2016年下学期七年级数学竞赛试题及答案
2016年下学期七年级数学竞赛试题及答案
2016年下七年级数学竞赛试题时量:120分钟总分值:120分一.选择题〔共10小题,每题3分,总分值30分〕1.已知a,b,c为有理数,且a+b+c=0,a≥﹣b>|c|,则a,b,c三个数的符号是〔〕A.a>0,b<0,c<0 B.a>0,b<0,c>0C.a<0,b>0,c≥0D.a>0,b<0,c≤02.如图,填在各方格中的三个数之间均具有相同的规律,根据此规律,n的值是〔〕A.48 B.56 C.63 D.743.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是〔〕A.﹣1 B.1 C.3 D.﹣34.一个两位数,两个数位上的数字之和是7,假设这个两位数加上9得到的两位数的数字的顺序和原来的两位数的数字的顺序恰好相反,那么原来的两位数为〔〕A.25 B.52 C.34 D.435.国务院总理李克强在第十二届全国人大第四次政府工作报告中指出,2015年我国国内生产总值到达了67.7万亿元,67.7万亿元用科学记数法表示为〔〕A.67.7×1012B.6.77×1013C.0.677×1014D.6.77×10146.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则以下说法正确的选项是〔〕年级七年级八年级九年级合格人数270 262 254 A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少7.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是〔〕A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短8.以下说法中正确的有〔〕①过两点有且只有一条直线;②连接两点的线段叫两点的距离;③两点之间线段最短;④假设AB=BC,则点B是AC的中点;⑤把一个角分成两个角的射线叫角的平分线;⑥直线l经过点A,那么点A在直线l上.A.2个B.3个C.4个D.5个9.在解方程13132x xx-++=时,方程两边同时乘以6,去分母后,正确的选项是〔〕A.2x﹣1+6x=3〔3x+1〕B.2〔x﹣1〕+6x=3〔3x+1〕C.2〔x﹣1〕+x=3〔3x+1〕D.〔x﹣1〕+x=3〔x+1〕10.小明所在城市的“阶梯水价”收费方法是:每户用水不超过5吨,每吨水费x元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的选项是〔〕A .5x +4〔x +2〕=44B .5x +4〔x ﹣2〕=44C .9〔x +2〕=44D .9〔x +2〕﹣4×2=44二.填空题〔共8小题,每题4分,总分值32分〕11.已知,|a |=5,|b |=3,且a <b <0,则a +b =________________. 12.已知23x -=,则x 的值是______________________.13.假设单项式()23kk x y -是关于x 、y 的五次单项式,则k =______________________.14.已知A 、B 、C 三点在同一直线上,其中点A 与点B 的距离等于2.4千米,点B 与点C的距离等于3.5千米,那么点A 与点C 的距离等于___________________千米.15.如图,将一副直角三角板叠在一起,使直角顶点重合于点O ,则∠AOB +∠DOC = ______________________度.第15题图 第16题图16.某学校在“你最喜欢的球类运动”调查中.随机调查了假设干名学生〔每名学生只能选取一项球类运动〕,并根据调查结果绘制了如下图的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人.则该校被调査的学生总人数为______________人. 17.你会玩“二十四点”游戏吗?请你在“1,﹣2,3,﹣4,6”五个数中任选四个数,利用有理数的混合运算,使四个数的运算结果为24〔每个数只能用一次〕,写出你的算式:_________________________________.18.早晨8:45时,时钟的分针与时针的夹角是__________________°三.解答题〔共6小题,总分值58分19.〔9分〕上坡时每小时走28km ,下坡时每小时走35km ,去时,下坡路的路程比上坡路的路程的2倍还少14km ,原路返回比去时多用了12分钟.求去时上、下坡路程各多少千米?20.〔9分〕一元一次方程21132x x a-+=-,王小明在去分母时,方程右边的1-项没有乘以6,因而求得的解是x=4.试求a的值,并求出原方程的正确解.21.〔10分〕在线段AB上,AC=6cm,MB=10cm,点M、N分别为AC、BC的中点.〔1〕求线段BC、MN的长;〔2〕假设C在线段AB的延长线上,且满足AC﹣BC=b cm,M、N分别是线段AC、BC的中点,求MN的长度.22.〔10分〕如图,∠AOC与∠BOC的度数比为5:2,OD平分∠AOB,假设∠COD=15°,求∠AOB的度数.23.〔10分〕已知A=by2﹣ay﹣1,B=2y2+3ay﹣10y﹣1,且多项式2A﹣B的值与字母y的取值无关,求〔2a2b+2ab2〕﹣[2〔a2b﹣1〕+3ab2+2]的值.24.〔10分〕有理数a<0、b>0、c>0,且b<a<c,〔1〕在数轴上将a、b、c三个数填在相应的括号中.〔2〕化简:|2a﹣b|+|b﹣c|﹣2|c﹣a|.2016年下七年级数学竞赛试题参考答案一.选择题〔共10小题,每题3分,总分值30分〕 题号 1 2 3 4 5 6 7 8 9 10 答案DCBCBDDBBA二.填空题〔共8小题,每题4分,总分值32分〕 题号 11 12 13 14 15 16 17 18﹣85或﹣1﹣35.9或1.118060不唯一7.5°17题:如3×6﹣[〔﹣2〕+〔﹣4〕]三.解答题〔共6小题,共58分〕 19.〔9分〕解:设去时上坡路为x 千米,则下坡路为〔2x ﹣14〕千米,根据题意得:+﹣〔+〕=,解得:x =42,则2x ﹣14=2×42﹣14=70,答:去时上、下坡路程各为42千米、70千米. 20.〔9分〕解:把x=4代入4x-2=3x+3a-1得:a=1,∴原方程为211132x x -+=- 去分母得2〔2x-1〕=3〔x+1〕-6,去括号得4x-2=3x+3-6, 移项得4x-3x=3+2-6, 合并同类项得x=-1.21.〔10分〕解:〔1〕∵AC=6cm ,M 是AC 的中点,∴AM=MC=AC=3cm ,∵MB=10cm ,∴BC=MB ﹣MC=7cm ,∵N 为BC 的中点,∴CN=BC=3.5cm , ∴MN=MC+CN=6.5cm ; 〔2〕如图,∵M 是AC 中点,N 是BC 中点,∴MC=AC ,NC=BC ,∵AC ﹣BC=bcm ,∴MN=MC ﹣NC=AC ﹣BC=〔AC ﹣BC 〕=b 〔cm 〕. 22.〔10分〕解:设∠AOC=5x ,则∠BOC=2x ,∠AOB=7x , ∵OD 平分∠AOB ,∴∠BOD=∠AOB=x ,∵∠COD=∠BOD﹣∠BOC∴15°=x﹣2x,解得x=10°,∴∠AOB=7×10°=70°.23.〔10分〕解:∵2A﹣B=2〔by2﹣ay﹣1〕﹣〔2y2+3ay﹣10y﹣1〕,=2by2﹣2ay﹣2﹣2y2﹣3ay+10y+1,=〔2b﹣2〕y2+〔10﹣5a〕y﹣1,又∵多项式2A﹣B的值与字母y的取值无关,∴2b﹣2=0,10﹣5a=0,∴b=1,a=2,又〔2a2b+2ab2〕﹣[2〔a2b﹣1〕+3ab2+2]=2a2b+2ab2﹣2a2b+2﹣3ab2﹣2=﹣ab2,当b=1,a=2时,原式=﹣2×12=﹣2.24.〔10分〕解:〔1〕如图,〔2〕∵a<0、b>0、c>0,∴2a﹣b<0,b﹣c<0,c﹣a>0,|2a﹣b|+|b﹣c|﹣2|c﹣a|=﹣〔2a﹣b〕﹣〔b﹣c〕﹣2〔c﹣a〕=﹣2a+b﹣b+c﹣2c+2a=﹣c.。
中学16—17学年下学期七年级学科竞赛数学试题(2)(附答案)
初一数学竞赛试题一.选择题(共12小题)1.化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5D.﹣x52.在一年一度的“安仁春分药王节”市场上,小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60元,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?()A.B.C.D.3.将一直角三角板与两边平行的纸条如图放置.下列结论:(1)∠1=∠2;(2)∠2+∠4=90°;(3)∠3=∠4;(4)∠4+∠5=180°;(5)∠1+∠3=90°.其中正确的共有()A.5个B.4个C.3个D.2个4.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β).正确的有()A.4个B.3个C.2个D.1个5.已知∠1=17°18′,∠2=17.18°,∠3=17.3°,下列说法正确的是()A.∠1=∠2 B.∠1=∠3 C.∠1<∠2 D.∠2>∠36.古希腊著名的毕达哥拉斯学派把1,3,6,10 …这样的数称为“三角形数”,而把1,4,9,16 …这样的数称为“正方数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.20=6+14 B.25=9+16 C.36=16+20 D.49=21+287.为了考查一批日光灯管的使用寿命,从中抽取了30只进行试验,在这个问题中,下列说法正确的有()①总体是指这批日光灯管的全体;②个体是指每只日光灯管的使用寿命;③样本是指从中抽取的30只日光灯管的使用寿命;④样本容量是30只.A.1个B.2个C.3个D.4个8.观察下列各式:31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561…用你发现的规律判断32004的末位数字是()A.3 B.9 C.7 D.19.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()A.M或R B.N或P C.M或N D.P或R10.李强同学用棱长为l的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为()A.37 B.33 C.24 D.2111.已知2x6y2和﹣是同类项,那么2m+n的值是()A.2 B.4 C.6 D.512.下列去括号错误的共有()①a+b+c=ab+c;②a﹣(b+c﹣d)=a﹣b﹣c+d;③a+2(b﹣c)=a+2b﹣c ④a2﹣[(﹣a+b)]=a2﹣a+b.A.1个B.2个C.3个D.4个二.填空题(共6小题)13.如图,在地面上有一个钟,钟面的12个粗线段刻度是整点时时针(短针)所指的位置,根据图中时针与分针(长针)所指的位置,该钟面所显示的时刻是时分.14.观察一列单项式:a,﹣2a2,4a3,﹣8a4…根据你发现的规律,第7个单项式为;第n个单项式为.15.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=.16.珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=度.17.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排名工人缝制衣袖,才能使每天缝制出的衣袖,衣身、衣领正好配套.18.若方程组是关于x,y的二元一次方程组,则代数式a+b+c的值是.三.解答题(共6小题)19.已知关于x,y的方程组和的解相同,求(2a﹣b)2的值.20.解方程组.21.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.22.先化简,再求值(1)(﹣x2+5x+4)﹣(5x﹣4+2x2),其中x=﹣2(2)已知A=x2+5x,B=3x2+2x﹣6,求2A﹣B的值,其中x=﹣3.23.(1)如图,直线a,b,c两两相交,∠3=2∠1,∠2=155°,求∠4的度数.(2)如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOD:∠BOE=4:1,求∠AOF的度数.24.“重百”、“沃尔玛”两家超市出售同样的保温壶和水杯,保温壶和水杯在两家超市的售价分别一样.已知买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元.(1)请问:一个保温壶与一个水杯售价各是多少元?(列方程组求解)(2)为了迎接“五一劳动节”,两家超市都在搞促销活动,“重百”超市规定:这两种商品都打九折;“沃尔玛”超市规定:买一个保温壶赠送一个水杯.若某单位想要买4个保温壶和15个水杯,如果只能在一家超市购买,请问选择哪家超市购买更合算?请说明理由.参考答案与试题解析一.选择题(共12小题)1.(2016•呼伦贝尔)化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5D.﹣x5【分析】根据同底数幂相乘,底数不变,指数相加计算后选取答案.【解答】解:(﹣x)3(﹣x)2=(﹣x)3+2=﹣x5.故选D.【点评】主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.2.(2013•郴州)在一年一度的“安仁春分药王节”市场上,小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60元,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?()A.B.C.D.【分析】设买了甲种药材x斤,乙种药材y斤,根据甲种药材比乙种药材多买了2斤,两种药材共花费280元,可列出方程.【解答】解:设买了甲种药材x斤,乙种药材y斤,由题意得:.故选A.【点评】本题考查了有实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.3.(2013春•太原月考)将一直角三角板与两边平行的纸条如图放置.下列结论:(1)∠1=∠2;(2)∠2+∠4=90°;(3)∠3=∠4;(4)∠4+∠5=180°;(5)∠1+∠3=90°.其中正确的共有()A.5个B.4个C.3个D.2个【分析】由平行线的性质与互余的关系,即可求得:∠1=∠2,∠3=∠4,∠4+∠5=180°,∠2+∠4=90°;又由等量代换,求得∠1+∠3=90°.【解答】解:如图,根据题意得:AB∥CD,∠FEG=90°,∴∠1=∠2,∠3=∠4,∠4+∠5=180°,∠2+∠4=90°;故(1),(2),(3),(4)正确;∴∠1+∠3=90°.故(5)正确.∴其中正确的共有5个.故选A.【点评】此题考查了平行线的性质.注意掌握:两直线平行,同位角相等与两直线平行,同旁内角互补以及两直线平行,内错角相等定理的应用.4.(2008•西宁)如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β).正确的有()A.4个B.3个C.2个D.1个【分析】根据角的性质,互补两角之和为180°,互余两角之和为90°,可将,①②③④中的式子化为含有∠α+∠β的式子,再将∠α+∠β=180°代入即可解出此题.【解答】解:∵∠α和∠β互补,∴∠α+∠β=180°.因为90°﹣∠β+∠β=90°,所以①正确;又∠α﹣90°+∠β=∠α+∠β﹣90°=180°﹣90°=90°,②也正确;(∠α+∠β)+∠β=×180°+∠β=90°+∠β≠90°,所以③错误;(∠α﹣∠β)+∠β=(∠α+∠β)=×180°=90°,所以④正确.综上可知,①②④均正确.故选B.【点评】本题考查了角之间互补与互余的关系,互补两角之和为180°,互余两角之和为90°.5.(2013秋•嘉峪关校级期末)已知∠1=17°18′,∠2=17.18°,∠3=17.3°,下列说法正确的是()A.∠1=∠2 B.∠1=∠3 C.∠1<∠2 D.∠2>∠3【分析】根据1°=60′把∠1=17°18′化成度数再进行解答即可.【解答】解:∵1°=60′,∴18′=()°=0.3°,∴∠1=17°18′=17.3°,∴B正确.故选B.【点评】此题比较简单,解答此题的关键是熟知1°=60′.6.(2014秋•青岛期末)古希腊著名的毕达哥拉斯学派把1,3,6,10 …这样的数称为“三角形数”,而把1,4,9,16 …这样的数称为“正方数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.20=6+14 B.25=9+16 C.36=16+20 D.49=21+28【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n(n+1)和(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.【解答】解:根据规律:正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n(n+1)和(n+1)(n+2),只有D、49=21+28符合,故选D.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.7.为了考查一批日光灯管的使用寿命,从中抽取了30只进行试验,在这个问题中,下列说法正确的有()①总体是指这批日光灯管的全体;②个体是指每只日光灯管的使用寿命;③样本是指从中抽取的30只日光灯管的使用寿命;④样本容量是30只.A.1个B.2个C.3个D.4个【分析】本题考查的是确定总体.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”.我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:本题中的总体是指这批日光灯管的全体的使用寿命,样本容量是30,所以①④不正确.个体是指每只日光灯管的使用寿命,样本是指从中抽取的30只日光灯管的使用寿命,所以②和③正确.故选B【点评】本题考查的是确定总体、个体、样本.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”8.(2012•湛江模拟)观察下列各式:31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561…用你发现的规律判断32004的末位数字是()A.3 B.9 C.7 D.1【分析】根据给出的规律,3n的个位数字4个循环一次,用2005去除以4,看余数是几,再确定个位数字.【解答】解:设n为自然数,∵31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561…,∴34n+1的个位数字是3,与31的个位数字相同,34n+2的个位数字是9,与32的个位数字相同,34n+3的个位数字是7,与33的个位数字相同,34n的个位数字是1,与34的个位数字相同,∴32004=3501×4的个位数字与与34的个位数字相同,应为1.故选D.【点评】本题考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.9.(2007•佛山)如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()A.M或R B.N或P C.M或N D.P或R【分析】先利用数轴特点确定a,b的关系从而求出a,b的值,确定原点.【解答】解:∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;②当原点在M、R时且|Ma|=|bR|时,|a|+|b|=3;综上所述,此原点应是在M或R点.故选A.【点评】主要考查了数轴的定义和绝对值的意义.解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简后根据整点的特点求解.10.(2011•自贡)李强同学用棱长为l的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为()A.37 B.33 C.24 D.21【分析】此题可根据表面积的计算分层计算得出红色部分的面积再相加.【解答】解:根据题意得:第一层露出的表面积为:1×1×6﹣1×1=5;第二层露出的表面积为:1×1×6×4﹣1×1×13=11;第,三层露出的表面积为:1×1×6×9﹣1×1×37=17.所以红色部分的面积为:5+11+17=33.故选B.【点评】此题考查的知识点是几何体的表面积,关键是在计算表面积时减去不露的或重叠的面积.11.(2016秋•乌拉特前旗期末)已知2x6y2和﹣是同类项,那么2m+n的值是()A.2 B.4 C.6 D.5【分析】依据同类项的蒂尼可知3m=6,n=2,从而得到m=2,然后代入计算即可.【解答】解:∵2x6y2和﹣是同类项,∴3m=6,n=2.∴m=2.将m=2,n=2代入得:原式=2×2+2=6.故选:C.【点评】本题主要考查的是同类项的定义,由同类项的定义得到3m=6,n=2是解题的关键.12.(2013秋•滨海县校级期中)下列去括号错误的共有()①a+b+c=ab+c;②a﹣(b+c﹣d)=a﹣b﹣c+d;③a+2(b﹣c)=a+2b﹣c ④a2﹣[(﹣a+b)]=a2﹣a+b.A.1个B.2个C.3个D.4个【分析】根据去括号法则,括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号,对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【解答】解:①a+b+c=a+b+c,故本选项错误;②a﹣(b+c﹣d)=a﹣b﹣c+d,故本选项正确;③a+2(b﹣c)=a+2b﹣2c,故本选项错误;④a2﹣[(﹣a+b)]=a2+a﹣b,故本选项错误.综上,①③④错误,共3个.故选C.【点评】本题考查了去括号与添括号的知识,注意去括号法则的熟练掌握.二.填空题(共6小题)13.(2008•资阳)如图,在地面上有一个钟,钟面的12个粗线段刻度是整点时时针(短针)所指的位置,根据图中时针与分针(长针)所指的位置,该钟面所显示的时刻是9时12分.【分析】方法一:结合图形,利用钟表表盘的特征解答.注意要先确定12点或6点的整点位置,才能解答.方法二:根据时针一小时走5个小格,分针一小时走60小格,可知时针绕1格,分针绕了12格,分针逆时针数12小格即为12点的位置,然后读出时间即可.【解答】解:方法一:本题没有确定12点或6点的整点位置,需要先确定,才能解题,由图知:时针转动了1小格,又每一小格所对角的度数为6°,即时针转动了6°,由分针每转动1°,时针转动()°,知,分针转动了6°÷=72°,又由每一大格所对角的度数为30°,故分针转了两大格,两小格,从而确定12点位置,由此知时针所指的位置在9时过一小格,故可知所显示的时刻是9时,分针转动了72°÷6°=12小格,每小格一分,故分针显示为12分.∴该钟面所显示的时刻是9时12分;方法二:由图可知,时针过1个大格线,走过×60=12分钟,所以,分针逆时针数12小格即为12点的位置,所以,该钟面所显示的时刻是9时12分.【点评】本题考查的是钟表表盘与角度相关的特征.钟表表盘被分成12大格,每一大格又被分为5小格,故表盘共被分成60小格,每一小格所对角的度数为6°.分针转动一圈,时间为60分钟,则时针转1大格,即时针转动30°.也就是说,分针转动360°时,时针才转动30°,即分针每转动1°,时针才转动()°,逆过来同理.14.(2011•铜仁地区)观察一列单项式:a,﹣2a2,4a3,﹣8a4…根据你发现的规律,第7个单项式为64a7;第n个单项式为(﹣2)n﹣1a n..【分析】本题须先通过观察已知条件,找出这列单项式的规律即可求出结果.【解答】解:根据观察可得第7个单项式为64a7第n个单项式为(﹣2)n﹣1a n.故答案为:64a7,(﹣2)n﹣1a n.【点评】本题主要考查了单项式的有关知识,在解题时要能通过观察得出规律是本题的关键.15.(2016秋•郾城区期末)如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=180°.【分析】因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故答案为:180°.【点评】本题考查了角度的计算问题,在本题中要注意∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.16.(2011•曲靖)珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=20度.【分析】由已知珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,得AB∥DE,过点C作CF∥AB,则CF∥DE,由平行线的性质可得,∠BCF+∠ABC=180°,所以能求出∠BCF,继而求出∠DCF,又由CF∥DE,所以∠CDE=∠DCF.【解答】解:过点C作CF∥AB,已知珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,∴AB∥DE,∴CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故答案为:20.【点评】此题考查的知识点是平行线的性质,关键是过C点先作AB的平行线,由平行线的性质求解.17.(2015•滨州)某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖,衣身、衣领正好配套.【分析】可设应该安排x名工人缝制衣袖,y名工人缝制衣身,z名工人缝制衣领,才能使每天缝制出的衣袖,衣身、衣领正好配套,根据等量关系:①一共210名工人;②小袖的个数:衣身的个数:衣领的个数=2:1:1;依此列出方程组求解即可.【解答】解:设应该安排x名工人缝制衣袖,y名工人缝制衣身,z名工人缝制衣领,才能使每天缝制出的衣袖,衣身、衣领正好配套,依题意有,解得.故应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖,衣身、衣领正好配套.故答案为:120.【点评】考查了三元一次方程组的应用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.(1)把求等式中常数的问题可转化为解三元一次方程组为以后待定系数法求二次函数解析式奠定基础.(2)通过设二元与三元的对比,体验三元一次方程组在解决多个未知数问题中优越性.18.(2016春•耒阳市校级期末)若方程组是关于x,y的二元一次方程组,则代数式a+b+c的值是﹣2或﹣3.【分析】根据二元一次方程组的定义:(1)含有两个未知数;(2)含有未知数的项的次数都是1.【解答】解:若方程组是关于x,y的二元一次方程组,则c+3=0,a﹣2=1,b+3=1,解得c=﹣3,a=3,b=﹣2.所以代数式a+b+c的值是﹣2.或c+3=0,a﹣2=0,b+3=1,解得c=﹣3,a=2,b=﹣2.所以代数式a+b+c的值是﹣3.故答案为:﹣2或﹣3.【点评】本题主要考查了二元一次方程组的定义,利用它的定义即可求出代数式的解.三.解答题(共6小题)19.(2017春•杭州月考)已知关于x,y的方程组和的解相同,求(2a ﹣b)2的值.【分析】将两方程组中的第一个方程联立求出x与y的值,将第二个方程联立,把x与y 的值代入求出a与b的值,进而求出所求式子的值.【解答】解:由题意得:,解得:,代入,解得:,则(2a﹣b)2=[2×﹣(﹣)]2=4.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组两方程成立的未知数的值.也考查了解二元一次方程组以及代数式求值.20.(2017•津市市校级模拟)解方程组.【分析】根据代入消元法,可得答案.【解答】解:方程组化简,得,把②代入①,得﹣2x+3(﹣8+2x)=4,解得x=7,把x=7代入②,得y=﹣8+2×7=6,方程组的解是.【点评】本题考查了解方程组,利用代入消元法是解题关键.21.(2012•凤阳县校级模拟)如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.【分析】(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.【解答】解:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.【点评】本题主要考查了平行线的判定与性质,注意平行线的性质和判定定理的综合运用.22.(2014秋•金昌期中)先化简,再求值(1)(﹣x2+5x+4)﹣(5x﹣4+2x2),其中x=﹣2(2)已知A=x2+5x,B=3x2+2x﹣6,求2A﹣B的值,其中x=﹣3.【分析】(1)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(2)把A与B代入2A﹣B中去括号合并得到最简结果,将x的值代入计算即可求出值.【解答】解:(1)原式=﹣x2+5x+4﹣5x+4﹣2x2=﹣3x2+8,当x=﹣2时,原式=﹣12+8=﹣4;(2)∵A=x2+5x,B=3x2+2x﹣6,∴2A﹣B=2x2+10x﹣3x2﹣2x+6=﹣x2+8x+6,当x=﹣3时,原式=﹣9﹣24+6=﹣27.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(2014春•东昌府区期中)(1)如图,直线a,b,c两两相交,∠3=2∠1,∠2=155°,求∠4的度数.(2)如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOD:∠BOE=4:1,求∠AOF的度数.【分析】(1)根据邻补角的和等于180°求出∠1的度数,然后求出∠3,再根据对顶角相等解答;(2)利用角平分线及比例式求出角的关系,利用平角是180°,求出∠BOE=∠DOE=30°,OF平分∠COE得到∠EOF=75°,求出∠BOF=45°,根据邻补角的和等于180°求出∠AOF【解答】解:(1)如图,∵∠2=155°,∴∠1=180°﹣∠2=180°﹣155°=25°,∴∠3=2∠1=2×25°=50°,∵∠3=∠4,(对顶角相等)∴∠4=50°,(2)∵∠AOD:∠BOE=4:1,∴∠AOD=4∠BOE,∵OE平分∠BOD,∴∠D0E=∠EOB,∴∠AOD+∠DOE+∠BOE=180°,∴6∠BOE=180°,∴∠BOE=∠DOE=30°,∴∠COE=180°﹣30°=150°,∵OF平分∠COE,∴∠EOF=75°,∴∠BOF=∠EOF﹣∠BOE=75°﹣30°=45°,∠AOF=180°﹣45°=135°.【点评】本题考查了邻补角的定义,对顶角相等的性质,角平分线的定义,准确识图并熟记性质与概念是解题的关键.24.(2016春•六合区校级期中)“重百”、“沃尔玛”两家超市出售同样的保温壶和水杯,保温壶和水杯在两家超市的售价分别一样.已知买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元.(1)请问:一个保温壶与一个水杯售价各是多少元?(列方程组求解)(2)为了迎接“五一劳动节”,两家超市都在搞促销活动,“重百”超市规定:这两种商品都打九折;“沃尔玛”超市规定:买一个保温壶赠送一个水杯.若某单位想要买4个保温壶和15个水杯,如果只能在一家超市购买,请问选择哪家超市购买更合算?请说明理由.【分析】(1)设一个保温壶售价为x元,一个水杯售价为y元,根据买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元,列出方程组,求解即可.(2)根据题意先分别计算出在“重百”超市购买所需费用和在“沃尔玛”超市购买所需费用,然后进行比较即可得出答案.【解答】解:(1)设一个保温壶售价为x元,一个水杯售价为y元.由题意,得:.解得:.答:一个保温壶售价为50元,一个水杯售价为10元.(2)选择在“沃尔玛”超市购买更合算.理由:在“重百”超市购买所需费用为:0.9(50×4+15×10)=315(元),在“沃尔玛”超市购买所需费用为:50×4+(15﹣4)×10=310(元),∵310<315,∴选择在“沃尔玛”超市购买更合算.【点评】此题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.。
【数学】新人教版七年级下册数学竞赛试卷及答案
【关键字】数学七年级下册数学竞赛题一、选择题(共10小题,每小题3分,共30分)1、如右图,下列不能判定∥的条件是( ).A、B、;C、;D、.2、在直角坐标系中,点P(6-2x,x -5)在第二象限,•则x的取值范围是()。
A、3< x <5B、x > 、x <3 D、-3< x <53、点A(3,-5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为( )A、(1,-8)B、(1, -2)C、(-7,-1)D、( 0,-1)4、在下列各数:3.1415926、、0.2、、、、、中,无理数的个数( )A、2B、、4 D、55、下列说法中正确的是()A. 实数是负数B.C. 一定是正数D.实数的绝对值是6、若a>b,则下列不等式变形错误的是A.a+1 > b+1B. >C. 3a-4 > 3b-4D.4-3a > 4-3bA、<-1B、<、>-1 D、>19、如图,宽为的长方形图案由10个全等的小长方形拼成,其小长方形的面积()A.2 B.C.2 D.210. 若不等式组有解,则实数a的取值范围是()A.a<﹣36 B.a≤﹣36 C.a>﹣36 D.a≥﹣362、填空题(本大题共9小题, 每题3分, 共27分)11、的平方根是_______________12、规定用符号[x]表示一个实数的整数部分,例如[3.69]=3.[]=1,按此规定,[﹣1]=.13、已知点A在x轴上方,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是________.14、阅读下列语句:①对顶角相等;②同位角相等;③画∠AOB的平分线OC;④这个角等于30°吗?在这些语句中,属于真命题的是_____ _____(填写序号)15 、某次知识竞赛共出了25道题,评分标准如下:答对1题加4分;答错1题扣1分;不答记0分.已知小明不答的题比答错的题多2道,他的总分为74分,则他答对了题.16、如图④,AB∥CD,∠BAE = 120º,∠DCE = 30º,则∠AEC = 度。
2016年度初一年数学竞赛试题及规范标准答案
2016年初一年数学竞赛试题(考试时间:120分钟,满分150分) 题号一 二 三 总分1~56~1011 121314(1) (2) 得分 评卷人 复查人一、选择题(共5小题,每小题7分,共35分.) 1.2016201620162016(2016)+-⨯-÷-=( )A. 2016;B. -2016;C. 4032;D. 6048;2.学校的篮球数比排球数的2倍少3个,篮球数与排球数的比是3:2,求两种球各有多少。
若设篮球有x 个,排球有y 个,则根据题意得到的方程组是( )A. 2332x y x y =-⎧⎨=⎩B.2332x y x y =+⎧⎨=⎩ C. 2323x y x y =-⎧⎨=⎩ D. 2323x y x y =+⎧⎨=⎩3.如图,1l ∥2l ,下列式子中,值等于180º的是( ) A.α+β+r B. α+β-r C. -α+β+r D. α-β+r第3题αrl 2l 1β第4题学校: 姓名: 参赛号: 考室:.....................密.....................封.....................装.....................订......................线.......................4.如图,在四边形ABCD中,AB=3,BC=4,CD=9,AD=a,则()A.a≥16;B.a<2;C.2<a<16;D.a=16;5.某个货场有2016辆车排队等待装货,要求第一辆车必须装9箱货物,每相邻的5辆车装货总数为43箱,为满足上述要求,至少应该有货物的箱数是( ).A.17286 B.17295 C.17329 D.17338二、填空题(共5小题,每小题7分,共35分.)6.计算:()()()232016121122411154⎡⎤⎛⎫-⨯---÷--⎢⎥⎪⎝⎭⎢⎥⎣⎦⎛⎫-÷-⨯⎪⎝⎭=。
初一下数学竞赛试题及答案
初一下数学竞赛试题及答案【试题一】题目:一个数的平方根是另一个数的立方根,求这个数。
【答案】设这个数为 \( x \),则根据题意,我们有 \( \sqrt{x} =\sqrt[3]{y} \),其中 \( y \) 是另一个数。
将等式两边立方,得到\( x = y^{1/3} \)。
由于 \( y \) 可以是任意数,\( x \) 也可以是任意数的立方。
例如,如果 \( y = 8 \),则 \( x = 2 \)。
【试题二】题目:一个直角三角形的两条直角边分别为 \( 3 \) 厘米和 \( 4 \) 厘米,求斜边的长度。
【答案】根据勾股定理,直角三角形的斜边长度 \( c \) 可以通过公式 \( c = \sqrt{a^2 + b^2} \) 计算,其中 \( a \) 和 \( b \) 是直角边的长度。
将 \( a = 3 \) 和 \( b = 4 \) 代入公式,得到 \( c = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \) 厘米。
【试题三】题目:如果一个数的 5 倍加上 12 等于这个数的 3 倍减去 8,求这个数。
【答案】设这个数为 \( x \),根据题意,我们有 \( 5x + 12 = 3x - 8 \)。
将等式两边的 \( x \) 项移项,得到 \( 2x = -20 \)。
解得 \( x = -10 \)。
【试题四】题目:一个圆的半径是 7 厘米,求这个圆的面积。
【答案】圆的面积 \( A \) 可以通过公式 \( A = \pi r^2 \) 计算,其中\( r \) 是圆的半径。
将 \( r = 7 \) 代入公式,得到 \( A = \pi \times 7^2 = 49\pi \) 平方厘米。
【试题五】题目:一个分数的分子和分母的和是 21,且这个分数等于\( \frac{3}{4} \),求这个分数。
初中七年级数学竞赛试题及参考答案
七年级数学竞赛试题一.选择题(每小题4分,共32分) 1.x 是任意有理数,则2|x |+x 的值( ).A .大于零B . 不大于零C .小于零D .不小于零 2.在-0.1428中用数字3替换其中的一个非0数码后,使所得的数最大,则被替换的数字是( ) A .1 B .4 C .2 D .83.如图,在数轴上1A 、B , A 是线段BC 的中点,则点C 所表示的数是( )A.2 B2 C1 D.14.桌上放着4张扑克牌,全部正面朝下,其中恰有1张是老K 。
两人做游戏,游戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K ,则红方胜,否则蓝方胜。
则赢的机会大的一方是( )A .红方B .蓝方C .两方机会一样D .不知道 5.如果在正八边形硬纸板上剪下一个三角形(如图①中的阴影部分),那么图②,图③,图④中的阴影部分,均可由这个三角形通过一次平移、对称或旋转而得到.要得到图②,图③,图④中的阴影部分,依次进行的变换不可行...的是( )A.平移、对称、旋转 B.平移、旋转、对称 C.平移、旋转、旋转 D.旋转、对称、旋转6.计算:22221111(1)(1)(1)(1)2342007---⋅⋅⋅-等于( ) A .10042007 B .10032007 C .20082007D .200620077.如图,三个天平的托盘中相同的物体质量相等。
图⑴、⑵所示的两个天平处于平衡状态要使第三个天平也保持平衡,则需在它的右盘中放置( )(3)(2)(1)A. 3个球B. 4个球C. 5个球D. 6个球8.用火柴棒搭三角形时,大家都知道,3根火柴棒只能搭成1种三角形,不妨记作它的边长分别为1,1,1;4根火柴棒不能搭成三角形;5根火柴棒只能搭成一种三角形,其边长分别为2,2,1;6根火柴棒只能搭成一种三角形,其边长分别为2,2,2;7根火柴棒只能搭成2种三角形,其边长分别为3,3,1和3,2,2;…;那么30根火柴棒能搭成三角形个数是( )x图①图②图③ 图④A .15B .16C .18D .19 二.填空题(每题4分,共28分)9.定义a*b=ab+a+b,若3*x=31,则x 的值是_____。
人教版初一下数学竞赛试题及答案
人教版初一下数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. -1C. 1D. 22. 如果a和b是两个连续的整数,且a > b,那么a-b的值是:A. 1B. 0C. -1D. 23. 一个数的平方根是它本身,这个数可以是:A. 1B. -1C. 0D. 44. 一个数的立方等于它本身,这个数有:A. 1个B. 2个C. 3个D. 4个5. 一个圆的半径是r,它的面积是:A. πr²B. 2πrC. πrD. r²6. 一个长方体的长、宽、高分别是a、b、c,它的体积是:A. abcB. 2abcC. a+b+cD. a²b²c²7. 一个等差数列的首项是a,公差是d,第n项是:A. a+(n-1)dB. a+ndC. a-dD. a-d(n-1)8. 如果一个三角形的三边长分别为a、b、c,且a² + b² = c²,那么这个三角形是:A. 直角三角形B. 等边三角形C. 等腰三角形D. 不规则三角形9. 一个分数的分子和分母同时扩大相同的倍数,其值:A. 增大B. 减小C. 不变D. 无法确定10. 一个数的绝对值是它本身,这个数:A. 必须为正数B. 必须为负数C. 可以是正数或零D. 可以是负数或零二、填空题(每题4分,共20分)11. 一个数的平方等于16,这个数是________。
12. 如果一个数的相反数是-5,那么这个数是________。
13. 一个数的绝对值等于5,这个数可以是________。
14. 一个数的立方根是2,那么这个数是________。
15. 一个数的倒数是1/4,这个数是________。
三、解答题(每题10分,共50分)16. 计算下列表达式的值:(3+5)² - 2×(4-1)。
17. 一个长方体的长是10厘米,宽是8厘米,高是6厘米,求它的表面积和体积。
人教版七年级数学下册竞赛试卷(含解析)
人教版七年级数学下册竞赛试卷一、选择题1.设a=,b=,c=,则a,b,c之间的大小关系是()A.a<b<c B.c<b<a C.c<a<b D.a<c<b2.设有理数a、b、c都不为零,且a+b+c=0,则的值是()A.正数B.负数C.零D.不能确定3.如果0<p<15,那么代数式|x﹣p|+|x﹣15|+|x﹣p﹣15|在p≤x≤15的最小值是()A.30B.0C.15D.一个与p有关的代数式4.由1,2,3,4这四个数字组成四位数(数字可重复使用),要求满足a+c=b+d.这样的四位数共有()A.36个B.40个C.44个D.48个5.在2014,2015,2016,2017四个数中,不能表示为两个整数的平方差的数是()A.2014B.2015C.2016D.20176.10个全等的小正方形拼成如图所示的图形,点P、X、Y是小正方形的顶点,Q是边XY 一点.若线段PQ恰好将这个图形分成面积相等的两个部分,则的值为()A.B.C.D.二.填空题7.关于x的不等式组恰好只有三个整数解,则a的取值范围是8.已知,,,则代数式a2+b2+c2﹣ab﹣bc ﹣ac的值为.9.已知x、y为正整数,且满足2x2+3y2=4x2y2+1,则x2+y2=.10.使代数式的值为整数的全体自然数x的和是.11.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x1,第二个三角形数记为x2…,第n个三角形数记为x n,则x10=;x n+x n+1=.12.已知S=,则S的整数部分是.三.解答题13.(20分)(1)证明:1999×2000×2001×2003×2004×2005+36是一个完全平方数;(2)证明:98n+4﹣78n+4能被8整除(n为正整数).14.(14分)已知实数a、b、c,满足abc≠0且(a﹣c)2﹣4(b﹣c)(a﹣b)=0,求的值.15.(14分)对非负实数x“四舍五入”到个位的值记为[x],即当n为非负整数时,若n﹣≤x<n+,则[x]=n.如:[2.9]=3,[2.4]=2,[x]=n,求满足[x]=x﹣2的所有实数x 的值.16.(14分)有n个连续的自然数1,2,3,…,n,若去掉其中的一个数x后,剩下的数的平均数是16,则满足条件的n和x的值分别是.(参考公式:S n=1+2+3+…+n=)17.(14分)设a+b+c=6,a2+b2+c2=14,a3+b3+c3=36.求(1)abc的值;(2)a4+b4+c4的值.18.(14分)如图1,已知a∥b,点A、B在直线a上,点C、D在直线b上,且AD⊥BC 于E.(1)求证:∠ABC+∠ADC=90°;(2)如图2,BF平分∠ABC交AD于点F,DG平分∠ADC交BC于点G,求∠AFB+∠CGD的度数;(3)如图3,P为线段AB上一点,I为线段BC上一点,连接PI,N为∠IPB的角平分线上一点,且∠NCD=∠BCN,则∠CIP、∠IPN、∠CNP之间的数量关系是.参考答案与试题解析一、选择题(每题5分,共30分)1.设a=,b=,c=,则a,b,c之间的大小关系是()A.a<b<c B.c<b<a C.c<a<b D.a<c<b【分析】利用平方法把三个数值平方后再比较大小即可.【解答】解:∵a2=2000+2,b2=2000+2,c2=4000=2000+2×1000,1003×997=1 000 000﹣9=999 991,1001×999=1 000 000﹣1=999 999,10002=1 000 000.∴c>b>a.故选:A.2.设有理数a、b、c都不为零,且a+b+c=0,则的值是()A.正数B.负数C.零D.不能确定【分析】由a+b+c=0,则b2+c2﹣a2=﹣2bc,a2+b2﹣c2=﹣2ab,a2+c2﹣b2=﹣2ac,然后代入化简即可得出答案.【解答】解:由a+b+c=0,则b2+c2﹣a2=﹣2bc,a2+b2﹣c2=﹣2ab,a2+c2﹣b2=﹣2ac,代入,=++,=,=0.故选:C.3.如果0<p<15,那么代数式|x﹣p|+|x﹣15|+|x﹣p﹣15|在p≤x≤15的最小值是()A.30B.0C.15D.一个与p有关的代数式【分析】根据x、p的取值范围,根据所给代数式,简化原式,再把x的最大值15代入计算即可.【解答】解:∵p≤x≤15,∴x﹣p≥0,x﹣15≤0,x﹣p﹣15≤0,∴|x﹣p|+|x﹣15|+|x﹣p﹣15|=x﹣p+(15﹣x)+(﹣x+p+15)=x﹣p+15﹣x﹣x+p+15=﹣x+30,又∵p≤x≤15,∴x最大可取15,即x=15,∴﹣x+30=﹣15+30=15.故选:C.4.由1,2,3,4这四个数字组成四位数(数字可重复使用),要求满足a+c=b+d.这样的四位数共有()A.36个B.40个C.44个D.48个【分析】由题意可知这样的四位数可分别从使用的不同数字的个数分类考虑:(1)只用1个数字,(2)使用2个不同的数字,(3)使用3个不同的数字,(4)使用4个不同的数字,然后分别分析求解即可求得答案.【解答】解:根据使用的不同数字的个数分类考虑:(1)只用1个数字,组成的四位数可以是1111,2222,3333,4444,共有4个.(2)使用2个不同的数字,使用的数字有6种可能(1、2,1、3,1、4,2、3,2、4,3、4).如果使用的数字是1、2,组成的四位数可以是1122,1221,2112,2211,共有4个;同样地,如果使用的数字是另外5种情况,组成的四位数也各有4个.因此,这样的四位数共有6×4=24个.(3)使用3个不同的数字,只能是1、2、2、3或2、3、3、4,组成的四位数可以是1232,2123,2321,3212,2343,3234,3432,4323,共有8个.(4)使用4个不同的数字1,2,3,4,组成的四位数可以是1243,1342,2134,2431,3124,3421,4213,4312,共有8个.因此,满足要求的四位数共有4+24+8+8=44个.故选:C.5.在2014,2015,2016,2017四个数中,不能表示为两个整数的平方差的数是()A.2014B.2015C.2016D.2017【分析】根据平方差公式将各数变形后判断即可.【解答】解:如果一个数可以表示成两个正整数的平方差,记为x=a2﹣b2=(a+b)(a ﹣b),则x可以分解为a+b,a﹣b的积,且注意到这两个因子差2b,即同奇同偶,所以大于1的奇数可以分解为两个奇数之积(1和他自身),必可以写成两数平方之差(可以反求出来);而一个偶数必须要写成两个偶数之积,则必能被4整除才行,所以四个数中,只有2014不能写成两整数之平方差,故选:A.6.10个全等的小正方形拼成如图所示的图形,点P、X、Y是小正方形的顶点,Q是边XY 一点.若线段PQ恰好将这个图形分成面积相等的两个部分,则的值为()A.B.C.D.【分析】首先设QY=x,根据题意得到PQ下面的部分的面积为:S△+S正方形=×5×(1+x)+1=5,解方程即可求得QY的长,即可解决问题.【解答】解:设QY=x,根据题意得到PQ下面的部分的面积为:S△+S正方形=×5×(1+x)+1=5,解得x=,∴XQ=1﹣=,∴==,故选:B.二.填空题(每题5分,共计30分)7.关于x的不等式组恰好只有三个整数解,则a的取值范围是【分析】首先确定不等式组的解集,根据整数解的个数确定有哪些整数解,根据解的情况得到关于a的不等式组,从而求出a的范围.【解答】解:解不等式组得,,∴不等式组的解集是﹣a<x≤a,∵关于x的不等式组恰好只有三个整数解,∴必定有整数解0,∵|﹣a|>|a|,∴三个整数解不可能是0,1,2.若三个整数解为﹣1,0,1,则,解得≤a≤;若三个整数解为﹣2,﹣1,0,则,此不等式组无解,所以a的取值范围是≤a≤.故答案为≤a≤.8.已知,,,则代数式a2+b2+c2﹣ab﹣bc ﹣ac的值为3.【分析】把已知的式子化成[(a﹣b)2+(a﹣c)2+(b﹣c)2]的形式,然后代入求解.【解答】解:∵,,,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a2﹣2ab+b2)+(a2﹣2ac+c2)+(b2﹣2bc+c2)]=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=×[1+4+1]=3,故答案为:3.9.已知x、y为正整数,且满足2x2+3y2=4x2y2+1,则x2+y2=2.【分析】根据完全平方公式和非负性解答即可.【解答】解:由题意得:(2x2﹣1)(y2﹣1)+2y2(x2﹣1)=0,因为x≥1,y≥1,所以y2﹣1=0,x2﹣1=0,∴y=1,x=1,∴x2+y2=2,故答案为:2.10.使代数式的值为整数的全体自然数x的和是22.【分析】将原式分解为x﹣1+,得到使得原式的值为整数的自然数分别为0、1、2、3、5、11,求的其和即可.【解答】解:∵原式==x﹣1+,∴使得代数式的值为整数的全体自然数x分别为0、1、2、3、5、11,∴全体自然数x的和是0+1+2+3+5+11=22.故答案为22.11.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x1,第二个三角形数记为x2…,第n个三角形数记为x n,则x10=55;x n+x n+1=(n+1)2.【分析】根据三角形数得到x1=1,x2=3=1+2,x3=6=1+2+3,x4=10=1+2+3+4,x5=15=1+2+3+4+5,即三角形数为从1到它的顺号数之间所有整数的和,据此求解可得.【解答】解:∵x1=1,x2═3=1+2,x3=6=1+2+3,x4═10=1+2+3+4,x5═15=1+2+3+4+5,…∴x10=1+2+3+4+5+6+7+8+9+10=55,x n=1+2+3+…+n=,x n+1=,则x n+x n+1=+=(n+1)2,故答案为:55、(n+1)2.12.已知S=,则S的整数部分是60.【分析】由已知可得,<S<,则可确定60<S<60,即可求解.【解答】解:S=>=60,S=<=60,∴60<S<60,∴S的整数部分是60,故答案为:60.三.解答题(第13题20分,其余每题14分,共计90分)13.(20分)(1)证明:1999×2000×2001×2003×2004×2005+36是一个完全平方数;(2)证明:98n+4﹣78n+4能被8整除(n为正整数).【分析】(1)设a=2002,将原式转化为[a(a﹣7)]2的形式,此题得证;(2)先将原式分解成[(92n+1)2+(72n+1)2](92n+1+72n+1)(92n+1﹣72n+1),在判断出(92n+1)2+(72n+1)2,92n+1+72n+1,92n+1﹣72n+1都是偶数,即可得出结论.【解答】(1)证明:设a=2002,原式=(a﹣3)(a﹣2)(a﹣1)(a+1)(a+2)(a+3)+36=(a2﹣1)(a2﹣4)(a2﹣9)+36=a6﹣(1+4+9)a4+(4+9+36)a2﹣36+36=a6﹣14a4+49a2=a2(a4﹣14a2+49)=a2•(a﹣7)2=[a(a﹣7)]2.故1999×2000×2001×2003×2004×2005+36=[2002(2002﹣7)]2=(2002×1995)2,即1999×2000×2001×2003×2004×2005+36是一个完全平方数;(2)证明:98n+4﹣78n+4=(92n+1)4﹣(72n+1)4=[(92n+1)2+(72n+1)2][(92n+1)2﹣(72n+1)2]=[(92n+1)2+(72n+1)2](92n+1+72n+1)(92n+1﹣72n+1),∵n为正整数,∴(92n+1)2+(72n+1)2,92n+1+72n+1,92n+1﹣72n+1都是偶数,∴[(92n+1)2+(72n+1)2](92n+1+72n+1)(92n+1﹣72n+1)能被8整除,即98n+4﹣78n+4能被8整除.14.(14分)已知实数a、b、c,满足abc≠0且(a﹣c)2﹣4(b﹣c)(a﹣b)=0,求的值.【分析】先将(a﹣c)2﹣4(b﹣c)(a﹣b)=0,按照完全平方公式和多项式乘法的运算法则展开化简,再利用三项的完全平方公式变形,从而利用偶次方的非负性得出a+c 与b的数量关系,则的值可得.【解答】解:∵(a﹣c)2﹣4(b﹣c)(a﹣b)=0,∴a2﹣2ac+c2﹣4ab+4b2+4ac﹣4bc=0,∴a2+c2+4b2+2ac﹣4ab﹣4bc=0,∴(a+c﹣2b)2=0,∴a+c=2b,∵abc≠0,∴=2.∴的值为2.15.(14分)对非负实数x“四舍五入”到个位的值记为[x],即当n为非负整数时,若n﹣≤x<n+,则[x]=n.如:[2.9]=3,[2.4]=2,[x]=n,求满足[x]=x﹣2的所有实数x 的值.【分析】设,用m的代数式表示x,再根据“若,则[x]=n“,可以列出关于m的不等式,求出m的范围,再代回求出x.【解答】解:设是非负整数,,∴,∴,解得,4<m⩽8,∵m是非负整数,∴m=5,6,7,8,当m=5 时,得,当m=6 时,得x=6,当m=7 时,得,当m=8 时,得,即满足的所有实数x的值是,.16.(14分)有n个连续的自然数1,2,3,…,n,若去掉其中的一个数x后,剩下的数的平均数是16,则满足条件的n和x的值分别是n=30,x=1;n=31,x=16;n=32,x =32.(参考公式:S n=1+2+3+…+n=)【分析】根据已知得n个连续的自然数的和为.再根据两种特殊情况,即x=n;x=1;求得剩下的数的平均数的公式,从而得出1<x<n时,剩下的数的平均数的范围,则n有3种情况,分别计算即可.【解答】解:由已知,n个连续的自然数的和为.若x=n,剩下的数的平均数是;若x=1,剩下的数的平均数是,故,解得30≤n≤32当n=30时,29×16=﹣x,解得x=1;当n=31时,30×16=﹣x,解得x=16;当n=32时,31×16=﹣x,解得x=32.故答案为:n=30,x=1;n=31,x=16;n=32,x=32.17.(14分)设a+b+c=6,a2+b2+c2=14,a3+b3+c3=36.求(1)abc的值;(2)a4+b4+c4的值.【分析】(1)由已知得出(a+b+c)2=36,再由(a+b+c)(a2+b2+c2﹣ab﹣bc﹣ac)=a3+b3+c3﹣3abc,将已知条件代入即可解出abc=6;(2)由(ab+bc+ac)2=a2b2+b2c2+a2c2+2(a2bc+ab2c+abc2),将已知条件及(1)中推得的式子代入,即可求出a2b2+b2c2+a2c2的值,由(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2),即可解出答案.【解答】解:(1)∵a+b+c=6∴(a+b+c)2=36∴a2+b2+c2+2(ab+bc+ac)=36∵a2+b2+c2=14∴ab+bc+ac=11∵a3+b3+c3=36∴(a+b+c)(a2+b2+c2﹣ab﹣bc﹣ac)=a3+b3+c3﹣3abc=6×(14﹣11)=18∴36﹣3abc=18∴abc=6.(2)∵(ab+bc+ac)2=a2b2+b2c2+a2c2+2(a2bc+ab2c+abc2)∴121=a2b2+b2c2+a2c2+12(a+b+c)∴a2b2+b2c2+a2c2=121﹣12×6=49∴(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)∴a4+b4+c4=142﹣2×49=98∴a4+b4+c4的值为98.18.(14分)如图1,已知a∥b,点A、B在直线a上,点C、D在直线b上,且AD⊥BC 于E.(1)求证:∠ABC+∠ADC=90°;(2)如图2,BF平分∠ABC交AD于点F,DG平分∠ADC交BC于点G,求∠AFB+∠CGD的度数;(3)如图3,P为线段AB上一点,I为线段BC上一点,连接PI,N为∠IPB的角平分线上一点,且∠NCD=∠BCN,则∠CIP、∠IPN、∠CNP之间的数量关系是3∠CNP =∠CIP+∠IPN或3∠IPN=∠CIP+∠CNP.【分析】(1)如图1中,过E作EF∥a.利用平行线的性质即可解决问题.(2)如图2中,作FM∥a,GN∥b,设∠ABF=∠EBF=x,∠ADG=∠CDG=y,可得x+y=45°,证明∠AFB=180°﹣(2y+x),∠CGD=180°﹣(2x+y),推出∠AFB+∠CGD=360°﹣(3x+3y)即可解决问题.(3)分两种情形分别画出图形求解即可.【解答】(1)证明:如图1中,过E作EF∥a.∵a∥b,∴a∥b∥EF,∵AD⊥BC,∴∠BED=90°,∵EF∥a,∴∠ABE=∠BEF,∵EF∥b,∴∠ADC=∠DEF,∴∠ABC+∠ADC=∠BED=90°.(2)解:如图2中,作FM∥a,GN∥b,设∠ABF=∠EBF=x,∠ADG=∠CDG=y,由(1)知:2x+2y=90°,x+y=45°,∵FM∥a∥b,∴∠BFD=2y+x,∴∠AFB=180°﹣(2y+x),同理:∠CGD=180°﹣(2x+y),∴∠AFB+∠CGD=360°﹣(3x+3y),=360°﹣3×45°=225°.(3)如图,设PN交CD于E.当点N在∠DCB内部时,∵∠CIP=∠PBC+∠IPB,∴∠CIP+∠IPN=∠PBC+∠BPN+2∠IPE,∵PN平分∠EPB,∴∠EPB=∠EPI,∵AB∥CD,∴∠NPE=∠CEN,∠ABC=∠BCE,∵∠NCE=∠BCN,∴∠CIP+∠IPN=3∠PEC+3∠NCE=3(∠NCE+∠NEC)=3∠CNP.当点N′在直线CD的下方时,同法可知:∠CIP+∠CNP=3∠IPN,综上所述:3∠CNP=∠CIP+∠IPN或3∠IPN=∠CIP+∠CNP.故答案为:3∠CNP=∠CIP+∠IPN或3∠IPN=∠CIP+∠CNP.。
2016年全国初中数学联赛试题及答案
2016年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.用[]x 表示不超过x 的最大整数,把[]x x -称为x 的小数部分.已知t =,a 是t 的小数部分,b 是t -的小数部分,则112b a -= ( )A.12. . C.1. 【答】A.∵2t ==+324<+,∴31a t =-=.又∵2t -=-423-<-<-,∴(4)2b t =---=∴11122b a -===. 2.三种图书的单价分别为10元、15元和20元,某学校计划恰好用500元购买上述图书30本,那么不同的购书方案共有 ( )A .9种.B .10种.C .11种.D .12种.【答】C.设购买三种图书的数量分别为,,a b c ,则30a b c ++=,101520500a b c ++=,易得202b a =-,10c a =+,于是a 有11种可能的取值(分别为0,1,2,3,4,5,6,7,8,9,10).对于每一个a 值,对应地可求出唯一的b 和c , 所以,不同的购书方案共有11种.3.如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”。
如: 3321(1)=--,332631=-,2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为 ( )A .6858.B .6860.C .9260.D .9262.【答】B.注意到332(21)(21)2(121)k k k +--=+,由22(121)2016k +≤得||10k <.取k =0,1,2,3,4,5,6,7,8,9,即得所有的不超过2016的“和谐数”,它们的和为 333333333[1(1)](31)(56)(1917)1916860--+-+-++-=+= .4.已知⊙O 的半径OD 垂直于弦AB ,交AB 于点C ,连接AO 并延长交⊙O 于点E ,若AB =8,CD =2,则△BCE 的面积为 ( )A.12.B.15.C.16.D.18.【答】A.设OC x =,则OA =OD 2x =+,在Rt △OAC 中,由勾股定理得222OC AC OA +=,即2224(2)x x +=+,解得3x =.又OC 为△ABE 的中位线,所以26BE OC ==. 所以直角△BCE 的面积为1122CB BE ⋅=. 5.如图,在四边形ABCD 中,90BAC BDC ∠=∠=︒,AB AC ==1CD =,对角线的交点为M ,则DM = ( )... D.12. 【答】D.作AH BD ⊥于点H ,易知△AMH ∽△CMD ,所以AH AM CD CM=,又1CD =,所以 AM AH CM= ① 设AM x =,则CM x =.在Rt △ABM中,可得AB AM AH BM ⋅==.=,解得x =x =舍去).所以2CM =,12DM ==. 6.设实数,,x y z 满足1x y z ++=,则23M xy yz xz =++的最大值为 ( ) A.12. B. 23. C.34. D. 1. 【答】C.23(23)(1)M xy yz xz xy y x x y =++=++--2234232x xy y x y =---++22221112[2()()]332()222y x y x x x x =-+-+--++-22112()22y x x x =-+--++ 2211332()()2244y x x =-+---+≤, 所以23M xy yz xz =++的最大值为34. 二、填空题:(本题满分28分,每小题7分)B C1.已知△ABC 的顶点A 、C在反比例函数0)y x x=>的图象上,90ACB ∠=︒,ABC ∠=30°,AB ⊥x 轴,点B 在点A 的上方,且AB =6,则点C 的坐标为_______.【答】2). 作CD AB ⊥于点D,易求得CD =,32AD =.设(C m,(A n ,结合题意可知0n m >>,(D n m,所以CD n m =-,AD m n =-,故2n m -=,32m n -=,联立解得2m =,n =所以,点C的坐标为(2)2. 2.在四边形ABCD 中,//BC AD ,CA 平分BCD ∠,O 为对角线的交点,CD AO =,BC OD =,则ABC ∠= .【答】126︒.因为//BC AD ,CA 平分BCD ∠,所以DAC ACB ACD ∠=∠=∠,所以DA DC =,又CD AO =,所以AD AO =,所以ADO AOD ∠=∠.记DAC ACB ACD ∠=∠=∠=α,ADO AOD β∠=∠=. 又//BC AD ,所以△ADO ∽△CBO ,结合AD AO =可得OC BC =,且CBO COB β∠=∠=. 又BC OD =,所以OC OD =,所以ODC OCD α∠=∠=.结合图形可得:2βα=且2180αβ+=︒,解得36α=︒,72β=︒.所以72DBC DCB ∠=∠=︒,所以BD CD AD ==,所以54DAB DBA ∠=∠=︒,于是可得126ABC ABD DBC ∠=∠+∠=︒.3.有位学生忘记写两个三位数间的乘号,得到一个六位数.这个六位数恰好为原来两个三位数的乘积的3倍,这个六位数是 .【答】167334.设两个三位数分别为x 和y ,由题设知10003x y xy += ①由①式得31000(31000)y xy x y x =-=-,故y 是x 的整数倍,不妨设y tx =(t 为正整数),代入①式得10003t tx +=,所以10003t x t +=.因为x 是三位数,所以10001003t x t+=≥,从而可得1000299t ≤,又t 为正整数,故t 的可能的取值只能是1,2,3.验证可知:只有t =2符合题意.所以t =2,167x =,334y =,所求的六位数为167334.4.将5个1、5个2、5个3、5个4、5个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一列中任何两数之差的绝对值不超过2.考虑每列中各数之和,设这5个和的最小值为M ,则M 的最大值为 .【答】10.依据5个1分布的列数的不同情形分别求M 的最大值.若5个1分布在同一列,则M =5;若5个1分布在两列中,则由题设知这两列中出现的最大数至多为3,故2515320M ≤⨯+⨯=,所以10M ≤;若5个1分布在三列中,则由题设知这三列中出现的最大数至多为3,故351525330M ≤⨯+⨯+⨯=,所以10M ≤; 若5个1分布在至少四列中,则其中某一列至少有一个数大于3,与题设矛盾. 综上所述,10M ≤; 另一方面,右边给出的例子说明M 可以取到10.故M 的最大值为10.第一试(B)一、选择题:(本题满分42分,每小题7分)1.题目和解答与(A )卷第1题相同.2.题目和解答与(A )卷第2题相同.3.已知二次函数21(0)y ax bx a =++≠的图象的顶点在第二象限,且过点(1,0).当a b -为整数时, ab = ( )A .0.B .14. C .34-. D .2-. 【答】B.由于二次函数21(0)y ax bx a =++≠的图象的顶点在第二象限,且过点(1,0)和(0,1),故0a <,02b a-<,10a b ++=,所以0b <且1b a =--,于是可得10a -<<. 当21a b a -=+为整数时,因为1211a -<+<,所以210a +=,故12a =-,12b =-,所以14ab =. 4.题目和解答与(A )卷第4题相同.5.题目和解答与(A )卷第5题相同.6. 题目和解答与(A )卷第6题相同.二、填空题:(本题满分28分,每小题7分)1.已知△ABC 的最大边BC 上的高线AD 和中线AM 恰好把BAC ∠三等分,AD =则AM =_______.【答】2.显然ABC ACB ∠≠∠.若ABC ACB ∠>∠,则由已知条件易知△ADM ≌△ADB ,所以BD =DM 12CM =.又因为AM 平分DAC ∠,所以,由角平分线定理可得12AD DM AC CM ==,即1cos 2DAC ∠=,所以DAC ∠=60︒,进而可得90BAC ∠=︒,30ACD ∠=︒.在Rt △ADC中,AD =30ACD ∠=︒,可求得3CD =,所以1DM =.在Rt △ADM中,由勾股定理得2AM ==.若ABC ACB ∠<∠,同理可求得2AM =.2.题目和解答与(A )卷第1题相同.3.若质数,p q 满足:340q p --=,111p q +<.则pq 的最大值为 .【答】1007.由340q p --=得34p q =-,所以(34)pq q q =-,显然(34)q q -的值随着质数q 的增大而增大,当且仅当q 取得最大值时pq 取得最大值.又因为111p q +<,即p q +=44q -111<,所以29q <.因为q 为质数,所以q 的可能的取值为23,19,17,13,11,7,5,3,2.当q =23时,34p q =-=65,不是质数;当q =19时,34p q =-=53,是质数.所以,q 的最大值为19,pq 的最大值为53×19=1007.4. 题目和解答与(A )卷第3题相同.第二试 (A )一、(本题满分20分)已知,a b 为正整数,求22324M a ab b =---能取到的最小正整数值. 解 因为,a b 为正整数,要使得22324M a ab b =---的值为正整数,显然有2a ≥.当2a =时,b 只能为1,此时4M =,故22324M a ab b =---能取到的最小正整数值不超过4.………………5分当3a =时,b 只能为1或2.若b =1,则M =18;若b =2,则M =7.当4a =时,b 只能为1或2或3.若b =1,则M =38;若b =2,则M =24;若b =3,则M =2.………………10分下面考虑: 22324M a ab b =---的值能否为1?若1M =,即223241a ab b ---=,即22325a ab b -=+ ①,注意到25b +为奇数,所以a 是奇数, b 是偶数,此时,223a ab -被4除所得余数为3,25b +被4除所得余数为1,故①式不可能成立,即1M ≠.因此,22324M a ab b =---能取到的最小正整数值为2. ……………………20分二、(本题满分25分)如图,点C 在以AB 为直径的⊙O 上,CD AB ⊥于点D ,点E 在BD 上,AE AC =,四边形DEFM 是正方形,AM 的延长线与⊙O 交于点N .证明:FN DE =.证明 连接BC 、BN .∵AB 为⊙O 的直径,CD AB ⊥,∴90ACB ANB ADC ∠=∠=∠=︒.∵CAB DAC ∠=∠,ACB ADC ∠=∠,∴△ACB ∽△ADC , ∴AC AB AD AC=,∴2AC AD AB =⋅. ……………………5分 又由DEFM 为正方形及CD AB ⊥可知:点M 在CD 上,B ADE DM EF MF ===.∵NAB DAM ∠=∠,ANB ADM ∠=∠,∴△ANB ∽△ADM ,∴AN AB AD AM =, ∴AD AB AM AN ⋅=⋅.∴2AC AM AN =⋅,又AE AC =,∴2AE AM AN =⋅.……………………15分 以F 为圆心、FE 为半径作⊙F ,与直线AM 交于另一点P ,显然:⊙F 与AB 切于点E .于是,由切割线定理可得2AE AM AP =⋅.∴AN AP =,∴点N 即为点P ,∴点N 在⊙F 上,∴FN FE DE ==.……………………25分三、(本题满分25分)已知正实数,,x y z 满足:1xy yz zx ++≠且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++=. (1)求111xy yz zx++的值. (2)证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.解 (1)由等式222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++=得 222222(1)(1)(1)(1)(1)(1)4z x y x y z y z x xyz --+--+--=,展开整理得222222222222[()()()]()4x y z x yz xy z x y z y z x z x y x y z xyz ++-++++++++=, 即()()()()0xyz xy yz xz x y z xy yz xz x y z xyz ++-+++++++-=,所以[()](1)0xyz x y z xy yz xz -++++-=. ……………………10分 又因为1xy yz zx ++≠,所以()0xyz x y z -++=,所以xyz x y z =++,因此,1111xy yz zx++=. ……………………15分(2)因为,,x y z 为正数,所以9()()()8()x y y z z x xyz xy yz zx +++-++=9()()()8()()x y y z z x x y z xy yz zx +++-++++ =2222226x y xy x z xz y z yz xyz +++++-=222()()()0x y z y z x z x y -+-+-≥,所以9()()()8()x y y z z x xyz xy yz zx +++≥++.……………………25分第二试 (B )一、(本题满分20分)题目和解答与(A )卷第一题相同.二、(本题满分25分)已知:5a b c ++=,22215a b c ++=,33347a b c ++=.求222222()()()a ab b b bc c c ca a ++++++的值.解 因为5a b c ++=,22215a b c ++=,所以22222()()()10ab bc ac a b c a b c ++=++-++=,所以5ab bc ac ++=. ……………………5分 结合恒等式3332223()()a b c abc a b c a b c ab bc ac ++-=++++---,可得4735(155)abc -=- 50=,所以1abc =-. ……………………10分 而22()()()a ab b a b a b c ab bc ac ++=+++-++5(5)55(4)c c =--=-. ……………15分 同理可得225(4)b bc c a ++=-,225(4)c ca a b ++=-,所以 222222()()()125(4)(4)(4)a ab b b bc c c ca a a b c ++++++=---125[6416545(1)]=-⨯+⨯--625=. ……………………25分三、(本题满分25分)如图,在等腰△ABC中,AB AC ==D 为BC 边上异于中点的点,点C 关于直线AD 的对称点为点E ,EB 的延长线与AD 的延长线交于点F ,求AD AF ⋅的值. 解 连接AE 、ED 、CF ,由题设条件可知ABC ACB AED ∠=∠=∠,所以A 、E 、B 、D 四点共圆,于是可得BED BAD ∠=∠.……………………10分又因为点C 和点E 关于直线AD 对称,所以BED BCF ∠=∠.……………………15分因此BAD BCF ∠=∠,所以A 、B 、F 、C 四点共圆,又AB AC =,所以ABD ACB AFB ∠=∠=∠, ……………………20分所以△ABD ∽△AFB ,所以AB AD AF AB =,所以25AD AF AB ⋅==. ……………………25分E C。
七年级下数学竞赛考试(含答案)
七年级下数学竞赛考试(含答案)————————————————————————————————作者:————————————————————————————————日期:姓名___________ 考号___________ 班别___________ 校名_____________………………………… 密 ………… 封 ………… 线 ………… 内 ………第二学期校际联考七年级数学试卷题次 一 二 16 17 18 19 20 21 22 23 24 25 总分 得分说明:本卷共8页,25题,总分120分,考试时间共120分钟。
温馨提示:亲爱的同学们,请相信自己,仔细审题,沉着作答,就一定能考出好成绩,祝你成功!一、精心选一选:(每小题给出四个供选答案,其中只有一个是正确的,把正确的答案代号填放下表相应题号下的空格内。
每小题3分,共30分。
) 题号 1 2 3 4 5 6 7 8 9 10 答案1.下列计算正确的是( )A .4416x x x •=B .235()x x x -•-=C .2222a a a •=D .235a a a +=2.已知∠A+∠B=1800,∠A 与∠C 互补,则∠B 与∠C 的关系是( ) A .相等 B .互补 C .互余 D .不能确定 3.用科学计数法表示近似数0.0515的正确的是( )A .15.1510-⨯B . 25.1510-⨯C .10.51510-⨯D . -25.210⨯ 4.下列说法正确的是( )A .0不是单项式B .ba是单项式 C .11x-多项式 D .单项式32x y π-的次数是3,系数是3π-5.如下图所示,已知AB ∥CD ∥EF ,且CG ∥AF ,则图中与∠BAF 相等的角的个数是( )A .7个B .3个C .4个D .9个6.用长分别为10cm ,30cm ,40cm ,50cm 的四段线段,任取其中三段线段可以构成不同的三角形有( )个A B C D E G FA .0B .1C .2D .37.已知等腰三角形的一个外角为1100,则它的一个底角等于( )A .550B .700C .550 或700D .不能确定 8.已知下列条件,不能唯一画出一个三角形的是( )A .AB=5cm ,∠A=700,∠B=500B .AB=5cm ,∠A=700,∠C=500C .AB=5cm ,AC=4 cm ,∠C=500D .AB=5cm ,AC=4 cm ,∠A=500 9.已知554433222,3,5,6a b c d ====,那么,,,a b c d 从小到大的顺序是( ) A .a <b <c <d B .a <b <d <c C .b <a <c <d D .a <d <b <c 10.计算:(2-1)(2+1)(22+1)(23+1)(24+1)……(232+1)+1结果的个位数是( ) A .2 B .4 C .6 D .7 二、耐心填一填:(把答案填放下表相应的空格里。
数学竞赛试题初一及答案
数学竞赛试题初一及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列哪个选项的结果等于10?A. 3 + 7B. 4 × 2C. 5 - 3D. 6 ÷ 2答案:A3. 如果一个数的平方等于9,那么这个数是:A. 3B. -3C. 3或-3D. 以上都不是答案:C4. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是多少平方厘米?A. 20B. 30C. 50D. 60答案:C5. 一个数加上它的相反数等于:A. 0B. 1C. 2D. 无法确定答案:A6. 下列哪个分数是最简分数?A. 6/8B. 9/12C. 5/10D. 7/14答案:D7. 一个圆的直径是14厘米,那么它的半径是多少厘米?A. 7B. 14C. 28D. 无法确定答案:A8. 如果一个三角形的两个内角分别是40度和60度,那么第三个内角是多少度?A. 40B. 60C. 80D. 无法确定答案:C9. 一个数的立方等于8,那么这个数是:A. 2B. -2C. 2或-2D. 以上都不是答案:A10. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是答案:C二、填空题(每题4分,共20分)11. 一个数的平方根是4,那么这个数是______。
答案:1612. 如果一个数的一半是10,那么这个数是______。
答案:2013. 一个数的倒数是2,那么这个数是______。
答案:1/214. 一个数的立方等于27,那么这个数是______。
答案:315. 一个数的绝对值是3,那么这个数可能是______或______。
答案:3或-3三、解答题(每题10分,共50分)16. 计算下列表达式的值:(3x - 2) + (4x + 5),其中x = 2。
答案:首先将x的值代入表达式,得到(3×2 - 2) + (4×2 + 5) = 6 + 8 + 5 = 19。
2016年元旦竞赛七年级数学试题及答案
A. B. C. D.
6.已知关于x的方程2x - m - 5 = 0的解是x= -2,则m的值为( )
A. 9 B. -9 C. 1 D. -1
7.如果单项式 与 是同类项,那么a,b的值分别为( )
A.a=2,b=3 B. a=1,b=2 C. a=1,b=3 D. a=2,b=2
8.若A= ,B= ,则2A-B的结果是()
A. B. C. D.
9.下列方程变形正确的是()
A.将方程 移项,得
B.将方程 去括号,得
C.将方程 去分母,得
D.将方程 化系数为1,得
10.某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标价为()
A.26元B. 27元C. 28元D. 29元
25.解:(1)设一个水杯x元,则一个暖瓶(35-x)元,根据题意,得3x+2(35-x)=75.解这个方程得:x=5,35-x=30。
即一个水杯5元,一个暖瓶30元。…………………………6分
(2)设购买y个水杯时,两家的花费一样。
若到甲商场购买,所需的钱数为(4×30+5y)×90%=108+4.5y;
将 代入
原式=2+4=6…………………………….6分
(2)解:原式=
=
= ……………………………..4分
由 ,
得a+1=0,且b-2=0.
即a= - 1,b=2;
所以,原式=
=4+16
=20…………………………………..6分
23.解下列方程(第1题8分,第2题10分,共18分)
(1)解:去分母,得
…………………………...2分
中学16—17学年下学期七年级学科竞赛数学试题(3)(附答案)
初一数学竞赛试题一.选择题(共12小题)1.下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44°D.41.25°=41°15′2.用一副三角板(两块)画角,不可能画出的角的度数是()A.15°B.55°C.75°D.135°3.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β与∠γ的关系式为()A.∠β﹣∠γ=90° B.∠β+∠γ=90°C.∠β+∠γ=80°D.∠β﹣∠γ=180°4.如果∠1与∠2互为补角,∠1>∠2,那么∠2的余角等于()A.(∠1+∠2)B.∠1 C.(∠1﹣∠2)D.∠1﹣∠25.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°6.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于()A.120°B.110°C.100°D.80°7.如图:∠1和∠2是同位角的是()A.②③ B.①②③C.①②④D.①④8.下列说法中正确的个数为()①不相交的两条直线叫做平行线②平面内,过一点有且只有一条直线与已知直线垂直③平行于同一条直线的两条直线互相平行④在同一平面内,两条直线不是平行就是相交A.1个B.2个C.3个D.4个9.己知﹣2x n﹣3m y3与3x7y m+n是同类项,则m n的值是()A.4 B.1 C.﹣4 D.﹣110.二元一次方程组的解是()A.B.C.D.11.甲、乙两人分别从相距40千米的两地同时出发,若同向而行,则5小时后,快者追上慢者;若相向而行,则2小时后,两人相遇,那么快者速度和慢者速度(单位:千米/小时)分别是()A.14和6 B.24和16 C.28和12 D.30和1012.三个二元一次方程2x+5y﹣6=0,3x﹣2y﹣9=0,y=kx﹣9有公共解的条件是k=()A.4 B.3 C.2 D.1二.填空题(共6小题)13.求上午10时30分,钟面上时针和分针的夹角=度.14.写出一个解为的二元一次方程组是.15.如图,∵∠1=∠2,∴∥,理由是.16.若a x=3,a y=5,则a3x+2y=.17.若AB∥CD,AB∥EF,则CD EF,其理由是.18.已知是二元一次方程组的解,则m+3n=.三.解答题(共6小题)19.解下列方程组:(1)(2)(3).20.如图,点A、O、E在同一直线上,∠AOB=40°,∠COD=28°,OD平分∠COE.(1)求∠COB的度数(2)求∠AOD的度数.21.如图,已知∠1+∠2=180°,∠3=∠B,∠4=60°,求∠ACB的度数.22.列方程或方程组解应用题:2011年4月10日,以“休闲延庆踏青赏花”为主题的第十届延庆杏花节开幕,(1)2000年“杏花节”期间旅游收入为1.01万元,2005年“杏花节”期间旅游收入为35.2万元,求“杏花节”期间,2005年的旅游收入比2000年增加了几倍?(结果精确到整数)(2)“杏花节”期间,2009年旅游收入与2010年的旅游收入的总和是153.99万元,且2010年的旅游收入是2009年的3倍少0.25万元,问2010年“杏花节”期间的旅游收入是否突破了百万元大关?23.如图,直线AB,CD相交于点O,OA平分∠EOC,且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2,点F在OC上,直线GH经过点F,FM平分∠OFG,且∠MFH﹣∠BOD=90°,求证:OE∥GH.24.如图(1),AB∥CD,猜想∠BPD与∠B、∠D的关系,说明理由.(提示:三角形的内角和等于180°)①填空或填写理由解:猜想∠BPD+∠B+∠D=360°理由:过点P作EF∥AB,∴∠B+∠BPE=180°∵AB∥CD,EF∥AB,∴∥,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)∴∠EPD+=180°∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°②依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.③观察图(3)和(4),已知AB∥CD,直接写出图中的∠BPD与∠B、∠D的关系,不说明理由.初一数学竞赛试题参考答案与试题解析一.选择题(共12小题)1.(2016•朝阳区校级模拟)下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44°D.41.25°=41°15′【分析】进行度、分、秒的加法、减法计算,注意以60为进制.【解答】解:A、83.5°=83°50′,错误;B、37°12′36″=37.48°,错误;C、24°24′24″=24.44°,错误;D、41.25°=41°15′,正确.故选D.【点评】此类题是进行度、分、秒的加法、减法计算,相对比较简单,注意以60为进制即可.2.(2016秋•扶风县期末)用一副三角板(两块)画角,不可能画出的角的度数是()A.15°B.55°C.75°D.135°【分析】解答此题的关键是分清两块三角板的锐角度数的度数分别是多少,然后对应着4个选项再进行组合,看看可能画出的角的度数是多少即可.【解答】解:两块三角板的锐角度数分别为:30°,60°;45°,45°用一块三角板的45°角和另一块三角板的30°角组合可画出15°、75°角,用一块三角板的直角和和另一块三角板的45°角组合可画出135°角,无论两块三角板怎么组合也不能画出55°角.故选B.【点评】此题主要考查学生对角的计算这一知识点的理解和掌握,解答此题的关键是分清两块三角板的锐角度数的度数分别是多少,比较简单,属于基础题.3.(2016秋•路北区期末)已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β与∠γ的关系式为()A.∠β﹣∠γ=90° B.∠β+∠γ=90°C.∠β+∠γ=80°D.∠β﹣∠γ=180°【分析】根据补角和余角的定义关系式,然后消去∠α即可.【解答】解:∵∠α与∠β互补,∠α与∠γ互余,∴∠α+∠β=180°,∠α+∠γ=90°.∴∠β﹣∠γ=90°.故选:A.【点评】本题主要考查的是余角和补角的定义,根据余角和补角的定义列出关系式,然后再消去∠α是解题的关键.4.(2016春•冠县期中)如果∠1与∠2互为补角,∠1>∠2,那么∠2的余角等于()A.(∠1+∠2)B.∠1 C.(∠1﹣∠2)D.∠1﹣∠2【分析】依据补角的定义得到∠2(用含∠1的式子表示),然后再依据余角的定义求解即可.【解答】解:∵∠1与∠2互为补角,∴∠1+∠2=180°.∴(∠1+∠2)=90°.∴∠2=180°﹣∠1.∴∠2的余角=90°﹣(180°﹣∠1)=∠1﹣90°=∠1﹣(∠1+∠2)=((∠1﹣∠2).故选:C.【点评】本题主要考查的是余角和补角的定义,掌握余角和补角的定义是解题的关键.5.(2016•咸宁)如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°【分析】先依据平行线的性质可求得∠ABC的度数,然后在直角三角形CBD中可求得∠BCD 的度数.【解答】解:∵l1∥l2,∴∠1=∠ABC=50°.∵CD⊥AB于点D,∴∠CDB=90°.∴∠BCD+∠DBC=90°,即∠BCD+50°=90°.∴∠BCD=40°.故选:C.【点评】本题主要考查的是平行线的性质、垂线的定义、直角三角形两锐角互余的性质,掌握相关知识是解题的关键.6.(2016•重庆)如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于()A.120°B.110°C.100°D.80°【分析】由平行线的性质得出∠1+∠DFE=180°,由对顶角相等求出∠DFE=∠2=80°,即可得出结果.【解答】解:∵AB∥CD,∴∠1+∠DFE=180°,∵∠DFE=∠2=80°,∴∠1=180°﹣80°=100°;故选:C.【点评】本题考查了平行线的性质、对顶角相等的性质;熟记平行线的性质,由对顶角相等求出∠DFE是解决问题的关键.7.(2015秋•成都期末)如图:∠1和∠2是同位角的是()A.②③ B.①②③C.①②④D.①④【分析】同位角的概念,在截线的同侧,并且在被截线的同一方的两个角是同位角,所以①②④符合要求.【解答】解:图①、②、④中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;图③中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选:C.【点评】本题考查了同位角的概念;判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.8.(2015秋•汉中期末)下列说法中正确的个数为()①不相交的两条直线叫做平行线②平面内,过一点有且只有一条直线与已知直线垂直③平行于同一条直线的两条直线互相平行④在同一平面内,两条直线不是平行就是相交A.1个B.2个C.3个D.4个【分析】本题从平行线的定义及平行公理入手,对选项逐一分析即可.【解答】解:①不相交的两条直线叫做平行线必须是在同一个平面内才能成立,故错误.②平面内,过一点有且只有一条直线与已知直线垂直是正确的.③平行于同一条直线的两条直线互相平行,故正确.④在同一平面内,两条直线不是平行就是相交是正确的.故答案为C.【点评】本题考查平行线的定义及平行公理,需熟练掌握.9.(2015春•临沂期末)己知﹣2x n﹣3m y3与3x7y m+n是同类项,则m n的值是()A.4 B.1 C.﹣4 D.﹣1【分析】由同类项的定义可知:n﹣3m=7,m+n=3,然后解关于m、n的二元一次方程组求得m、n的值,然后即可求得m n的值.【解答】解:由同类项的定义可知:,②×3得:3m+3n=9③,③+①得:4n=16.解得:n=4.将n=4代入②得:m=﹣1.所以方程组得解为:.∴m n=(﹣1)4=1.故选:B.【点评】本题主要考查的是二元一次方程组的解法,由同类项的定义列出方程组是解题的关键.10.(2015春•利川市期末)二元一次方程组的解是()A.B.C.D.【分析】运用加减消元法,两式相加消去y,求出x的值,把x的值代入①求出y的值,得到方程组的解.【解答】解:,①+②得:3x=﹣3,即x=﹣1,把x=﹣1代入①得:y=2,则方程组的解为,故选:B.【点评】此题考查了解二元一次方程组,利用了消元的思想,掌握加减消元法的步骤是解题的关键.11.(2015春•连云港期末)甲、乙两人分别从相距40千米的两地同时出发,若同向而行,则5小时后,快者追上慢者;若相向而行,则2小时后,两人相遇,那么快者速度和慢者速度(单位:千米/小时)分别是()A.14和6 B.24和16 C.28和12 D.30和10【分析】根据题意可知,本题中的等量关系是“快者走过的路程减去慢者走过的路程为40千米”和“快者走过的路程加上慢者走过的路程为40千米”,列方程组求解即可.【解答】解:设快者速度和慢者速度分别是x,y,则,解得,故选A.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解;利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.12.(2015春•资中县期末)三个二元一次方程2x+5y﹣6=0,3x﹣2y﹣9=0,y=kx﹣9有公共解的条件是k=()A.4 B.3 C.2 D.1【分析】理解清楚题意,运用三元一次方程组的知识,把三个方程组成方程组再求解.【解答】解:由题意得:,①×3﹣②×2得y=0,代入①得x=3,把x,y代入③,得:3k﹣9=0,解得k=3.故选B.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.二.填空题(共6小题)13.(2016秋•太仓市期末)求上午10时30分,钟面上时针和分针的夹角=135度.【分析】根据钟面平均分成12,可得每份是30°,根据时针与分针相距的份数,可得答案.【解答】解:钟面平均分成12,可得每份是30°,时针只在6上,分针指在10与11的=处,时针与分针相距(4+)份30°×(4+)=135°,故答案为:135.【点评】本题考查了钟面角,每份的度数乘以时针与分针相距的份数是解题关键.14.(2016春•龙海市期中)写出一个解为的二元一次方程组是.【分析】所谓方程组的解,指的是该数值满足方程组中的每一方程.在求解时,应先围绕列一组算式,然后用x,y代换即可列不同的方程组.【解答】解:先围绕列一组算式如﹣1﹣1=﹣2,﹣1+1=0,然后用x,y代换得如等.答案不唯一,符合题意即可.故答案为:.【点评】考查了二元一次方程组的解,此题是开放题,要学生理解方程组的解的定义,围绕解列不同的算式即可列不同的方程组.15.(2016春•灵石县期末)如图,∵∠1=∠2,∴AD∥BC,理由是内错角相等,两直线平行.【分析】根据内错角相等,两直线平行即可求解.【解答】解:如图,∵∠1=∠2,∴AD∥BC,理由是内错角相等,两直线平行.故答案为:内错角相等,两直线平行.【点评】考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.16.(2017春•仪征市校级月考)若a x=3,a y=5,则a3x+2y=675.【分析】逆用同底数幂的乘法和幂的乘方公式进行变形,然后再将已知条件代入计算即可.【解答】解:a3x+2y=a3x•a2y=(a x)3•(a y)2=33×52=675.故答案为:675.【点评】本题主要考查的是同底数幂的乘法、幂的乘方,逆用公式是解题的关键.17.(2014春•东城区期末)若AB∥CD,AB∥EF,则CD∥EF,其理由是平行于同一直线的两直线平行.【分析】根据平行公理及推论即可推出答案.【解答】解:∵AB∥CD,AB∥EF,∴CD∥EF(平行于同一直线的两直线平行),故答案为:∥,平行于同一直线的两直线平行.【点评】本题主要考查对平行公理及推论的理解和掌握,能熟练地运用性质进行推理是解此题的关键.18.(2016春•洪洞县期末)已知是二元一次方程组的解,则m+3n=8.【分析】利用二元一次方程组的解先求出m,n的值,再求m+3n的值.【解答】解:把代入,得解得所以m+3n=+3×=8,故答案为:8.【点评】本题主要考查了二元一次方程组的解,解题的关键是正确求解方程组.三.解答题(共6小题)19.(2016春•诸城市期中)解下列方程组:(1)(2)(3).【分析】(1)先用加减消元法求出x的值,再用代入消元法求出y的值即可.(2)先用加减消元法求出y的值,再用代入消元法求出x的值即可.(3)先用加减消元法求出y的值,再求出z的值,然后用代入消元法求出x的值即可.【解答】解:(1),①×2﹣②得,5x=14,解得x=,把x=代入②得,+4y=24,解得y=,故方程组的解为.(2),把①化简得:2x+3y=30③,③×3﹣②×2得:5y=40,解得:y=8,把y=8代入③得:2x+24=30,解得:x=3,故方程组的解为.(3),①+③得:2y=4,解得:y=2,②+③得:3y+2z=8,把y=2代入得:z=1,把y=2,z=1代入①得:x=3,故方程组的解为.【点评】本题考查的是解二元一次方程组和三元一次方程组;熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.20.(2015秋•端州区期末)如图,点A、O、E在同一直线上,∠AOB=40°,∠COD=28°,OD平分∠COE.(1)求∠COB的度数(2)求∠AOD的度数.【分析】(1)先根据OD平分∠COE得出∠DOE=∠COD,再由∠COD=28°可得出∠DOE=28°,再根据平角的性质即可得出∠COB的度数;(2)根据∠AOD=180°﹣∠DOE即可得出答案.【解答】解:(1)∵OD平分∠COE,∴∠DOE=∠COD,∵∠COD=28°,∴∠DOE=28°,∵∠AOB+∠BOC+∠COD+∠DOE=180°,∴∠BOC=180°﹣(∠AOB+∠COD+∠DOOE),=180°﹣(40°+28°+28°),=84°;(2)∠AOD=180°﹣∠DOE,=180°﹣28°,=152°.【点评】本题考查的是角平分线的定义及补角的性质,解答此题的关键是熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.21.(2017春•黄陂区月考)如图,已知∠1+∠2=180°,∠3=∠B,∠4=60°,求∠ACB的度数.【分析】由已知条件和邻补角得出∠1=∠AEC,证出AB∥DF,得出内错角相等∠AEF=∠3,由已知条件得出∠AEF=∠B,证出EF∥BC,得出同位角相等即可.【解答】解:∵∠1+∠2=180°,∠AEC+∠2=180°,∴∠1=∠AEC,∴AB∥DF,∴∠AEF=∠3,∵∠3=∠B,∴∠AEF=∠B,∴EF∥BC,∴∠ACB=∠4=60°.【点评】本题考查了平行线的判定与性质、邻补角关系;熟练掌握平行线的判定和性质,证明EF∥BC是解决问题的关键.22.(2011•延庆县一模)列方程或方程组解应用题:2011年4月10日,以“休闲延庆踏青赏花”为主题的第十届延庆杏花节开幕,(1)2000年“杏花节”期间旅游收入为1.01万元,2005年“杏花节”期间旅游收入为35.2万元,求“杏花节”期间,2005年的旅游收入比2000年增加了几倍?(结果精确到整数)(2)“杏花节”期间,2009年旅游收入与2010年的旅游收入的总和是153.99万元,且2010年的旅游收入是2009年的3倍少0.25万元,问2010年“杏花节”期间的旅游收入是否突破了百万元大关?【分析】(1)根据2000年与2005年的收入直接求出即可;(2)由2010年的旅游收入是2009年的3倍少0.25万元,假设出未知数列出方程即可.【解答】解:(1)∵2000年“杏花节”期间旅游收入为1.01万元,2005年“杏花节”期间旅游收入为35.2万元,∴2005年的旅游收入比2000年增加了,(35.2﹣1.01)÷1.01≈34(倍);(2)假设2009年的收入为x万元,∴2010年的收入为:3x﹣0.25,∴x+3x﹣0.25=153.99解得:x=38.56万元,∴2010年的收入为:153.99﹣38.56=115.43万元,∴2010年“杏花节”期间的旅游收入突破了百万元大关.【点评】此题主要考查了元一次方程的应用,根据2010年的旅游收入是2009年的3倍少0.25万元,得出等量关系是解决问题的关键.23.(2015秋•南岗区期末)如图,直线AB,CD相交于点O,OA平分∠EOC,且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2,点F在OC上,直线GH经过点F,FM平分∠OFG,且∠MFH﹣∠BOD=90°,求证:OE∥GH.【分析】(1)根据邻补角的定义求出∠EOC,再根据角平分线的定义求出∠AOC,然后根据对顶角相等解答.(2)由已知条件和对顶角相等得出∠MFC=∠MFH=∠BOD+90°=126°,得出∠ONF=90°,求出∠OFM=54°,延长∠OFG=2∠OFM=108°,证出∠OFG+∠EOC=180°,即可得出结论.【解答】解:∵∠EOC:∠EOD=2:3,∴∠EOC=180°×=72°,∵OA平分∠EOC,∴∠AOC=∠EOC=×72°=36°,∴∠BOD=∠AOC=36°.(2)延长FM交AB于N,如图所示:∵∠MFH﹣∠BOD=90°,FM平分∠OFG,∴∠MFC=∠MFH=∠BOD+90°=126°,∴∠ONF=126°﹣36°=90°,∴∠OFM=90°﹣36°=54°,∴∠OFG=2∠OFM=108°,∴∠OFG+∠EOC=180°,∴OE∥GH.【点评】本题考查了平行线的判定、角平分线定义、角的互余关系等知识;熟练掌握平行线的判定、角平分线定义是解决问题的关键,(2)有一定难度.24.(2015秋•晋江市期末)如图(1),AB∥CD,猜想∠BPD与∠B、∠D的关系,说明理由.(提示:三角形的内角和等于180°)①填空或填写理由解:猜想∠BPD+∠B+∠D=360°理由:过点P作EF∥AB,∴∠B+∠BPE=180°两直线平行,同旁内角互补∵AB∥CD,EF∥AB,∴CD∥EF,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)∴∠EPD+∠CDP=180°∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°②依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.③观察图(3)和(4),已知AB∥CD,直接写出图中的∠BPD与∠B、∠D的关系,不说明理由.【分析】①过点P作EF∥AB,根据两直线平行,同旁内角互补,证出结论;②与①的方法类似,过点P作EP∥AB,根据两直线平行,内错角相等,证出结论;③过点P作EP∥AB,可以看出图中的∠BPD与∠B、∠D的关系.【解答】解:①猜想∠BPD+∠B+∠D=360°理由:过点P作EF∥AB,∴∠B+∠BPE=180°(两直线平行,同旁内角互补)∵AB∥CD,EF∥AB,∴CD∥EF,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)∴∠EPD+∠CDP=180°∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°②猜想∠BPD=∠B+∠D理由:过点P作EP∥AB,∴∠B=∠BPE(两直线平行,同位角相等)∵AB∥CD,EF∥AB,∴CD∥EF,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)∴∠EPD=∠D∴∠BPD=∠B+∠D③与②的作法相同,过点P作EP∥AB(3)∠BPD+∠B=∠D,(4)∠BPD=∠B﹣∠D【点评】本题考查的是平行线的性质,作出正确的辅助线是解题的关键,解答本题时,注意类比思想的运用.。
人教版七年级下册数学竞赛试题(附答案)
⼈教版七年级下册数学竞赛试题(附答案)第 1 页共 1 页⼈教版七年级下册数学竞赛试题(附答案)⼀、选择题(每⼩题4分,共40分)1、如果m 是⼤于1的偶数,那么m ⼀定⼩于它的……………………()A 、相反数B 、倒数C 、绝对值D 、平⽅2、当x=-2时, 37ax bx +-的值为9,则当x=2时,37ax bx +-的值是()A 、-23B 、-17C 、23D 、173、255,344,533,622这四个数中最⼩的数是………………………()A. 255B. 344C. 533D. 6224、把14个棱长为1的正⽅体,在地⾯上堆叠成如图1所⽰的⽴体,然后将露出的表⾯部分染成红⾊.那么红⾊部分的⾯积为…………………………….. ().A 、21B 、24C 、33D 、375、有理数的⼤⼩关系如图2所⽰,则下列式⼦中⼀定成⽴的是…… ()A 、c b a ++>0B 、c b a <+C 、c a c a +=-D 、a c c b ->-6、某商场国庆期间举⾏优惠销售活动,采取“满⼀百元送⼆⼗元,并且连环赠送”的酬宾⽅式,即顾客每消费满100元(100元可以是现⾦,也可以是购物券,或⼆者合计)就送20元购物券,满200元就送40元购物券,依次类推,现有⼀位顾客第⼀次就⽤了16000元购物,并⽤所得购物券继续购物,那么他购回的商品⼤约相当于打()A 、9折B 、8.5折C 、8折D 、7.5折7、如果有2005名学⽣排成⼀列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2005名学⽣所报的数是……………………………………………………………… ()图1 图2。
七下数学竞赛试题及答案
七下数学竞赛试题及答案一、选择题(每题4分,共20分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333D. √22. 已知一个直角三角形的两个直角边分别为3和4,求斜边的长度。
A. 5B. 6C. 7D. 83. 一个数的平方根是4,这个数是多少?A. 16B. -16C. 8D. -84. 如果一个多项式f(x) = ax^2 + bx + c,其中a ≠ 0,那么f(x)的图像是一个:A. 直线B. 抛物线C. 双曲线D. 圆5. 一个圆的半径是5,求这个圆的面积。
A. 25πB. 50πC. 75πD. 100π二、填空题(每题3分,共15分)6. 一个数的立方根是2,这个数是________。
7. 两个连续整数的和是21,这两个整数分别是________和________。
8. 如果一个数的绝对值是5,那么这个数可以是________或________。
9. 一个数的倒数是1/4,这个数是________。
10. 一个长方体的长、宽、高分别是2、3、4,这个长方体的体积是________。
三、解答题(每题5分,共65分)11. 证明:对于任意实数x,(x + 1)^2 ≥ 2x。
12. 一个长方体的长、宽、高分别是a、b、c,求证:这个长方体的对角线长度是√(a^2 + b^2 + c^2)。
13. 已知一个二次方程ax^2 + bx + c = 0(a ≠ 0),求证:如果b^2 - 4ac > 0,那么这个方程有两个不相等的实数根。
14. 一个圆的半径是r,求证:这个圆的周长是2πr。
15. 已知一个等腰三角形的两个腰长是a,底边长是b,求证:这个等腰三角形的面积是(1/2)ab。
16. 一个数列的前n项和为S_n,如果S_n = n^2,求证:这个数列是等差数列。
17. 已知一个函数f(x) = kx + b(k ≠ 0),求证:这个函数的图像是一条直线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年下学期七年级数学竞赛试题及答案
2016年下七年级数学竞赛试题
时量:120分钟满分:120分
一.选择题(共10小题,每小题3分,满分30分)
1.已知a,b,c为有理数,且a+b+c=0,a≥﹣b>|c|,则a,b,c三个数的符号是()A.a>0,b<0,c<0
B.a>0,b<0,c>0
C.a<0,b>0,c≥0
D.a>0,b<0,c≤0
2.如图,填在各方格中的三个数之间均具有相同的规律,根据此规律,n的值是()
A.48 B.56
C.63 D.74
3.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()
A.﹣1 B.1
C.3 D.﹣3
4.一个两位数,两个数位上的数字之和是7,若这个两位数加上9得到的两位数的数字的顺序和原来的两位数的数字的顺序恰好相反,那么原来的两位数为()
A.25 B.52
C.34 D.43
5.国务院总理李克强在第十二届全国人大第四次政府工作报告中指出,2015年我国国内生产总值达到了67.7万亿元,67.7万亿元用科学记数法表示为()
A.67.7×1012B.6.77×1013C.0.677×1014D.6.77×1014
6.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()年级七年级八年级九年级合格人数270 262 254
A.七年级的合格率最高
B.八年级的学生人数为262名
C.八年级的合格率高于全校的合格率D.九年级的合格人数最少
7.如图,田亮同学用剪刀沿直线将
一片平整的树叶剪掉一部分,发现
剩下树叶的周长比原树叶的周长要
小,能正确解释这一现象的数学知
识是()
A .垂线段最短
B .经过一
点有无数条直线
C .经过两点,有且仅有一条直线
D .两点之间,线段最短
8.下列说法中正确的有( )
①过两点有且只有一条直线;②连接两点的线段叫两点的距离;
③两点之间线段最短;④若AB =BC ,则点B 是AC 的中点;
⑤把一个角分成两个角的射线叫角的平分线;⑥直线l 经过点A ,那么点A 在直线l 上.
A .2个
B .3个
C .4个
D .5个
9.在解方程13132
x
x x -++=时,方程两边同时乘以6,去分母后,正确的是( )
A .2x ﹣1+6x =3(3x +1)
B .2(x ﹣1)+6x =3(3x +1)
C .2(x ﹣1)+x =3(3x +1)
D .
(x ﹣1)+x =3(x+1)
10.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x 元;超过5吨,
超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x 的方程正确的是()
A.5x+4(x+2)=44 B.5x+4(x﹣2)=44 C.9(x+2)=44 D.9(x+2)﹣4×2=44
二.填空题(共8小题,每小题4分,满分32分)
11.已知,|a|=5,|b|=3,且a<b<0,则
a+b=________________.
12.已知23
x-=,则x的值是
______________________.
13.若单项式()2
3k
-是关于x、y的五次单项式,
k x y
则k=______________________.
14.已知A、B、C三点在同一直线上,其中点A与点B的距离等于2.4千米,点B与点C的距离等于3.5千米,那么点A与点C的距离等于___________________千米.
15.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC=
______________________度.
第15题图
第16题图
16.某学校在“你最喜欢的球类运动”调查中.随机调查了若干名学生(每名学生只能选取一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人.则该校被调査的学生总人数为______________人.
17.你会玩“二十四点”游戏吗?请你在“1,﹣2,3,﹣4,6”五个数中任选四个数,利用有理数的混合运算,使四个数的运算结果为24(每个数只能用一次),写出你的算式:
_________________________________.18.早晨8:45时,时钟的分针与时针的夹角是__________________°
三.解答题(共6小题,满分58分
19.(9分)上坡时每小时走28km,下坡时每小时走35km,去时,下坡路的路程比上坡路的路程的2倍还少14km,原路返回比去时多用了12分钟.求去时上、下坡路程各多少千米?
21.(10分)在线段AB上,AC=6cm,MB=10cm,点M、N分别为AC、BC的中点.
(1)求线段BC、MN的长;
(2)若C在线段AB的延长线上,且满足AC ﹣BC=b cm,M、N分别是线段AC、BC的中点,求MN的长度.
22.(10分)如图,∠AOC与∠BOC的度数比为5:2,OD平分∠AOB,若∠COD=15°,求∠AOB的度数.
23.(10分)已知A=by2﹣ay﹣1,B=2y2+3ay﹣10y ﹣1,且多项式2A﹣B的值与字母y的取值无关,求(2a2b+2ab2)﹣[2(a2b﹣1)+3ab2+2]的值.
24.(10分)有理数a<0、b>0、c>0,且b<a <c,
(1)在数轴上将a、b、c三个数填在相应的括号中.
(2)化简:|2a﹣b|+|b﹣c|﹣2|c﹣a|.
2016年下七年级数学竞赛试题参考答案
一.选择题(共10小题,每小题3分,满分30分)
题
号
1 2 3 4 5 6 7 8 9 10 答
案
D C B C B D D B B A
二.填空题(共8小题,每小题4分,满分32分)
题号11 12 13 14 15 16 17 18
﹣8 5或
﹣1
﹣3
5.9
或
1.1
180 60
不唯
一
7.5°
17题:如3×6﹣[(﹣2)+(﹣4)]
三.解答题(共6小题,共58分)
19.(9分)解:设去时上坡路为x千米,则下坡路为(2x﹣14)千米,根据题意得:
+﹣(+)=,
解得:x =42,
则2x ﹣14=2×42﹣14=70,
答:去时上、下坡路程各为42千米、70千米.
20.(9分)解:把x=4代入4x-2=3x+3a-1得:a=1,
∴原方程为211
132
x x -+=- 去分母得2(2x-1)=3(x+1)-6, 去括号得4x-2=3x+3-6, 移项得4x-3x=3+2-6, 合并同类项得x=-1.
21.(10分)解:(1)∵AC=6cm ,M 是AC 的
中点,∴AM=MC=AC=3cm ,∵MB=10cm ,∴BC=MB ﹣MC=7cm ,∵N 为BC 的中点,∴CN=BC=3.5cm , ∴MN=MC+CN=6.5cm ;
(2)如图,
∵M 是AC 中点,N 是BC 中点,∴MC=AC ,NC=BC ,
∵AC﹣BC=bcm,∴MN=MC﹣NC=AC﹣
BC=(AC﹣BC)=b(cm).
22.(10分)解:设∠AOC=5x,则∠BOC=2x,∠AOB=7x,
∵OD平分∠AOB,∴∠BOD=∠AOB=x,∵∠COD=∠BOD﹣∠BOC∴15°=x﹣2x,解得x=10°,∴∠AOB=7×10°=70°.
23.(10分)解:∵2A﹣B=2(by2﹣ay﹣1)﹣(2y2+3ay﹣10y﹣1),
=2by2﹣2ay﹣2﹣2y2
﹣3ay+10y+1,
=(2b﹣2)y2+(10
﹣5a)y﹣1,
又∵多项式2A﹣B的值与字母y的取值
无关,
∴2b﹣2=0,10﹣5a=0,∴b=1,a=2,
又(2a2b+2ab2)﹣[2(a2b﹣1)
+3ab2+2]=2a2b+2ab2﹣2a2b+2﹣3ab2﹣2=
﹣ab2,
当b=1,a=2时,原式=﹣2×12=﹣2.24.(10分)解:(1)如图,
(2)∵a<0、b>0、c>0,
∴2a﹣b<0,b﹣c<0,c﹣a>0,
|2a﹣b|+|b﹣c|﹣2|c﹣a|
=﹣(2a﹣b)﹣(b﹣c)﹣2(c﹣a)
=﹣2a+b﹣b+c﹣2c+2a
=﹣c.。