空间直角坐标系与点的坐标
空间直角坐标系、大地坐标系、平面坐标系、高斯平面直角坐标系
空间直角坐标系、大地坐标系、平面坐标系、高斯平面直角坐标系本篇学习了空间直角坐标系、大地坐标系、平面坐标系、高斯平面直角坐标系。
这个个坐标系有时很容易弄混淆!(一)空间直角坐标系空间直角坐标系的坐标原点位于参考椭球的中心,Z轴指向参考椭球的北极,X轴指向起始子午面与赤道的交点,Y轴位于赤道面上切按右手系于X轴呈90度夹角,某点中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。
空间直角坐标系可用如下图所示:(二)大地坐标系大地坐标系是采用大地纬度、经度和大地高程来描述空间位置的。
纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高程是空间的点沿着参考椭球的法线方向到参考椭球面的距离。
地面点的高程和国家高程基准(1)绝对高程。
地面点沿垂线方向至大地水准面的距离称为绝对高程或称海拔。
过去我国采用青岛验潮站(tide gauge station)1950~1956年观测成果求得的黄海平均海水面作为高程的零点,称为“1956年黄海高程系”(Huanghai height system 1956水准原点高程为72.289m)。
后经复查,发现该高程系的验潮资料时间过短,准确性较差,改用青岛验潮站1950~1979年的观测资料重新推算,并命名为“1985年国家高程基准”(Chinese height datum 1985)。
国家水准原点(leveling origin高程为72.260m)设于青岛市观象山附近,作为我国高程测量的依据。
它的高程值是以“1985年国家高程基准”所确定的平均海水面为零点测算而得。
在使用原“1956年黄海高程系”的高程成果时,应注意将其换算为新的高程基准系统。
(2)相对高程。
地面点沿铅垂线方向至任意假定的水准面的距离称为该点的相对高程,亦称假定高程。
在图l—5中,地面点A和B的相对高程分别为H'A 和H'B 。
7-1 空间直角坐标系,向量及其线性运算
OM = { x , y , z } 与其终点 的坐标一致. 与其终点M 的坐标一致.
所以要求一个向量的坐标, 所以要求一个向量的坐标 , 可将其起点移至坐标原点, 可将其起点移至坐标原点 , 直接求终点的坐标即可. 直接求终点的坐标即可.
o o
z
M( x, y, z) y
x
利用坐标作向量的线性运算 r r r r r 设a = {ax , ay , az }, 即 a = a x i + a y j + a z k ; r r r r r b = bx i + b y j + bz k ; b = {bx , by , bz },
第七章
空间解析几何与向量代数
空间解析几何: 空间解析几何:通过建立空间直角坐标系 把空间几何图形和代数方程联系起来. 把空间几何图形和代数方程联系起来. 向量:既有大小又有方向的量. 向量:既有大小又有方向的量. 本章知识也为讨论多元函数微积分立下几何 基础。 基础。
第七章 七
第一节 空间直角坐标系、 向量及其线性运算
MD = 1 ( b − a) 2
C
b
A
M a B
∴ MA = − 1 ( a + b) MB = − 1 (b − a) 2 2 MC = 1 ( a + b) 2
向量经过数乘运算后与原向量平行。 反之, 向量经过数乘运算后与原向量平行。 反之, 如果两个向量平行,则它们之间必存在数乘关系. 如果两个向量平行,则它们之间必存在数乘关系. r r r r 定理: 设向量a ≠ 0,那末向量b 平行于a 的
2
Q M 1 P = x2 − x1 ,
z
R
• M2
M1
高等数学《点的坐标与向量的坐标》
aazay称,y ja为z )a向称z k量为a向 的量坐a标的.(坐coo标rd表in示at式es).
若点M的坐标为(x, y, z), 则向径:OM ( x, y, z).
向 量的分 解表达式说明:任何向量可以表 示为 i , j , k 的线性组合,组合系数 ax , ay , az
就是该向量的坐标.
6(cos ,cos ,cos
)
6(1 , 2
2 2
,
1 2
)
(3
,3
2 , 3)
故点 A 的坐标为(3,3 2 ,3).
3. 向量的投影
1) 空间一点在轴上的投影
•A
过点 A 作轴 u 的垂直平面,交点 A 即为点 A 在轴 u 上的投影.
A
u
2) 空间一向量在轴上的投影
A
B
已知向量的起点 A 和终点 B 在
解 设所求点为M (0, y, 0), ∵|MA|= |MB|,
12 (2 y)2 32 22 (3 y)2 22
即 y2 4 y 14 y2 6 y 17, 解得 y 3 , 2
故所求点为M (0, 3 ,0). 2
思考题: (1) 在 xoy 面上求与点A(1,2,3)和点
AB AC , CB 2 AB 2 AC 2 原结论成立.
二、向量的坐标及向量线性运算的坐标的表示
在空 间直角坐标系下, 任意向量 a 可用向径 OM 表示. 以i , j , k 分别表示沿 x, y, z 轴正向的单位向量,称为
Oxyz 坐标系下的基本单位向量.
z
C
设点 M 的坐标为 M (ax , ay , az), 则
给2.定方a向 (角x,与y,方z) 向0余, a弦与三坐标轴正向所成的
空间直角坐标系、大地坐标系、平面坐标系、高斯平面直角坐标系
本篇学习了空间直角坐标系、大地坐标系、平面坐标系、高斯平面直角坐标系。
这个个坐标系有时很容易弄混淆!(一)空间直角坐标系空间直角坐标系的坐标原点位于参考椭球的中心,Z轴指向参考椭球的北极,X轴指向起始子午面与赤道的交点,Y轴位于赤道面上切按右手系于X轴呈90度夹角,某点中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。
空间直角坐标系可用如下图所示:(二)大地坐标系大地坐标系是采用大地纬度、经度和大地高程来描述空间位置的。
纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高程是空间的点沿着参考椭球的法线方向到参考椭球面的距离。
地面点的高程和国家高程基准(1)绝对高程。
地面点沿垂线方向至大地水准面的距离称为绝对高程或称海拔。
过去我国采用青岛验潮站(tide gauge station)1950~1956年观测成果求得的黄海平均海水面作为高程的零点,称为“1956年黄海高程系”(Huanghai height system 1956水准原点高程为72.289m)。
后经复查,发现该高程系的验潮资料时间过短,准确性较差,改用青岛验潮站1950~1979年的观测资料重新推算,并命名为“1985年国家高程基准”(Chinese height datum 1985)。
国家水准原点(leveling origin高程为72.260m)设于青岛市观象山附近,作为我国高程测量的依据。
它的高程值是以“1985年国家高程基准”所确定的平均海水面为零点测算而得。
在使用原“1956年黄海高程系”的高程成果时,应注意将其换算为新的高程基准系统。
(2)相对高程。
地面点沿铅垂线方向至任意假定的水准面的距离称为该点的相对高程,亦称假定高程。
在图l—5中,地面点A和B的相对高程分别为H'A 和H'B。
(3)高差。
地面上任意两点的高程(绝对高程或相对高程)之差称为高差。
2.3.1 空间直角坐标系的建立 2.3.2 空间直角坐标系中点的坐标
z
1350 o 1350 x y
有了空间直角坐标系,那空间中的任意一点A 有了空间直角坐标系,那空间中的任意一点A怎样来表示它 的坐标呢? 的坐标呢? 经过A 经过A点作三个 平面分别垂直于x 平面分别垂直于x轴、
z
y轴和z轴,它们与x 轴和z 它们与x 轴、y轴和z轴分别交 轴和z 于三点,三点在相应 于三点, 的坐标轴上的坐标
不实心不成事,不虚心不知事,不自是者博 闻,不自满者受益。
z
4 3
墙 墙 地面
4
1
(4,5,3)
5
O 1
y某一个定点0 从空间某一个定点0引三条互相 垂直且有相同单位长度的数轴, 垂直且有相同单位长度的数轴,这样 就建立了空间直角坐标系0 xyz. 就建立了空间直角坐标系0-xyz.
o y x
点O叫作坐标原点,x,y,z轴统称为坐标轴,这三条 叫作坐标原点, 轴统称为坐标轴, 坐标轴中每两条确定一个坐标平面,分别称为xoy平面、 坐标轴中每两条确定一个坐标平面,分别称为xoy平面、 xoy平面 yoz平面、 zox平面 平面. yoz平面、和 zox平面. 平面
右手系:伸出右手, 右手系:伸出右手,让四指与大拇指垂 直,并使四指先指向x轴正方向,然后让 并使四指先指向x轴正方向, 指向y 四指沿握拳方向旋转 90o 指向y轴正方 向,此时大拇指的指向即为z轴正向.我 此时大拇指的指向即为z轴正向. 们也称这样的坐标系为右手系 .
z 说明: 说明:
☆本书建立的坐标系
o
都是右手直角坐标系. 都是右手直角坐标系.
y x
空间直角坐标系的画法: 空间直角坐标系的画法:
1.x轴与y 1.x轴与y轴、x轴与z轴均成135°, 轴与 轴与z轴均成135° 135 而z轴垂直于y轴. 轴垂直于y 2.y轴和z轴的单位长度相同,x 2.y轴和z轴的单位长度相同, 轴和 轴上的单位长度为y 轴上的单位长度为y轴(或z轴) 的单位长度的一半. 的单位长度的一半.
高中数学知识点精讲精析 空间直角坐标系中点的坐标
空间直角坐标系中点的坐标1.空间中点的坐标:P (x ,y ,z ),确定方法:由P 作PP '⊥坐标平面xOy ,则P '点是平面xOy 上的点,其坐标为(x ,y ,O ),这样就确定了P 的横坐标x 和纵坐标y.若PP '与z 轴正半轴在平面xOy 同侧,则z=|PP '|;若PP '与z 轴正半轴在平面xOy 异侧,则z=-|PP '|,这样就确定了P点的竖坐标z.2.坐标平面上点的坐标:①xOy 平面上点的坐标:(x ,y ,0);xOz 平面上点的坐标:(x ,O ,z );yOz 平面上点的坐标:(0,y ,z );②x 轴上点的坐标:(x ,0,0);y 轴上点的坐标:(0,y ,0);z 轴上点的坐标:(0,0,z )3.空间直角坐标系中长方体各顶点的坐标:设长方体ABCD -A 'B 'C 'D '的长.宽.高分别为,将A 点放在坐标原点,AB 放在x 轴正半轴上,AD 放在y 轴正半轴上,如图:则A (0,0,0),B (a ,0,0),C (a ,b ,0),D (0,b ,0),A '(0,0,c ),B '(a ,0,c ),C '(a ,b ,c ),D '(0,b ,c ).例1 已知A (x ,2,3).B (5,4,7),且|AB |=6,求x 的值.解:Q |AB |=6,∴ (x - 5)× (x - 5) + (2 - 4) ×(2 - 4)2+ (3 - 7)×(3 - 7) = 36 ,即 (x - 5)2 = 16 ,解得x =1 或x =9.例3求点P (1,2,3)关于坐标平面xOy 的对称点的坐标.解:设点P 关于坐标平面xOy 的对称点为P ¢ ,连PP ¢ 交坐标平面xOy 于Q , 则PP ¢ ^ 坐标平面xOy ,且|PQ |=| P ¢ Q|,∴ P ¢ 在 x 轴.y 轴上的射影分别与 P 在 x 轴.y 轴上的射影重合, P ¢ 在 z 轴上的射影与 P 在 z 轴上的射影关于原点对称,∴ P ¢ 与P 的横坐标.纵坐标分别相同,竖坐标互为相反数,,,a b c∴点P(1,2,3)关于坐标平面xOy 的对称点的坐标为(1,2,3).。
空间直角坐标系的建立(最新课件)
1.确定空间定点M的坐标的步骤 (1)过点M分别作垂直于x轴、y轴和z轴的平面,依次 交x轴、y轴和z轴于P、Q和R. (2)确定P、Q和R在x轴、y轴和z轴上的坐标x,y和z. (3)得出点M的坐标为(x,y,z).
2.已知M点坐标为(x,y,z)确定点M位置的步骤 (1)在x轴、y轴和z轴上依次取坐标为x,y和z的点P、 Q、R. (2)过P、Q、R分别作垂直于x轴、y轴和z轴的平面. (3)三个平面的唯一交点就是M. 3.对于空间点关于坐标轴和坐标平面对称的问题, 要记住“关于谁对称谁不变”的原则.
4.如图,在棱长为1的正方体ABCD- A1B1C1D1中,E、F分别为D1D、BD的 中点,G在棱CD上,且CG=14CD,H为C1G的中点,试建 立适当的直角坐标系,写出点E、F、G、H的坐标.
解:以D为原点,DA所在直线为x轴,DC 所在直线为y轴,DD1所在直线为z轴建立 空间直角坐标系. ∵点E在z轴上,且为D1D的中点, 故点E坐标为(0,0,12).过F作FM⊥AD、 FN⊥DC,则|FM|=|FN|=12,故点F坐标为(12,12,0);
10.点P在x轴上,它到点P1(0, 2,3)的距离为到点P2 (0,1,-1)的距离的2倍,则点P的坐标是_______. 解析:由已知可设P(x,0,0),则 |PP1|=2|PP2|. ∴x2+( 2)2+32=4[x2+1+(-1)2]. ∴3x2=3. ∴x=±1. ∴P点坐标为(1,0,0)或(-1,0,0). 答案:(1,0,0)或(-1,0,0)
[精解详析] 点M关于xOy平面的对称点M1的坐标为 (a,b,-c),关于xOz平面的对称点M2的坐标为(a,-b, c),关于yOz平面的对称点M3的坐标为(-a,b,c).
关于x轴的对称点M4的坐标为(a,-b,-c), 关于y轴的对称点M5的坐标为(-a,b,-c), 关于z轴的对称点M6的坐标为(-a,-b,c), 关于原点对称的点M7的坐标为(-a,-b,-c).
空间直角坐标系
一、空间向量的基本概念
平面向量
空间向量
定义
具有大小和方向的量
表示法 几何表示:有向线段 AB 字母表示: a
向量的模
向量的大小 AB a
相等向量 相反向量 单位向量 零向量
长度相等且方向相同的向量 长度相等且方向相反的向量 模为1的向量,没有规定方向 模为0的向量,与任何向量共线
空间任意两个向量都可以平移到同一个平面内,
( x y z 1)
判断四点共面,或直线平行 于平面
1.下列命题中正确的有:B
(1) p xa yb p 与 a 、b 共面 ; (2) p 与 a 、b 共面 p xa yb ;
(3) MP x MA y MB P、M、A、B共面;
(4) P、M、A、B共面 MP xMA yMB ;
预备知识
数轴Ox上的点M
实数x
O
直角坐标平面上的点M
y
M
x
x
实数对(x,y)
y A(x,y)
Ox
x
一、空间直角坐标系 —Oxyz
z
竖轴
1
纵轴
o
1
1
y
x
右手直角坐标系
横轴
右手直角坐标系:在空间直角坐标系中,让 右手拇指指向 x 轴的正方向,食指指向 y 轴的 正方向,如果中指指向 z 轴的正方向,则称这 个坐标系为右手直角坐标系.
【温故知新】
平面向量基本定理:
如果e1,e2是同一平面内的两个不共线向量, 那么对于这一平面内的任一向量a,有且只有
一对实数1,2,使a=1e1+2 e2。
(e1、e2叫做表示这一平面内所有向量的一组基底。)
五、共面向量
2. 如果两个向量 a,不b 共线,
3.2空间直角坐标系中点的坐标
2.若本例中的条件变为“正四棱锥P-ABCD的底面边长为4,侧棱长为 10”,试建立适当的空间直角坐标系,写出各顶点的坐标.
解 因为正四棱锥P-ABCD的底面边长为4,侧棱
长为10,
所以正四棱锥的高为2 23 ,
以正四棱锥的底面中心为原点,
平行于BC,AB所在的直线分别为x轴、y轴,
建立如图所示的空间直角坐标系,
答案
达标检测
1.点Q(0,0,2 017)的位置是 A.在x轴上 B.在y轴上
√C.在z轴上
D.在平面xOy上
1 2 34 5
答案
2.点(2,-1,5)与点(2,-1,-5)
A.关于x轴对称
B.关于y轴对称
√C.关于xOy平面对称 D.关于z轴对称
1 2 34 5
答案
3.点A(-1, 3,2)在xOz平面的射影点的坐标为
C-5
2
2,5
2
2,0, D-5
2
2,-5
2
2,0.
解答
引申探究 1.若本例中的正四棱锥建立如图所示的空间直角坐标系,试写出各顶 点的坐标.
解 各顶点的坐标分别为P(0,0,12),A(5,0,0),B(0,5,0),C(-5,0,0), D(0,-5,0).
解答
例1 已知正四棱锥P-ABCD的底面边长为5 2,侧棱长为13,建立的空 间直角坐标系如图,写出各顶点的坐标.
解 因为|PO|= |PB|2-|OB|2= 169-25=12,
所以各顶点的坐标分别为P(0,0,12),
A5
2
2,-5
2
2,0,
B5
2
2,5
2
2,0,
高中数学必修二讲义 专题4.3 空间直角坐标系
一、空间直角坐标系定义以空间中两两__________且相交于一点O 的三条直线分别为x 轴、y 轴、z 轴,这时就说建立了空间直角坐标系Oxyz ,其中点O 叫做坐标__________,x 轴、y 轴、z 轴叫做__________.通过每两个坐标轴的平面叫做__________,分别称为xOy 平面、yOz 平面、__________平面.画法 在平面上画空间直角坐标系Oxyz 时,一般使∠xOy =__________,∠yOz =90°.图示说明本书建立的坐标系都是右手直角坐标系,即在空间直角坐标系中,让右手拇指指向__________轴的正方向,食指指向__________轴的正方向,如果中指指向__________轴的正方向,则称这个坐标系为右手直角坐标系.二、空间直角坐标系中点的坐标1.空间中的任意点与有序实数组(),,x y z 之间的关系如图所示,设点M 为空间直角坐标系中的一个定点,过点M 分别作垂直于x 轴、y 轴和z 轴的__________,依次交x 轴、y 轴和z 轴于点P 、Q 和R .设点P 、Q 和R 在x 轴,y 轴和z 轴上的坐标分别是x 、y 和z ,那么点M 就和有序实数组(x ,y ,z )是__________的关系,有序实数组__________叫做点M 在此空间直角坐标系中的坐标,记作__________,其中x 叫做点M 的__________,y 叫做点M 的__________,z 叫做点M 的__________.2.空间直角坐标系中特殊位置点的坐标点的位置 点的坐标形式 原点 (0,0,0) x 轴上 (a ,0,0) y 轴上 (0,b ,0) z 轴上 (0,0,c ) xOy 平面上 (a ,b ,0) yOz 平面上 (0,b ,c ) xOz 平面上(a ,0,c )3.空间直角坐标系中的对称点设点P (a ,b ,c )为空间直角坐标系中的点,则对称轴(或中心或平面) 点P 的对称点坐标 原点(),,a b c --- x 轴 (),a b c --,y 轴(-a ,b ,-c )z 轴),(,a b c -- xOy 平面(,,)a b c -yOz 平面(),,a b c - xOz 平面(,)a b c -,三、空间两点间的距离公式如图,设点11112222(,,),(,,)P x y z P x y z 是空间中任意两点,且点11112222(,,),(,,)P x y z P x y z 在xOy 平面上的射影分别为M ,N ,那么M ,N 的坐标分别为1122(,,0),(,,0)M x y N x y .在xOy 平面上,221212||()()MN x x y y =-+-.在平面21MNP P 内,过点1P 作2P N 的垂线,垂足为H ,则11122||||,||||,||||PH MN MP z MP z ===,所以221||||HP z z =-.在12Rt △PHP 中,2211212||||()()PH MN x x y y ==-+-, 根据勾股定理,得221212||||||PP PH HP =+=____________________________. 因此,空间中点P 1(x 1,y 1,z 1)、P 2(x 2,y 2,z 2)之间的距离是12||PP =____________________________. 特别地,点P (x ,y ,z )到坐标原点O (0,0,0)的距离为|OP |=222x y z ++.空间两点间的距离公式可以类比平面上两点间的距离公式,只是增加了对应的竖坐标的运算. 空间中点坐标公式:设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则AB 中点P ⎝⎛⎭⎫x 1+x 22,y 1+y 22,z 1+z 22.K 知识参考答案:三、222121212()()()x x y y z z-+-+-222121212()()()x x y y z z-+-+-K—重点1.会建立空间直角坐标系(右手直角坐标系),会表示空间中的任意点;2.能在空间直角坐标系中求出点的坐标;3.记住空间两点间的距离公式,并能应用两点间的距离公式解决一些简单的问题.K—难点对空间直角坐标系的理解,空间两点间距离公式的推导.K—易错易混淆平面与空间直角坐标系.1.确定空间任一点的坐标确定空间直角坐标系中任一点P的坐标的步骤是:①过P作PC⊥z轴于点C;②过P作PM⊥平面xOy于点M,过M作MA⊥x轴于点A,过M作MB⊥y轴于点B;③设P(x,y,z),则|x|=|OA|,|y|=|OB|,|z|=|OC|.当点A、B、C分别在x、y、z轴的正半轴上时,则x、y、z的符号为正;当点A、B、C分别在x、y、z轴的负半轴上时,则x、y、z的符号为负;当点A、B、C与原点重合时,则x、y、z的值均为0.空间中点的坐标受空间直角坐标系的制约,同一个点,在不同的空间直角坐标系中,其坐标是不同的.【例1】如图,在长方体ABCD -A1B1C1D1中,E,F分别是棱BC,CC1上的点,|CF|=|AB|=2|CE|,|AB|∶|AD|∶|AA1|=1∶2∶4.试建立适当的坐标系,写出E,F点的坐标.【解析】以A为坐标原点,射线AB,AD,AA1的方向分别为正方向建立空间直角坐标系,如图所示.【名师点睛】空间中点P坐标的确定方法(1)由P点分别作垂直于x轴、y轴、z轴的平面,依次交x轴、y轴、z轴于点P x、P y,P z,这三个点在x轴、y轴、z轴上的坐标分别为x,y,z,那么点P的坐标就是(x,y,z).(2)若题所给图形中存在垂直于坐标轴的平面,或点P在坐标轴或坐标平面上,则要充分利用这一性质解题.【例2】如图所示,在长方体ABCD-A1B1C1D1中,|AD|=3,|DC|=4,|DD1|=2,E,F分别是BB1,D1B1的中点,求点A,B,C,D,A1,B1,C1,D1,E,F的坐标.【例3】如图,在正方体1111ABCD A B C D -中,,E F 分别是111,BB D B 的中点,棱长为1. 试建立适当的空间直角坐标系,写出点,E F 的坐标.【解析】建立如图所示坐标系.方法一:E 点在xDy 面上的射影为,1,()1,0B B ,竖坐标为12. 所以1(1,1,)2E .F 在xDy 面上的射影为BD 的中点G ,竖坐标为1.所以11(,,1)22F .方法二:11,()1,1B ,10,()0,1D ,()1,1,0B ,E 为1B B 的中点,F 为11B D 的中点. 故E 点的坐标为111110(,,)222+++即1(1,1,)2,F 点的坐标为101011(,,)222+++,即11(,,1)22.2.求空间对称点的坐标求对称点的坐标一般依据“关于谁对称,谁保持不变,其余坐标相反”来解决.如关于横轴(x 轴)的对称点,横坐标不变,纵坐标、竖坐标变为原来的相反数;关于xOy 坐标平面的对称点,横坐标、纵坐标不变,竖坐标变为原来的相反数. 【例4】设点是直角坐标系中一点,则点关于轴对称的点的坐标为A .B .C .D .【答案】A 【解析】点关于x 轴对称的点的坐标为.【例5】空间直角坐标系中,点关于点的对称点的坐标为A .B .C .D .【答案】C【名师点睛】(1)求空间对称点的规律方法空间的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化规律,才能准确求解.对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反”这个结论. (2)空间直角坐标系中,任一点P (x ,y ,z )的几种特殊对称点的坐标如下: ①关于原点对称的点的坐标是P 1(-x ,-y ,-z ); ②关于x 轴(横轴)对称的点的坐标是P 2(x ,-y ,-z ); ③关于y 轴(纵轴)对称的点的坐标是P 3(-x ,y ,-z ); ④关于z 轴(竖轴)对称的点的坐标是P 4(-x ,-y ,z ); ⑤关于xOy 坐标平面对称的点的坐标是P 5(x ,y ,-z ); ⑥关于yOz 坐标平面对称的点的坐标是P 6(-x ,y ,z ); ⑦关于xOz 坐标平面对称的点的坐标是P 7(x ,-y ,z ).(3)点关于点的对称要用中点坐标公式解决,即已知空间中两点111222(,,),(,,)A x y z B x y z ,则AB 的中点P 的坐标为121212(,,)222x x y y z z +++. 3.空间两点间的距离公式(1)已知空间两点间的距离求点的坐标,是距离公式的逆应用,可直接设出该点坐标,利用待定系数法求解点的坐标.(2)若求满足某一条件的点,要先设出点的坐标,再建立方程或方程组求解.(3)利用空间两点间的距离公式判断三角形的形状时,需分别求出三边长,得到边长相等或者满足勾股定理;判断三点共线时,需分别求出任意两点连线的长度,判断其中两线段长度之和等于另一条线段长度.【例6】已知点()3,2,1M ,()1,0,5N ,求: (1)线段MN 的长度;(2)到,M N 两点的距离相等的点(),,P x y z 的坐标满足的条件.【例7】如图所示,建立空间直角坐标系Dxyz ,已知正方体ABCD-A 1B 1C 1D 1的棱长为1,点P 是正方体的体对角线D 1B 的中点,点Q 在棱CC 1上.当2|C 1Q|=|QC|时,求|PQ|.【例8】如图,在四棱锥P-ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,|AP|=|AB|=2,|BC|=2,E ,F 分别是AD ,PC 的中点.求证:PC ⊥BF ,PC ⊥EF .【解析】如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.∵|AP|=|AB|=2,|BC|=2,四边形ABCD 是矩形,∴A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),∴|PB|==2,∴|PB|=|BC|,又F 为PC 的中点,∴PC ⊥BF .∵(0,2,0)E ,∴222||(00)(20)(02)6PE =-+-+-=,222||(02)(222)(00)6CE =-+-+-=,∴||||PE CE =,又F 为PC 的中点,∴PC ⊥EF .【例9】如图,已知正方体ABCD -A ′B ′C ′D ′的棱长为a ,M 为BD ′的中点,点N 在A ′C ′上,且|A ′N |=3|NC ′|,试求|MN |的长.因为|A ′N |=3|NC ′|,所以N 为A ′C ′的四等分点,从而N 为O ′C ′的中点,故N ⎝⎛⎭⎫a 4,34a ,a . 根据空间两点间的距离公式,可得|MN |=⎝⎛⎭⎫a 2-a 42+⎝⎛⎭⎫a 2-3a 42+⎝⎛⎭⎫a 2-a 2=64a .【名师点睛】求空间两点间的距离时,一般使用空间两点间的距离公式,应用公式的关键在于建立适当的坐标系,确定两点的坐标.确定点的坐标的方法视具体题目而定,一般说来,要转化到平面中求解,有时也利用几何图形的特征,结合平面直角坐标系的知识确定. 4.混淆平面与空间直角坐标系【例10】已知空间中两点(3,1,1)(2,2,3)A B ---、,在z 轴上有一点C ,它到A B 、两点的距离相等,求点C 的坐标.【错解】由已知得,AB 的中点坐标为51(,,2)22-,且AB 所在直线的斜率为3,故AB 的垂直平分线的斜率为13-,则垂直平分线的方程为15112()()3232z x y -=-+--,当0x y ==时,43z =,故点C 的坐标为4(0,0,)3.【错因分析】上面解法照搬平面解析几何中的解题思路而出现错误.由于点C 到A B 、两点的距离相等,故可求AB 的垂直平分线.以目前所学知识只能用两点间的距离公式求解. 【正解】设点C 的坐标为(0,0,)z , 则22222231(1)2(2)(3)z z ++-=+-+-,即2210(1)3()8z z +-=+-, 解得32z =,所以点C 的坐标为3(0,0,)2. 【易错点睛】平面直角坐标系中的性质在空间直角坐标系中并不能全部适用,如平面直角坐标系中的中点公式,可类比到三维空间中,而直线方程及一些判定定理、性质在三维空间中不一定适用.1.在空间直角坐标系中,点P (1,2,3)关于x 轴对称的点的坐标为 A .(-1,2,3) B .(1,-2,-3) C .(-1,-2,3)D .(-1,2,-3)2.在空间直角坐标系中,点P (3,4,5)关于yOz 平面对称的点的坐标为 A .(-3,4,5) B .(-3,-4,5) C .(3,-4,-5)D .(-3,4,-5)3.如图,在正方体OABC -O 1A 1B 1C 1中,棱长为2,E 是B 1B 上的点,且|EB |=2|EB 1|,则点E 的坐标为A .(2,2,1)B .(2,2,23)C .(2,2,13)D .(2,2,43)4.在长方体ABCD -A 1B 1C 1D 1中,若D (0,0,0)、A (4,0,0)、B (4,2,0)、A 1(4,0,3),则对角线AC 1的长为A.9 B.29C.5 D.2 65.已知点A(1,a,-5),B(2a,-7,-2)(a∈R)则|AB|的最小值是A.3 3 B.3 6C.2 3 D.2 66.点(2,0,3)在空间直角坐标系中的A.y轴上B.xOy面上C.xOz面上D.第一象限内7.在空间直角坐标系中,已知点P(1,2,3),过点P作平面yOz的垂线PQ,则垂足Q的坐标为A.(0,2,0)B.(0,2,3)C.(1,0,3)D.(1,0,0)8.如图所示,在长方体ABCO-A1B1C1O1中,OA=1,OC=2,OO1=3,A1C1与B1O1交于P,分别写出A,B,C,O,A1,B1,C1,O1,P的坐标.9.(1)已知A(1,2,-1),B(2,0,2),①在x轴上求一点P,使|PA|=|PB|;②在xOz平面内的点M到A点与到B点等距离,求M点轨迹.(2)在xOy平面内的直线x+y=1上确定一点M,使它到点N(6,5,1)的距离最小.10.在空间直角坐标系中,一定点P到三个坐标轴的距离都是1,则该点到原点的距离是A.62B. 3C.32D.6311.已知A点坐标为(1,1,1),B(3,3,3),点P在x轴上,且|PA|=|PB|,则P点坐标为A.(6,0,0)B.(6,0,1)C.(0,0,6)D.(0,6,0)12.已知M(5,3,-2),N(1,-1,0),则点M关于点N的对称点P的坐标为________.13.在空间直角坐标系中,正方体ABCD-A1B1C1D1的顶点A的坐标为(3,-1,2),其中心M的坐标为(0,1,2),则该正方体的棱长等于________.14.如图所示,正方形ABCD,ABEF的边长都是1,并且平面ABCD⊥平面ABEF,点M在AC上移动,点N在BF上移动.若|CM|=|BN|=a(0<a<2).(1)求MN的长度;(2)当a为何值时,MN的长度最短?15.如图,在棱长为1的正方体ABCD-A1B1C1D1中,M在线段BC1上,且|BM|=2|MC1|,N是线段D1M的中点,求点M,N的坐标.16.如图所示,V-ABCD是正棱锥,O为底面中心,E,F分别为BC,CD的中点.已知|AB|=2,|VO|=3,建立如图所示空间直角坐标系,试分别写出各个顶点的坐标.17.如图,在棱长为1的正方体ABCD-A1B1C1D1中,以正方体的三条棱所在直线为轴建立空间直角坐标系Oxyz.(1)若点P在线段BD1上,且满足3|BP|=|BD1|,试写出点P的坐标,并写出P关于y轴的对称点P′的坐标;(2)在线段C1D上找一点M,使点M到点P的距离最小,求出点M的坐标.18.如图,三棱柱ABC-A1B1C1中,所有棱长都为2,侧棱AA1⊥底面ABC,建立适当坐标系写出各顶点的坐标.19.(2017•上海)如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标是__________.1 2 3 4 5 6 7 10 11 BADBBCBAA1.【答案】B【解析】关于x 轴对称,横坐标不变.故选B . 2.【答案】A【解析】关于yOz 平面对称,y ,z 不变.故选A . 3.【答案】D4.【答案】B【解析】由已知求得C 1(0,2,3),∴|AC 1|=29.故选B . 5.【答案】B【解析】|AB |2=(2a -1)2+(-7-a )2+(-2+5)2=5a 2+10a +59=5(a +1)2+54.∴a =-1时,|AB |2的最小值为54.∴|AB |min =54=36.故选B . 6.【答案】C【解析】因为该点的y 坐标为0,根据坐标平面上点的特点可知该点在xOz 面上.故选C . 7.【答案】B【解析】平面yOz 内点的横坐标为0.故选B . 8.【答案】详见解析.9.【答案】(1)①P (1,0,0);②M 点的轨迹是xOz 平面内的一条直线,其方程为x +3z -1=0; (2)M (1,0,0).【解析】(1)①设P (a ,0,0),则由已知得222(1)(2)1a -+-+2(2)4a -+,即a 2-2a +6=a 2-4a +8,解得a =1, 所以P 点坐标为(1,0,0). ②设M (x ,0,z ),222(1)(2)(1)x z -+-++22(2)(2)x z -+- 整理得2x +6z -2=0,即x +3z -1=0. 故M 点的轨迹是xOz 平面内的一条直线. (2)由已知,可设M (x ,1-x ,0),则|MN |=222(6)(15)(01)x x -+--+-22(1)51x -+ 所以当x =1时,|MN |min =51,此时点M (1,0,0). 10.【答案】A【解析】设P (x ,y ,z ),由题意可知222222111x y y z x z ⎧+=⎪+=⎨⎪+=⎩,∴x 2+y 2+z 2=32.∴222x y z ++=62.故选A . 11.【答案】A【解析】设P (x ,0,0),|PA |2(1)11x -++,|PB |2(3)99x -++,由|PA |=|PB |,得x =6.故选A .12.【答案】(-3,-5,2)13.【答案】2393【解析】设正方体的棱长为a ,由|AM |=9+4+0=13可知,正方体的体对角线长为3a =213,故a =2133=2393.14.【答案】(1221a a -+2)当a =22时,MN 的长度最短.【解析】因为平面ABCD ⊥平面ABEF ,且交线为AB ,BE ⊥AB , 所以BE ⊥平面ABCD ,所以BA ,BC ,BE 两两垂直.取B 为坐标原点,过BA ,BE ,BC 的直线分别为x 轴,y 轴和z 轴,建立空间直角坐标系. 因为|BC |=1,|CM |=a ,点M 在坐标平面xBz 内且在正方形ABCD 的对角线上, 所以点M (22a ,0,1-22a ). 因为点N 在坐标平面xBy 内且在正方形ABEF 的对角线上,|BN |=a , 所以点N (22a ,22a ,0). (1)由空间两点间的距离公式, 得|MN |2222222()(0)(10)2222a a a a -+-+-- 221a a -+MN 221a a -+ (2)由(1),得|MN |=221a a -+221()22a -+ 当a =22(满足0<a <2221()22a -+取得最小值, 即MN 的长度最短,最短为22. 15.【答案】M ⎝⎛⎭⎫13,1,23;N ⎝⎛⎭⎫16,12,56.16.【答案】V (0,0,3),A (-1,-1,0),B (1,-1,0),C (1,1,0),D (-1,1,0).【解析】∵底面是边长为2的正方形,∴|CE |=|CF |=1. ∵O 点是坐标原点,∴C (1,1,0),同样的方法可以确定B (1,-1,0),A (-1,-1,0),D (-1,1,0). ∵V 在z 轴上,∴V (0,0,3).17.【答案】(1)P ′⎝⎛⎭⎫-23,23,-13;(2)当m =12时,|MP |取得最小值22,此时点M 为⎝⎛⎭⎫0,12,12. 【解析】(1)由题意知P 的坐标为⎝⎛⎭⎫23,23,13, P 关于y 轴的对称点P ′的坐标为⎝⎛⎭⎫-23,23,-13. (2)设线段C 1D 上一点M 的坐标为(0,m ,m ), 则有|MP |=⎝⎛⎭⎫-232+⎝⎛⎭⎫m -232+⎝⎛⎭⎫m -132=2m 2-2m +1=2⎝⎛⎭⎫m -122+12. 当m =12时,|MP |取得最小值22,所以点M 为⎝⎛⎭⎫0,12,12. 18.【答案】详见解析.19.【答案】(﹣4,3,2)【解析】如图,以长方体ABCD ﹣A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,∵1DB 的坐标为(4,3,2),∴A (4,0,0),C 1(0,3,2),∴1AC (﹣4,3,2).故答案为:(﹣4,3,2).。
空间各种直角坐标系
本篇学习了空间直角坐标系、大地坐标系、平面坐标系、高斯平面直角坐标系。
这个个坐标系有时很容易弄混淆!(一)空间直角坐标系空间直角坐标系的坐标原点位于参考椭球的中心,Z轴指向参考椭球的北极,X轴指向起始子午面与赤道的交点,Y轴位于赤道面上切按右手系于X轴呈90度夹角,某点中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。
空间直角坐标系可用如下图所示:(二)大地坐标系大地坐标系是采用大地纬度、经度和大地高程来描述空间位置的。
纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高程是空间的点沿着参考椭球的法线方向到参考椭球面的距离。
地面点的高程和国家高程基准(1)绝对高程。
地面点沿垂线方向至大地水准面的距离称为绝对高程或称海拔。
过去我国采用青岛验潮站(tide gauge station)1950~1956年观测成果求得的黄海平均海水面作为高程的零点,称为“1956年黄海高程系”(Huanghai height system1956水准原点高程为72.289m)。
后经复查,发现该高程系的验潮资料时间过短,准确性较差,改用青岛验潮站1950~1979年的观测资料重新推算,并命名为“1985年国家高程基准”(Chinese height datum 1985)。
国家水准原点(leveling origin高程为72.260m)设于青岛市观象山附近,作为我国高程测量的依据。
它的高程值是以“1985年国家高程基准”所确定的平均海水面为零点测算而得。
在使用原“1956年黄海高程系”的高程成果时,应注意将其换算为新的高程基准系统。
(2)相对高程。
地面点沿铅垂线方向至任意假定的水准面的距离称为该点的相对高程,亦称假定高程。
在图l—5中,地面点A和B的相对高程分别为H'A和H'B。
(3)高差。
地面上任意两点的高程(绝对高程或相对高程)之差称为高差。
空间直角坐标系与点的坐标
空间直角坐标系与坐标班级姓名1、过空间中一点O,由三条互相垂直的数轴按右手规则组成的空间直角坐标系。
注意:建立坐标系首先要找到三条互相垂直的直线并证明他们之间的垂直关系空间直角坐标系中的八个卦限:思考:请你说出各卦限内点的坐标的特点?2、坐标轴上的点与坐标平面上的点的坐标的特点:x轴上的点P的坐标的特点:P( , , ).y轴上的点的坐标的特点:P( , , ).z轴上的点的坐标的特点: P( , , ).xOy坐标平面内的点的特点:P( , , ).XOz坐标平面内的点的特点:P( , , ).yOz坐标平面内的点的特点:P( , , ).练习:(1)写出点P(2,3,4)在X轴上的射影的坐标是 ,在Y轴上的射影的坐标是 ,在Z轴上的射影的坐标是。
(2)写出点P(2,3,4)在XOY坐标平面内的射影的坐标是,在YOZ坐标平面内的射影的坐标是,在XOZ坐标平面内的射影的坐标是 .注意:1.对几何体建立坐标系时,让更多的点落在坐标轴或坐标平面上更方便;2.建系后,先找轴上的点坐标,再找坐标平面上点的坐标,其他的点先向xoy平面投影再找坐标.3、已知空间两点A(1x,1y,1z),B(2x,2y2z),则AB中点的坐标为(, , ).4、一个点关于坐标轴和坐标平面的对称点的坐标:点P(x,y,z)关于坐标原点的对称点为1P( , , );点P(x,y,z)关于坐标横轴(X轴)的对称点为2P( , , );点P(x,y,z)关于坐标纵轴(Y轴)的对称点为3P( , , );点P(x,y,z)关于坐标竖轴(Z轴)的对称点为4P( , , );点P(x,y,z)关于XOY坐标平面的对称点为5P( , , );点P(x,y,z)关于YOZ 坐标平面的对称点为6P( , , )点P(x,y,z)关于ZOX坐标平面的对称点为7P( , , ).练习:(1)、已知点A(-3,1,4),则点A关于原点的对称点的坐标为()A、(1,-3,-4)B、(-4,1,-3)C、(3,-1,4)D、(4,-1,3)(2)、已知点A(-3,1,-4),点A关于x轴的对称点的坐标为()A、(-3,-1,4)B、(-3,-1,-4)C、(3,1,4)D、(3,-1,-4)(3)、点(2,3,4)关于xoz平面的对称点为()A、(2,3,-4)B、(-2,3,4)C、(2,-3,4)D、(-2,-3,4)(4)、点(1,1,1)关于z轴的对称点为()A、(-1,-1,1)B、(1,-1,-1)C、(-1,1,-1)D、(-1,-1,-1)(5)、点(2,3,4)关于yoz平面的对称点为------------------。
空间直角坐标系及点的坐标表示
(-1,-2,-3) (1,-2,-3) (-1,2,-3)
4.关于z轴对称的为 (-x,-y, z)
(-1,-2,3)
5.关于xoy平面对称的点为(x,y,-z)
(1,2,-3)
6.关于xoz平面对称的点为(x,-y,z)
(1,-2,3)
7.关于yoz平面对称的点为(-x,y,z)
(-1,2,3)
3、AB的中点坐标为(3,1, 4),其中B点坐标为 (0,0,0),那么A点的坐标为_(__6_,2_,_8_)
五、点的对称性
规律:关于谁对称谁不变 空间直角坐标系中任一点p(x,y,z) 例:(1,2,3)
1.关于原点对称的为 (-x,-y,-z) 2.关于x轴对称的为 (x,-y,-z)
3.关于y轴对称的为 (-x, y,-z)
P、R、Q(即点A在坐标平
R
面的射影)。点P、R、Q在
相应坐标轴上的坐标依次为
x,y,z则有序实数对(x,y,z)
叫做点M的坐标
o
xP
M (x, y, z)
Qy
例1、在如图长方体中,已知 OA 3, OC OD 2,试求其顶点的坐标。
z D'
4,
C'
分析:1.分别找射影
2.找射影在坐标轴对 应的点
例3、已知点A(x, 2, 3)关于xoz平面 的对称点坐标为(1,2y-1,3z) 分别求出x,y,z的值
解:根据对称的法则可得: x 1, 2 y 1 2, 3z 3 解得:x 1, y - 1 , z 1
2
思考:如果是xoy呢?是y轴呢?
练一练
书第90页练习
o
y
标系0-xyz. x
点O叫做坐标原点,x轴、y轴、z轴叫做
空间直角坐标系与空间直角坐标的表示
空间直角坐标系与空间直角坐标的表示在数学中,空间直角坐标系是一种用于描述三维空间中点位置的坐标系统。
它基于三个相互垂直的坐标轴,通常用x、y和z来表示,这三条坐标轴将空间划分为三个相互垂直的平面。
本文将介绍空间直角坐标系以及如何使用坐标系表示三维空间中的点。
一、空间直角坐标系的定义与特点空间直角坐标系是由三个相互垂直的坐标轴构成的。
通常情况下,我们将这三个坐标轴分别命名为x轴、y轴和z轴。
这三个坐标轴在空间中相交于一个点,这个点被称为坐标原点(0,0,0)。
x轴与y轴的交点定义为平面上的原点(0,0),x轴正方向与y轴正方向的夹角定义为正方向,即逆时针方向。
空间直角坐标系的特点如下:1. 三个坐标轴互相垂直,且共面,形成一个立方体。
2. 原点坐标为(0,0,0),表示三个坐标轴的交点。
3. 经过原点的平面称为底面,垂直于z轴的平面称为水平面。
这两个平面与坐标轴固定相对。
二、空间直角坐标的表示方法在空间直角坐标系中,每个点都可以表示为一个有序的三元组(x,y,z)。
根据点在坐标系中的位置,可以确定这个三元组的值。
以空间中的点P为例,假设它的坐标为(x,y,z)。
x表示点P到yoz平面的有向距离,当点P在x轴的负方向时,x值为负;y表示点P到xoz平面的有向距离,当点P在y轴的负方向时,y值为负;z表示点P 到xoy平面的有向距离,当点P在z轴的负方向时,z值为负。
在表示一个点的坐标过程中,我们需要关注一些特殊情况:1. 点在坐标轴上:当点P在x轴上时,其坐标为(0,y,z);当点P在y 轴上时,其坐标为(x,0,z);当点P在z轴上时,其坐标为(x,y,0)。
2. 坐标值为负数:当点P位于坐标轴的负方向时,对应坐标值为负数。
3. 特殊位置:坐标原点处的点坐标为(0,0,0),表示坐标轴交点。
使用空间直角坐标系的表示方法,我们可以清楚地描述三维空间中的点的位置关系。
这对于几何图形的表示、运动的研究以及计算机图形学等领域都具有重要的意义。
空间直角坐标系及点的坐标表示PPT课件
定义
在空间直角坐标系中,一个点P 可以用三个实数x、y、z来表示,
这三个实数称为点P的坐标。
坐标轴
空间直角坐标系由三条互相垂直 的坐标轴X、Y、Z组成,其中X 轴与Y轴构成平面直角坐标系。
点的坐标表示
点P在直角坐标系中的表示方法 为(x, y, z)。
点在极坐标系中的表示
01
02
03
04
定义
在空间中,一个点P可以用极 径ρ和极角θ来表示,这种表示
通过球面坐标与直角坐标之间的转换公式将点在球面坐标系中的坐标转换为直 角坐标系中的坐标。
坐标系的扩展与推广
参数方程表示
通过引入参数方程来表示点的位置, 使得点的表示更加灵活和多样。
多维空间坐标系
将二维或三维直角坐标系扩展到更高 维度的空间,用于描述更复杂的多维 几何对象。
05
空间直角坐标系的实践 案例
计算几何量
通过空间直角坐标系,可以方便地计算几何量,如两点之间的距离、 点到直线的距离等。
在物理学中的应用
01
பைடு நூலகம்
02
03
描述物体运动轨迹
在物理中,物体的运动轨 迹通常可以用空间直角坐 标系来表示。
描述力场和电场
通过空间直角坐标系,可 以描述各种物理场,如重 力场、电场等。
计算物理量
利用空间直角坐标系,可 以方便地计算物理量,如 速度、加速度等。
镜像坐标系
将坐标系沿某一轴进行对 称,得到镜像坐标系,如 极坐标系。
拉伸坐标系
通过拉伸坐标轴上的单位 长度来改变坐标系的尺度, 但不改变其方向。
坐标系的转换
笛卡尔坐标系到极坐标系的转换
通过极坐标与笛卡尔坐标之间的转换公式将点在笛卡尔坐标系中的坐标转换为 极坐标系中的坐标。
怎么看空间直角坐标系的坐标
怎么看空间直角坐标系的坐标在空间几何中,直角坐标系是一种常用的坐标系统,用于描述三维空间中的点的位置。
通过理解和掌握空间直角坐标系的坐标表示方法,我们可以准确地定位和描述空间中的点的位置。
本文将详细介绍如何看空间直角坐标系的坐标。
1. 空间直角坐标系的定义空间直角坐标系是由三个相互垂直的坐标轴构成,分别称为x轴、y轴和z轴。
x轴和y轴在平面上垂直,z轴垂直于x轴和y轴,并与x轴和y轴共同确定一个平面。
这个平面称为基准面,通常选择为地面或其他平面。
2. 空间直角坐标的表示方法在空间直角坐标系中,每一个点都可以用一组有序的数表示,这组有序数就是该点的坐标。
坐标的表示方法是将点在x轴、y轴和z轴上的投影长度取出,并按照一定的顺序排列。
在空间直角坐标系中,通常采用(x, y, z)的形式表示一个点的坐标。
其中,x表示点在x轴上的投影长度,y表示点在y轴上的投影长度,z表示点在z轴上的投影长度。
3. 坐标的正负规定在空间直角坐标系中,坐标轴有正负之分。
通常,如果一个点在某个坐标轴的正方向上,则该坐标轴上的坐标为正数;如果一个点在某个坐标轴的负方向上,则该坐标轴上的坐标为负数。
具体而言,如果一个点在x轴的正方向上,则该点的x坐标为正数;如果一个点在x轴的负方向上,则该点的x坐标为负数。
同样地,如果一个点在y轴的正方向上,则该点的y坐标为正数;如果一个点在y轴的负方向上,则该点的y坐标为负数。
z轴与x轴和y轴的规定方式相同。
4. 例子以下是一些示例,以帮助更好地理解空间直角坐标系的坐标。
•如果一个点在x轴的正方向上,y轴和z轴上的投影长度都为0,则该点的坐标为(3, 0, 0)。
•如果一个点在x轴的负方向上,y轴上的投影长度为0,z轴上的投影长度为4,则该点的坐标为(-2, 0, 4)。
•如果一个点在x轴的正方向上,y轴的负方向上,z轴上的投影长度为2,则该点的坐标为(1, -3, 2)。
5. 总结空间直角坐标系是描述三维空间中点位置的常用坐标系统。
空间直角坐标系中点与坐标系的关系
那在空间直角坐标系中,点M(a,b,c)的坐标出了是点与坐标轴垂线交点外, 是否也是代表着一种距离呢?和平面直角坐标系中肯定是不同的,那不同之 处在哪里?大家一起思考下。
Z c a
b M(a,b,c)
通过右图所演示的点的确立过程, 可以得到,空间直角坐标系中的 坐标,同样代表着一种距离信息。 X坐标绝对值表示点到 Y坐标绝对值表示点到
练习:在空间直角坐标系中作出点P(3,-2,4)
思路:现将问题放在平面上看待,即找出点P在平面XOY中的对应 点P`。两个点间就差一个高度4。
Z
P (3,-2,4)
Y (3,-2,0)P` X O
在空间直角坐标系中画出下列点,并思考他们有什么共同之处
A(1,1,0) B(1,2,0) C(1,0,1) D(2,0,1) E(0,1,2) F(0,2,3)
①点 P(a,b,c)关于 x 轴的对称点为 P1(a,-b,-c); ②点 P(a,b,c)关于 y 轴的对称点为 P2(-a,b,-c); ③点 P(a,b,c)关于 z 轴的对称点为 P3(-a,-b,c); ④点 P(a,b,c)关于原点的对称点为 P4(-a,-b,-c).
Y
YOZ平面 XOZ平面
的距离 的距离 的距离
c
O a
b
Z坐标绝对值表示点到
M` (a,b,0)
XOY平面
X
例题:在空间直角坐标系中,自点M(-4,-2,3)引各坐标平面和 坐标轴垂线。求个垂足的坐标。
M
所以,在X轴垂足坐标为
Z 3
在Y轴垂足坐标为
-4 Y
M`
-2 X O
在Z轴垂足坐标为 到XOY平面距离为 到Y0Z平面距离为 到XOZ平面距离为
2017_2018学年高中数学第二章解析几何初步2.3空间直角坐标系课件北师大版必修220171016317
������ = 4, ������ = -1, ������ = 0.
故点P关于点A(1,0,2)对称的点P3的坐标为(4,-1,0). 答案:(-2,-1,-4) (-2,1,-4) (4,-1,0)
题型一
题型二
题型三
题型四
(2)关于哪条坐标轴对称 ,哪个坐标不变 ,其余的坐标分量变为原 来的相反数 ,即 P(x,y,z) P(x,y,z) P1(x,-y,-z); P2(-x,y,-z);
P(x,y,z) P3(-x,-y,z). (3)关于原点对称的点 ,三个坐标分量均变为原来的相反数 . P(x,y,z) P1(-x,-y,-z).
【做一做2-3】 如图所示,正方体ABCD-A1B1C1D1的棱长为1,则 点B1的坐标是( ) A.(1,0,0) B.(1,0,1) C.(1,1,1) D.(1,1,0)
答案:C
题型一
题型二
题型三
题型四
题型一 由点的坐标确定点的位置
【例1】 在空间直角坐标系中,作出点M(4,-2,5). 解:方法一:依据平移的方法,为了作出点M(4,-2,5),可以按如下步 骤进行: (1)在x轴上取横坐标为4的点M1; (2)将M1在xOy平面内沿与y轴平行的方向 向左平移2个单位长度,得到点M2; (3)将点M2沿与z轴平行的方向向上平移 5个单位长度,即可得到点M,如图所示.
【做一做1】 下面表示空间直角坐标系的直观图中,是右手系的 是( )
A.①③ 答案:C
B.③ C.①②
D.①②③
2.空间直角坐标系中点的坐标 在空间直角坐标系中,用一个三元有序数组来刻画空间点的位置. 空间任意一点P的坐标记为(x,y,z),第一个是x坐标,第二个是y坐标, 第三个是z坐标. 在空间直角坐标系中,对于空间任意一点P,都可以用一个三元有 序数组(x,y,z)来表示;反之,任何一个三元有序数组(x,y,z),都可以确 定空间中的一个点P.这样,在空间直角坐标系中,点与三元有序数组 之间就建立了一一对应的关系.
空间直角坐标系-高中数学知识点讲解
空间直角坐标系
1.空间直角坐标系
【知识点的知识】
1、右手直角坐标系
①右手直角坐标系的建立规则:x 轴、y 轴、z 轴互相垂直,分别指向右手的拇指、食指、中指;
②已知点的坐标P(x,y,z),
作点的方法与步骤(路径法):
沿x 轴正方向(x>0 时)或负方向(x<0 时)移动|x|个单位,再沿y 轴正方向(y>0 时)或负方向(y<0 时)移动|y|个单位,最后沿z 轴正方向(z>0 时)或负方向(z<0 时)移动|z|个单位,即可作出点
③已知点的位置求坐标的方法:
过P 作三个平面分别与x 轴、y 轴、z 轴垂直于A,B,C,点A,B,C 在x 轴、y 轴、z 轴的坐标分别是a,b,c,则(a,b,c)就是点P 的坐标.
2、在x、y、z 轴上的点分别可以表示为(a,0,0),(0,b,0),(0,0,c),
在坐标平面xOy,xOz,yOz 内的点分别可以表示为(a,b,0),(a,0,c),(0,b,c).
1/ 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
请你找出点P 的确定位置
(1)
P
O
x
x
z
P (x,y,z)
y
O
P(x,y)
x (2) x
y
(3)
说明:
☆我们建立的坐标系都是右手直角坐标系.
z
o
y
x
请你找出点P 的确定位置
P
O
x
x
z
P (x,y,z)
y
O
B
P(x,y)
作业:
教科书P93习题2---3 A组
1,2,3,4题
A
x
y
p1 (x,y, 0 )
x
z
xO
x
A
z
z
M
M
y Oy x
By
C
z
M
O
y
x
z
R M
O
Q
y
P
M
x
例1 点P′在x轴正半轴上,|OP′|=2,P′P在 xOz平面上,且垂直于x轴,|P′P|=1,求点 P′和P的坐标.
思考:在空间直角坐标系中,给定点 的坐标,如何确定点的位置呢?
例2.在空间直角坐标系中作出点 P(3,-2,4).
抽象概括:在空间直角坐标系中,对
于空间任意一点P,都可以用一个三元 有序数组(x,y,z)来表示:反之,任何 一个三元有序数组(x,y,z),都可以确 定空间中的一个点P.这样,在空间直角
坐标系中,点与三元有序数组之间就建 立了一一对应的关系
活动探究
在空间直角坐标系中,给定点M(1,-2,3),求
(4)与M点关于X轴对称的点为 (x,-y,-z) (5)与M点关于Y轴对称的点为 (-x,y,-z) (6)与M点关于Z轴对称的点 为 (-x,-y,z) (7)与M点关于原点对称的点 为 (-1.空间直角坐标系 2.如何求空间中点的坐标 3.如何在空间直角坐标系下作出已知点 4.空间点的对称性
它关于坐标平面xoy,平面xoz,平面yoz的对称点
的坐标
在空间直角坐标系中,给定点M(1,-2,3),求它
关于坐标轴x轴,y轴,z轴的 对称点的坐标
在空间直角坐标系中,给定点M(1,-2,3),求它 关于原点的 对称点的坐标
点M(x,y,z)是空间直角坐标系中的一点,则有
• (1)与M点关于xoy平面对称的点为 (x,y,-z) • (2)与M点关于xoz平面对称的点 为 (x,-y,z) • (3)与M点关于yoz平面对称的点 为 (-x,y,z)