域 特性的重要方法,这种方法就是时域分析方法。
• 系统的微分方程的建立
对于电系统,建立其微分方程的基本依据是 :
➢ 如果包含有(t)及其各阶导数,说明相应的0_状态到0+状态发生了跳变 。
3、0+ 状态的确定
➢ 已知 0_状态求 0+ 状态的值,可用冲激函数匹配法。 ➢ 求 0+ 状态的值还可以用拉普拉斯变换中的初值定理求出。
4、各种响应用初始值确定积分常数
➢在经典法求全响应的积分常数时,用的是 0+ 状态初始值. ➢在求系统零输入响应时,用的是 0_ 状态起始状态。 ➢在求系统零状态响应时,用的是 0+ 状态初始值,这时的零 状态是指 0_状态为零。
特解的函数形式由激励确定,称为强迫响应。
全响应=齐次解(自由响应)+特解(强迫响应)
齐次解:写出特征方程,求出特征根(自然频率或固有
频率)。根据特征根的特点,齐次解有不同的形式。一
般形式(无重根):
n
yh (t) Cieit i 1
i 为特征根
特解:根据输入信号的形式有对应特解的形式,用待定
(2)求yzi(t)的基本步骤
①求系统的特征根,写出yzi(t)的通解表达式。
②由于激励为零,所以零输入的初始值:
y
(i zi
)
(0)
y
(i zi
)
(0)
确定积分常数C1,C2, …,Cn
③将确定出的积分常数C1,C2, …,Cn代入通解表达式, 即得yzi(t) 。
关于 0_ 和 0+ 初始值
对本例 所以
H ( p) 2 1 p 1 p 2
y(t) h(t) ( 2 1 ) (t)
p 1 p 2
最后
h(t) (2et e2t ) (t)
2.3 卷积及其应用
教学目的:深刻理解并掌握卷积的定义,会利用 其性质求卷积,掌握卷积在LTI系统中的应用。
即
y(t)
p2
p 3 (t)
3p 2
p 3 (t) H ( p) (t)
( p 1)( p 2)
H( p )称为转移算子。
一般
有 (2-32)
H ( p) k1 k1 ki
p 1 p 1
p i
n
h(t) kieit , t 0 i 1
零状态响应
(1)即求解对应非齐次微分方程的解
(2)求yzs(t)的基本步骤
①求系统的特征根,写出的通解表达式yzs(t) 。
②根据f(t)的形式,确定特解形式,代入方程解得特解yp(t)
③求全解,若方程右边有冲激函数(及其各阶导数)时,根
据冲激函数匹配法求得
y(i) zs
(0)
,确定积分常数C1,
C2, …,Cn
④将确定出的积分常数C1,C2, …,Cn代入全解表达式,即 得。
几种典型自由项函数相应的特解
• 一阶系统的零状态响应
对于一阶系统方程
y(t) ay(t) x(t)
x(t):强迫函数(与输入信号有关)
特征方程的根: 则零状态响应:
a
或
yzs (t) eat
定义为f1(t)和f2(t)的卷积,记作
即:
y(t) f1(t) f2 (t)
y(t) f1(t) f2 (t) f1( ) f2 (t )d
若f1(t)、f2(t)均为因果信号:
有 所以
y(t) k (t)
pa
H ( p) k pa
y(t) h(t) ke at (t)
例2-4 设有二阶方程
y(t) 3y(t) 2y(t) f (t) 3 f (t), f (t) (t)
则有算子方程
( p2 3 p 2) y(t) ( p 3) (t)
第二章 连续系统的时域分析
学习重点:
• 连续系统微分方程的特点; • 系统响应的分解形式; • 阶跃响应与冲激响应; • 卷积及其应用; • 系统的特征函数及其应用。
本章目录
2.1 LTI连续系统的微分方程及其响应 2.2 阶跃响应与冲激响应 2.3 卷积及其应用 2.4 特征函数及其应用
2.1 LTI连续系统的微分方程及其响应
• 阶跃响应的测量
图3
2、冲激响应
(1)定义 储能状态为零的系统,在单位冲激信号作用下产生
的零状态响应称为冲激响应,记为h(t)。
对于一阶系统
y(t) ay(t) k(t)
x(t)
则冲激响应:
y(t) h(t) eat t k ( )ea d 0 keat (t)
R L
uC
(t)
1 LC
uC
(t)
1 C
iS (t)
R LC
iS (t)
2、微分方程的经典解法
• 对于n阶LTI连续系统,其微分方程为
微分方程的经典解: y(t)(完全解) = yh(t)(齐次解) + yp(t)(特解)
齐次解是齐次微分方程
yh(t)的函数形式仅与系统本身的特性有关,而与激励f(t)数形 式无关,称为系统的固有响应或自由响应;
例2-3 求图6示系统冲激响应h(t)=uC(t)
解 所以
图6
uC (t)
1 RC
uC (t)
1 (t)
RC
t
uC (t) h(t) e RC
t 0
1
( )e RC d
RC
1
t
e RC (t)
RC
(2)阶跃响应与冲激响应的关系
由系统的微、积分特性,则
4e2te2t 12e3t 自由响应 强迫响应
5e
2t
2e3t
1
瞬态响应 稳态响应
•经典法不足之处
•若微分方程右边激励项较复杂,则难以处理。 •若激励信号发生变化,则须全部重新求解。 •若初始条件发生变化,则须全部重新求解。 •这种方法是一种纯数学方法,无法突出系统响应的物 理概念。
系数法确定。在输入信号为直流和正弦信号时,特解就
是稳态解。
齐次解yh(t)的形式
(1) 特征根是不等实根s1, s2, , sn
yh (t) K1es1t K2es2t L Knesnt
(2) 特征根是等实根s1=s2==sn
yh (t) K1es t K2tes t L Knt n1es t
uC
(t)
R L
uC
(t)
1 LC
uC
(t)
1 C
iS (t)
R LC
iS (t)
i(t)
R i(t) L
1 LC
i(t)
1 LC
iS ( t )
(3)利用转移算子求h(t)
定义转移算子H( p ): H ( p) N( p)
D( p)
一般可将输入-输出关系表示为: y(t) H ( p) f (t) 则对一阶方程 y(t) ay(t) k (t)