高考物理 大题解题训练

合集下载

高考物理数学物理法解题技巧和训练方法及练习题

高考物理数学物理法解题技巧和训练方法及练习题

高考物理数学物理法解题技巧和训练方法及练习题一、数学物理法1.如图所示,圆心为O 1、半径4cm R =的圆形边界内有垂直纸面方向的匀强磁场B 1,边界上的P 点有一粒子源,能沿纸面同时向磁场内每个方向均匀发射比荷62.510C/kg qm=⨯、速率5110m/s v =⨯的带负电的粒子,忽略粒子间的相互作用及重力。

其中沿竖直方向PO 1的粒子恰能从圆周上的C 点沿水平方向进入板间的匀强电场(忽略边缘效应)。

两平行板长110cm L =(厚度不计),位于圆形边界最高和最低两点的切线方向上,C 点位于过两板左侧边缘的竖线上,上板接电源正极。

距极板右侧25cm L =处有磁感应强度为21T B =、垂直纸面向里的匀强磁场,EF 、MN 是其左右的竖直边界(上下无边界),两边界间距8cm L =,O 1C 的延长线与两边界的交点分别为A 和O 2,下板板的延长线与边界交于D ,在AD 之间有一收集板,粒子打到板上即被吸收(不影响原有的电场和磁场)。

求:(1)磁感应强度B 1的方向和大小;(2)为使从C 点进入的粒子出电场后经磁场偏转能打到收集板上,两板所加电压U 的范围; (3)当两板所加电压为(2)中最大值时,打在收集板上的粒子数与总粒子数的比值η。

(可用反三解函数表示,如π1arcsin 62=)【答案】(1)11B =T ,方向垂直纸面向里;(2)1280V 2400V U ≤≤;(3)17arcsinarcsin168π+【解析】 【分析】 【详解】 (1)由题可知,粒子在圆形磁场区域内运动半径r R =则21v qvB m R=得11T B =方向垂直纸面向里。

(2)如图所示211()22L qU y mR v=⋅且要出电场04cm y ≤≤在磁场B 2中运动时22v qvB mr=合,cos v v a =合 进入B 2后返回到边界EF 时,进出位置间距2cos y r a ∆=得22mv y qB ∆=代入得8cm y ∆=说明与加速电场大小无关。

高中物理部分电路欧姆定律解题技巧和训练方法及练习题(含答案)(1)

高中物理部分电路欧姆定律解题技巧和训练方法及练习题(含答案)(1)

高中物理部分电路欧姆定律解题技巧和训练方法及练习题(含答案)(1)一、高考物理精讲专题部分电路欧姆定律1.以下对直导线内部做一些分析:设导线单位体积内有n个自由电子,电子电荷量为e,自由电子定向移动的平均速率为v.现将导线中电流I与导线横截面积S的比值定义为电流密度,其大小用j表示.(1)请建立微观模型,利用电流的定义qIt=,推导:j=nev;(2)从宏观角度看,导体两端有电压,导体中就形成电流;从微观角度看,若导体内没有电场,自由电子就不会定向移动.设导体的电阻率为ρ,导体内场强为E,试猜想j与E的关系并推导出j、ρ、E三者间满足的关系式.【答案】(1)j=nev(2)E jρ=【解析】【分析】【详解】(1)在直导线内任选一个横截面S,在△t时间内以S为底,v△t为高的柱体内的自由电子都将从此截面通过,由电流及电流密度的定义知:I qjS tSVV==,其中△q=neSv△t,代入上式可得:j=nev(2)(猜想:j与E成正比)设横截面积为S,长为l的导线两端电压为U,则UEl =;电流密度的定义为IjS =,将UIR=代入,得UjSR=;导线的电阻lRSρ=,代入上式,可得j、ρ、E三者间满足的关系式为:Ejρ=【点睛】本题一要掌握电路的基本规律:欧姆定律、电阻定律、电流的定义式,另一方面要读懂题意,明确电流密度的含义.2.在如图所示的电路中,电源的电动势E=6.0V,内电阻r=1.0Ω,外电路的电阻R=11.0Ω.闭合开关S.求:(1)通过电阻R的电流Ⅰ;(2)在内电阻r上损耗的电功率P;(3)电源的总功率P总.【答案】(1)通过电阻R的电流为0.5A;(2)在内电阻r上损耗的电功率P为0.25W;(3)电源的总功率P总为3W.【解析】试题分析:(1)根据闭合电路欧姆定律,通过电阻R的电流为:,(2)r上损耗的电功率为:P=I2r=0.5×0.5×1=0.25W,(3)电源的总功率为:P总=IE=6×0.5=3 W.考点:闭合电路的欧姆定律;电功、电功率.3.图示为汽车蓄电池与车灯、小型启动电动机组成的电路,蓄电池内阻为0.05Ω,电表可视为理想电表。

高考物理机械运动及其描述解题技巧和训练方法及练习题(含答案)

高考物理机械运动及其描述解题技巧和训练方法及练习题(含答案)

高考物理机械运动及其描述解题技巧和训练方法及练习题(含答案)一、高中物理精讲专题测试机械运动及其描述1.我国ETC联网正式启动运行,ETC是电子不停车收费系统的简称.汽车分别通过ETC通道和人工收费通道的流程如图所示.假设汽车以v0=15m/s朝收费站正常沿直线行驶,如果过ETC通道,需要在收费线中心线前10m处正好匀减速至v=5m/s,匀速通过中心线后,再匀加速至v0正常行驶;如果过人工收费通道,需要恰好在中心线处匀减速至零,经过20s缴费成功后,再启动汽车匀加速至v0正常行驶.设汽车加速和减速过程中的加速度大小均为1m/s2,求:(1)汽车过ETC通道时,从开始减速到恢复正常行驶过程中的位移大小;(2)汽车过ETC通道比过人工收费通道节省的时间是多少.【答案】(1)210m(2)27s【解析】试题分析:(1)汽车过ETC通道:减速过程有:,解得加速过程与减速过程位移相等,则有:解得:(2)汽车过ETC通道的减速过程有:得总时间为:汽车过人工收费通道有:,x2=225m所以二者的位移差为:△=x2﹣x1=225m﹣210m=15m.(1分)则有:27s考点:考查了匀变速直线运动规律的应用【名师点睛】在分析匀变速直线运动问题时,由于这一块的公式较多,涉及的物理量较多,并且有时候涉及的过程也非常多,所以一定要注意对所研究的过程的运动性质清晰,对给出的物理量所表示的含义明确,然后选择正确的公式分析解题2.一列队伍长100m,正以某一恒定的速度前进.因有紧急情况通知排头战士,通讯员跑步从队尾赶到队头,又从队头跑至队队尾,在这一过程中队伍前进了100m.设通讯员速率恒定,战士在队头耽搁的时间不计,求他往返过程中跑过的位移和路程的大小.(学有余力的同学可以挑战路程的计算)【答案】100m,(100+1002)m【解析】【详解】设通讯员的速度为v1,队伍的速度为v2,通讯员从队尾到队头的时间为t1,从队头到队尾的时间为t2,队伍前进用时间为t.由通讯员往返总时间与队伍运动时间相等可得如下方程:t=t1+t2,即:21212100100100v v v v v+-+=整理上式得:v12-2v1v2-v22=0解得:v1=(2+1)v2;将上式等号两边同乘总时间t,即v1t=(2+1)v2tv1t即为通讯员走过的路程s1,v2t即为队伍前进距离s2,则有s1=(2+1)s2=(2+1)100m.通讯员从队尾出发最后又回到队尾,所以通讯员的位移大小等于队伍前进的距离,即为100m.【点睛】本题考查路程的计算,关键是计算向前的距离和向后的距离,难点是知道向前的时候人和队伍前进方向相同,向后的时候人和队伍前进方向相反,解决此类问题常常用到相对运动的知识,而位移是指从初位置到末位置的有向线段,位移的大小只与初末的位置有关.3.设质量为m的子弹以初速度V0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d.求①木块最终速度的大小②产生的热能③平均阻力的大小【答案】①0mvvM m=+共②22()MmvQM m=+③22()MmvfM m d=+【解析】试题分析:①子弹射入木块的过程中系统动量守恒:mv0=(M+m)v共解得:0mv v M m=+共 ②据能量守恒定律:22011()22mv M m v Q =++共 解得:202()Mmv Q M m =+③设平均阻力大小为f 据能量守恒定律:fd=Q则 202()Mmv f M m d=+考点:动量守恒定律;能量守恒定律【名师点睛】此题是动量守恒定律及能量守恒定律的应用问题;关键是能正确选择研究系统及研究过程,根据动量守恒定律及能量关系列方程求解。

高考物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)含解析

高考物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)含解析

高考物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)含解析一、带电粒子在磁场中的运动专项训练1.如图,区域I 内有与水平方向成45°角的匀强电场1E ,区域宽度为1d ,区域Ⅱ内有正交的有界匀强磁场B 和匀强电场2E ,区域宽度为2d ,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m 、电量大小为q 的微粒在区域I 左边界的P 点,由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q 点穿出,其速度方向改变了30,重力加速度为g ,求:(1)区域I 和区域Ⅱ内匀强电场的电场强度12E E 、的大小. (2)区域Ⅱ内匀强磁场的磁感应强度B 的大小. (3)微粒从P 运动到Q 的时间有多长.【答案】(1)12mg E =2mgE q =122m gd 121626d d gd gd π+ 【解析】 【详解】(1)微粒在区域I 内水平向右做直线运动,则在竖直方向上有:1sin45qE mg ︒= 求得:12mgE =微粒在区域II 内做匀速圆周运动,则重力和电场力平衡,有:2mg qE = 求得:2mgE q=(2)粒子进入磁场区域时满足:2111cos452qE d mv ︒=2v qvB m R=根据几何关系,分析可知:222sin30d R d ==︒整理得:122m gd B =(3)微粒从P 到Q 的时间包括在区域I 内的运动时间t 1和在区域II 内的运动时间t 2,并满足:211112a t d =1tan45mg ma ︒=2302360Rt vπ︒=⨯︒ 经整理得:112121222612126gd d d d t t t gd g gd ππ+=+=+⨯=2.如图所示,半径r =0.06m 的半圆形无场区的圆心在坐标原点O 处,半径R =0.1m ,磁感应强度大小B =0.075T 的圆形有界磁场区的圆心坐标为(0,0.08m ),平行金属板MN 的极板长L =0.3m 、间距d =0.1m ,极板间所加电压U =6.4x102V ,其中N 极板收集到的粒子全部中和吸收.一位于O 处的粒子源向第一、二象限均匀地发射速度为v 的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x 轴正方向,已知粒子在磁场中的运动半径R 0=0.08m ,若粒子重力不计、比荷qm=108C/kg 、不计粒子间的相互作用力及电场的边缘效应.sin53°=0.8,cos53°=0.6. (1)求粒子的发射速度v 的大小;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,求它打出磁场时的坐标: (3)N 板收集到的粒子占所有发射粒子的比例η.【答案】(1)6×105m/s ;(2)(0,0.18m );(3)29% 【解析】 【详解】(1)由洛伦兹力充当向心力,即qvB =m 2v R可得:v =6×105m/s ;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,作出速度方向的垂线与y 轴交于一点Q ,根据几何关系可得PQ=0.0637cos =0.08m ,即Q 为轨迹圆心的位置; Q 到圆上y 轴最高点的距离为0.18m-0.0637sin =0.08m ,故粒子刚好从圆上y 轴最高点离开; 故它打出磁场时的坐标为(0,0.18m );(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y,由带电粒子在电场中偏转的规律得:y=12at2…①a=qEm=qUmd…②t=Lv …③由①②③解得:y=0.08m设此粒子射入时与x轴的夹角为α,则由几何知识得:y=r sinα+R0-R0cosα可知tanα=43,即α=53°比例η=53180×100%=29%3.如图甲所示,在直角坐标系0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有一个以点(3L,0)为圆心、半径为L的圆形区域,圆形区域与x轴的交点分别为M、N.现有一质量为m、带电量为e的电子,从y轴上的A点以速度v0沿x轴正方向射入电场,飞出电场后从M点进入圆形区域,此时速度方向与x轴正方向的夹角为30°.不考虑电子所受的重力.(1)求电子进入圆形区域时的速度大小和匀强电场场强E的大小;(2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂直于x轴.求所加磁场磁感应强度B的大小和电子刚穿出圆形区域时的位置坐标;(3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面向外为磁场正方向),最后电子从N点处飞出,速度方向与进入磁场时的速度方向相同.请写出磁感应强度B0的大小、磁场变化周期T各应满足的关系表达式.【答案】(1)(2)(3)(n=1,2,3…)(n=1,2,3…)【解析】(1)电子在电场中作类平抛运动,射出电场时,速度分解图如图1中所示.由速度关系可得:解得:由速度关系得:v y=v0tanθ=v0在竖直方向:而水平方向:解得:(2)根据题意作图如图1所示,电子做匀速圆周运动的半径R=L根据牛顿第二定律:解得:根据几何关系得电子穿出圆形区域时位置坐标为(,-)(3)电子在在磁场中最简单的情景如图2所示.在磁场变化的前三分之一个周期内,电子的偏转角为60°,设电子运动的轨道半径为r,运动的T0,粒子在x轴方向上的位移恰好等于r1;在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期T′=2T0,故粒子的偏转角度仍为60°,电子运动的轨道半径变为2r,粒子在x轴方向上的位移恰好等于2r.综合上述分析,则电子能到达N点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)而:解得:(n=1,2,3…)应满足的时间条件为: (T0+T′)=T而:解得(n=1,2,3…)点睛:本题的靓点在于第三问,综合题目要求及带电粒子运动的半径和周期关系,则符合要求的粒子轨迹必定是粒子先在正B0中偏转60°,而后又在− B0中再次偏转60°,经过n次这样的循环后恰恰从N点穿出.先从半径关系求出磁感应强度的大小,再从周期关系求出交变磁场周期的大小.4.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t0;:当在两板间加最大值为U0、周期为2t0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L,电子的质量为m、电荷量为e,其重力不计.(1)求电子离开偏转电场时的位置到OO’的最远位置和最近位置之间的距离(2)要使所有电子都能垂直打在荧光屏上,①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】 【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆=(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ=设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=,式中00y U ev t dm= 又:1mv R Be =解得:00U tB dL=②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2010U e y y t dm∆=∆=5.如图所示,在第一象限内存在匀强电场,电场方向与x 轴成45°角斜向左下,在第四象限内有一匀强磁场区域,该区域是由一个半径为R 的半圆和一个长为2R 、宽为2R的矩形组成,磁场的方向垂直纸面向里.一质量为m 、电荷量为+q 的粒子(重力忽略不计)以速度v 从Q(0,3R)点垂直电场方向射入电场,恰在P(R ,0)点进入磁场区域.(1)求电场强度大小及粒子经过P点时的速度大小和方向;(2)为使粒子从AC边界射出磁场,磁感应强度应满足什么条件;(3)为使粒子射出磁场区域后不会进入电场区域,磁场的磁感应强度应不大于多少?【答案】(1)22mvE=;2v,速度方向沿y轴负方向(2)82225mv mvBqR qR≤≤(3)()22713mvqR-【解析】【分析】【详解】(1)在电场中,粒子沿初速度方向做匀速运动132cos4522cos45RL R R=-︒=︒1L vt=沿电场力方向做匀加速运动,加速度为a22sin452L R R=︒=2212L at=qEam=设粒子出电场时沿初速度和沿电场力方向分运动的速度大小分别为1v、2v,合速度v'1v v =、2v at =,2tan v vθ=联立可得224mv E qR=进入磁场的速度22122v v v v =+='45θ=︒,速度方向沿y 轴负方向(2)由左手定则判定,粒子向右偏转,当粒子从A 点射出时,运动半径12Rr =由211mv qv B r =''得122mvB qR=当粒子从C 点射出时,由勾股定理得()222222R R r r ⎛⎫-+= ⎪⎝⎭解得258r R =由222mv qv B r =''得2825mvB qR=根据粒子在磁场中运动半径随磁场减弱而增大,可以判断,当82225mv mvB qR qR≤≤时,粒子从AC 边界射出(3)为使粒子不再回到电场区域,需粒子在CD 区域穿出磁场,设出磁场时速度方向平行于x 轴,其半径为3r ,由几何关系得222332R r r R ⎛⎫+-= ⎪⎝⎭解得()3714R r =由233mv qv B r =''得)322713mv B qR= 磁感应强度小于3B ,运转半径更大,出磁场时速度方向偏向x 轴下方,便不会回到电场中6.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(qm)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:(1)电场强度的大小; (2)带电微粒的初速度;(3)带电微粒做圆周运动的圆心坐标.【答案】(1)g k (2)2gkB(3)2222232(,)28g k B L L k B g -【解析】 【分析】 【详解】(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=qk m解得g E k=(2)由几何关系:2R cos θ=L ,粒子做圆周运动的向心力等于洛伦兹力:2v qvB m r= ;由cos y v vθ=在进入复合场之前做平抛运动:y gt =v0L v t =解得02g v kB=(3)由212h gt =其中2kBL t g = ,则带电微粒做圆周运动的圆心坐标:'32O x L =; 222'222sin 8O g k B L y h R k B g θ=-+=-7.如图,第一象限内存在沿y 轴负方向的匀强电场,电场强度大小为E ,第二、三、四象限存在方向垂直xOy 平面向外的匀强磁场,其中第二象限的磁感应强度大小为B ,第三、四象限磁感应强度大小相等,一带正电的粒子,从P (-d ,0)点沿与x 轴正方向成α=60°角平行xOy 平面入射,经第二象限后恰好由y 轴上的Q 点(图中未画出)垂直y 轴进入第一象限,之后经第四、三象限重新回到P 点,回到P 点时速度方向与入射方时相同,不计粒子重力,求:(1)粒子从P 点入射时的速度v 0; (2)第三、四象限磁感应强度的大小B /; 【答案】(1)3EB(2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 2360d d dr sin sin α===︒ 根据200mv qv B r =得023qBdv =粒子在第一象限中做类平抛运动,则有21602qE r cost m -︒=(); 00y v qEt tan v mv α==联立解得03Ev B=(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.则有:x=v 0t , 2y v y t =得0322y v y tan x v α===由几何知识可得 y=r-rcosα= 132r = 则得23x d =所以粒子在第三、四象限圆周运动的半径为125323d d R sin α⎛⎫+ ⎪⎝⎭==粒子进入第三、四象限运动的速度00432v qBdv v cos α===根据2'v qvB m R=得:B′=2.4B考点:带电粒子在电场及磁场中的运动8.如图所示,在不考虑万有引力的空间里,有两条相互垂直的分界线MN 、PQ ,其交点为O .MN 一侧有电场强度为E 的匀强电场(垂直于MN ),另一侧有匀强磁场(垂直纸面向里).宇航员(视为质点)固定在PQ 线上距O 点为h 的A 点处,身边有多个质量均为m、电量不等的带负电小球.他先后以相同速度v0、沿平行于MN方向抛出各小球.其中第1个小球恰能通过MN上的C点第一次进入磁场,通过O点第一次离开磁场,OC=2h.求:(1)第1个小球的带电量大小;(2)磁场的磁感强度的大小B;(3)磁场的磁感强度是否有某值,使后面抛出的每个小球从不同位置进入磁场后都能回到宇航员的手中?如有,则磁感强度应调为多大.【答案】(1)20 12mvqEh=;(2)2EBv=;(3)存在,EBv'=【解析】【详解】(1)设第1球的电量为1q,研究A到C的运动:2112q Eh tm=2h v t=解得:212mvqEh=;(2)研究第1球从A到C的运动:12yq Ev hm=解得:0yv v=tan1yvvθ==,45oθ=,2v v=;研究第1球从C作圆周运动到达O的运动,设磁感应强度为B由2 1v q vBmR=得1mvRq B=由几何关系得:22sinR hθ=解得:2EBv=;(3)后面抛出的小球电量为q,磁感应强度B'①小球作平抛运动过程2hmx v t vqE==2yqEv hm=②小球穿过磁场一次能够自行回到A,满足要求:sinR xθ=,变形得:sinmvxqBθ'=解得:EBv'=.9.如图所示,在直角坐标系xOy平面内有两个同心圆,圆心在坐标原点O,小圆内部(I区)和两圆之间的环形区域(Ⅱ区)存在方向均垂直xOy平面向里的匀强磁场(图中未画出),I、Ⅱ区域磁场磁感应强度大小分别为B、2B。

高考物理专题训练17 共点力平衡问题解题方法与技巧

高考物理专题训练17 共点力平衡问题解题方法与技巧

1.平衡问题与正交分解法题型1.物体在粗糙水平面上的匀速运动例1.如图所示,物体与水平面间的动摩擦因数为μ=0.3, 物体质量为m =5.0kg .现对物体施加一个跟水平方向成θ=37°斜向上的拉力F ,使物体沿水平面做匀速运动.求拉力F 的大小.解析:物体受四个力:mg 、 F N 、f 、F .建立坐标系如图所示.将拉力F 沿坐标轴分解.F x = F cosθ F y = F sinθ根据共点力平衡条件,得X 轴:∑ F x = 0 F cosθ — f = 0 ………⑴Y 轴:∑ F y = 0 F sinθ + F N — mg = 0………⑵公式 f = μ F N ………⑶将⑵⑶代入⑴ F cosθ= μ F N = μ (mg — F sinθ )解得 F = θμθμsin cos +mg =N 156.03.08.08.90.53.0=⨯+⨯⨯归纳解题程序:定物体,分析力→建坐标,分解力→找依据,列方程→解方程,得结果.变式1:如果已知θ 、m 、F ,求摩擦因数μ。

变式2:如果将斜向上的拉力改为斜向下的推力F ,θ、m 、μ均不变,则推力需要多大,才能使物体沿水平面做匀速运动。

结果 F = =⨯-⨯⨯=-6.03.08.08.90.53.0sin cos θμθμmg 23.71N 讨论:当θ增大到某一个角度时,不论多大的推力F,都不能推动物体。

求这个临界角。

这里的无论多大,可以看成是无穷大。

则由上式变形为cosθ—μsinθ =F mg μ 时 当 F→∞时, F mgμ → 0 则令cosθ—μsinθ = 0所以有 co t θ= μ 或 tanθ = μ1 θ = tan —1 μ1变式3.如果先用一个水平拉力F 0恰好使物体沿水平面做匀速运动.则这个F 0有多大?现在用同样大小的力F 0推物体,使物体仍然保持匀速运动,则这个推力跟水平方向的夹角多大?解法一:物体受五个力:mg 、 F N 、f 、两个 F 0。

高中物理动量守恒定律专项训练100(附答案)

高中物理动量守恒定律专项训练100(附答案)

最新高中物理动量守恒定律专项训练100( 附答案 )一、高考物理精讲专题动量守恒定律1.如下图,在水平川面上有两物块甲和乙,它们的质量分别为2m 、 m,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度v0向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰巧与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能(2)第一次碰撞过程中甲对乙的冲量【答案】(1) 1 mv02; (2)4mv0【分析】【详解】解: (1)设第一次碰撞刚结束时甲、乙的速度分别为v1、 v2,以后甲做匀速直线运动,乙以v2初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,所以两物体在这段时间均匀速v2度相等,有: v12而第一次碰撞中系统动量守恒有:2mv02mv1 mv2由以上两式可得: v1v0, v2v0 2所以第一次碰撞中的机械能损失为:E 1g2mgv021g2mgv121mv221mv02 2224(2)依据动量定理可得第一次碰撞过程中甲对乙的冲量:I mv20 mv02.如下图,一小车置于圆滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg, AO 部分粗拙且长L=2m,动摩擦因数μ=0.3,OB部分圆滑.另一小物块a.放在车的最左端,和车一同以 v0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬时速度变成零,但不与挡板粘连.已知车 OB 部分的长度大于弹簧的自然长度,弹簧一直处于弹性限度内. a、 b 两物块视为质点质量均为 m=1kg,碰撞时间极短且不粘连,碰后一同向右运动.(取 g=10m/s2)求:(1)物块 a 与 b 碰后的速度大小;(2)当物块 a 相对小车静止时小车右端 B 到挡板的距离;(3)当物块 a 相对小车静止时在小车上的地点到O 点的距离.【答案】 (1)1m/s (2)(3) x=0.125m【分析】试题剖析:(1)对物块 a,由动能定理得:代入数据解得 a 与 b 碰前速度:;a、 b 碰撞过程系统动量守恒,以 a 的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分别, a 以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车 B 端距挡板的距离:;(3)由能量守恒得:,解得滑块 a 与车相对静止时与O 点距离:;考点:动量守恒定律、动能定理。

高考物理整体法隔离法解决物理试题解题技巧和训练方法及练习题

高考物理整体法隔离法解决物理试题解题技巧和训练方法及练习题

高考物理整体法隔离法解决物理试题解题技巧和训练方法及练习题一、整体法隔离法解决物理试题1.一个质量为M 的箱子放在水平地面上,箱内用一段固定长度的轻质细线拴一质量为m 的小球,线的另一端拴在箱子的顶板上,现把细线和球拉到左侧与竖直方向成θ角处静止释放,如图所示,在小球摆动的过程中箱子始终保持静止,则以下判断正确的是( )A .在小球摆动的过程中,线的张力呈周期性变化,但箱子对地面的作用力始终保持不变B .小球摆到右侧最高点时,地面受到的压力为(M+m)g,箱子受到地面向左的静摩擦力C .小球摆到最低点时,地面受到的压力为(M+m)g,箱子不受地面的摩擦力D .小球摆到最低点时,线对箱顶的拉力大于mg,箱子对地面的压力大于(M+m)g 【答案】D 【解析】在小球摆动的过程中,速度越来越大,对小球受力分析根据牛顿第二定律可知:2v F mgcos m rθ-=,绳子在竖直方向的分力为:2v F Fcos mgcos m cos r θθθ⎛⎫'==+ ⎪⎝⎭,由于速度越来越大,角度θ越来越小,故F '越大,故箱子对地面的作用力增大,在整个运动过程中箱子对地面的作用力时刻变化,故A 错误;小球摆到右侧最高点时,小球有垂直于绳斜向下的加速度,对整体由于箱子不动加速度为0M a =,a '为小球在竖直方向的加速度,根据牛顿第二定律可知:()·N M M m g F M a ma +-=+',则有:()N F M m g ma =+-',故()N F M m g <+,根据牛顿第三定律可知对地面的压力小于()M m g +,故B 错误;在最低点,小球受到的重力和拉力的合力提供向心力,由牛顿第二定律有:2v T mg m r -=,联立解得:2v T mg m r =+,则根据牛顿第三定律知,球对箱的拉力大小为:2v T T mg m r '==+,故此时箱子对地面的压力为:()()2v N M m g T M m g mg m r=++=+++',故小球摆到最低点时,绳对箱顶的拉力大于mg ,,箱子对地面的压力大于()M m g +,故C 错误,D 正确,故选D.【点睛】对m 运动分析,判断出速度大小的变化,根据牛顿第二定律求得绳子的拉力,即可判断出M 与地面间的相互作用力的变化,在最低点,球受到的重力和拉力的合力提供向心力,由牛顿第二定律求出绳子的拉力,从而得到箱子对地面的压力.2.如图所示,水平地面上有一楔形物块a,其斜面上有一小物块b,b与平行于斜面的细绳的一端相连,细绳的另一端固定在斜面上.a与b之间光滑,a和b以共同速度在地面轨道的光滑段向左运动.当它们刚运行至轨道的粗糙段时可能正确的是A.绳的张力减小,斜面对b的支持力不变B.绳的张力增加,斜面对b的支持力减小C.绳的张力减小,地面对a的支持力不变D.绳的张力增加,地面对a的支持力减小【答案】C【解析】【详解】在光滑段运动时,物块a及物块b均处于平衡状态,对a、b整体受力分析,受重力和支持力,二力平衡;对b受力分析,如图,受重力、支持力、绳子的拉力,根据共点力平衡条件,有F cosθ-F N sinθ=0 ①;F sinθ+F N cosθ-mg=0 ②;由①②两式解得:F=mg sinθ,F N=mg cosθ;当它们刚运行至轨道的粗糙段时,减速滑行,系统有水平向右的加速度,此时有两种可能;①物块a、b仍相对静止,竖直方向加速度为零,由牛顿第二定律得到:F sinθ+F N cosθ-mg=0 ③;F N sinθ-F cosθ=ma④;由③④两式解得:F=mgsinθ-ma cosθ,F N=mg cosθ+ma sinθ;即绳的张力F将减小,而a对b的支持力变大;再对a、b整体受力分析竖直方向重力和支持力平衡,水平方向只受摩擦力,重力和支持力二力平衡,故地面对a支持力不变.②物块b相对于a向上滑动,绳的张力显然减小为零,物体具有向上的分加速度,是超重,支持力的竖直分力大于重力,因此a对b的支持力增大,斜面体和滑块整体具有向上的加速度,也是超重,故地面对a的支持力也增大.综合上述讨论,结论应该为:绳子拉力一定减小;地面对a的支持力可能增加或不变;a对b 的支持力一定增加;故A ,B ,D 错误,C 正确. 故选C.3.如图所示,三个物体质量分别为m =1.0 kg 、m 2=2.0 kg 、m 3=3.0 kg ,已知斜面上表面光滑,斜面倾角θ=30°,m 1和m 2之间的动摩擦因数μ=0.8.不计绳和滑轮的质量和摩擦.初始用外力使整个系统静止,当撤掉外力时,m 2将(g =10 m/s 2,最大静摩擦力等于滑动摩擦力)( )A .和m 1一起沿斜面下滑B .和m 1一起沿斜面上滑C .相对于m 1下滑D .相对于m 1上滑 【答案】C 【解析】假设m 1和m 2之间保持相对静止,对整体分析,整体的加速度()()312212313101210302 2.5/123m g m m gsin a m s m m m ⨯-+⨯⨯-+︒===++++.隔离对m 2分析,根据牛顿第二定律得,f-m 2gsin30°=m 2a ;解得f=m 2gsin30°+m 2a=2.0×(10×0.5+2.5)N=15N ;最大静摩擦力f m =μm 2gcos30°=0.8×2×10×32N =83N ,可知f >f m ,知道m 2随m 1一起做加速运动需要的摩擦力大于二者之间的最大静摩擦力,所以假设不正确,m 2相对于m 1下滑.故C 正确,ABD 错误.故选C .4.如图所示的电路中,电源电动势为E ,内阻为r (212R r R R <<+),电表均视为理想电表。

高考物理带电粒子在磁场中的运动解题技巧及练习题及解析

高考物理带电粒子在磁场中的运动解题技巧及练习题及解析

高考物理带电粒子在磁场中的运动解题技巧及练习题及解析一、带电粒子在磁场中的运动专项训练1.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.2.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B ,一带电量为+q 、质量为m 的粒子,在P 点以某一初速开始运动,初速方向在图中纸面内如图中P 点箭头所示.该粒子运动到图中Q 点时速度方向与P 点时速度方向垂直,如图中Q 点箭头所示.已知P 、Q 间的距离为L .若保持粒子在P 点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P 点时速度方向垂直,在此电场作用下粒子也由P 点运动到Q 点.不计重力.求:(1)电场强度的大小.(2)两种情况中粒子由P 运动到Q 点所经历的时间之比.【答案】22B qLE m=;2B E t t π= 【解析】 【分析】 【详解】(1)粒子在磁场中做匀速圆周运动,以v 0表示粒子在P 点的初速度,R 表示圆周的半径,则有20v qv B m R= 由于粒子在Q 点的速度垂直它在p 点时的速度,可知粒子由P 点到Q 点的轨迹为14圆周,故有2R =以E 表示电场强度的大小,a 表示粒子在电场中加速度的大小,t E 表示粒子在电场中由p 点运动到Q 点经过的时间,则有qE ma = 水平方向上:212E R at =竖直方向上:0E R v t =由以上各式,得 22B qL E m=且E mt qB = (2)因粒子在磁场中由P 点运动到Q 点的轨迹为14圆周,即142B t T m qB π==所以2B E t t π=3.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d 的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO ’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t 0;:当在两板间加最大值为U 0、周期为2t 0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L ,电子的质量为m 、电荷量为e ,其重力不计.(1)求电子离开偏转电场时的位置到OO ’的最远位置和最近位置之间的距离 (2)要使所有电子都能垂直打在荧光屏上, ①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y 【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】 【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆=(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ=设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=,式中00y U ev t dm = 又:1mv R Be=解得:00U t B dL=②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2010U e y y t dm∆=∆=4.如图所示,荧光屏MN 与x 轴垂直放置,与x 轴相交于Q 点,Q 点的横坐标06x cm =,在第一象限y 轴和MN 之间有沿y 轴负方向的匀强电场,电场强度51.610/E N C =⨯,在第二象限有半径5R cm =的圆形磁场,磁感应强度0.8B T =,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为81.010/qC kg m=⨯的带正电的粒子,已知粒子的发射速率60 4.010/v m s =⨯.不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点间的最远距离. 【答案】(1)5cm (2)010y cm ≤≤ (3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动20v qv B m r=解得:05mv r cm qB== (2)由(1)问中可知r R =,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示,由几何关系可知四边形1PO FO '为菱形,所以1//FO O P ',又O P '垂直于x 轴,粒子出射的速度方向与轨迹半径1FO 垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为010y cm ≤≤.(3)假设粒子没有射出电场就打到荧光屏上,有000x v t =2012h at =qE a m=解得:18210h cm R cm =>=,说明粒子离开电场后才打到荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则0x v t =212y at =代入数据解得2x y =设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出的电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ===g所以()(00tan 22H x x x y y θ=-=g 由数学知识可知,当(022x y y = 4.5y cm =时H 有最大值,所以max 9H cm =5.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(qm)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:(1)电场强度的大小; (2)带电微粒的初速度;(3)带电微粒做圆周运动的圆心坐标.【答案】(1)g k (2)2gkB(3)2222232(,)28g k B L L k B g -【解析】 【分析】 【详解】(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=qk m解得g E k=(2)由几何关系:2R cos θ=L ,粒子做圆周运动的向心力等于洛伦兹力:2v qvB m r= ;由cos y v vθ=在进入复合场之前做平抛运动:y gt =v0L v t =解得02g v kB=(3)由212h gt =其中2kBL t g = ,则带电微粒做圆周运动的圆心坐标:'32O x L =; 222'222sin 8O g k B L y h R k B g θ=-+=-6.如图所示,虚线OL与y轴的夹角θ=450,在OL上侧有平行于OL向下的匀强电场,在OL下侧有垂直纸面向外的匀强磁场,一质量为m、电荷量为q(q>0)的粒子以速率v0从y轴上的M(OM=d)点垂直于y轴射入匀强电场,该粒子恰好能够垂直于OL进入匀强磁场,不计粒子重力。

高考物理动量定理解题技巧和训练方法及练习题(含答案)及解析

高考物理动量定理解题技巧和训练方法及练习题(含答案)及解析

高考物理动量定理解题技巧和训练方法及练习题(含答案)及解析一、高考物理精讲专题动量定理1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里.求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I . 【答案】(1)122()mg t t t + (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2.动能定理和动量定理不仅适用于质点在恒力作用下的运动,也适用于质点在变力作用下的运动,这时两个定理表达式中的力均指平均力,但两个定理中的平均力的含义不同,在动量定理中的平均力F 1是指合力对时间的平均值,动能定理中的平均力F 2是合力指对位移的平均值.(1)质量为1.0kg 的物块,受变力作用下由静止开始沿直线运动,在2.0s 的时间内运动了2.5m 的位移,速度达到了2.0m/s .分别应用动量定理和动能定理求出平均力F 1和F 2的值.(2)如图1所示,质量为m 的物块,在外力作用下沿直线运动,速度由v 0变化到v 时,经历的时间为t ,发生的位移为x .分析说明物体的平均速度v 与v 0、v 满足什么条件时,F 1和F 2是相等的.(3)质量为m 的物块,在如图2所示的合力作用下,以某一初速度沿x 轴运动,当由位置x =0运动至x =A 处时,速度恰好为0,此过程中经历的时间为2mt kπ=所受合力对时间t 的平均值.【答案】(1)F 1=1.0N ,F 2=0.8N ;(2)当02v v x v t +==时,F 1=F 2;(3)2kA F π=. 【解析】 【详解】解:(1)物块在加速运动过程中,应用动量定理有:1t F t mv =g解得:1 1.0 2.0N 1.0N 2.0t mv F t ⨯=== 物块在加速运动过程中,应用动能定理有:2212t F x mv =g 解得:222 1.0 2.0N 0.8N 22 2.5t mv F x ⨯===⨯(2)物块在运动过程中,应用动量定理有:10Ft mv mv =- 解得:01()m v v F t-=物块在运动过程中,应用动能定理有:22201122F x mv mv =- 解得:2202()2m v v F x-=当12F F =时,由上两式得:02v v x v t +== (3)由图2可求得物块由0x =运动至x A =过程中,外力所做的功为:21122W kA A kA =-=-g设物块的初速度为0v ',由动能定理得:20102W mv '=-解得:0kv A m'= 设在t 时间内物块所受平均力的大小为F ,由动量定理得:00Ft mv -=-' 由题已知条件:2m t kπ= 解得:2kAF π=3.质量0.2kg 的球,从5.0m 高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高度为4.05m.如果球从开始下落到弹起达最大高度所用时间为1.95s,不考虑空气阻力,g 取10m/s 2.求小球对钢板的作用力. 【答案】78N 【解析】 【详解】自由落体过程 v 12=2gh 1,得v 1=10m/s ; v 1=gt 1 得t 1=1s小球弹起后达到最大高度过程0− v 22=−2gh 2,得v 2=9m/s 0-v 2=-gt 2 得t 2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft ′-mg t ′=mv 2-(-mv 1) 其中t ′=t -t 1-t 2=0.05s 得F =78N由牛顿第三定律得F ′=-F ,所以小球对钢板的作用力大小为78N ,方向竖直向下;4.如图所示,长为1m 的长木板静止在粗糙的水平面上,板的右端固定一个竖直的挡板,长木板与挡板的总质量为M =lkg ,板的上表面光滑,一个质量为m= 0.5kg 的物块以大小为 t 0=4m/s 的初速度从长木板的左端滑上长木板,与挡板碰撞后最终从板的左端滑离,挡板对物 块的冲量大小为2. 5N • s ,已知板与水平面间的动摩擦因数为μ= 0.5,重力加速度为g=10m/s 2,不计物块与挡板碰撞的时间,不计物块的大小。

高考物理高考物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)

高考物理高考物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)

高考物理高考物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图所示,在两块水平金属极板间加有电 压U 构成偏转电场,一束比荷为510/qC kg m=的带正电的粒子流(重力不计),以速度v o =104m/s 沿 水平方向从金属极板正中间射入两板.粒子经电 场偏转后进入一具有理想边界的半圆形变化磁场 区域,O 为圆心,区域直径AB 长度为L =1m , AB 与水平方向成45°角.区域内有按如图所示规 律作周期性变化的磁场,已知B 0=0. 5T ,磁场方向 以垂直于纸面向外为正.粒子经偏转电场后,恰好从下极板边缘O 点与水平方向成45°斜向下射入磁场.求:(1)两金属极板间的电压U 是多大?(2)若T o =0.5s ,求t =0s 时刻射人磁场的带电粒子在磁场中运动的时间t 和离开磁场的位置.(3)要使所有带电粒子通过O 点后的运动过程中 不再从AB 两点间越过,求出磁场的变化周期B o ,T o 应满足的条件.【答案】(1)100V (2)t=5210s π-⨯,射出点在AB 间离O 点0.042m (3)5010s 3T π-<⨯【解析】试题分析:(1)粒子在电场中做类平抛运动,从O 点射出使速度代入数据得U=100V (2)粒子在磁场中经过半周从OB 中穿出,粒子在磁场中运动时间射出点在AB 间离O 点(3)粒子运动周期,粒子在t=0、….时刻射入时,粒子最可能从AB 间射出如图,由几何关系可得临界时 要不从AB 边界射出,应满足得考点:本题考查带电粒子在磁场中的运动2.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.3.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(3a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;(2)求粒子束射入电场的纵坐标范围;(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.【答案】(1)0v Ba(2)0≤y≤2a (3)78y a =,94a【解析】 【详解】(1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得Bqv 0=m 2v r故粒子的比荷v q m Ba= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.由几何关系知O ′A =r ·ABBC=2a 则OO ′=OA -O ′A =a即粒子离开磁场进入电场时,离O 点上方最远距离为OD =y m =2a所以粒子束从y 轴射入电场的范围为0≤y ≤2a (3)假设粒子没有射出电场就打到荧光屏上,有3a =v 0·t 02019222qE y t a a m ==>, 所以,粒子应射出电场后打到荧光屏上粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有x =v 0·t竖直方向有212qE y t m=代入数据得x设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则00tan y x qE x v m v v v θ⋅===有H =(3a -x )·tan θ=当=y =98a 时,H 有最大值 由于98a <2a ,所以H 的最大值H max =94a ,粒子射入磁场的位置为y =98a -2a =-78a4.如图所示,在长度足够长、宽度d=5cm 的区域MNPQ 内,有垂直纸面向里的水平匀强磁场,磁感应强度B=0.33T .水平边界MN 上方存在范围足够大的竖直向上的匀强电场,电场强度E=200N/C .现有大量质量m=6.6×10﹣27kg 、电荷量q=3.2×10﹣19C 的带负电的粒子,同时从边界PQ 上的O 点沿纸面向各个方向射入磁场,射入时的速度大小均为V=1.6×106m/s ,不计粒子的重力和粒子间的相互作用.求:(1)求带电粒子在磁场中运动的半径r ;(2)求与x 轴负方向成60°角射入的粒子在电场中运动的时间t ;(3)当从MN 边界上最左边射出的粒子离开磁场时,求仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围,并写出此时这些粒子所在位置构成的图形的曲线方程. 【答案】(1)r=0.1m (2)43.310t s -=⨯ (3)3060~o o 曲线方程为222x y R +=(30.1,0.1R m m x m =≤≤) 【解析】 【分析】 【详解】(1)洛伦兹力充当向心力,根据牛顿第二定律可得2v qvB m r=,解得0.1r m =(2)粒子的运动轨迹如图甲所示,由几何关系可知,在磁场中运动的圆心角为30°,粒子平行于场强方向进入电场,粒子在电场中运动的加速度qE a m= 粒子在电场中运动的时间2v t a= 解得43.310t s -=⨯(3)如图乙所示,由几何关系可知,从MN 边界上最左边射出的粒子在磁场中运动的圆心角为60°,圆心角小于60°的粒子已经从磁场中射出,此时刻仍在磁场中的粒子运动轨迹的圆心角均为60°,则仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围为30°~60° 所有粒子此时分别在以O 点为圆心,弦长0.1m 为半径的圆周上,曲线方程为22x y R += 30.1,0.120R m m x m ⎛⎫=≤≤ ⎪ ⎪⎝⎭【点睛】带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理.对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径5.在如图甲所示的直角坐标系中,两平行极板MN 垂直于y 轴,N 板在x 轴上且其左端与坐标原点O 重合,极板长度l =0.08m ,板间距离d =0.09m ,两板间加上如图乙所示的周期性变化电压,两板间电场可看作匀强电场.在y 轴上(0,d /2)处有一粒子源,垂直于y 轴连续不断向x 轴正方向发射相同的带正电的粒子,粒子比荷为qm=5×107C /kg ,速度为v 0=8×105m/s .t =0时刻射入板间的粒子恰好经N 板右边缘打在x 轴上.不计粒子重力及粒子间的相互作用,求:(1)电压U 0的大小;(2)若沿x 轴水平放置一荧光屏,要使粒子全部打在荧光屏上,求荧光屏的最小长度; (3)若在第四象限加一个与x 轴相切的圆形匀强磁场,半径为r =0.03m ,切点A 的坐标为(0.12m ,0),磁场的磁感应强度大小B =23T ,方向垂直于坐标平面向里.求粒子出磁场后与x 轴交点坐标的范围.【答案】(1)40 2.1610V U =⨯ (2)0.04m x ∆= (3)0.1425m x ≥【解析】【分析】 【详解】(1)对于t =0时刻射入极板间的粒子:0l v T = 7110T s -=⨯211()22T y a =2y T v a= 22yT y v = 122dy y =+ Eq ma =U E d=解得:40 2.1610V U =⨯(2)2Tt nT =+时刻射出的粒子打在x 轴上水平位移最大:032A T x v = 所放荧光屏的最小长度A x x l ∆=-即:0.04x m ∆= (3)不同时刻射出极板的粒子沿垂直于极板方向的速度均为v y . 速度偏转角的正切值均为:0tan y v v β=37β=ocos37v v=o 6110m/s v =⨯即:所有的粒子射出极板时速度的大小和方向均相同.2v qvB m R=0.03m R r ==由分析得,如图所示,所有粒子在磁场中运动后发生磁聚焦由磁场中的一点B 离开磁场.由几何关系,恰好经N 板右边缘的粒子经x 轴后沿磁场圆半径方向射入磁场,一定沿磁场圆半径方向射出磁场;从x 轴射出点的横坐标:tan 53C A Rx x ︒=+0.1425m C x =.由几何关系,过A 点的粒子经x 轴后进入磁场由B 点沿x 轴正向运动. 综上所述,粒子经过磁场后第二次打在x 轴上的范围为:0.1425m x ≥6.如图所示,在平面直角坐标系xOy 平面内,直角三角形abc 的直角边ab 长为6d ,与y 轴重合,∠bac=30°,中位线OM 与x 轴重合,三角形内有垂直纸面向里的匀强磁场.在笫一象限内,有方向沿y 轴正向的匀强电场,场强大小E 与匀强磁场磁感应强度B 的大小间满足E=v 0B .在x=3d 的N 点处,垂直于x 轴放置一平面荧光屏.电子束以相同的初速度v 0从y 轴上-3d≤y≤0的范围内垂直于y 轴向左射入磁场,其中从y 轴上y=-2d 处射入的电子,经磁场偏转后,恰好经过O 点.电子质量为m,电量为e,电子间的相互作用及重力不计.求 (1)匀强磁杨的磁感应强度B(2)电子束从y 轴正半轴上射入电场时的纵坐标y 的范围; (3)荧光屏上发光点距N 点的最远距离L【答案】(1)0mv ed ; (2)02y d ≤≤;(3)94d ; 【解析】(1)设电子在磁场中做圆周运动的半径为r ; 由几何关系可得r =d电子在磁场中做匀速圆周运动洛伦兹力提供向心力,由牛顿第二定律得:200v ev B m r=解得:0mv B ed=(2)当电子在磁场中运动的圆轨迹与ac 边相切时,电子从+ y 轴射入电场的位置距O 点最远,如图甲所示.设此时的圆心位置为O ',有:sin 30rO a '=︒3OO d O a ='-' 解得OO d '=即从O 点进入磁场的电子射出磁场时的位置距O 点最远 所以22m y r d ==电子束从y 轴正半轴上射入电场时的纵坐标y 的范围为02y d ≤≤设电子从02y d ≤≤范围内某一位置射入电场时的纵坐标为y ,从ON 间射出电场时的位置横坐标为x ,速度方向与x 轴间夹角为θ,在电场中运动的时间为t ,电子打到荧光屏上产生的发光点距N 点的距离为L ,如图乙所示:根据运动学公式有:0x v t =212eE y t m=⋅ y eE v t m=tan y v v θ=tan 3Ld xθ=- 解得:(32)2L d y y =-⋅ 即98y d =时,L 有最大值 解得:94L d =当322d y y -=【点睛】本题属于带电粒子在组合场中的运动,粒子在磁场中做匀速圆周运动,要求能正确的画出运动轨迹,并根据几何关系确定某些物理量之间的关系;粒子在电场中的偏转经常用化曲为直的方法,求极值的问题一定要先找出临界的轨迹,注重数学方法在物理中的应用.7.在如图所示的xoy 坐标系中,一对间距为d 的平行薄金属板竖直固定于绝缘底座上,底座置于光滑水平桌面的中间,极板右边与y 轴重合,桌面与x 轴重合,o 点与桌面右边相距为74d,一根长度也为d 的光滑绝缘细杆水平穿过右极板上的小孔后固定在左极板上,杆离桌面高为1.5d ,装置的总质量为3m .两板外存在垂直纸面向外、磁感应强度为B 的匀强磁场和匀强电场(图中未画出),假设极板内、外的电磁场互不影响且不考虑边缘效应.有一个质量为m 、电量为+q 的小环(可视为质点)套在杆的左端,给极板充电,使板内有沿x 正方向的稳恒电场时,释放小环,让其由静止向右滑动,离开小孔后便做匀速圆周运动,重力加速度取g .求:(1)环离开小孔时的坐标值; (2)板外的场强E 2的大小和方向;(3)讨论板内场强E 1的取值范围,确定环打在桌面上的范围. 【答案】(1)环离开小孔时的坐标值是-14d ;(2)板外的场强E2的大小为mgq,方向沿y轴正方向;(3)场强E1的取值范围为22368qB d qB dm m~,环打在桌面上的范围为1744d d-~.【解析】【详解】(1)设在环离开小孔之前,环和底座各自移动的位移为x1、x2.由于板内小环与极板间的作用力是它们的内力,系统动量守恒,取向右为正方向,根据动量守恒定律,有:mx1-3mx2=0 ①而x1+x2=d ②①②解得:x1=34d③x2=1 4 d环离开小孔时的坐标值为:x m=34d-d=-14d(2)环离开小孔后便做匀速圆周运动,须qE2=mg解得:2mgEq=,方向沿y轴正方向(3)环打在桌面上的范围可画得如图所示,临界点为P、Q,则若环绕小圆运动,则R=0.75d ④根据洛仑兹力提供向心力,有:2v qvB mR=⑤环在极板内做匀加速运动,设离开小孔时的速度为v,根据动能定理,有:qE1x1=12mv2⑥联立③④⑤⑥解得:2 138qB d Em=若环绕大圆运动,则R2=(R-1.5d)2+(2d)2 解得:R=0.48d ⑦联立③⑤⑥⑦解得:216qB dE m≈ 故场强E 1的取值范围为223 68qB d qB dm m~,环打在桌面上的范围为1744d d -~.8.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d 的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO ’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t 0;:当在两板间加最大值为U 0、周期为2t 0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L ,电子的质量为m 、电荷量为e ,其重力不计.(1)求电子离开偏转电场时的位置到OO ’的最远位置和最近位置之间的距离 (2)要使所有电子都能垂直打在荧光屏上, ①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y 【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】 【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆=(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ=设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=,式中00y U ev t dm= 又:1mv R Be =解得:00U tB dL=②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2010U e y y t dm∆=∆=9.如图所示,在第一象限内存在匀强电场,电场方向与x 轴成45°角斜向左下,在第四象限内有一匀强磁场区域,该区域是由一个半径为R 的半圆和一个长为2R 、宽为2R的矩形组成,磁场的方向垂直纸面向里.一质量为m 、电荷量为+q 的粒子(重力忽略不计)以速度v 从Q(0,3R)点垂直电场方向射入电场,恰在P(R ,0)点进入磁场区域.(1)求电场强度大小及粒子经过P 点时的速度大小和方向; (2)为使粒子从AC 边界射出磁场,磁感应强度应满足什么条件;(3)为使粒子射出磁场区域后不会进入电场区域,磁场的磁感应强度应不大于多少?【答案】(1) 224mv E qR=2v ,速度方向沿y 轴负方向(2)8222mv mvB≤≤(3)()22713mvqR-【解析】【分析】【详解】(1)在电场中,粒子沿初速度方向做匀速运动132cos4522cos45RL R R=-︒=︒1L vt=沿电场力方向做匀加速运动,加速度为a22sin452L R R=︒=2212L at=qEam=设粒子出电场时沿初速度和沿电场力方向分运动的速度大小分别为1v、2v,合速度v' 1v v=、2v at=,2tanvvθ=联立可得224mvEqR=进入磁场的速度22122v v v v=+='45θ=︒,速度方向沿y轴负方向(2)由左手定则判定,粒子向右偏转,当粒子从A点射出时,运动半径12Rr=由211mvqv Br=''得122mvBqR=当粒子从C点射出时,由勾股定理得()222222R R r r ⎛⎫-+= ⎪⎝⎭解得258r R =由222mv qv B r =''得2825mvB qR=根据粒子在磁场中运动半径随磁场减弱而增大,可以判断,当82225mv mvB qR qR≤≤时,粒子从AC 边界射出(3)为使粒子不再回到电场区域,需粒子在CD 区域穿出磁场,设出磁场时速度方向平行于x 轴,其半径为3r ,由几何关系得222332R r r R ⎛⎫+-= ⎪⎝⎭解得()3714R r +=由233mv qv B r =''得()322713mv B qR-= 磁感应强度小于3B ,运转半径更大,出磁场时速度方向偏向x 轴下方,便不会回到电场中10.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(qm)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:(1)电场强度的大小; (2)带电微粒的初速度;(3)带电微粒做圆周运动的圆心坐标.【答案】(1)g k (2)2gkB(3)2222232(,)28g k B L L k B g -【解析】 【分析】 【详解】(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=qk m解得g E k=(2)由几何关系:2R cos θ=L ,粒子做圆周运动的向心力等于洛伦兹力:2v qvB m r= ;由cos y v vθ=在进入复合场之前做平抛运动:y gt =v0L v t =解得02g v kB=(3)由212h gt =其中2kBL t g = ,则带电微粒做圆周运动的圆心坐标:'32O x L =; 222'222sin 8O g k B L y h R k B g θ=-+=-11.一个氘核(21H )和一个氚核(31H )聚变时产生一个中子(10n )和一个α粒子(42e H )。

带电粒子(带电体)在复合场中的运动问题(原卷版)-2023年高考物理压轴题专项训练(新高考专用)

带电粒子(带电体)在复合场中的运动问题(原卷版)-2023年高考物理压轴题专项训练(新高考专用)

压轴题06 带电粒子(带电体)在复合场中的运动问题目录一,考向分析 (1)二.题型及要领归纳 (1)热点题型一 带电粒子在有界匀强磁场中做匀速圆周运动 (1)热点题型二 借助分立场区考查磁偏转+电偏转问题 (4)热点题型三 利用粒子加速器考电加速磁偏转问题 (7)热点题型四 带电粒子(带电体)在叠加场作用下的运动 (9)三.压轴题速练 (10)一,考向分析1.本专题是磁场、力学、电场等知识的综合应用,高考往往以计算压轴题的形式出现。

2.学习本专题,可以培养同学们的审题能力、推理能力和规范表达能力。

针对性的专题训练,可以提高同学们解决难题、压轴题的信心。

3.复杂的物理问题一定是需要在定性的分析和思考后进行定量运算的,而最终能否解决问题,数理思维能力起着关键作用。

物理教学中有意识地培养学生的数理思维,对学生科学思维的形成具有重要作用。

带电粒子在磁场中的运动正是对学生数理思维的培养与考查的主要问题。

解决本专题的核心要点需要学生熟练掌握下列方法与技巧4.粒子运动的综合型试题大致有两类,一是粒子依次进入不同的有界场区,二是粒子进入复合场与组合场区。

其运动形式有匀变速直线运动、类抛体运动与匀速圆周运动。

涉及受力与运动分析、临界状态分析、运动的合成与分解以及相关的数学知识等。

问题的特征是有些隐含条件需要通过一些几何知识获得,对数学能力的要求较高。

二.题型及要领归纳热点题型一 带电粒子在有界匀强磁场中做匀速圆周运动一.带电粒子在匀强磁场中做匀速圆周运动的解题方法(1)带电粒子在匀强磁场中运动时,要抓住洛伦兹力提供向心力,即:qvB =mv 2R 得R =mv Bq,T =2πm qB ,运动时间公式t =θ2πT ,粒子在磁场中的运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题.(2)如果磁场是圆形有界磁场,在找几何关系时要尤其注意带电粒子在匀强磁场中的“四点、六线、三角”.①四点:入射点B、出射点C、轨迹圆心A、入射速度直线与出射速度直线的交点O.①六线:圆弧两端点所在的轨迹半径r、入射速度直线OB和出射速度直线OC、入射点与出射点的连线BC、圆心与两条速度垂线交点的连线AO.①三角:速度偏转角①COD、圆心角①BAC、弦切角①OBC,其中偏转角等于圆心角,也等于弦切角的两倍.二.带电粒子在匀强磁场中做匀速圆周运动的思维线索【例1】(2023春·江苏扬州·高三统考期中)如图所示,垂直于纸面向里的匀强磁场,磁感【例2】(2023春·江苏泰州·高三统考阶段练习)原子核衰变时放出肉眼看不见的射线。

高考物理万有引力与航天解题技巧和训练方法及练习题(含答案)

高考物理万有引力与航天解题技巧和训练方法及练习题(含答案)

高考物理万有引力与航天解题技巧和训练方法及练习题(含答案)一、高中物理精讲专题测试万有引力与航天1.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m =2.0 kg 的小物块从斜面底端以速度9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R =1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8)(1)该星球表面上的重力加速度g 的大小. (2)该星球的第一宇宙速度.【答案】(1)g=7.5m/s 2 (2)3×103m/s 【解析】 【分析】 【详解】(1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a =又有:sin cos mg mg ma θμθ+= 解得:27.5m/s g =(2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有:2mv mg R= 3310m/s v gR ==⨯2.据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v =7.7km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的磁感应强度垂直于v ,MN 所在平面的分量B =1.0×10﹣5 T ,将太阳帆板视为导体.(1)求M 、N 间感应电动势的大小E ;(2)在太阳帆板上将一只“1.5V 、0.3W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;(3)取地球半径R =6.4×103 km ,地球表面的重力加速度g = 9.8 m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字). 【答案】(1)1.54V (2)不能(3)5410m ⨯ 【解析】 【分析】 【详解】(1)法拉第电磁感应定律E=BLv代入数据得E =1.54V(2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流. (3)在地球表面有2MmGmg R = 匀速圆周运动22()Mm v G m R h R h=++ 解得22gR h R v=-代入数据得h ≈4×105m 【方法技巧】本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不大,但第二问很容易出错,要求考生心细,考虑问题全面.3.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G ) 【答案】【解析】设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为w 1,w 2.根据题意有 w 1=w 2 ① (1分)r1+r2=r ② (1分)根据万有引力定律和牛顿定律,有G③ (3分)G④ (3分)联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解4.地球同步卫星,在通讯、导航等方面起到重要作用。

高考物理带电粒子在磁场中的运动解题技巧分析及练习题(含答案)含解析

高考物理带电粒子在磁场中的运动解题技巧分析及练习题(含答案)含解析

高考物理带电粒子在磁场中的运动解题技巧分析及练习题(含答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv l Q kq = (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】 【分析】 【详解】(1)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25r l l α== 由洛伦兹力提供向心力可得2011v qv B m r =解得:0 152mv Bql=(2)粒子从P到A的轨迹如图所示:粒子绕负点电荷Q做匀速圆周运动,设半径为r2由几何关系得252cos8lr lα==由库仑力提供向心力得2222vQqk mr r=解得:258mv lQkq=(3)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动粒子在电场中的运动时间00sin35l ltv vα==根据题意得,粒子在磁场中运动时间也为t,则2Tt=又22mTqBπ=解得0253mvBqlπ=设粒子在磁场中做圆周运动的半径为r,则0v t rπ=解得:35l r π=粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t mα-=⋅ 解得:220(23)9mv E qlππ-=2.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()222113r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:13L v t =,212qE h t m =在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:22219BLqv m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭3.如图所示,在xOy 坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。

高考物理动量守恒定律专题训练答案及解析

高考物理动量守恒定律专题训练答案及解析

高考物理动量守恒定律专题训练答案及解析一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A 球与B 球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B 球的最小速度. 【答案】(1);(2);(3)零.【解析】试题分析:(1)A 、B 发生完全非弹性碰撞,根据动量守恒定律有:碰后A 、B 的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A球与B球碰撞中损耗的机械能.当B、C速度相等时,弹簧伸长量最大,弹性势能最大,结合B、C在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图所示,一辆质量M=3 kg的小车A静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p=6J,小球与小车右壁距离为L=0.4m,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。

高中物理高考物理直线运动解题技巧讲解及练习题(含答案)

高中物理高考物理直线运动解题技巧讲解及练习题(含答案)

高中物理高考物理直线运动解题技巧解说及练习题(含答案)一、高中物理精讲专题测试直线运动1.高铁被誉为中国新四大发明之一.因高铁的运转速度快,对制动系统的性能要求较高,高铁列车上安装有多套制动装置——制动风翼、电磁制动系统、空气制动系统、摩擦制动系统等.在一段直线轨道上,某高铁列车正以v0=288km/h 的速度匀速行驶,列车长忽然接到通知,前面 x0=5km 处道路出现异样,需要减速泊车.列车长接到通知后,经过t l=2.5s 将制动风翼翻开,高铁列车获取a2的均匀制动加快度减速,减速t2=40s后,列车1 =0.5m/s长再将电磁制动系统翻开,结果列车在距离异样处500m 的地方停下来.(1)求列车长翻开电磁制动系统时,列车的速度多大?(2)求制动风翼和电磁制动系统都翻开时,列车的均匀制动加快度a2是多大?【答案】( 1) 60m/s (2) 1.2m/s 2【分析】【剖析】(1)依据速度时间关系求解列车长翻开电磁制动系统时列车的速度;(2)依据运动公式列式求解翻开电磁制动后翻开电磁制动后列车行驶的距离,依据速度位移关系求解列车的均匀制动加快度.【详解】(1)翻开制动风翼时,列车的加快度为a1=0.5m/s2,设经过t2=40s 时,列车的速度为v1,则 v1 =v0-a1t 2=60m/s.(2)列车长接到通知后,经过 t 1=2.5s,列车行驶的距离 x1=v0t1 =200m 翻开制动风翼到翻开电磁制动系统的过程中,列车行驶的距离x2=2800m翻开电磁制动后,行驶的距离x3= x0- x1 - x2=1500m ;2.2018 年 12 月 8 日 2 时 23 分,嫦娥四号探测器成功发射,开启了人类登岸月球反面的探月新征程,距离2020 年实现载人登月更近一步,若你经过努力学习、勤苦训练有幸成为中国登月第一人,而你为了测定月球表面邻近的重力加快度进行了以下实验:在月球表面上空让一个小球由静止开始自由着落,测出着落高度h 20m时,着落的时间正好为t5s ,则:(1)月球表面的重力加快度g月为多大?(2)小球着落过程中,最先 2s 内和最后 2s 内的位移之比为多大?【答案】 1.6 m/s 21:4【分析】【详解】( 1)由 h = 1g 月 t 2得: 20= 122 2g 月 ×5解得: g 月= 1.6m/ s 2(2)小球着落过程中的 5s 内,每 1s 内的位移之比为 1:3:5:7:9 ,则最先 2s 内和最后 2s 内的位移之比为:( 1+3):( 7+9) =1:4.3. 在平直公路上,一汽车的速度为 15m/s 。

高考物理大题解题训练--计算题12

高考物理大题解题训练--计算题12

2012高考物理计算题拿分训练121.(14分)在检测某种汽车性能的实验中,质量为3×103kg汽车由静止开始沿平直公路行驶,达到的最大速度为40m/s,利用传感器测得此过程中不同时刻该汽车的牵引力F与对应的度v,并描绘出F一1v图象(图像ABC为汽车由静止到最大速度的全过程图像,AB、BO均为直线)。

假设该汽车行驶中所受的阻力恒定,根据图线ABC,求:(1)该汽车的额定功率;(2)该汽车由静止开始运动,经过35s速度达到最大速度40m/s,求其在BC 段的位移.2.(11分)如图所示,甲、乙两光滑圆轨道放置在同一竖直平面内,甲轨道半径是R且为乙轨道半径的2倍,两轨道之间由一光滑水平轨道CD相连,在水平轨道CD上有一轻弹簧被a、b两个小球夹住,但不拴接.如果a、b两个小球的质量均为m,同时释放两小球,且要求a、b都能通过各自的最高点,则弹簧在释放前至少具有多大的弹性势能?3.(18分)如图所示,在直角坐标系XOY的第一象限内有垂直于坐标平面向外的矩形有界匀强磁场,磁场的左边界与Y轴重合,右边界如图中虚线所示。

在坐标系的三四象限内有平行于坐标平面、与X轴负方向成60°角斜向下的匀强电场,场强大小为E。

一质量为m,电荷量为+q的粒子以速度v0从坐标原点O沿y轴正方向出发,经磁场作用后偏转,粒子飞出磁场区域经过x轴上的b点,此时速度方向与x轴正方向的夹角为30°,粒子随后进入匀强电场中,恰好通过b点正下方的c点。

已知O、b两点间距为L,粒子的重力不计,试求:(1)矩形匀强磁场的宽度d。

(2)带电粒子从O点运动到c点的时间。

答案121.(14分)解:(1)由图线分析可知:图线AB 表示牵引力F 不变即F=8000N ,阻力f不变,汽车由静止开始做匀加速直线运动;图线BC 的斜率表示汽车的功率P 不变,达到额定功率后,汽车所受牵引力逐渐减小做加速减小的变加速直线运动,直至达最大速度40m/s ;此后汽车做匀速直线运动。

高考物理带电粒子在磁场中的运动解题技巧(超强)及练习题(含答案)及解析

高考物理带电粒子在磁场中的运动解题技巧(超强)及练习题(含答案)及解析

⾼考物理带电粒⼦在磁场中的运动解题技巧(超强)及练习题(含答案)及解析⾼考物理带电粒⼦在磁场中的运动解题技巧(超强)及练习题(含答案)及解析⼀、带电粒⼦在磁场中的运动专项训练1.如图所⽰为电⼦发射器原理图,M 处是电⼦出射⼝,它是宽度为d 的狭缝.D 为绝缘外壳,整个装置处于真空中,半径为a 的⾦属圆柱A 可沿半径向外均匀发射速率为v 的电⼦;与A 同轴放置的⾦属⽹C 的半径为2a.不考虑A 、C 的静电感应电荷对电⼦的作⽤和电⼦之间的相互作⽤,忽略电⼦所受重⼒和相对论效应,已知电⼦质量为m ,电荷量为e.(1)若A 、C 间加速电压为U ,求电⼦通过⾦属⽹C 发射出来的速度⼤⼩v C ;(2)若在A 、C 间不加磁场和电场时,检测到电⼦从M 射出形成的电流为I ,求圆柱体A 在t 时间内发射电⼦的数量N.(忽略C 、D 间的距离以及电⼦碰撞到C 、D 上的反射效应和⾦属⽹对电⼦的吸收)(3)若A 、C 间不加电压,要使由A 发射的电⼦不从⾦属⽹C 射出,可在⾦属⽹内环形区域加垂直于圆平⾯向⾥的匀强磁场,求所加磁场磁感应强度B 的最⼩值.【答案】(1)22e eUv v m=+4alt N ed π=(3) 43mv B ae = 【解析】【分析】(1)根据动能定理求解求电⼦通过⾦属⽹C 发射出来的速度⼤⼩;(2)根据=neI t求解圆柱体A 在时间t 内发射电⼦的数量N ;(3)使由A 发射的电⼦不从⾦属⽹C 射出,则电⼦在 CA 间磁场中做圆周运动时,其轨迹圆与⾦属⽹相切,由⼏何关系求解半径,从⽽求解B. 【详解】(1)对电⼦经 CA 间的电场加速时,由动能定理得221122e e U mv mv =- 解得:22e eUv v m=+(2)设时间t 从A 中发射的电⼦数为N ,由M ⼝射出的电⼦数为n ,则 =ne I t224d dNn N a aππ==?解得4alt Nedπ=(3)电⼦在 CA 间磁场中做圆周运动时,其轨迹圆与⾦属⽹相切时,对应的磁感应强度为B.设此轨迹圆的半径为r,则222(2)a r r a-=+2vBev mr=解得:43mv Bae =2.如图所⽰,MN为绝缘板,CD为板上两个⼩孔,AO为CD的中垂线,在MN的下⽅有匀强磁场,⽅向垂直纸⾯向外(图中未画出),质量为m电荷量为q的粒⼦(不计重⼒)以某⼀速度从A点平⾏于MN的⽅向进⼊静电分析器,静电分析器内有均匀辐向分布的电场(电场⽅向指向O点),已知图中虚线圆弧的半径为R,其所在处场强⼤⼩为E,若离⼦恰好沿图中虚线做圆周运动后从⼩孔C垂直于MN进⼊下⽅磁场.()1求粒⼦运动的速度⼤⼩;()2粒⼦在磁场中运动,与MN板碰撞,碰后以原速率反弹,且碰撞时⽆电荷的转移,之后恰好从⼩孔D进⼊MN上⽅的⼀个三⾓形匀强磁场,从A点射出磁场,则三⾓形磁场区域最⼩⾯积为多少?MN上下两区域磁场的磁感应强度⼤⼩之⽐为多少?()3粒⼦从A点出发后,第⼀次回到A点所经过的总时间为多少?【答案】(1EqRm(2)212R;11n+;(3)2πmREq【解析】【分析】【详解】(1)由题可知,粒⼦进⼊静电分析器做圆周运动,则有:2mv EqR=解得:EqRvm=(2)粒⼦从D到A匀速圆周运动,轨迹如图所⽰:由图⽰三⾓形区域⾯积最⼩值为:22RS=在磁场中洛伦兹⼒提供向⼼⼒,则有:2mvBqvR=得:mvRBq=设MN下⽅的磁感应强度为B1,上⽅的磁感应强度为B2,如图所⽰:若只碰撞⼀次,则有:112R mvRB q==22mvR RB q==故2112B B = 若碰撞n 次,则有:111R mv R n B q==+ 22mvR R B q==故2111B B n =+ (3)粒⼦在电场中运动时间:1242R mRt v Eqππ== 在MN 下⽅的磁场中运动时间:211122n m mRt R R v EqR Eqπππ+=== 在MN 上⽅的磁场中运动时间:232142R mRt v Eqππ=?=总时间:1232mRt t t t Eqπ=++=3.空间中存在⽅向垂直于纸⾯向⾥的匀强磁场,磁感应强度为B ,⼀带电量为+q 、质量为m 的粒⼦,在P 点以某⼀初速开始运动,初速⽅向在图中纸⾯内如图中P 点箭头所⽰.该粒⼦运动到图中Q 点时速度⽅向与P 点时速度⽅向垂直,如图中Q 点箭头所⽰.已知P 、Q 间的距离为L .若保持粒⼦在P 点时的速度不变,⽽将匀强磁场换成匀强电场,电场⽅向与纸⾯平⾏且与粒⼦在P 点时速度⽅向垂直,在此电场作⽤下粒⼦也由P 点运动到Q 点.不计重⼒.求:(1)电场强度的⼤⼩.(2)两种情况中粒⼦由P 运动到Q 点所经历的时间之⽐.【答案】22B qLE m=;2B E t t π=【解析】【分析】【详解】(1)粒⼦在磁场中做匀速圆周运动,以v 0表⽰粒⼦在P 点的初速度,R 表⽰圆周的半径,则有200v qv B m R= 由于粒⼦在Q点的速度垂直它在p 点时的速度,可知粒⼦由P 点到Q 点的轨迹为14圆周,故有2R =以E 表⽰电场强度的⼤⼩,a 表⽰粒⼦在电场中加速度的⼤⼩,t E 表⽰粒⼦在电场中由p 点运动到Q 点经过的时间,则有qE ma = ⽔平⽅向上:212E R at =竖直⽅向上:0E R v t =由以上各式,得 22B qL E m= 且E mt qB = (2)因粒⼦在磁场中由P 点运动到Q 点的轨迹为14圆周,即142Bt T m qB π== 所以2B E t t π4.如图所⽰,两块平⾏⾦属极板MN ⽔平放置,板长L =" 1" m .间距d =3m ,两⾦属板间电压U MN = 1×104V ;在平⾏⾦属板右侧依次存在ABC 和FGH 两个全等的正三⾓形区域,正三⾓形ABC 内存在垂直纸⾯向⾥的匀强磁场B 1,三⾓形的上顶点A 与上⾦属板M 平齐,BC 边与⾦属板平⾏,AB 边的中点P 恰好在下⾦属板N 的右端点;正三⾓形FGH 内存在垂直纸⾯向外的匀强磁场B 2,已知A 、F 、G 处于同⼀直线上.B 、C 、H 也处于同⼀直线上.AF 两点距离为23m .现从平⾏⾦属极板MN 左端沿中⼼轴线⽅向⼊射⼀个重⼒不计的带电粒⼦,粒⼦质量m = 3×10-10kg ,带电量q = +1×10-4C ,初速度v 0= 1×105m/s .(1)求带电粒⼦从电场中射出时的速度v 的⼤⼩和⽅向(2)若带电粒⼦进⼊中间三⾓形区域后垂直打在AC 边上,求该区域的磁感应强度B 1(3)若要使带电粒⼦由FH 边界进⼊FGH 区域并能再次回到FH 界⾯,求B 2应满⾜的条件.【答案】(1)52310/m s ?;垂直于AB ⽅向出射.(2)33T (3)23T + 【解析】试题分析:(1)设带电粒⼦在电场中做类平抛运动的时间为t ,加速度为a ,则:U qma d =解得:102310/qU a m s md ==? 50110Lt s v -==? 竖直⽅向的速度为:v y =at =3×105m/s 射出时速度为:22502310/y v v v m s =+=速度v 与⽔平⽅向夹⾓为θ,03tan y v v θ==,故θ=30°,即垂直于AB ⽅向出射.(2)带电粒⼦出电场时竖直⽅向的偏转的位移21322d y at m ===,即粒⼦由P 1点垂直AB 射⼊磁场,由⼏何关系知在磁场ABC 区域内做圆周运动的半径为12cos303d R m ==11v B qv m R =知:113310mv B T qR == (3)分析知当轨迹与边界GH 相切时,对应磁感应强度B 2最⼤,运动轨迹如图所⽰:由⼏何关系得:221sin 60R R += 故半径2(233)R m =⼜222v B qv m R =故2235B T +=所以B 2应满⾜的条件为⼤于235T +.考点:带电粒⼦在匀强磁场中的运动.5.如图所⽰,在平⾯直⾓坐标系xOy 平⾯内,直⾓三⾓形abc 的直⾓边ab 长为6d ,与y 轴重合,∠bac=30°,中位线OM 与x 轴重合,三⾓形内有垂直纸⾯向⾥的匀强磁场.在笫⼀象限内,有⽅向沿y 轴正向的匀强电场,场强⼤⼩E 与匀强磁场磁感应强度B 的⼤⼩间满⾜E=v 0B .在x=3d 的N 点处,垂直于x 轴放置⼀平⾯荧光屏.电⼦束以相同的初速度v 0从y 轴上-3d≤y≤0的范围内垂直于y 轴向左射⼊磁场,其中从y 轴上y=-2d 处射⼊的电⼦,经磁场偏转后,恰好经过O 点.电⼦质量为m,电量为e,电⼦间的相互作⽤及重⼒不计.求 (1)匀强磁杨的磁感应强度B(2)电⼦束从y 轴正半轴上射⼊电场时的纵坐标y 的范围; (3)荧光屏上发光点距N 点的最远距离L【答案】(1)0mv ed ;(2)02y d ≤≤;(3)94d ;【解析】(1)设电⼦在磁场中做圆周运动的半径为r ;由⼏何关系可得r =d电⼦在磁场中做匀速圆周运动洛伦兹⼒提供向⼼⼒,由⽜顿第⼆定律得:20v ev B m r=解得:0mv B ed=(2)当电⼦在磁场中运动的圆轨迹与ac 边相切时,电⼦从+ y 轴射⼊电场的位置距O 点最远,如图甲所⽰.设此时的圆⼼位置为O ',有:sin 30rO a '=3OO d O a ='-' 解得OO d '=即从O 点进⼊磁场的电⼦射出磁场时的位置距O 点最远所以22m y r d ==电⼦束从y 轴正半轴上射⼊电场时的纵坐标y 的范围为02y d ≤≤设电⼦从02y d ≤≤范围内某⼀位置射⼊电场时的纵坐标为y ,从ON 间射出电场时的位置横坐标为x ,速度⽅向与x 轴间夹⾓为θ,在电场中运动的时间为t ,电⼦打到荧光屏上产⽣的发光点距N 点的距离为L ,如图⼄所⽰:根据运动学公式有:0x v t =212eE y t m=y eE v t m=tan y v v θ=tan 3Ld xθ=- 解得:(32)2L d y y =即98y d =时,L 有最⼤值解得:94L d =当322d y y -=【点睛】本题属于带电粒⼦在组合场中的运动,粒⼦在磁场中做匀速圆周运动,要求能正确的画出运动轨迹,并根据⼏何关系确定某些物理量之间的关系;粒⼦在电场中的偏转经常⽤化曲为直的⽅法,求极值的问题⼀定要先找出临界的轨迹,注重数学⽅法在物理中的应⽤.6.在如图所⽰的xoy 坐标系中,⼀对间距为d 的平⾏薄⾦属板竖直固定于绝缘底座上,底座置于光滑⽔平桌⾯的中间,极板右边与y 轴重合,桌⾯与x 轴重合,o 点与桌⾯右边相距为74d,⼀根长度也为d 的光滑绝缘细杆⽔平穿过右极板上的⼩孔后固定在左极板上,杆离桌⾯⾼为1.5d ,装置的总质量为3m .两板外存在垂直纸⾯向外、磁感应强度为B 的匀强磁场和匀强电场(图中未画出),假设极板内、外的电磁场互不影响且不考虑边缘效应.有⼀个质量为m 、电量为+q 的⼩环(可视为质点)套在杆的左端,给极板充电,使板内有沿x 正⽅向的稳恒电场时,释放⼩环,让其由静⽌向右滑动,离开⼩孔后便做匀速圆周运动,重⼒加速度取g .求:(1)环离开⼩孔时的坐标值;(2)板外的场强E 2的⼤⼩和⽅向;(3)讨论板内场强E 1的取值范围,确定环打在桌⾯上的范围.【答案】(1)环离开⼩孔时的坐标值是-14d ;(2)板外的场强E 2的⼤⼩为mgq,⽅向沿y 轴正⽅向;(3)场强E 1的取值范围为223 68qB d qB dm m~,环打在桌⾯上的范围为1744d d -~.【解析】【详解】(1)设在环离开⼩孔之前,环和底座各⾃移动的位移为x 1、x 2.由于板内⼩环与极板间的作⽤⼒是它们的内⼒,系统动量守恒,取向右为正⽅向,根据动量守恒定律,有:mx1-3mx2=0 ①⽽x1+x2=d ②①②解得:x1=34d③x2=1 4 d环离开⼩孔时的坐标值为:x m=34d-d=-14d(2)环离开⼩孔后便做匀速圆周运动,须qE2=mg解得:2mgEq=,⽅向沿y轴正⽅向(3)环打在桌⾯上的范围可画得如图所⽰,临界点为P、Q,则若环绕⼩圆运动,则R=0.75d ④根据洛仑兹⼒提供向⼼⼒,有:2v qvB mR=⑤环在极板内做匀加速运动,设离开⼩孔时的速度为v,根据动能定理,有:qE1x1=12mv2⑥联⽴③④⑤⑥解得:2 138qB d Em=若环绕⼤圆运动,则R2=(R-1.5d)2+(2d)2 解得:R=0.48d ⑦联⽴③⑤⑥⑦解得:2 16qB d Em≈故场强E1的取值范围为22368qB d qB dm m~,环打在桌⾯上的范围为1744d d-~.7.如图所⽰,在不考虑万有引⼒的空间⾥,有两条相互垂直的分界线MN、PQ,其交点为O.MN⼀侧有电场强度为E的匀强电场(垂直于MN),另⼀侧有匀强磁场(垂直纸⾯向⾥).宇航员(视为质点)固定在PQ线上距O点为h的A点处,⾝边有多个质量均为m、电量不等的带负电⼩球.他先后以相同速度v0、沿平⾏于MN⽅向抛出各⼩球.其中第1个⼩球恰能通过MN上的C点第⼀次进⼊磁场,通过O点第⼀次离开磁场,OC=2h.求:(1)第1个⼩球的带电量⼤⼩;(2)磁场的磁感强度的⼤⼩B;(3)磁场的磁感强度是否有某值,使后⾯抛出的每个⼩球从不同位置进⼊磁场后都能回到宇航员的⼿中?如有,则磁感强度应调为多⼤.【答案】(1)20 12mvqEh=;(2)2EBv=;(3)存在,EBv'=【解析】【详解】(1)设第1球的电量为1q,研究A到C的运动:2112q Eh tm=2h v t=Eh=;(2)研究第1球从A到C的运动:12yq Ev hm=解得:0yv v=tan1yvvθ==,45oθ=,2v v=;研究第1球从C作圆周运动到达O的运动,设磁感应强度为B 由2 1v qvB mR=由⼏何关系得:22sinR hθ=解得:2EBv=;(3)后⾯抛出的⼩球电量为q,磁感应强度B'①⼩球作平抛运动过程2hmx v t vqE==2yqEv hm=②⼩球穿过磁场⼀次能够⾃⾏回到A,满⾜要求:sin R xθ=,变形得:sinmvxqBθ''=.8.如图所⽰,质量m=15g、长度L=2m的⽊板D静置于⽔平地⾯上,⽊板D与地⾯间的动摩擦因数µ=0.1,地⾯右端的固定挡板C与⽊板D等⾼。

高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)含解析

高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)含解析

高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,在一直角坐标系xoy平面内有圆形区域,圆心在x轴负半轴上,P、Q是圆上的两点,坐标分别为P(-8L,0),Q(-3L,0)。

y轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy平面向外,磁感应强度的大小为B,y轴的右侧空间有一磁感应强度大小为2B的匀强磁场,方向垂直于xoy平面向外。

现从P点沿与x轴正方向成37°角射出一质量为m、电荷量为q的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。

求:(1)带电粒子的初速度;(2)粒子从P点射出到再次回到P点所用的时间。

【答案】(1)8qBLvm=;(2)41(1)45mtqBπ=+【解析】【详解】(1)带电粒子以初速度v沿与x轴正向成37o角方向射出,经过圆周C点进入磁场,做匀速圆周运动,经过y轴左侧磁场后,从y轴上D点垂直于y轴射入右侧磁场,如图所示,由几何关系得:5sin37oQC L=15 sin37O OQO Q L==在y轴左侧磁场中做匀速圆周运动,半径为1R,11R O Q QC =+21v qvB m R=解得:8qBLv m=; (2)由公式22v qvB m R =得:2mv R qB =,解得:24R L =由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t5cos37o PC L =1PCt v=带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t12mT qBπ=2137360oot T =带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t22·2m mT q B qBππ== 3212t T =从P 点到再次回到P 点所用的时间为t12222t t t t =++联立解得:41145mt qB π⎛⎫=+⎪⎝⎭。

高考物理带电粒子在磁场中的运动(一)解题方法和技巧及练习题及解析

高考物理带电粒子在磁场中的运动(一)解题方法和技巧及练习题及解析

高考物理带电粒子在磁场中的运动(一)解题方法和技巧及练习题及解析一、带电粒子在磁场中的运动专项训练1.如图,圆心为O、半径为r的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B。

P是圆外一点,OP=3r。

一质量为m、电荷量为q(q>0)的粒子从P点在纸面内垂直于OP射出。

己知粒子运动轨迹经过圆心O,不计重力。

求(1)粒子在磁场中做圆周运动的半径;(2)粒子第一次在圆形区域内运动所用的时间。

【答案】(1)(2)【解析】【分析】本题考查在匀强磁场中的匀速圆周运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力。

【详解】(1)找圆心,画轨迹,求半径。

设粒子在磁场中运动半径为R,由几何关系得:①易得:②(2)设进入磁场时速度的大小为v,由洛伦兹力公式和牛顿第二定律有③进入圆形区域,带电粒子做匀速直线运动,则④联立②③④解得2.如图所示,同轴圆形区域内、外半径分别为R1=1 m、R2=3m,半径为R1的圆内分布着B1=2.0 T的匀强磁场,方向垂直于纸面向外;外面环形磁场区域分布着B2=0.5 T的匀强磁场,方向垂直于纸面向内.一对平行极板竖直放置,极板间距d=3cm,右极板与环形磁场外边界相切,一带正电的粒子从平行极板左板P点由静止释放,经加速后通过右板小孔Q,垂直进入环形磁场区域.已知点P、Q、O在同一水平线上,粒子比荷4×107C/kg,不计粒子的重力,且不考虑粒子的相对论效应.求:(1) 要使粒子不能进入中间的圆形磁场区域,粒子在磁场中的轨道半径满足什么条件?(2) 若改变加速电压大小,可使粒子进入圆形磁场区域,且能竖直通过圆心O,则加速电压为多大?(3) 从P点出发开始计时,在满足第(2)问的条件下,粒子到达O点的时刻.【答案】(1) r1<1m. (2) U=3×107V. (3) t=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…)【解析】【分析】(1)画出粒子恰好不进入中间磁场区的临界轨迹,先根据几何关系求出半径;(2)画出使粒子进入圆形磁场区域,且能竖直通过圆心O的轨迹,结合几何关系求解半径,然后根据洛伦兹力提供向心力列方程,再根据动能定理对直线加速过程列方程,最后联立方程组求解加速电压;(3)由几何关系,得到轨迹对应的圆心角,求解粒子从Q孔进入磁场到第一次到O点所用的时间,然后考虑周期性求解粒子到达O点的时刻.【详解】(1) 粒子刚好不进入中间磁场时轨迹如图所示,设此时粒子在磁场中运动的半径为r1,在Rt△QOO1中有r12+R22=(r1+R1)2代入数据解得r1=1m粒子不能进入中间磁场,所以轨道半径r1<1m.(2) 轨迹如图所示,由于O、O3、Q共线且水平,粒子在两磁场中的半径分别为r2、r3,洛伦兹力不做功,故粒子在内外磁场的速率不变,由qvB=m2 v r得r=mvqB易知r3=4r2且满足(r2+r3)2=(R2-r2)2+r32解得r2=34m,r3=3m又由动能定理有qU=12mv2代入数据解得U=3×107V.(3)带电粒子从P到Q的运动时间为t1,则t1满足12v t1=d得t1=10-9s令∠QO2O3=θ,所以cosθ=0.8,θ=37°(反三角函数表达亦可)圆周运动的周期T=2mqBπ故粒子从Q孔进入磁场到第一次到O点所用的时间为8221372180532610360360m mt sqB qBππ-⨯⨯⨯-=+=考虑到周期性运动,t总=t1+t2+k(2t1+2t2)=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…).3.在水平桌面上有一个边长为L的正方形框架,内嵌一个表面光滑的绝缘圆盘,圆盘所在区域存在垂直圆盘向上的匀强磁场.一带电小球从圆盘上的P点(P为正方形框架对角线AC与圆盘的交点)以初速度v0水平射入磁场区,小球刚好以平行于BC边的速度从圆盘上的Q点离开该磁场区(图中Q点未画出),如图甲所示.现撤去磁场,小球仍从P点以相同的初速度v0水平入射,为使其仍从Q点离开,可将整个装置以CD边为轴向上抬起一定高度,如图乙所示,忽略小球运动过程中的空气阻力,已知重力加速度为g.求:(1)小球两次在圆盘上运动的时间之比;(2)框架以CD为轴抬起后,AB边距桌面的高度.【答案】(1)小球两次在圆盘上运动的时间之比为:π:2;(2)框架以CD为轴抬起后,AB边距桌面的高度为222vg.【解析】【分析】【详解】(1)小球在磁场中做匀速圆周运动,由几何知识得:r2+r2=L2,解得:r=22L,小球在磁场中做圆周运的周期:T=2rvπ,小球在磁场中的运动时间:t1=14T=24Lvπ,小球在斜面上做类平抛运动,水平方向:x =r =v 0t 2, 运动时间:t 2=22L v , 则:t1:t 2=π:2;(2)小球在斜面上做类平抛运动,沿斜面方向做初速度为零的匀加速直线运动,位移:r =2212at ,解得,加速度:a =222v L,对小球,由牛顿第二定律得:a =mgsin mθ=g sinθ, AB 边距离桌面的高度:h =L sinθ=222v g;4.如图,平面直角坐标系中,在,y >0及y <-32L 区域存在场强大小相同,方向相反均平行于y 轴的匀强电场,在-32L <y <0区域存在方向垂直于xOy 平面纸面向外的匀强磁场,一质量为m ,电荷量为q 的带正电粒子,经过y 轴上的点P 1(0,L )时的速率为v 0,方向沿x 轴正方向,然后经过x 轴上的点P 2(32L ,0)进入磁场.在磁场中的运转半径R =52L (不计粒子重力),求:(1)粒子到达P 2点时的速度大小和方向; (2)EB; (3)粒子第一次从磁场下边界穿出位置的横坐标; (4)粒子从P 1点出发后做周期性运动的周期. 【答案】(1)53v 0,与x 成53°角;(2)043v ;(3)2L ;(4)()04053760L v π+.【解析】 【详解】(1)如图,粒子从P 1到P 2做类平抛运动,设到达P 2时的y 方向的速度为v y ,由运动学规律知32L=v0t1,L=2yvt1可得t1=32Lv,v y=43v0故粒子在P2的速度为v220yv v+=53v0设v与x成β角,则tanβ=yvv=43,即β=53°;(2)粒子从P1到P2,根据动能定理知qEL=12mv2-12mv02可得E=289mvqL粒子在磁场中做匀速圆周运动,根据qvB=m2vR解得:B=mvqR=5352m vq L⨯⨯=023mvqL解得:043vEB=;(3)粒子在磁场中做圆周运动的圆心为O′,在图中,过P2做v的垂线交y=-32L直线与Q′点,可得:P2O′=3253Lcos o=52L=r故粒子在磁场中做圆周运动的圆心为O′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子将垂直于y=-32L直线从M点穿出磁场,由几何关系知M的坐标x=32L+(r-r cos37°)=2L;(4)粒子运动一个周期的轨迹如上图,粒子从P1到P2做类平抛运动:t1=32Lv在磁场中由P2到M动时间:t2=372 360rvπ︒⨯o=37120Lvπ从M运动到N,a=qEm=289vL则t3=va=158Lv则一个周期的时间T=2(t1+t2+t3)=()4053760Lvπ+.5.如图所示,坐标原点O左侧2m处有一粒子源,粒子源中,有带正电的粒子(比荷为qm=1.0×1010C/kg)由静止进人电压U= 800V的加速电场,经加速后沿x轴正方向运动,O点右侧有以O1点为圆心、r=0.20m为半径的圆形区域,内部存在方向垂直纸面向里,磁感应强度大小为B=1.0×10-3T的匀强磁场(图中未画出)圆的左端跟y轴相切于直角坐标系原点O,右端与一个足够大的荧光屏MN相切于x轴上的A点,粒子重力不计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理计算题拿分训练
a
1.(18分)
利用霍尔效应制作的霍尔元件以及传感器,广泛应用于测量和自动控制等领域。

如图1,将一金属或半导体薄片垂直至于磁场B中,在薄片的两个侧面a、b间通以电
流I时,另外两侧c、f间产生电势差,这一现象称霍尔效应。

其原因是薄片中的移动电荷受洛伦兹力的作用相一侧偏转和积累,于是c、f间建立起电场EH,同时产生霍尔电势差UH。

当电荷所受的电场力与洛伦兹力处处相等时,EH和UH达到稳定值,UH的大小与I和
B以及霍尔元件厚度d之间满足关系式
H H IB
U R
d
=,其中比例系数RH称为霍尔系数,仅与材料性质有关。

(1)设半导体薄片的宽度(c、f间距)为l,请写出UH和EH的关系式;若半导体材料是电子导电的,请判断图1中c、f哪端的电势高;
(2)已知半导体薄片内单位体积中导电的电子数为n,电子的电荷量为e,请导出霍尔系数RH的表达式。

(通过横截面积S的电流I nevS
=,其中v是导电电子定向移动的平均速率);
(3)图2是霍尔测速仪的示意图,将非磁性圆盘固定在转轴上,圆盘的周边等距离地嵌装着m个永磁体,相邻永磁体的极性相反。

霍尔元件置于被测圆盘的边缘附近。

当圆盘匀速转动时,霍尔元件输出的电压脉冲信号图像如图3所示。

a.若在时间t内,霍尔元件输出的脉冲数目为P,请导出圆盘转速N的表达式。

b.利用霍尔测速仪可以测量汽车行驶的里程。

除除此之外,请你展开“智慧的翅膀”,提出另一个实例或设想。

2.(20分)
雨滴在穿过云层的过程中,不断与漂浮在云层中的小水珠相遇并结合为一体,其质量逐渐增大。

现将上述过程简化为沿竖直方向的一系列碰撞。

已知雨滴的初始质量为0m ,初速度为0v ,下降距离l 后于静止的小水珠碰撞且合并,质量变为1m 。

此后每经过同样的距离l 后,雨滴均与静止的小水珠碰撞且合并,质量依次为2m 、3m ......n m ......(设各质量为已知量)。

不计空气阻力。

(1) 若不计重力,求第n 次碰撞后雨滴的速度n
v '; (2) 若考虑重力的影响,
a.求第1次碰撞前、后雨滴的速度1v 和1
v '; b.求第n次碰撞后雨滴的动能
2
12
n n m v '。

3.(20分)
如图,ABD ,为竖直平面内的光滑绝缘轨道,其中AB 段是水平的,BD 段为半径R =0.2m 的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,场强大小
E =5.0×103 V/m 2一不带电的绝缘小球甲,以速度v 0沿水平轨道向右运动,与静止在B 点
带正电的小球乙发生弹性碰撞。

已知甲、乙两球的质量均为m =1.0×10-3
kg ,乙所带电荷量
q =2.0×10-5C ,g 取10 m/s 2。

(水平轨道足够长,甲、乙两球可视为质点,整个运动过程无电荷转移)
(1)甲、乙两球碰撞后,乙恰能通过轨道的最高点D ,求乙在轨道上的首次落点到B 点
的距离;
(2)在满足(1)的条件下,求甲的速度v 0;
(3)若甲仍以速度v 0向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的
首次落点到B 点的距离范围。

答案 1.(18分) (1)由 H H
IB
U R d
= ① 得 ② 当电场力与洛伦兹力相等时 e H E evB = ③ 得 H E vB = ④ 将 ③、④代入②, 得 1H d d ld R vBl
vl IB nevS neS ne
==== (2) a.由于在时间t 内,霍尔元件输出的脉冲数目为P ,则 P=mNt 圆盘转速为 N=P
N mt
= b.
提出的实例或设想
2.(20分)
(1)不计重力,全过程中动量守恒,m 0v 0=m n v ′n
得 0
0n n
m v v m '=
(2)若考虑重力的影响,雨滴下降过程中做加速度为g 的匀加速运动,碰撞瞬间动量守恒
a . 第1次碰撞前 22102,v v gl =+
1v 第1次碰撞后 0111
m v m v '=
01
11m v v m '== b. 第2次碰撞前 2
221
2v v gl '=+ 利用○1式化简得 2
222
2001202
112m m m v v gl m m ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭
○2 第2次碰撞后,利用○
2式得 2
2
222
2200112202
2222m m m m v v v gl m m m ⎛⎫⎛⎫⎛⎫+'==+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
同理,第3次碰撞后 2
222
2
20012302
332m m m m v v gl m m ⎛⎫⎛⎫++'=+ ⎪ ⎪⎝⎭⎝⎭
…………
第n 次碰撞后 122
22
00022n i i n n n m m v v gl m m -=⎛⎫ ⎪⎛⎫ ⎪'=+ ⎪ ⎪⎝⎭
⎪⎝⎭

动能 1
222
2000
11(2)22n n n
i i n m v m v gl m m -='=+∑ 3.(20分)
解:(1)大乙恰能通过轨道最高点的情况,设乙到达最高点速度为v 0,乙离开D 点到达
水平轨道的时间为t ,乙的落点到B 点的距离为x ,则
qE mg R
v m +=20

2)(212t m
qE mg R +=
② t v x 0=

联立①②③得
m x .04=
④ (2)设碰撞后甲、乙的速度分别为v 甲、v 乙,根据动量守恒定律的机械能守恒定律有
乙甲mv mv mv +=0
⑤ 22202
12121乙甲mv mv mv += ⑥
联立⑤⑥得
0v v =乙

由动能定理,得
2
202
12122乙mv mv R qE R mg -=
⋅-⋅- ⑧ 联立①⑦⑧得
s m m
R
Eq mg v /52)(50=+=

(3)设甲的质量为M ,碰撞后甲、乙的速度分别为m M v v ,,根据动量守恒定律和机械能
守恒定律有 m M mv Mv Mv +=0
(10)
22
202
12121m
M mv Mv Mv += (11)
联立(10)(11)得 m
M Mv v m +=
2
(12)
由(12)和m M ≥,可得 002v v v m <≤
(13)
设乙球过D 点时速度为'0v ,由动能定理得
2
2'02
12122m mv mv R qE R mg -=
⋅-⋅-(14) 联立⑨(13)(14)得
s m v s m /8/2'
0<≤
设乙在水平轨道上的落点距B 点的距离为,'x 有
t v x '
0'=
联立②(15)(16)得 m x m 6.1'4.0<≤。

相关文档
最新文档