直线和圆知识点总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识梳理

1.直线的倾斜角α的范围是 ;求直线斜率的两种方法:①定义:k = ()2πα≠; ②斜率公式:k =2121

y y x x --12()x x ≠.答案)0,180︒︒⎡⎣ 2.直线方程的几种形式:

①点斜式 ,适用范围:不含直线0x x =;

特例:斜截式 ,适用范围:不含垂直于x 轴的直线;

②两点式 ,适用范围:不含直线112()x x x x =≠和直线112()y y y y =≠; 特例:截距式 ,适用范围:不含垂直于坐标轴和过原点的直线;

③一般式 ,适用范围:平面直角坐标系内的直线都适用.

3.求过111(,)P x y ,222(,)P x y 的直线方程时:

(1)若12x x =,且12y y ≠时,直线垂直于x 轴,方程为1x x =;

(2)若12x x ≠,且12y y =时,直线垂直于y 轴,方程为1y y =;

(3)若120x x ==,且12y y ≠时,直线即为y 轴,方程为0x =;

(4)若12x x ≠,且120y y ==时,直线即为x 轴,方程为0y =。

4.已知直线1l :11y k x b =+,直线2l :22y k x b =+,则

①1l 与2l 相交⇔ ; ②1l 与2l 平行⇔ ;

③1l 与2l 重合⇔ ; ④1l 与2l 垂直⇔ .

5.已知直线1l :1110A x B y C ++=,直线2l :2220A x B y C ++=,则

①1l 与2l 相交⇔ ; ②1l 与2l 平行⇔ ;

③1l 与2l 重合⇔ ; ④1l 与2l 垂直⇔ .

6.两点111(,)P x y ,222(,)P x y 之间的距离12=PP ;

点(,)P x y ︒︒到直线l :0Ax By C ++=的距离d = ;

两平行直线1l :10Ax By C ++=与2l :20Ax By C ++=之间的距离d = .

7.圆的标准方程为222

()()(0)x a y b r r -+-=>,其中 为圆心, 为半径 ;

圆的一般方程为22

0x y Dx Ey F ++++=表示圆的充要条件是2240D E F +->, 其中圆心为 ,半径为 .

8.点与圆的位置关系

圆的标准方程为222

()()x a y b r -+-=,点00(,)M x y ,

(1)点在圆上:22200()()x a y b r -+-=;

(2)点在圆外:22200()()x a y b r -+->;

(3)点在圆内:22200()()x a y b r -+-<。 9.直线与圆的位置关系

判断直线与圆的三种位置关系常用的两种判断方法:

(1)代数法:直线方程和圆的方程联立方程组消去x 或y 整理成一元二次方程后,

计算判别式①240b ac ∆=->⇔ ; ②240b ac ∆=-=⇔ ;

③240b ac ∆=-<⇔ 。

(2)几何法:利用圆心到直线的距离d 和圆半径的大小关系

①d r <⇔ ;②d r =⇔ ;d r >⇔ 。

10.圆的切线方程

①若圆的方程为222x y r +=,点00(,)P x y 在圆上,则过P 点,且与圆222

x y r +=相

切的切线方程为200xx yy r +=; ②经过圆222

()()x a y b r -+-=上的00(,)P x y 的切线方程为: 200()()()()x a x a y b y b r --+--=。)(00x x k y y -=-

点00(,)P x y 在圆外,则可设切线方程为,利用直线与圆相切,利用圆心到直线的距离等于半径,解出k 。

11.计算直线被圆截得的弦长的两种方法:

(1)几何法:运用弦心距、弦长的一半及半径构成直角三角形计算。

(2)代数法:利用韦达定理及弦长公式

2221(1)()4A B A B A B AB k x k x x x x ⎡⎤=+-=++-⎣⎦12.设圆1C :222111()()x x y y r -+-=,圆2C :222222()()x x y y r -+-=,则有两圆

①相离12C C ⇔> ;②外切12C C ⇔= ;③内切12C C ⇔= ;

④相交⇔ 12C C << ;⑤内含12C C ⇔< .

13.对称问题

①点关于点的对称:利用中点坐标公式。

②直线关于点对称:利用取特殊点法或转移法。

③点关于直线对称:利用垂直和平分。

④直线关于直线对称:转化为点关于直线对称问题解决。如果是平行直线,还可以利用平行直线之间距离。如果是相交直线,可以利用已知交点,夹角相等的方法。

常用的对称关系:点(a,b)

点(a,b)关于原点的对称点(-a,-b), 点(,)a b 关于点00(,)a b 的对称点的坐标为00(2,2)a a b a --

点(a,b)关于x 轴的对称点(a,-b), 点(a,b)关于y 轴的对称点为(-a,b), 点(a,b)关于直线y=x 的对称点为(b,a), 点(a,b)关于直线y= -x 的对称点(-b,-a),

点(a,b)关于直线y=x+m 的对称点为(b-m,a+m), 点(a,b)关于直线y= -x+m 的对称点(m-b,m-a).

练习题(第一部分)

1.直线的倾斜角为,α若3sin 5

α=

,则此直线的斜率是( ) A .43 B .34 C . 43± D . 3

4± 2.直线过点(-1,2)且与直线x y 32=垂直,则的方程是

A .0123=-+y x B.0723=++y x C. 0532=+-y x D.0832=+-y x

3.已知两条直线2y ax =-和(2)1y a x =++互相垂直,则a 等于( )

A .2

B .1

C .0

D .1-

解析:两条直线2y ax =-和(2)1y a x =++互相垂直,则(2)1a a +=-,∴ a =-1,选D. 点评:直线间的垂直关系要充分利用好斜率互为负倒数的关系,同时兼顾到斜率为零和不存在两种情况

4.已知(2,3)A -、(3,2)B --,直线l 过(1,1)P 且与线段AB 有交点,设直线l 的斜率为k ,则k 的取值范围( )

A .34k ≥或4k ≤-

B .334k -≤≤

C . 34k ≥或14k ≤-

D .344

k -≤≤ 解析:过点(3,2)B --、(1,1)P 的直线斜为11(2)31(3)4k --=

=--,过点(2,3)A -、(1,1)P 的直线斜率为21(3)412

k --==--,画图可看出过点(1,1)P 的直线与线段AB 有公共点可

相关文档
最新文档