人工神经网络算法(基础精讲).ppt
合集下载
人工神经网络算法

反向传播算法
添加标题
定义:反向传播算法是一种监督学习算法,通过反向传播误差来调整神经网络的权重和偏置
添加标题
原理:在前向传播过程中,输入数据经过神经网络得到输出结果,然后将输出结果与真实结果进 行比较,计算误差,并将误差按照权重反向传播回神经网络中,调整神经网络的权重和偏置
添加标题
特点:反向传播算法是一种自适应的学习算法,能够自动调整神经网络的参数,提高神经网络的 性能
功能:隐藏层的主要作用是对输入数据进行特征提取和转换,为输出层 提供更加抽象和高级的特征表示
类型:常见的隐藏层类型包括全连接层、卷积层、池化层等
参数:隐藏层的参数包括权重、偏置等,需要通过反向传播算法进行优 化和调整
输出层
输出层是人工神经网络算法的最后 一级,负责将网络输出传递给外部 系统或用户。
添加标题
应用:反向传播算法广泛应用于各种神经网络模型中,如多层感知器、卷积神经网络等
其他算法
遗传算法 蚁群算法 粒子群优化算法 模拟退火算法
感谢您的观看
汇报人:PPT
前向传播算法
定义:前向传播算法是一种基于神经网络结构的信息传递过程
特点:按照层级进行信息传递,每个神经元只接收来自上一层神经元的输入,并将结果输出给 下一层神经元
计算过程:每个神经元根据接收到的输入和自身权重计算输出结果,然后将输出结果传递给下 一层神经元
作用:前向传播算法是神经网络中常用的算法之一,用于计算神经网络的输出结果
人工神经网络算法
PPT,a click toபைடு நூலகம்unlimited possibilities
汇报人:PPT
目录 /目录
01
人工神经网络 算法概述
《人工神经网络》课件

添加项标题
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成
第6章人工神经网络算法ppt课件

1.基本概念 1.3 主要的神经网络模型 目前使用的比较典型的一些神经网络模型主要有以下几类:
4.随机型神经网络 随机型神经网络其基本思想是:不但让网络的误差和能量函数向减小的方
向变化,而且还可按某种方式向增大的方向变化,目的是使网络有可能跳出局部 极小值而向全局最小点收敛。随机型神经网络的典型算法是模拟退火算法。
曲线越陡。
六、人工神经网络算法
1.基本概念 1.2 人工神经元模型 神经元采用了不同的激活函数,使得神经元具有不同的信息处理特性,并且
神经元的信息处理特性是决定神经网络整体性能的主要因素之一。 下面介绍四种常用的激活函数形式:
(4)高斯函数。高斯函数(也称钟型函数)也是极为重要的一类激活函数,常用 于径向基神经网络(RBF网络),其表达式为:
通过调整权值和阈值,使得误差能量达到最小时,网络趋于稳定状态,学习
结束。
(1)输出层与隐含层之间的权值调整。对每一个 wjk 的修正值为:
w jk
E
w jk
E
netk
netk w jk
J
式中: 为学习步长,取值介于(0,1),对式 netk wjkOj 求偏导得:
j0
netk wjk
Oj
x1
w1i
x2
w2ifΒιβλιοθήκη yixnwni
x0 1
六、人工神经网络算法
1.基本概念 1.2 人工神经元模型 在神经元中,对信号进行处理采用的是数学函数,通常称为激活函数、激励
函数或挤压函数,其输入、输出关系可描述为
u j
f
n
wij xi
j
i1
y f uj
式中xi i 1,2,,n是从其它神经元传来的输入信号; j 是该神经元的阈值;
4.随机型神经网络 随机型神经网络其基本思想是:不但让网络的误差和能量函数向减小的方
向变化,而且还可按某种方式向增大的方向变化,目的是使网络有可能跳出局部 极小值而向全局最小点收敛。随机型神经网络的典型算法是模拟退火算法。
曲线越陡。
六、人工神经网络算法
1.基本概念 1.2 人工神经元模型 神经元采用了不同的激活函数,使得神经元具有不同的信息处理特性,并且
神经元的信息处理特性是决定神经网络整体性能的主要因素之一。 下面介绍四种常用的激活函数形式:
(4)高斯函数。高斯函数(也称钟型函数)也是极为重要的一类激活函数,常用 于径向基神经网络(RBF网络),其表达式为:
通过调整权值和阈值,使得误差能量达到最小时,网络趋于稳定状态,学习
结束。
(1)输出层与隐含层之间的权值调整。对每一个 wjk 的修正值为:
w jk
E
w jk
E
netk
netk w jk
J
式中: 为学习步长,取值介于(0,1),对式 netk wjkOj 求偏导得:
j0
netk wjk
Oj
x1
w1i
x2
w2ifΒιβλιοθήκη yixnwni
x0 1
六、人工神经网络算法
1.基本概念 1.2 人工神经元模型 在神经元中,对信号进行处理采用的是数学函数,通常称为激活函数、激励
函数或挤压函数,其输入、输出关系可描述为
u j
f
n
wij xi
j
i1
y f uj
式中xi i 1,2,,n是从其它神经元传来的输入信号; j 是该神经元的阈值;
人工神经网络算法基础精讲ppt课件

30
2.3学习规则
学习规则
在神经网络的学习中,各神经元的连接权值需按一定的规则
调整,这种权值调整规则称为学习规则。下面介绍几种常见的学习
规则。
1.Hebb学习规则
2.Delta(δ)学习规则
3.LMS学习规则
4.胜者为王学习规则
5.Kohonen学习规则
6.概率式学习规则
2.3学习规则
1.Hebb学习规则
突触结构示意图
1.3生物神经元的信息处理机理
电脉冲
输 入
树 突
细胞体 形成 轴突
突
输
触
出
信息处理
传输
图 12.2 生物神经元功能模型
神经元的兴奋与抑制
当传入神经元冲动,经整和使细胞膜电位升高,超过动作电位 的阈值时,为兴奋状态,产生神经冲动,由轴突经神经末稍传出。 当传入神经元的冲动,经整和,使细胞膜电位降低,低于阈值时, 为抑制状态,不产生神经冲动。
④神经元的输出和响应是个输入值的综合作用的结果。
⑤兴奋和抑制状态,当细胞膜电位升高超过阈值时,细胞进入兴奋 状态,产生神经冲动;当膜电位低于阈值时,细胞进入抑制状态。
13
1.6激活函数
神经元的描述有多种,其区别在于采用了不同的激活函数,不 同的激活函数决定神经元的不同输出特性,常用的激活函数有如下 几种类型:
1957年,F.Rosenblatt提出“感知器”(Perceptron)模型,第一 次把神经网络的研究从纯理论的探讨付诸工程实践,掀起了人工神 经网络研究的第一次高潮。
4
1.1人工神经网络发展简史
20世纪60年代以后,数字计算机的发展达到全盛时期,人们误以 为数字计算机可以解决人工智能、专家系统、模式识别问题,而放 松了对“感知器”的研究。于是,从20世纪60年代末期起,人工神 经网络的研究进入了低潮。
2.3学习规则
学习规则
在神经网络的学习中,各神经元的连接权值需按一定的规则
调整,这种权值调整规则称为学习规则。下面介绍几种常见的学习
规则。
1.Hebb学习规则
2.Delta(δ)学习规则
3.LMS学习规则
4.胜者为王学习规则
5.Kohonen学习规则
6.概率式学习规则
2.3学习规则
1.Hebb学习规则
突触结构示意图
1.3生物神经元的信息处理机理
电脉冲
输 入
树 突
细胞体 形成 轴突
突
输
触
出
信息处理
传输
图 12.2 生物神经元功能模型
神经元的兴奋与抑制
当传入神经元冲动,经整和使细胞膜电位升高,超过动作电位 的阈值时,为兴奋状态,产生神经冲动,由轴突经神经末稍传出。 当传入神经元的冲动,经整和,使细胞膜电位降低,低于阈值时, 为抑制状态,不产生神经冲动。
④神经元的输出和响应是个输入值的综合作用的结果。
⑤兴奋和抑制状态,当细胞膜电位升高超过阈值时,细胞进入兴奋 状态,产生神经冲动;当膜电位低于阈值时,细胞进入抑制状态。
13
1.6激活函数
神经元的描述有多种,其区别在于采用了不同的激活函数,不 同的激活函数决定神经元的不同输出特性,常用的激活函数有如下 几种类型:
1957年,F.Rosenblatt提出“感知器”(Perceptron)模型,第一 次把神经网络的研究从纯理论的探讨付诸工程实践,掀起了人工神 经网络研究的第一次高潮。
4
1.1人工神经网络发展简史
20世纪60年代以后,数字计算机的发展达到全盛时期,人们误以 为数字计算机可以解决人工智能、专家系统、模式识别问题,而放 松了对“感知器”的研究。于是,从20世纪60年代末期起,人工神 经网络的研究进入了低潮。
人工神经网络讲PPT课件

图2-1 神经元的解剖
2、生物神经元
突触,是一个神经元与另一 个神经元之间相联系并进行 信息传送的结构。 突触的存在说明:两个神经 元的细胞质并不直接连通, 两者彼此联系是通过突触这 种结构接口的。有时.也把 突触看作是神经元之间的连 接。
图2-2 突触结构
2生物神经元
目前,根据神经生理学的研究,已经发现神经元及其间的 突触有4种不同的行为。神经元的4种生物行为有:
ykj ——模式k第j个输出单元的期望值; 式中:
y j k ——模式k第j个输出单元的实际值;
M——样本模式对个数;
Q——输出单元个数。
第二种:误差平方和
E
k 2 ( y y ) j kj k 1 j 1
M
Q
MQ
式中:M——样本模式对个数;
Q——输出单元个数。
1 Q Ek ( y j k ykj ) 2 2 j 1 E Ek
r r (Wi , X , di )
权矢量的变化是由学习步骤按时间t,t+1,…,一步一步进行计算的。在 时刻t连接权的变化量为:
Wi (t ) cr[Wi (t ), X i (t ), di (t )] X (t )
其中c是一个正数,称为学习常数,决定学习的速率。
神经元网络的学习规则
——这一能力可以算作是智能的高级形式 ——是人类对世界进行适当改造、推动社会不断发展的能力
4
联想、推理、判断、决策语言的能力
——这是智能高级形式的又一方面 ——主动与被动之分。联想、推理、判断、决策的能力是主动的基础。
1、引言
5 6 7 8
通过学习取得经验与积累知识的能力 发现、发明、创造、创新的能力 实时、迅速、合理地应付复杂环境的能力 预测,洞察事物发展、变化的能力
人工神经网络ppt课件

LOGO
人工神经网络ppt课件
感知器
• 一种类型的ANN系统是以感知器为基础
• 感知器以一个实数值向量作为输入,计 算这些输入的线性组合,如果结果大于 某个阈值,就输出1,否则输出-1
o(x1,..xn .), 11w 0w 1o x1 t.h..ew nrxnw 0ise
其 值 率中,。每用特个来别w决地i是定 ,一输-w个入0是实xi阈对数值感常。知量器,输或出叫的做贡权献
• 算法的一种常用改进方法是随着梯度下降步数 的增加逐渐减小学习速率
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
26
梯度下降的随机近似
• 梯度下降是一种重要的通用学习范型,它是搜 索庞大假设空间或无限假设空间一种策略
• 梯度下降应用于满足以下条件的任何情况
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
33
可微阈值单元
• 使用什么类型的单元来构建多层网络?
• 多个线性单元的连接仍产生线性函数,而我们 希望构建表征非线性函数的网络
Байду номын сангаас
• 感知器单元可以构建非线性函数,但它的不连 续阈值使它不可微,不适合梯度下降算法
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
25
梯度下降法则的推导(4)
• 梯度下降算法如下
– 选取一个初始的随机权向量 – 应用线性单元到所有的训练样例,根据公式4.7计算
每个权值的w 更新权值
• 因为误差曲面仅包含一个全局的最小值,所以 无论训练样例是否线性可分,算法都会收敛到 具有最小误差的权向量,条件是使用足够小的 学习速率
人工神经网络ppt课件
感知器
• 一种类型的ANN系统是以感知器为基础
• 感知器以一个实数值向量作为输入,计 算这些输入的线性组合,如果结果大于 某个阈值,就输出1,否则输出-1
o(x1,..xn .), 11w 0w 1o x1 t.h..ew nrxnw 0ise
其 值 率中,。每用特个来别w决地i是定 ,一输-w个入0是实xi阈对数值感常。知量器,输或出叫的做贡权献
• 算法的一种常用改进方法是随着梯度下降步数 的增加逐渐减小学习速率
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
26
梯度下降的随机近似
• 梯度下降是一种重要的通用学习范型,它是搜 索庞大假设空间或无限假设空间一种策略
• 梯度下降应用于满足以下条件的任何情况
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
33
可微阈值单元
• 使用什么类型的单元来构建多层网络?
• 多个线性单元的连接仍产生线性函数,而我们 希望构建表征非线性函数的网络
Байду номын сангаас
• 感知器单元可以构建非线性函数,但它的不连 续阈值使它不可微,不适合梯度下降算法
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
25
梯度下降法则的推导(4)
• 梯度下降算法如下
– 选取一个初始的随机权向量 – 应用线性单元到所有的训练样例,根据公式4.7计算
每个权值的w 更新权值
• 因为误差曲面仅包含一个全局的最小值,所以 无论训练样例是否线性可分,算法都会收敛到 具有最小误差的权向量,条件是使用足够小的 学习速率
人工神经网络PPT演示课件

感知器的学习算法
采用感知器学习规则进行训练。训练步骤为:
① 对各初始权值w0j(0),w1j(0),w2j(0),…,wnj(0),j=1,2,…,m(m为计算层的节点数) 赋予较小的非零随机数;
② 输入样本对{Xp,dp},其中Xp=(-1, x1p , x2p ,…, xnp ),dp为期望的输出向量(教师信 号),上标p代表样本对的模式序号,设样本集中的样本总数为P,则p=1,2,…,P;
③
计算各节点的实际输出
o
p j
(t
)
sgn[X
T j
(t)
X
],
j 1,2,, m
;
④
调整各节点对应的权值,Wj
(t
1)
Wj
(t)
[dLeabharlann p jop j
]X
p
,
j 1,2,, m
,其中η
为学习率,用于控制调整速度,太大会影响训练的稳定性,太小则使训练的收敛
速度变慢,一般取0<η ≤1;
x1
oj Wj
x2 ······ xi ······xn
由方程 w1 j x1 w2 j x2 Tj 0 确定的直线成为二维输入样本空间上的一条分界线。
② 设输入向量X=(x1,x2,x3)T,则三个输入分量在几何上构成一个三维空间。节点j的
输出为
1, o j 1,
w1 j x1 w2 j x2 w3 j x3 Tj 0 w1 j x1 w2 j x2 w3 j x3 Tj 0
智能信息处理技术
华北电力大学
1
第5章 人工神经网络
1 人工神经网络基础知识 2 前馈神经网络 3 自组织神经网络 4 反馈神经网络
人工神经网络讲稿ppt课件

举例:2-3岁小孩能够从人群中认出父母、3-4岁能够顺利地穿过十字路 口,但最先进机器人也难以完成这项任务。
因而模仿人类思维方式能够提升机器人能力
人工神经网络讲稿
5/40
1.2 神经细胞与生物神经网络
1. 神经网络
组织形式 大脑中大约有100亿个神经元,它们相互连接,形成一个复杂庞大网络
系统。所以大脑结构是一个神经(元)网络。 依据预计,每个神经元大约与上千个神经元相互连接。 大脑所形成神经网络是由一些小网络连接而成。依据预计,全部神经元
层次结构:神经元联接按层次排列。 模块结构:主要特点是将整个网络按功效划分为不一样模块,每个模块 内部神经元紧密互联,并完成各自特定功效,模块之间再互联以完成整体功 效; 层次模块结构:将模块结构和层次结构结合起来,使之更靠近人脑神经 系统结构,这也是当前为人们广泛注意一个新型网络互联模式。 依据网络中神经元层数不一样,可将神经网络分为单层网络和多层网络; 依据同层网络神经元之间有没有相互联接以及后层神经元与前层神经元有 没有反馈作用不一样,可将神经网络分为以下各种。
Hopfield网络和BP算法出现,使得人工神经研究出现了复兴。因为人 工神经网络在信息处理方面优点,使得大批学者加入到了这一研究领域, 掀起了神经网络研究新高潮。
人工神经网络讲稿
13/40
4. 全方面发展时期(1987-现在) 1987年在美国召开了第一届国际神经网络学术大会,并宣告成立了
国际神经网络学会,与会代表1600多人。这次大会也宣告了神经网络 学科诞生。神经网络研究进入了一个转折点,其范围不停扩大,领域 几乎包含各个方面。神经网络应用使工业技术发生了很大改变,尤其 是在自动控制领域有了新突破。
互制约,从而能够将层内神经元分为几组,让每组作为一个整体来动作。
[课件]人工神经网络-算法推导PPT
![[课件]人工神经网络-算法推导PPT](https://img.taocdn.com/s3/m/f9d95731a21614791611280f.png)
ik
E net (i 1 )k
i net N ( i 1 ) k ( O W ) O ih ih k ij w W h 1 ijk ijk
因此: (1)计算 ik
W O ijk ik ij
O E E ( i 1 ) k ik net O net ( i 1 ) k ( i 1 ) k ( i 1 ) k
扩展的deltadelta学习规学习规则bpbp算法算法学习学习方法ep竞争学习输出神经元之间有侧向抑制性连接较强单元获胜并抑制其他单元独处激活状态winnertakesallwtakjkj若神经元获胜若神经元失败学习学习方法离散感知器hebb规则规则widrowhoff规则lms最小二乘法无导师初值为0有导师初值任意有导师初值任意有导师初值任意学习规则比较bp神经网络bp网络神经元分层排列分别组成输入层中间层也叫隐含层可以由若干层组成和输出层
W ( t 1 ) W ( t ) O ij k ij k ik ij W ( t 1 ) W ( t ) O ij k ij k ik ij
因此,BP算法的权值调整公式为
( d y ) y ( 1 y ) i 1 层为输 k k k k E ik O ( 1 O ) ( W i 1 层为 i 1 ) k ( i 1 ) k ( i 1 ) h ( i 1 ) k) h ik (
感知器计算说明
• 例1:苹果和橘子的自动分类问题 • 用一组传感器测量水果的三个特征:外形、质 地和重量。如果水果基本上是圆形的,外形传 感器输出为1,若水果接近于椭圆,外形传感 器输出为0;如果水果表面光滑,质地传感器 输出为1,若水果表面粗糙,质地传感器输出 为0;如果水果重量超过1磅,重量传感器输出 为1,若水果轻于1磅,重量传感器输出为0;
神经计算基础(人工神经网络基础) PPT

脑的一些基本特征,同时使得人工神经网络具有良 好的可实现性。
人们期待着,通过大家的不懈努力,在不久的将来,能在 这两种技术的研究上以及其有机结合方面有所突破,也希 望在方法上有一个新的突破,真正打开智能的大门。
IIP’2011-2012(1)
3
3.1 人工神经网络基础
人工神经网络是根据人们对生物神经网络的研究成果设计 出来的,它由一系列的神经元及其相应的联接构成,具有 良好的数学描述,不仅可以用适当的电子线路来实现,更 可以方便的用计算机程序加以模拟。
3 神经计算基础
3.1 人工神经网络基础
School of Information Science & Technology Dalian Maritime University
目录
3 神经计算基础 3.1 人工神经网络基础 3.1.1 人工神经网络的提出 3.1.2 人工神经网络的特点 3.1.3 历史回顾 3.1.4 生物神经网络 3.1.5 人工神经元 3.1.6 人工神经网络的拓扑特性 3.1.7 存储与映射 3.1.8 人工神经网络的训练
✓ 进化主义(或者叫做行动/响应)学派。
IIP’2011-2012(1)
10
物理符号系统
物理符号系统的定义:
✓ 因为信息需要在一定的载体上以某种规定的形式表达出来,
✓ 习惯上,人们用一系列的基本符号以及组合这些符号的一些规则去表 达一些信息和行为,
✓ 这些基本符号以及组合这些符号的规则就是所谓的物理符号系统。
首先简要介绍智能和人工智能,然后简要介绍人工神经网 络的发展过程及其基本特点。
然后将介绍人工神经网络的基本知识,主要包括:
✓ 基本的生物神经网络模型, ✓ 人工神经元模型及其典型的激活函数; ✓ 人工神经网络的基本拓扑特性, ✓ 存储类型(CAM-LTM,AM-STM)及映象, ✓ 有导师(Supervised)训练与无导师(Unsupervised)训练。
人们期待着,通过大家的不懈努力,在不久的将来,能在 这两种技术的研究上以及其有机结合方面有所突破,也希 望在方法上有一个新的突破,真正打开智能的大门。
IIP’2011-2012(1)
3
3.1 人工神经网络基础
人工神经网络是根据人们对生物神经网络的研究成果设计 出来的,它由一系列的神经元及其相应的联接构成,具有 良好的数学描述,不仅可以用适当的电子线路来实现,更 可以方便的用计算机程序加以模拟。
3 神经计算基础
3.1 人工神经网络基础
School of Information Science & Technology Dalian Maritime University
目录
3 神经计算基础 3.1 人工神经网络基础 3.1.1 人工神经网络的提出 3.1.2 人工神经网络的特点 3.1.3 历史回顾 3.1.4 生物神经网络 3.1.5 人工神经元 3.1.6 人工神经网络的拓扑特性 3.1.7 存储与映射 3.1.8 人工神经网络的训练
✓ 进化主义(或者叫做行动/响应)学派。
IIP’2011-2012(1)
10
物理符号系统
物理符号系统的定义:
✓ 因为信息需要在一定的载体上以某种规定的形式表达出来,
✓ 习惯上,人们用一系列的基本符号以及组合这些符号的一些规则去表 达一些信息和行为,
✓ 这些基本符号以及组合这些符号的规则就是所谓的物理符号系统。
首先简要介绍智能和人工智能,然后简要介绍人工神经网 络的发展过程及其基本特点。
然后将介绍人工神经网络的基本知识,主要包括:
✓ 基本的生物神经网络模型, ✓ 人工神经元模型及其典型的激活函数; ✓ 人工神经网络的基本拓扑特性, ✓ 存储类型(CAM-LTM,AM-STM)及映象, ✓ 有导师(Supervised)训练与无导师(Unsupervised)训练。
2人工神经网络基础知识PPT课件

.
7
2.2人工神经元模型
人工神经网络是在现代神经生物学研究基础上提出的模 拟生物过程以反映人脑某些特性的计算结构。它不是人脑神 经系统的真实描写,而只是它的某种抽象、简化和模拟。根 据前面对生物神经网络的研究可知,神经元及其突触是神经 网络的基本器件。因此,模拟生物神经网络应首先模拟生物 神经元。
为简便起见,省去式中(t),而且常用向量表示
ne'tj WjT X
式中 W j和X 均为列向量:
X [x 1 x 2 .x .n ] .T ,W j [w 1 w 2 .w .n ] .T
若令 x0 1 ,w 0j,则 . w 0x 有 0j,则激 n表 e活 t 为
n
nejt wijxi WjTX
人的智能来自于大脑,大脑是由大量的神经细胞或神经元 组成的。每个神经元可以看作为一个小的处理单元,这些神经 元按照某种方式互相连接起来,构成了大脑内部的生物神经元 网络,他们中各神经元之间连接的强弱,按照外部的激励信号 作自适应变化,而每个神经元又随着接收到的多个激励信号的 综合大小呈现兴奋或抑制状态。据现在的了解,大脑的学习过 程就是神经元之间连接强度随外部激励信息做自适应变化的过 程,大脑处理信息的结果确由神经元的状态表现出来。显然, 神经元是信息处理系统的最小单元。虽然神经元的类型有很多 种,但其基本结构相似,生物学中神经元结构如图所示。
数。
.
9
上述约定是对生物神经元信息处理过程的简化和概括,它清晰 地描述了生物神经元信息处理的特点,而且便于进行形式化表 达。通过上述假定,人工神经元的结构模型如图所示。
.
10
人工神经元的数学模型描述:
第j个神经元,接受多个其它神经元i在t时刻的输入xi(t),引起 神经元j的信息输出为yj(t):
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1, 若x 0 sgn(x)= f (x) -1,若x 0
17
1.6激活函数
2.S型激活函数
神经元的状态与输入级之间的关系是在(0,1)内连续取值的单 调可微函数,称为S型函数。
单极性S型函数:
f
(x)
1 1 ex
双极性S型函数:
f(x)12ex 1=11 eexx
18
1.6激活函数 3.分段线性激活函数
4
1.1人工神经网络发展简史
最早的研究可以追溯到20世纪40年代。1943年,心理学家 McCulloch和数学家Pitts合作提出了形式神经元的数学模型。这一 模型一般被简称M-P神经网络模型,至今仍在应用,可以说,人工 神经网络的研究时代,就由此开始了。
1949年,心理学家Hebb提出神经系统的学习规则,为神经网络的 学习算法奠定了基础。现在,这个规则被称为Hebb规则,许多人工 神经网络的学习还遵循这一规则。
分段线性激活函数的定义为:
1,若x 0 f (x) x,若 1 x 1
1,若x 0
19
1.6激活函数
4.概率型激活函数
概率型激活函数的神经元模型输入和输出的关系是不确定的, 需要一种随机函数来描述输出状态为1或为0的概率,设神经元输出 (状态)为1的概率为:
n
o f wjxj
j0
其中, W0=-Ɵ ; x0元的模型具有以下特点:
①神经元是一个多输入、单输出单元。
②它具有非线性的输入、输出特性。
③它具有可塑性,反应在新突触的产生和现有的神经突触的调整上 ,其塑性变化的部分主要是权值w的变化,这相当于生物神经元的 突出部分的变化,对于激发状态,w取正直,对于抑制状态,w取负 值。
人工神经网络
二〇一五年十二月
目录
2
一、人工神经网络的 基本概念
3
一、人工神经网络的 基本概念
人工神经网络(Artificial Neural Network,即ANN)可以概 括的定义为:
由大量具有适应性的处理元素(神经元)组成的广泛并行互联 网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交 互反应,是模拟人工智能的一条重要途径。人工神经网络与人脑相 似性主要表现在:
④神经元的输出和响应是个输入值的综合作用的结果。
⑤兴奋和抑制状态,当细胞膜电位升高超过阈值时,细胞进入兴奋 状态,产生神经冲动;当膜电位低于阈值时,细胞进入抑制状态。
14
1.6激活函数
神经元的描述有多种,其区别在于采用了不同的激活函数,不 同的激活函数决定神经元的不同输出特性,常用的激活函数有如下 几种类型:
突触结构示意图
1.3生物神经元的信息处理机理
电脉冲
输 入
树 突
细胞体 形成 轴突
突
输
触
出
信息处理
传输
图 12.2 生物神经元功能模型
神经元的兴奋与抑制
当传入神经元冲动,经整和使细胞膜电位升高,超过动作电位 的阈值时,为兴奋状态,产生神经冲动,由轴突经神经末稍传出。 当传入神经元的冲动,经整和,使细胞膜电位降低,低于阈值时, 为抑制状态,不产生神经冲动。
9
1.4生物神经元的特点 生物神经元的特点:
阈值特性
单向性传递
延时性传递
生物神经元的特点
1.5人工神经元模型
神经元模型
从神经元的特性和功能可以知道,神经元相当于一个多输入单 输出的信息处理单元,而且,它对信息的处理是非线性的,人工神 经元的模型如图所示:
神经元的n个输入 对应的连接权值
阈值
激活函数
15
1.6激活函数 1.阈值型激活函数
阈值型激活函数是最简单的,前面提到的M-P模型就属于这一类 。其输出状态取二值(1、0或+1、-1),分别代表神经元的兴奋和 抑制。 当f(x)取0或1时,
1,若x0 f (x) 0,若x0
16
1.6激活函数
当f(x)取1或-1时,f(x)为下图所示的sgn(符号)函数
①神经网络获取的知识是从外界环境学习得来的; ②各神经元的连接权,即突触权值,用于储存获取的知识。
神经元是神经网络的基本处理单元,它是神经网络的设计基础 。神经元是以生物的神经系统的神经细胞为基础的生物模型。在人 们对生物神经系统进行研究,以探讨人工智能的机制时,把神经元 数学化,从而产生了神经元数学模型。因此,要了解人工神经模型 就必须先了解生物神经元模型。
1982年,美国加州工学院物理学家Hopfield提出了离散的神经网 络模型,标志着神经网络的研究又进入了一个新高潮。1984年, Hopfield又提出连续神经网络模型,开拓了计算机应用神经网络的 新途径。
1986年,Rumelhart和Meclelland提出多层网络的误差反传(back propagation)学习算法,简称BP算法。BP算法是目前最为重要、应 用最广的人工神经网络算法之一。
1957年,F.Rosenblatt提出“感知器”(Perceptron)模型,第一 次把神经网络的研究从纯理论的探讨付诸工程实践,掀起了人工神 经网络研究的第一次高潮。
5
1.1人工神经网络发展简史
20世纪60年代以后,数字计算机的发展达到全盛时期,人们误以 为数字计算机可以解决人工智能、专家系统、模式识别问题,而放 松了对“感知器”的研究。于是,从20世纪60年代末期起,人工神 经网络的研究进入了低潮。
net= w i x i
输出
11
1.5人工神经元模型
上面的神经元模型可以用一个数学表达式进行抽象与概括,从 而得到神经元的数学模型:
n
o f w jx j
j1
w x 神经元的网络输入记为net,即
n
net=
jj
j1
12
1.5人工神经元模型
有时为了方便起见,常把-Ɵ也看成是恒等于1的输入X0 的权 值,这时上面的数学模型可以写成:
6
1.2生物神经元结构 生物神经元结构
(1)细胞体: 细胞核、细胞质和细胞膜。 (2)树突:胞体短而多分枝的突起。相当于神经元的输入端。 (3)轴突:胞体上最长枝的突起,也称神经纤维。端部有很多神 经末稍传出神经冲动。
7
1.2生物神经元结构
(4)突触:神经元间的连接接口,每个神经元约有1万~10万个突 触。神经元通过其轴突的神经末稍,经突触与另一神经元的树突联 接,实现信息的传递。由于突触的信息传递特性是可变的,形成了 神经元间联接的柔性,称为结构的可塑性。
17
1.6激活函数
2.S型激活函数
神经元的状态与输入级之间的关系是在(0,1)内连续取值的单 调可微函数,称为S型函数。
单极性S型函数:
f
(x)
1 1 ex
双极性S型函数:
f(x)12ex 1=11 eexx
18
1.6激活函数 3.分段线性激活函数
4
1.1人工神经网络发展简史
最早的研究可以追溯到20世纪40年代。1943年,心理学家 McCulloch和数学家Pitts合作提出了形式神经元的数学模型。这一 模型一般被简称M-P神经网络模型,至今仍在应用,可以说,人工 神经网络的研究时代,就由此开始了。
1949年,心理学家Hebb提出神经系统的学习规则,为神经网络的 学习算法奠定了基础。现在,这个规则被称为Hebb规则,许多人工 神经网络的学习还遵循这一规则。
分段线性激活函数的定义为:
1,若x 0 f (x) x,若 1 x 1
1,若x 0
19
1.6激活函数
4.概率型激活函数
概率型激活函数的神经元模型输入和输出的关系是不确定的, 需要一种随机函数来描述输出状态为1或为0的概率,设神经元输出 (状态)为1的概率为:
n
o f wjxj
j0
其中, W0=-Ɵ ; x0元的模型具有以下特点:
①神经元是一个多输入、单输出单元。
②它具有非线性的输入、输出特性。
③它具有可塑性,反应在新突触的产生和现有的神经突触的调整上 ,其塑性变化的部分主要是权值w的变化,这相当于生物神经元的 突出部分的变化,对于激发状态,w取正直,对于抑制状态,w取负 值。
人工神经网络
二〇一五年十二月
目录
2
一、人工神经网络的 基本概念
3
一、人工神经网络的 基本概念
人工神经网络(Artificial Neural Network,即ANN)可以概 括的定义为:
由大量具有适应性的处理元素(神经元)组成的广泛并行互联 网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交 互反应,是模拟人工智能的一条重要途径。人工神经网络与人脑相 似性主要表现在:
④神经元的输出和响应是个输入值的综合作用的结果。
⑤兴奋和抑制状态,当细胞膜电位升高超过阈值时,细胞进入兴奋 状态,产生神经冲动;当膜电位低于阈值时,细胞进入抑制状态。
14
1.6激活函数
神经元的描述有多种,其区别在于采用了不同的激活函数,不 同的激活函数决定神经元的不同输出特性,常用的激活函数有如下 几种类型:
突触结构示意图
1.3生物神经元的信息处理机理
电脉冲
输 入
树 突
细胞体 形成 轴突
突
输
触
出
信息处理
传输
图 12.2 生物神经元功能模型
神经元的兴奋与抑制
当传入神经元冲动,经整和使细胞膜电位升高,超过动作电位 的阈值时,为兴奋状态,产生神经冲动,由轴突经神经末稍传出。 当传入神经元的冲动,经整和,使细胞膜电位降低,低于阈值时, 为抑制状态,不产生神经冲动。
9
1.4生物神经元的特点 生物神经元的特点:
阈值特性
单向性传递
延时性传递
生物神经元的特点
1.5人工神经元模型
神经元模型
从神经元的特性和功能可以知道,神经元相当于一个多输入单 输出的信息处理单元,而且,它对信息的处理是非线性的,人工神 经元的模型如图所示:
神经元的n个输入 对应的连接权值
阈值
激活函数
15
1.6激活函数 1.阈值型激活函数
阈值型激活函数是最简单的,前面提到的M-P模型就属于这一类 。其输出状态取二值(1、0或+1、-1),分别代表神经元的兴奋和 抑制。 当f(x)取0或1时,
1,若x0 f (x) 0,若x0
16
1.6激活函数
当f(x)取1或-1时,f(x)为下图所示的sgn(符号)函数
①神经网络获取的知识是从外界环境学习得来的; ②各神经元的连接权,即突触权值,用于储存获取的知识。
神经元是神经网络的基本处理单元,它是神经网络的设计基础 。神经元是以生物的神经系统的神经细胞为基础的生物模型。在人 们对生物神经系统进行研究,以探讨人工智能的机制时,把神经元 数学化,从而产生了神经元数学模型。因此,要了解人工神经模型 就必须先了解生物神经元模型。
1982年,美国加州工学院物理学家Hopfield提出了离散的神经网 络模型,标志着神经网络的研究又进入了一个新高潮。1984年, Hopfield又提出连续神经网络模型,开拓了计算机应用神经网络的 新途径。
1986年,Rumelhart和Meclelland提出多层网络的误差反传(back propagation)学习算法,简称BP算法。BP算法是目前最为重要、应 用最广的人工神经网络算法之一。
1957年,F.Rosenblatt提出“感知器”(Perceptron)模型,第一 次把神经网络的研究从纯理论的探讨付诸工程实践,掀起了人工神 经网络研究的第一次高潮。
5
1.1人工神经网络发展简史
20世纪60年代以后,数字计算机的发展达到全盛时期,人们误以 为数字计算机可以解决人工智能、专家系统、模式识别问题,而放 松了对“感知器”的研究。于是,从20世纪60年代末期起,人工神 经网络的研究进入了低潮。
net= w i x i
输出
11
1.5人工神经元模型
上面的神经元模型可以用一个数学表达式进行抽象与概括,从 而得到神经元的数学模型:
n
o f w jx j
j1
w x 神经元的网络输入记为net,即
n
net=
jj
j1
12
1.5人工神经元模型
有时为了方便起见,常把-Ɵ也看成是恒等于1的输入X0 的权 值,这时上面的数学模型可以写成:
6
1.2生物神经元结构 生物神经元结构
(1)细胞体: 细胞核、细胞质和细胞膜。 (2)树突:胞体短而多分枝的突起。相当于神经元的输入端。 (3)轴突:胞体上最长枝的突起,也称神经纤维。端部有很多神 经末稍传出神经冲动。
7
1.2生物神经元结构
(4)突触:神经元间的连接接口,每个神经元约有1万~10万个突 触。神经元通过其轴突的神经末稍,经突触与另一神经元的树突联 接,实现信息的传递。由于突触的信息传递特性是可变的,形成了 神经元间联接的柔性,称为结构的可塑性。