敏感性高分子及水凝胶

合集下载

智能高分子及水凝胶的响应性及其应用

智能高分子及水凝胶的响应性及其应用

2、挑战
2、挑战
仿生智能高分子水凝胶材料仍面临以下挑战:首先,材料的物理化学性质需 要进一步优化,以提高其生物相容性和细胞黏附性;其次,材料的机械性能需要 进一步提高,以适应更为复杂和严苛的应用环境;最后,材料的降解性能需要进 一步调控,从而实现材料的可降解性和生物相容性的平衡。
3、未来发展方向
智能高分子及水凝胶的响应 性及其应用
01 引言
03 应用领域
目录
02 响应性分析 04 参考内容
引言
引言
智能高分子和水凝胶是一类能够对外界刺激产生响应的特殊材料。它们具备 优越的适应性、敏感性和智能性,因此被广泛应用于各个领域。本次演示将重点 探讨智能高分子和水凝胶的响应性及其在组织工程、药物传输、传感器和结构改 性等方面的应用,并对未来发展进行展望。
五、结论
五、结论
仿生智能高分子水凝胶材料的设计制备及其生物应用具有重要的意义。这种 材料具有良好的生物相容性、细胞黏附性和智能响应性,可以作为药物载体、细 胞培养基质和组织工程支架等。未来,随着科学技术的不断发展和进步,仿生智 能高分子水凝胶材料将有望在生物医学领域发挥更为重要的作用。
谢谢观看
4、结构改性
2、拓展刺激种类:目前,大多数智能高分子和水凝胶主要对一种刺激产生响 应。未来可以研究能够同时对多种刺激产生响应的材料,提高其应用范围。
4、结构改性
3、实现多级响应:未来的智能高分子和水凝胶可以实现在不同层次上的响应, 例如微观结构和宏观形状的双重响应。这将有助于进一步拓展其应用领域,例如 在软机器人制造和仿生工程中发挥作用。
三、仿生智能高分子水凝胶材料 的生物应用
1、细胞培养
1、细胞培养
仿生智能高分子水凝胶材料可以作为细胞培养基质,提供细胞生长所需的营 养和环境。这种材料可以模拟生物组织的结构和功能,有利于细胞的黏附、增殖 和分化。同时,通过调节材料的物理化学性质,可以控制细胞的生长和分化,从 而应用于药物筛选和疾病治疗研究。

温度敏感性材料基本原理及其应用

温度敏感性材料基本原理及其应用

N-异丙基丙稀酷胺(NIPAM)是温敏型凝胶PNIPAM的最主要的组成部分。

NIPAM单体分子式为C6H11N0,常温下为白色片状晶体,溶点为60℃分子量为113.18。

它含有不饱和C=C双键,在水溶液中可以打开进行自由基聚合从而得到高分子量的聚合物。

NIPAM及聚合物的结构式如图1所示。

图1 N-异丙基丙烯酰胺单体及其聚合物的结构式NIPAM单体聚合后得到聚N-异丙基丙稀醜胺(PNIPAM),聚合物大分子侧链上同时存在着亲水性的醜胺基和疏水性的异丙基两部分。

一般而言,在常温下,亲水基团与水分子之间由于强烈的氧键作用力,使PNIPAM分子链溶于水。

随着温度的升高,部分氢键作用力逐渐减弱,而PNIPAM 高分子链中的疏水作用力不断增强[4]。

当达到一定温度时,在疏水基团的相互作用下,高分子链互相聚集,发生体积相转变,并吸收热量;但当水溶液温度降低时,它又能够可逆地恢复到原来的状态而发生溶胀。

这一相变温度称为低临界溶解温度(Low Critical Solution Temperature,LCST),也称为低相变温度或池点温度。

PNIPAM不管以线型还是交联形式存在,都会在低临界溶解温度处体积收缩发生相转变,展现出温度敏感性能。

在LCST附近,PNIPAM凝胶的其他性质如折射率、介电常数、表面能等也会发生突变,同时也具有可逆性[5]。

1.2.2 PNIPAM类温敏性高分子凝胶的温敏机理大多数研究者认为,PNIPAM具有温敏性能与其物质的结构有关。

PNIPAM分子内具有一定比例的疏水性的异丙基和亲水性的酰胺基。

在温度低于LCST时,PNIPAM高分子链中酰胺基与周围水分子间存在着强烈的氢键作用力(亲水作用力),使高分子链与溶剂具有较好的亲和性,此时PNIPAM高分子链呈现出伸展状态,即在LCST以下吸水溶胀。

温度上升,当温度升高至LCST 以上时,水分子与酰胺基之间的亲水作用力减弱,PNIPAM分子链中异丙基间的疏水作用力得以加强,当温度升高至LCST以上时,PNIPAM高分子链中的疏水作用逐渐加强并起主导作用,使得高分子链通过疏水作用互相聚集,形成疏水层,导致水分子排出发生相转变,此时高分子链由疏松的线团结构转变为紧密的胶粒状,产生温敏性。

水凝胶

水凝胶

敏感性高分子及水凝胶摘要:本文介绍了几类敏感性高分子及其水凝胶。

主要包括pH敏感水凝胶、温度敏感水凝胶、温度及pH双重响应水凝胶、光响应水凝胶、磁场响应水凝胶等的性质及其研究进展。

简要介绍了敏感性高分子及其水凝胶的性质、制备方法、应用及其发展前景。

1引言近年来,随着信息,生命,环境,航空航天等领域科学技术的飞速发展,人们对材料性能的要求越来越高。

因此,一批性能特异的新功能材料相继问世,敏感性材料就是其中的一类。

对环境具有可感知,可响应,并具有功能发现能力的高分子和水凝胶被称之为环境敏感性高分子(environment sensitive polymers)和环境敏感性水凝胶(environment sensitive hydro gels)[1]。

与传统的高分子和水凝胶不同,这类高分子和水凝胶的某些物理或化学性质可因环境条件的变化而发生突变。

因此,这类高分子也被称为“刺激响应性高分子(stimuli-responsive polymers)”、“灵巧性高分子(smart polymers)”或“智能性高分子(intelligent polymers)”,相应的水凝胶被称为“刺激响应性水凝胶(stimuli-responsive hydro gels)”、“灵巧性水凝胶(smart hydro gels)”和“智能性水凝胶(intelligent hydro gels)”[2]。

与高分子不同,凝胶是一类可保持一定几何外形,同时具有固体和液体某些性质的胶体分散体系。

它是软物质(soft materials)存在的一种重要形式,是介于固体和液体之间的一种物质形态。

凝胶体系由胶凝剂(gelators)所形成的三维网络结构和固定于其中的大量溶剂组成。

敏感性水凝胶[3]是一种亲水性高分子交联网络,它能够感知外界环境的微小变化(例如温度、pH、离子强度、光、电场和磁场等),并通过自身体积的膨胀和收缩来响应外界的刺激.敏感性水凝胶的上述特点使其在药物控制释放、物质分离提纯、活性酶包埋和生物材料培养等方面有广泛应用前景。

水凝胶

水凝胶

水凝胶(Hydrogel),以水为分散介质的凝胶。

具有交联结构的水溶性高分子中引入一部分疏水基团而形成能遇水膨胀的交联聚合物。

是一种高分子网络体系,性质柔软,能保持一定的形状,能吸收大量的水。

凡是水溶性或亲水性的高分子,通过一定的化学交联或物理交联,都可以形成水凝胶。

一,水凝胶的分类:1,来源:1),天然水凝胶2),合成水凝胶2,性质:1),电中性水凝胶2),离子型水凝胶3,对外界刺激的反应情况:1),传统的水凝胶2),环境敏感水凝胶传统的水凝胶:这类水凝胶对环境的变化,如PH或温度的变化不敏感。

环境敏感水凝胶:这类水凝胶对温度或PH等环境因素的变化所给予的刺激有非常明确或显著地应答。

目前研究得最多的是温敏型和pH敏水凝胶。

所谓温敏是指在水或水溶液中这种凝胶的溶胀与收缩强烈的依赖于温度,凝胶体积在某一温区有突变,该温度称为临界溶液温度(lower critical solution temperature, LCST)。

pH敏感水凝胶是指聚合物溶胀与收缩随着环境的pH、离子强度的变化而变化。

二,水凝胶的性质:不同结构,不同化合物的水凝胶具有不同的物理化学性质如融变性、溶胀性、环境敏感性和粘附性。

一),溶胀性(swelling)是指凝胶吸收液体后自身体积明显增大的现象,是弹性凝胶的重要特性,凝胶的溶胀分为两个阶段:第一阶段:是溶剂分子钻入凝胶中与大分子相互作用形成溶剂化层,此过程很快,伴有放热效应和体积收缩现象(指凝胶体积的增加比吸收的液体体积小)第二阶段:是液体分子的继续渗透,这时凝胶体积大大增加。

二),环境敏感性环境敏感水凝胶又称智能水凝胶(smart hydrogels),根据环境变化的类型不同,环境敏感水凝胶又分为如下几种类型:1,温(热)敏水凝胶2,pH敏感水凝胶3,电解质敏感水凝胶三),粘附性(adhesiveness)粘附或称粘着或粘结等。

一般指的是同种或两种不同的物质表面相粘结的现象。

高分子水凝胶

高分子水凝胶

高分子水凝胶凝胶是指溶胀的三维网状结构高分子。

即聚合物分子间相互连结,形成空间网状结构,而在网状结构的孔隙中又填充了液体介质。

药用的凝胶大部分是水凝胶(hydrogel),它们通过制剂的形式进入体内后吸收体液自发形成。

水凝胶是指一种在水中能显著溶胀、保持大量水分的亲水性凝胶,为三维网络结构,多数水凝胶网络中可容纳高分子本身重量的数倍至数百倍的水,它不同于疏水性的高分子网络如聚乳酸和聚乙醇酸(只有有限的吸水能力,吸水量不到10%)。

水凝胶中的水有两种存在状态。

靠近网络的水与网络有很强的作用力,这种水在极低温度下又有冻结的和不冻结之分,而离网络比较远的水与普通水性质相似称为自由水。

影响水凝胶形成的主要因素有浓度、温度和电解质。

每种高分子溶液都有一个形成凝胶的最小浓度,小于这个浓度则不能形成凝胶,大于这个浓度可加速凝胶。

对温度来说,温度低,有利于凝胶,分子形状愈不对称,可胶凝的浓度越小,但也有些高分子材料加热后胶凝,低温变成溶液。

电解质对胶凝的影响有促进作用也有阻止作用,其中阴离子起主要作用。

水凝胶从来源分类,可分为天然水凝胶和合成水凝胶;从性质来分类,可分为电中性水凝胶和离子型水凝胶,离子型水凝胶又可分为阴离子型、阳离子型和两性电解质型水凝胶。

根据水凝胶对外界刺激应答情况不同,水凝胶又可分为两类:①传统的水凝胶,这类水凝胶对环境的变化,如PH或温度变化不敏感;②环境敏感水凝胶,这类水凝胶对温度或PH 等环境因素的变化所给予的刺激有非常明确和显著的应答。

不同结构、不同化合物的水凝胶具有不同的物理化学性质如溶胀性、触变性、环境敏感性和黏附性等:(一)溶胀性:水凝胶在水中可显著溶胀。

溶胀性是指凝胶吸收液体后自身体积明显增大的现象,这是弹性凝胶的重要特性,凝胶的溶胀可分为两个阶段:第一阶段是溶剂分子钻入凝胶中与大分子相互作用形成溶剂化层,此过程很快,伴有放热效应和体积收缩现象(指凝胶体积的增加比吸收的液体体积小);第二阶段是液体分子的继续渗透,这时凝胶体积大大增加。

ph敏感水凝胶的制备及其应用

ph敏感水凝胶的制备及其应用

ph敏感水凝胶的制备及其应用ph敏感水凝胶是一种具有广泛应用前景的新型材料。

它具有pH响应性能,能够根据环境的酸碱性变化而发生体积变化,可广泛应用于药物输送、生物传感、智能涂层等领域。

本文将通过详细介绍ph敏感水凝胶的制备方法和应用领域,让读者了解该材料的特点与优势。

首先,我们先来了解一下ph敏感水凝胶的制备方法。

目前常用的制备方法主要包括溶液聚合法、原位聚合法和模板法。

溶液聚合法是最常见的制备方法之一。

具体步骤是将聚合物单体和交联剂按一定比例溶解在有机溶剂中,加入引发剂,并在惰性气氛下进行聚合反应。

通过控制单体浓度、交联度和引发剂的用量,可以调控水凝胶的pH响应性能。

原位聚合法是指在水相中进行聚合反应。

该方法的优点是操作简单、无有机溶剂的使用,对一些敏感的生物大分子有较好的适应性。

通常,将聚合物单体和交联剂加入水相中,搅拌均匀,并加入引发剂进行聚合反应。

模板法是通过模板的存在来调控水凝胶的结构和性能。

首先,将聚合物单体和交联剂混合,再加入模板物质,并进行聚合反应。

反应结束后,用适当的溶剂将模板物质洗去,得到具有特定空腔结构的水凝胶。

接下来,我们来了解ph敏感水凝胶的应用领域。

由于其独特的pH 响应性能,ph敏感水凝胶在药物输送领域具有重要意义。

通过改变环境的酸碱性,可以实现药物的控制释放,提高治疗效果。

此外,ph敏感水凝胶还可以应用于生物传感领域。

通过将生物分子与水凝胶结合,可以实现对特定生物分子的高灵敏检测。

另外,ph敏感水凝胶还可以应用于智能涂层领域,通过自身的pH响应性能,实现表面涂层的自动修复,提高材料的使用寿命。

总的来说,ph敏感水凝胶是一种具有广泛应用前景的新型材料。

通过合适的制备方法,可以制备出具有不同pH响应性能的水凝胶。

在药物输送、生物传感和智能涂层等领域,ph敏感水凝胶都有着重要的应用价值。

未来,随着相关技术的不断进步,相信ph敏感水凝胶将会有更广泛的应用。

高分子水凝胶综述

高分子水凝胶综述

高分子水凝胶综述摘要在这篇综述中,笔者以高分子水凝胶为探究的领域,围绕其产生、发展、应用等诸方面,浅层次地加以论述。

论文大体的探讨方式是这样:首先以高分子水凝胶的出现为基点,考察其定义的由来以及与吸水树脂之间的关系;然后以高分子水凝胶潜在应用价值的属性为导向线,对其进行分类,讨论相应的制备方法和水凝胶性能各类表征方法;接着突出强调环境敏感性水凝胶的制备及响应原理;而水凝胶实际应用及缺陷则作为最后系统概括。

关键词:高分子水凝胶应用性能制备产生、定义与比较高分子水凝胶的合成可以追溯到20世纪50年代后期,Wichterle和Lim合成了第一个医用甲基丙烯酸羟乙酯(HEMA)水凝胶[1]。

对于高分子水凝胶的定义,各个文献报道的都很接近,即由带有化学或物理交联的亲水性高分子链形成的三维固体网络[2],在水环境下高分子水凝胶能够发生吸水溶胀,甚至有的吸水能超过其自重好多倍(图1)图1凝胶吸水溶胀前与溶胀后的比较(左侧为吸水溶胀后,右侧为吸水溶胀前)同时,笔者发现,高分子水凝胶与吸水树脂之间的关联需要被加以认知。

吸水树脂本身就是一种新型功能高分子材料,具有亲水基团,能吸收大量水分而又能保持水分不外流。

当水分子通过扩散作用及毛细作用进入到树脂中时,形成的树脂即称为高分子水凝胶。

也就是说,吸水树脂是高分子水凝胶的前身,且当树脂经吸水后才成为水凝胶。

此外,对于高分子水凝胶的吸水并且保水的机理也需要加以阐述。

从化学结构上来分析,凝胶是分子中含有亲水性基团和疏水性基团的交联型高分子。

在凝胶的交联网格里,必然存在很多疏水性基团朝外,亲水性基团朝里的结构,在这样的结构下,亲水性基团与水分子以氢键等方式进行结合,疏水性基团在外头形成的屏障可以有效地间隔不同的内亲水网格,起到容纳水分子容器的作用(图2)。

OOH R O H R OO H R O OH RO OH R O OHR OOH R OHH图2 凝胶保持水分子示意图图2中,右下侧的疏水性基团是朝内的,这表明凝胶亲水性网格结构内部也是含有非亲水性基团的;而水分子与亲水链上的氧之间形成了氢键。

pH敏感性高分子材料汇总

pH敏感性高分子材料汇总

2004.No.5 化学与生物工程 Chemistry&Bioengineering 综述专论1pH敏感性高分子材料胡晖,范晓东(西北工业大学应用化学系,陕西西安710072)摘要:综述了pH敏感性高分子材料的概念、机理、分类、最新研究成果及应用前景,对其发展趋势进行了展望。

关键词:pH敏感性;高分子材料;高分子凝胶;高分子复合物中图分类号:TQ427126 文献标识码:A 文章编号:1672-5425(2004)05-0001-03pH敏感性高分子材料可因pH值的变化而产生体积或形态改变。

这种变化是基于分子水平及大分子水平的刺激响应性,具有可重现特性。

由于它性质特殊,并具有广泛的用途,引起了国内外许多专家、学者的重视,并致力于开发这一类材料。

211 聚酸类pH敏感性高分子21111 丙烯酸类高分子在聚酸类pH敏感性高分子材料中,最典型的例子就是丙烯酸类聚合物。

丙烯酸类高分子含有可离子化的-COOH基团,是研究人员研究得较为成熟的一类pH敏感性高分子材料。

(1)丙烯酸类共聚物以甲基丙烯酸为基础共聚的阴离子型水凝胶、阳离子型水凝胶和两性水凝胶都具有pH敏感性,两性水凝胶在整个pH范围内都有一定的溶胀比,且在pH中性时,其溶胀速度要高于相应的阴离子型和阳离子型水凝胶。

聚(丙烯酸)-co-(丙烯腈)和聚(丙烯酸)-co-(N-异丙基丙烯酰胺聚合物)两种水凝胶都具有温度及pH双重敏感特性。

这种特性对于水凝胶在药物控制释放领域中的应用具有较大的意义(2)丙烯酸类接枝物[2]1 pH敏感性高分子材料的机理探索Tanaka把诱导凝胶体系发生相转变的分子间作用归纳为四类:疏水作用、范德华力、氢键、离子间作用力[1]。

这四种作用力被公认为是引发智能凝胶敏感响应的原动力。

在pH敏感的水凝胶中四种作用力共同起作用引发pH敏感性,其中离子间作用力起主要作用,其它三种作用力起到相互影响、相互制约的作用。

一般来说,具有pH响应性的高分子中含有弱酸性(弱碱性)基团,随着介质pH值、离子强度改变,这些基团发生电离,造成高分子内外离子浓度改变,并导致大分子链段间氢键的解离,引起不连续的溶胀体积变化或溶解度的改变。

生物医用敏感材料

生物医用敏感材料

凝胶上可显著增加凝胶收缩
速率
PNIPAm 疏水成
核作用
用PNIPAm类水凝胶可实现脉冲药品释放(ON/OFF释放),可望 用于口服、植入或透皮药品释放体系。
生物医用敏感材料
第14页
N-取代基疏水性对凝胶温度刺激响应影响:
疏水性增大
取代基疏水性
越强,凝胶在体 积相转变温度处 产生体积改变越 大,温度响应越 显著,且相变温 度越低。
如羧基或氨基,这些基团解离受外界pH影响: (1)pH改变时,解离程度改变,造成凝胶内外
离子强度改变; (2)解离还会破坏凝胶内氢键,交联点降低,
造成网络结构发生改变,引发溶胀。 ▪ 相体积转变可逆
生物医用敏感材料
第19页
2. 甲基丙烯酸烷酯(n-AMA)和二甲基氨乙 基丙烯酸酯(DMA)交联凝胶
SMP是指对已经赋形高聚物在一
定条件下(如加热、光照、改变酸碱度、 磁场等)实施变形,将这种变形状态保 留下来;当聚合物再进行加热、光照或 者改变酸碱度等刺激时候,聚合物又能 够恢复到其原来赋形状态
生物医用敏感材料
第41页
Time series photographs that show the recovery of a shape-memory tube. (a)-(f) Start to finish of the process takes a total of 10 s at 50°C. The tube was made of a poly(ε-caprolactone)dimethacrylate polymer network (the Mn of the network’s switching segments was 104 gmol-1) that had been programmed to form a flat helix.

高分子水凝胶综述

高分子水凝胶综述

高分子水凝胶综述摘要在这篇综述中,笔者以高分子水凝胶为探究的领域,围绕其产生、发展、应用等诸方面,浅层次地加以论述。

论文大体的探讨方式是这样:首先以高分子水凝胶的出现为基点,考察其定义的由来以及与吸水树脂之间的关系;然后以高分子水凝胶潜在应用价值的属性为导向线,对其进行分类,讨论相应的制备方法和水凝胶性能各类表征方法;接着突出强调环境敏感性水凝胶的制备及响应原理;而水凝胶实际应用及缺陷则作为最后系统概括。

关键词:高分子水凝胶应用性能制备产生、定义与比较高分子水凝胶的合成可以追溯到20世纪50年代后期,Wichterle和Lim合成了第一个医用甲基丙烯酸羟乙酯(HEMA)水凝胶[1]。

对于高分子水凝胶的定义,各个文献报道的都很接近,即由带有化学或物理交联的亲水性高分子链形成的三维固体网络[2],在水环境下高分子水凝胶能够发生吸水溶胀,甚至有的吸水能超过其自重好多倍(图1)图1凝胶吸水溶胀前与溶胀后的比较(左侧为吸水溶胀后,右侧为吸水溶胀前)同时,笔者发现,高分子水凝胶与吸水树脂之间的关联需要被加以认知。

吸水树脂本身就是一种新型功能高分子材料,具有亲水基团,能吸收大量水分而又能保持水分不外流。

当水分子通过扩散作用及毛细作用进入到树脂中时,形成的树脂即称为高分子水凝胶。

也就是说,吸水树脂是高分子水凝胶的前身,且当树脂经吸水后才成为水凝胶。

此外,对于高分子水凝胶的吸水并且保水的机理也需要加以阐述。

从化学结构上来分析,凝胶是分子中含有亲水性基团和疏水性基团的交联型高分子。

在凝胶的交联网格里,必然存在很多疏水性基团朝外,亲水性基团朝里的结构,在这样的结构下,亲水性基团与水分子以氢键等方式进行结合,疏水性基团在外头形成的屏障可以有效地间隔不同的内亲水网格,起到容纳水分子容器的作用(图2)。

OOH R O H R OO H R O OH RO OH R O OHR OOH OHH图2 凝胶保持水分子示意图图2中,右下侧的疏水性基团是朝内的,这表明凝胶亲水性网格结构内部也是含有非亲水性基团的;而水分子与亲水链上的氧之间形成了氢键。

高分子水凝胶简介

高分子水凝胶简介
水凝胶的简介
目录
水凝胶的定义 水凝胶的基本性质 水凝胶的分类 水凝胶的制备 水凝胶的应用 研究前景
定义
水凝胶是一种能够在水中溶胀并保持一定 水分而又不溶于水的具有三维网络结构的 新型功能高分子材料,兼有固体和液体的 性质
水凝胶具有良好的生物相容性 ,自 20世纪 40 年代以来 ,有关水凝胶的合成、理化性质 以及在生物化学、医学等领域中的应用研究 十分活跃
性质
吸水溶胀是水凝胶的一个重要特征。
溶 胀 收
在溶胀过程中 ,一方面水溶剂力图渗入高聚物内使 其体积膨胀,另一方面由于交联聚合物体积膨胀 ,导 致网络分子链向三维空间伸展 ,分子网络受到应力 产生弹性收缩能而使分子网络收缩。


当这两种相反的倾向相互抗衡时 ,达到了溶胀平衡 , 可见凝胶的体积之所以溶胀或收缩是由于凝胶内部 的溶液与其周围的溶液之间存在着渗透压 。 水凝胶的溶胀收缩行为通常用凝胶溶胀前后的质量 百分比表示 ,对于膜的溶胀也常用膜面积的变化表示。
载体的接枝共聚
• 水凝胶的机械强度一般较差 , 为了改善水凝胶的机械强度 , 可以把水凝胶接枝到具有一定强度的载体上。 • 在载体表面产生自由基是最为有效的制备接枝水凝胶的技术 , 单体可以共价地连接到载体上。 • 通常在载体表面产生自由基的方法有电离辐射、紫外线照射、 等离子体激化原子或化学催化游离基等,其中电离辐射技术是 最常采用的产生载体表面自由基的一种技术。
有一些两组分或多组分 的补齿材料含有 HEMA 或其他亲水型聚合物 , 这些材料被放在颚槽或 牙根部的孔内聚合或交 联 ,在大多数情况下 , 这些反应由 UV 引发。
生物分子、细胞的固定化
水凝胶固定化的生物分子和细胞在分析、 医学诊断等方面有着广泛的应用。 生物分 子和细胞可以固定在水凝胶小球的表面或 其内部 ,然后装填柱子 ,这样的柱子可以 用于分离混合物中的特殊生物分子。 生物 传感器是表面固定了生物分子或细胞的电 化学传感器 ,生物分子一般固定在与生物 传感器物理元件相连的水凝胶表面或其内 部。 水凝胶膜是连接生物分子和物理元件 的枢纽 ,因此很重要 。

水凝胶在药用高分子材料中的应用

水凝胶在药用高分子材料中的应用

一 溶胀性 水凝胶在水中可显著溶胀性。溶胀性是指凝胶 吸收液体后明显增大的现象,这是弹性凝胶的 重要特性,凝胶的溶胀分为两个阶段:第一阶 段是溶剂分子钻入凝胶中与大分子相互作用形 成溶剂化层,此过程很快;第二阶段是液体分 子的继续渗透,这时凝胶体积大大增加。溶胀 性的大小可以溶胀度来衡量,溶胀度为一定温 度下,单位重量或体积的凝胶所能吸收液体的 极限量。
2、膜控型缓释、控释制剂 、膜控型缓释、 微孔膜包衣片: 微孔膜包衣片: 膜控释小片: 膜控释小片: 肠溶膜控释片: 肠溶膜控释片: 膜控释小丸: 膜控释小丸: 3、渗透泵片: 、渗透泵片: 4、植入片: 、植入片:
三、缓释、控释制剂体内、体外评价 缓释、控释制剂体内、 (一)体外释放度试验 1、释放度试验方法 、 5、取样点的设计 、 除肠溶制剂外 (二)体内生物利用度和生物等效性试验 生物利用度: 生物利用度:指剂型中的药物吸收进入人体血液循环的速度和 程度 生物等效性:指一种药物的不同剂型在相同实验条件下, 生物等效性:指一种药物的不同剂型在相同实验条件下,以相 同剂量, 同剂量,其吸收速度与程度没有明显差异 (三)体内外相关性 1、体内-体外相关性的建立 、体内- 体外累积释放率- 体外累积释放率-时间的释放曲线 体内吸收率-时间的吸收曲线 体内吸收率- 2、体内-体外相关检验 、体内-
一、口服定时释药系统 按制备技术不同, 按制备技术不同,可分为 (一)渗透泵定时释药系统 (二)包衣脉冲系统 1、膜包衣技术 、 2、压制包衣技术 、 (三)柱塞型定时释药胶囊 二、口服定位释药系统 胃定位释药系统 口服小肠释药系统 口服结肠定位释药系统
又称靶向给药系统( 又称靶向给药系统(targeting grug system,TDS)指载体 ) 将药物通过局部给药或全身血液循环而选择性的浓集定 位于靶组织、靶器官、 位于靶组织、靶器官、靶细胞或细胞内结构的给药系统 (一)靶向制剂的分类 1、被动靶向制剂 、 2、主动靶向制剂 、 3、物理化学靶向制剂 、 (二)靶向性评价 1、相对摄取率: 、相对摄取率: 2、靶向效率 、靶向效率te 3、峰浓度比 、峰浓度比Ce

敏感性高分子及水凝胶

敏感性高分子及水凝胶

敏感性高分子及水凝胶摘要:本文介绍了几类敏感性高分子及其水凝胶。

主要包括pH 敏感水凝胶、温度敏感水凝胶、温度及pH 双重响应水凝胶、光响应水凝胶、磁场响应水凝胶等的性质及其研究进展。

简要介绍了敏感性高分子及其水凝胶的性质、制备方法、应用及其发展前景。

1 引言近年来,随着信息,生命,环境,航空航天等领域科学技术的飞速发展,人们对材料性能的要求越来越高。

因此,一批性能特异的新功能材料相继问世,敏感性材料就是其中的一类。

对环境具有可感知,可响应,并具有功能发现能力的高分子和水凝胶被称之为环境敏感性高分子(environment sensitive polymers)和环境敏感性水凝胶(environment sensitive hydro gels)[ 1]。

与传统的高分子和水凝胶不同,这类高分子和水凝胶的某些物理或化学性质可因环境条件的变化而发生突变。

因此,这类高分子也被称为“刺激响应性高分子(stimuli-responsive polymers)”、“灵巧性高分子(smart polymers)”或“智能性高分子(intelligent polymers)”,相应的水凝胶被称为“刺激响应性水凝胶(stimuli-responsive hydro gels)”、“灵巧性水凝胶(smart hydro gels)” 和“智能性水凝胶(intelligent hydro gels)”[2]。

与高分子不同,凝胶是一类可保持一定几何外形,同时具有固体和液体某些性质的胶体分散体系。

它是软物质(soft materials)存在的一种重要形式,是介于固体和液体之间的一种物质形态。

凝胶体系由胶凝剂(gelators)所形成的三维网络结构和固定于其中的大量溶剂组成。

敏感性水凝胶[3] 是一种亲水性高分子交联网络,它能够感知外界环境的微小变化(例如温度、pH、离子强度、光、电场和磁场等) ,并通过自身体积的膨胀和收缩来响应外界的刺激. 敏感性水凝胶的上述特点使其在药物控制释放、物质分离提纯、活性酶包埋和生物材料培养等方面有广泛应用前景。

水凝胶类材料的表征方法概述

水凝胶类材料的表征方法概述

智能水凝胶类材料的表征方法探讨摘要:水凝胶是以水为分散介质的凝胶。

具有交联结构的水溶性高分子中引入一部分疏水基团而形成能遇水膨胀的交联聚合物。

水凝胶类材料在各个领域被广泛的应用并且应用范围不断扩大,为了适应生产和生活的发展需要,水凝胶类材料的性质需要通过各种近代分析技术被详细的表征。

主要表征有溶胀测试(SR),热差分析(DSC),红外分析表征(FTIR),紫外表征(UV),透射电子显微镜(TEM),原子力显微镜(AFM)等,本文就这几种常见的表征分析方法在智能水凝胶性能表征中的应用情况加以概括分析。

1.水凝胶(Hydrogel)简介水凝胶是以水为分散介质的凝胶。

具有交联结构的水溶性高分子中引入一部分疏水基团而形成能遇水膨胀的交联聚合物。

是一种高分子网络体系,性质柔软,能保持一定的形状,能吸收大量的水。

凡是水溶性或亲水性的高分子,通过一定的化学交联或物理交联,都可以形成水凝胶。

这些高分子按其来源可分为天然和合成两大类。

天然的亲水性高分子包括多糖类(淀粉、纤维素、海藻酸、透明质酸,壳聚糖等)和多肽类(胶原、聚L-赖氨酸、聚L-谷胺酸等)。

合成的亲水高分子包括聚乙烯醇、丙烯酸及其衍生物类(聚丙烯酸,聚甲基丙烯酸,聚丙烯酰胺,聚N-聚代丙烯酰胺等)。

最常用的领域是在智能药物领域的应用。

智能药物是利用高分子智能载体制备而成的,通过系统协调材料内部的各种功能,对环境可感知且可响应,它能对周围环境的刺激因素,如温度、pH值、离子、电场、磁场、溶剂、反应物、光或应力等做出有效响应并且自身性质也随之发生变化,能够达到定量、定时、定位靶向、高效、低毒,其释药行为与人体生理环境和相关病理要求一致的智能化效果,解决了常规片剂、胶囊、注射剂等药物不能按疾病本身要求释放药物且不良反应多的缺陷,降低药物毒副作用,使临床用药更科学、合理,达到了治疗疾病时用药的智能化和按需释放药物,减少给药次数,避免重复给药和盲目用药给患者带来的损伤,减轻患者的经济负担。

水凝胶在药用高分子材料中的应用

水凝胶在药用高分子材料中的应用

水凝胶在药用高分子材料中的应用水凝胶是一种具有高度吸水性的高分子材料,由于其独特的物理和化学性质,被广泛应用于药物传输、组织工程、生物诊断等领域。

首先,水凝胶在药物传输方面的应用非常广泛。

水凝胶能够吸取许多倍于自身质量的水,形成具有大量水分的凝胶结构,这使其成为一种理想的药物载体。

通过将药物溶解或包裹在水凝胶中,可以延长药物的作用时间,减缓药物的释放速度,并且可以在药物释放时提供保护作用。

通过控制水凝胶的物理和化学性质,可以调节药物在凝胶中的释放速度和方式。

例如,温度敏感的水凝胶可以在局部组织温度上升时迅速释放药物,这种特性在肿瘤治疗中非常有用。

此外,药物可以通过化学交联或物理交联的方式与水凝胶结合,这样可以更稳定地嵌入药物,并提高药物在体内的稳定性和生物利用度。

其次,水凝胶在组织工程领域也具有重要的应用价值。

组织工程是一种利用人工合成材料或细胞培养体外培养构建组织功能的方法。

水凝胶是一种可生物降解的材料,能够提供细胞黏附和生长的支持结构。

同时,水凝胶的高度可形状性和柔韧性,使其能被设计成不同形状和尺寸的骨架,以模仿不同的组织结构。

水凝胶还可以通过控制其化学性质和微观结构,提供细胞间的交流和信号传递。

例如,可以在水凝胶中添加生物活性物质,如细胞因子、生长因子和基质蛋白等,以模拟体内的生物环境,促进细胞生长和分化。

此外,水凝胶具有良好的生物相容性,能够减少异物反应和组织排斥反应,促进组织工程材料与宿主组织的良好衔接。

另外,水凝胶还在生物诊断领域具有重要的应用。

生物诊断是指通过检测生物标志物,对疾病进行早期诊断和跟踪治疗效果的方法。

水凝胶可以作为生物传感器的载体,用于固定和保护生物标志物,并提供灵敏的信号检测。

例如,将特定的抗体或DNA探针固定在水凝胶上,可以实现对特定蛋白质或DNA的高灵敏性检测。

此外,水凝胶还可用于制备具有指示性颜色变化的染料水凝胶,用于快速检测特定因素的存在和浓度。

综上所述,水凝胶在药用高分子材料中的应用广泛且多样,通过调控其物理和化学性质,可以实现药物的控释和组织工程的构建,也可以用于生物诊断等领域。

高分子水凝胶简介

高分子水凝胶简介

制备
单体聚合并交联 聚合物交联
载体的接枝共聚
单体聚合并交联
? 合成水凝胶的单体很多 ,大致分为中性、酸性、 碱性 3 种。水凝胶可以由一种或多种单体采用 电离辐射、紫外照射或化学引发聚合并交联而 得。 一般来说 ,在形成水凝胶过程中需要加 入少量的交联剂。
? Nogao ka等在不使用交联剂的情况下通过辐射 引发使单体在水溶液中交联合成聚 N-异丙基丙 烯酰胺水凝胶 ,这种方法操作简单 ,交联度 可通过改变单体浓度及辐射条件来控制 ,无任 何添加成分 ,不会污染产品 ,可以一步完成产 品的制备及消毒。 与传统方法相比 ,合成的 凝胶更均匀 ,更有利于其性质的研究及生产更 方便。
性质
溶 胀 收 缩 行 为
吸水溶胀是水凝胶的一个重要特征。
在溶胀过程中 ,一方面水溶剂力图渗 入高聚物内使其体积膨胀,另一方面由 于交联聚合物体积膨胀 ,导致网络分子 链向三维空间伸展 ,分子网络受到应 力产生弹性收缩能而使分子网络收缩。 当这两种相反的倾向相互抗衡时 ,达 到了溶胀平衡 , 可见凝胶的体积之所 以溶胀或收缩是由于凝胶内部的溶液与 其周围的溶液之间存在着渗透压 。
研究前 回景顾水凝胶 50 多年的发展历程 ,可以看到水凝胶
已经被广泛地应用到医学、生物技术和工农业等 诸多方面。 目前 ,有关水凝胶的热点工作主要集中 在以下几个领域 : ①以 P. J . Flory凝胶溶胀理论为基础发展起来的 智能型高分子凝胶材料研究 ;
②天然高分子凝胶材料以及天然高分子与合成高 分子共混型凝胶的研究 ;
材料、蓄冷剂、 溶剂脱水、金属离子浓集、包装材料等
工业用品 诸多方面。
水农凝业胶、材料土可建用在农用薄膜、农
业园艺用保水材料、污泥固化、 泥水添加剂、墙壁顶棚材料等方 面。 绿化沙漠是高吸水性水凝胶 材料极有潜力的用途之一 ,可通 过制成保水剂的方式实施。

磁场敏感性水凝胶研究进展

磁场敏感性水凝胶研究进展

磁场敏感性水凝胶研究进展相 梅,郑志伟,汪辉亮,贺昌城3(北京师范大学化学学院,北京 100875) 摘要:磁场敏感性水凝胶是一类由聚合物三维网络和磁性组分所构成的复合凝胶,其在药物控制释放、人工肌肉、酶的固定与蛋白质分离等领域具有良好的应用前景。

本文综述了磁场敏感性水凝胶的制备方法及其在上述领域的应用。

关键词:水凝胶;磁场敏感性水凝胶;制备;应用凝胶是由三维网络结构的高分子和充塞在高分子网链间隙中的小分子介质所构成的。

一般情况下,介质为液体。

水凝胶是以水为介质、能在水中溶胀并保持大量水分而又不溶解的聚合物体系。

根据对外界刺激的响应特性,可以将水凝胶分为普通水凝胶和环境敏感性水凝胶,后者又称为智能型水凝胶或刺激响应性水凝胶。

与普通水凝胶不同,环境敏感性水凝胶能够感知外界物理的或化学的刺激信号的变化,并可通过体积相转变等行为做出应答。

根据刺激信号的不同,又可将环境敏感性水凝胶分为温度敏感性水凝胶、p H敏感性水凝胶、电场敏感性水凝胶、磁场敏感性水凝胶等。

磁场敏感性水凝胶(ferrogel或magnetic2field2sensitive hydrogel)是指对磁场具有响应特性的一类环境敏感性水凝胶。

本文将就磁场敏感性水凝胶的基本组成、制备方法、结构、性能及应用等方面作一综述。

1 磁场敏感性水凝胶的组成、结构与性质磁场敏感性水凝胶一般是由聚合物基质和功能组分所构成的复合凝胶。

赋予水凝胶磁场响应特性的功能组分多为无机磁性粒子,最常见的有Fe3O4、γ2Fe2O3等金属氧化物以及Co Fe2O4等铁酸盐类物质。

其中,Fe3O4由于具有价廉易得、无毒等优点,是目前最常被采用的磁性组分。

构成水凝胶的聚合物的种类,磁性粒子的种类、粒径大小及其在体系中的含量等对复合水凝胶的性质都有着非常大的影响。

若磁性组分具有超顺磁性,复合凝胶也可表现出超顺磁性,即在磁场作用下具有较强的磁性,撤除磁场后其磁性很快消失,不会被永久磁化;若凝胶中的磁性粒子不具有超顺磁性,复合凝胶则具有永磁体的特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

敏感性高分子及水凝胶摘要:本文介绍了几类敏感性高分子及其水凝胶。

主要包括pH 敏感水凝胶、温度敏感水凝胶、温度及pH 双重响应水凝胶、光响应水凝胶、磁场响应水凝胶等的性质及其研究进展。

简要介绍了敏感性高分子及其水凝胶的性质、制备方法、应用及其发展前景。

1 引言近年来,随着信息,生命,环境,航空航天等领域科学技术的飞速发展,人们对材料性能的要求越来越高。

因此,一批性能特异的新功能材料相继问世,敏感性材料就是其中的一类。

对环境具有可感知,可响应,并具有功能发现能力的高分子和水凝胶被称之为环境敏感性高分子(environment sensitive polymers)和环境敏感性水凝胶(environment sensitive hydro gels)[ 1]。

与传统的高分子和水凝胶不同,这类高分子和水凝胶的某些物理或化学性质可因环境条件的变化而发生突变。

因此,这类高分子也被称为“刺激响应性高分子(stimuli-responsive polymers)”、“灵巧性高分子(smart polymers)”或“智能性高分子(intelligent polymers)”,相应的水凝胶被称为“刺激响应性水凝胶(stimuli-responsive hydro gels)”、“灵巧性水凝胶(smart hydro gels)” 和“智能性水凝胶(intelligent hydro gels)”[2]。

与高分子不同,凝胶是一类可保持一定几何外形,同时具有固体和液体某些性质的胶体分散体系。

它是软物质(soft materials)存在的一种重要形式,是介于固体和液体之间的一种物质形态。

凝胶体系由胶凝剂(gelators)所形成的三维网络结构和固定于其中的大量溶剂组成。

敏感性水凝胶[3] 是一种亲水性高分子交联网络,它能够感知外界环境的微小变化(例如温度、pH、离子强度、光、电场和磁场等) ,并通过自身体积的膨胀和收缩来响应外界的刺激. 敏感性水凝胶的上述特点使其在药物控制释放、物质分离提纯、活性酶包埋和生物材料培养等方面有广泛应用前景。

2 敏感性高分子及其水凝胶的种类和性质1989 年,高木俊宜[4]最先提出了智能材料(intelligent materials)概念。

随后,美国的Newnham 教授提出了与之类似的灵巧材料(smart materials)概 1 念。

敏感性高分子和敏感性水凝胶是智能材料家族中的重要成员。

凝胶有不同的分类方法。

根据溶剂的不同,凝胶分为有机凝胶(organgels)和水凝胶(hydrogels)。

以适当的方式脱除溶剂后的凝胶为干凝胶(xerogels)。

根据凝胶的大小不同,有(宏观)凝胶和微凝胶(microgels)之分。

根据凝胶对环境条件变化响应的不同,凝胶分为传统凝胶和敏感性凝胶。

根据凝胶力学性能的不同,凝胶分为弹性凝胶和刚性凝胶。

同样,根据维系凝胶三维网络结构力的本性不同,凝胶分为物理凝胶和化学凝胶。

敏感性高分子水凝胶在受到刺激时,其性质会发生突变。

根据刺激信号的不同,相应的水凝胶被称为化学物质敏感性水凝胶、pH 敏感性水凝胶、温敏性水凝胶、光敏性水凝胶等。

敏感性水凝胶的研究涉及学科众多,具有显著的多学科交叉特点,是当今最具有挑战的高技术研究前沿领域之一。

2.1 敏感性高分子及其水凝胶的种类2.1.1 温度敏感性高分子及其水凝胶温敏性高分子是研究最多,也是最重要的一类敏感性高分子。

这类水凝胶结构中具有一定比例的亲水性和疏水性基团,温度的变化可以影响这些基团的疏水作用和大分子链之间的氢键作用,从而改变水凝胶的网络结构,产生体积相变。

温敏水凝胶有高温收缩和低温收缩两种类型[5]。

聚N-异丙基丙烯酰胺(PNIPA)是典型的高温收缩型水凝胶,对其响应机理的一般解释是,当温度升高时疏水相相互作用增强,使凝胶收缩。

线型聚N-异丙基丙烯酸酰[PNIPAM]是一种典型的温敏性高分子,在水溶液中具有独特的热行为,其大分子链上同时具有亲水性的酰胺基和疏水性的异丙基,使线型PNIPAM 的水溶液呈现出温度敏感特性,即随着水溶液温度升高,其溶解性下降,到某一温度时会发生相分离而产生沉淀,但降低温度时,它又可逆地恢复到原来在低温下的状态。

这一相变温度被称为最低临界溶解温度(lowest critical solution temperature, LCST)。

对PNIPAM的研究始于1967年首次观察到了PNIPAM水溶液在31?C具有LCST的热敏现象,PNIPAM才开始受到广泛的关注。

早期的研究主要集中在LCST转变的理论分析上,20世纪90年代以后转向PNIPAM的应用。

2.1.2 PH 敏感性高分子及其水凝胶水凝胶的pH敏感性最早由Tanaka [6] 在测定陈化后的聚丙烯酰胺凝胶溶胀比时发现这类凝胶含有大量易水解和质子化的解离基团,当外界pH变化时,这些基团的解离程度相应改变,造成凝胶内外离子浓度的变化,并引起网络内氢键的生成或断裂,导致凝胶的不连续体积相变。

PH 敏感性高分子是其溶液相态能随环境pH 值、离子强度变化的高分子。

这类高分子的分子链具有可解离的酸性或碱性基团。

目前人们感兴趣的是将温敏性单体与pH 敏感性单体共聚合成具有温度和pH 双重敏感的共聚物及其水凝胶。

2.1.3 温度及pH 双重响应型高分子及其水凝胶温度及pH敏感水凝胶[7]在药物的控制释放、生物材料培养、提纯、蛋白酶的活性控制等方面应用较多,因此要求其具有较好的生物相容性。

聚乙烯基吡咯烷酮P(NVP)具有较好的生物相容性,作为血浆增溶剂、药物辅科在世界范围内得到广泛应用。

P(NVP)能与许多物质,特别是含羟基、羧基、氨基及其他活性氢原子的化合物生成固态络合物。

P(NVP)水溶液可与多元酸形成不溶性络合物,质谱研究指出它们是氢键络合物,与蛋白质的络合性质相似。

金曼蓉等[8]研制成功5种聚N2烷基丙烯酰胺类温度敏感水凝胶,陆大年等[ 9] 较系统地探讨了丙烯酸水凝胶的pH敏感特性,Hoffman等[10]通过接枝共聚得到同时具有温度和pH双重敏感特性的水凝胶。

由于互穿聚合物网络中各聚合物网络具有相对的独立性,因此我们以pH敏感的聚合物网络为基础,利用IPN技术引入另一具有温度敏感的聚合物网络,制得具有温度及pH双重敏感的IPN型水凝胶。

同时,由于各聚合物网络之间的交织互穿必然会产生相互影响,相互作用,使各聚合物网络之间又具有一定的依赖性。

这种既相互独立又相互依赖的特性将最终决定IPN水凝胶的溶胀性能[11]。

2.1.4 光响应型高分子及其水凝胶目前,这类水凝胶的合成主要是在温度或pH响应水凝胶中引入对光敏感的基团[12]。

导致光敏水凝胶的响应机理有两种:一种是特殊感光分子,当有光照射时,这类水凝胶将光能转化成热能,使材料局部温度升高,当凝胶内部温度达到热敏材料的相变温度时,发生体积相转变现象。

另一种是利用光敏分子遇光分解产生的离子来改变凝胶内外的离子浓度差,造成凝胶渗透压突变,从而实现响应性。

2.1.5 电场响应型高分子及其水凝胶[13]电场响应性高分子(或水凝胶)一般是由分子链上带有可离子化基团的高分3 子(或交联高分子网络)组成。

在此类高分子中,荷电基团的抗衡离子在电场中迁移,使高分子链(或凝胶网络内外)离子浓度发生变化,导致高分子发生相转变。

例如聚乙烯醇/聚丙烯酸钠,聚[环氧乙烷-co-环氧丙烷]-星形嵌段-聚丙稀酰胺]/交联聚丙烯酸互穿网络凝胶,在NaOH 或Na2CO3 溶液中,经非接触电极施加直流电场,试样弯向负极,其运动机理仍可用Flory 的渗透压力方程解释。

2.1.6 磁场响应型高分子及其水凝胶磁场响应性水凝胶是将磁性“种子”预埋在凝胶中,当凝胶置于磁场时,由于磁性材料的作用而使凝胶局部温度上升,导致凝胶膨胀或收缩。

2.1.7 压力敏感性水凝胶[14]水凝胶的压力敏感性最早是由Marchetti 通过理论计算提出来的,其计算结果表明,凝胶在低压下出现塌陷,在高压下出现膨胀。

Lee 等用12%的Bis 作交联剂制备出的聚N 一异丙基丙烯酞胺(PNIPA)凝胶,证实了上述预测。

他们认为,凝胶体积随压力的变化是由于压力对该体系自由能有贡献所致。

2.1.8 生化响应性水凝胶[15]目前此类水凝胶主要用于研究开发自动调控胰岛素释放系统,研究较多的是葡萄糖敏感水凝胶。

这种凝胶实质为pH或温度响应性材料,但可以通过感知由生化反应造成溶液组分的变化,而产生如体积相变这样的响应。

2.1.9 盐敏感性水凝胶盐敏指在外加盐的作用下,凝胶的膨胀比或吸水性发生突跃性变化。

盐对凝胶膨胀的影响与其结构有关。

这类水凝胶的正负带电基团位于分子链的同一侧基上,并以共价键结合在一起,二者可发生分子内和分子间的缔合作用。

小分子盐的加人可屏蔽、破坏大分子链中正负基团的缔合作用,导致分子链舒展,因而,凝胶的膨胀行为得到改善。

众多的刺激响应性高分子(或水凝胶)中,温度/pH 双重敏感的高分子和水凝胶是较重要的一类。

2.2 影响水凝胶敏感性的因素水凝胶敏感性条件受许多因素的影响,单体组成、交联剂、聚合工艺条件、溶剂等都是重要的影响因素,但本质上是水凝胶的溶胀行为及其性能与网络结构之间的关系。

水凝胶的体积相转变是由聚合物网络中的疏水-亲水结构共同控制的。

如果两聚合物具有相同的疏水-亲水基团,它们应该表现出相同或相近的相转变行为。

但研究表明,水凝胶的相转变行为还强烈地依赖于疏水基团在侧链中的位置; 即使具有完全相同组成的水凝胶,其相转变行为也强烈地依赖于疏水基团在侧链中的位置。

3 敏感性高分子及其水凝胶的合成敏感性水凝胶材料的制备方法主要有单体的交联聚合、接枝共聚、其它水溶性高分子的交联或转化等,其中单体的交联聚合是目前制备高分子材料的最主要方法之一。

3.1 单体的交联聚合[16]在交联剂存在的情况下,由化学引发剂或辐射技术引发的单体经自由基均聚或共聚而制得高分子水凝胶材料的方法。

在聚合反应过程中可以通过加人或改变引发剂、鳌合剂、链转移剂等来控制聚合动力学,以及所得高分子水凝胶材料的性质。

制备高分子水凝胶材料的单体主要有丙烯酸系列、丙烯酸酯系列、丙烯酰胺系列、乙烯衍生物系列等。

常用交联剂的类别有:①二醇(脂肪族的聚醚或聚酯)的双丙烯酸酯和双甲基丙烯酸酯;②双丙烯酰胺;③活性甲基丙烯酸缩水甘油酯和活性烯丙基甲基丙烯酸酯;④双烯丙基的碳酸酯和丁二酸酯。

最主要的交联剂是双乙烯基交联剂,如N, N-亚甲基双丙烯酰胺(MBA)、双丙烯酸乙二醇酯等。

高分子水凝胶材料所具有的低交联网络结构,对其凝胶膨胀能力和凝胶弹性模量两个最关键的性能起决定作用。

但是高分子水凝胶的综合性能则依据聚合方法(水溶液聚合法或反向悬浮聚合法)、单体种类和组成(丙烯酸、丙烯酰胺及其比例)、交联结构和类型(水溶型或油溶型)等的变化。

相关文档
最新文档