数列中的放缩法42页PPT
高中数学解题技巧-数列放缩
数列放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩例1.(1)求∑=-n k k 12142的值; (2)求证:35112<∑=nk k.解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n (12)111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n 11112111111+--<-++⋅⎪⎭⎫⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221nn nn n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i ji j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222nnn-+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案 (4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到 nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>. 解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k kn n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m nk m m k k k m k k1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nnna a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n nn∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn+++--<++++ 因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1)12ln 3ln 2ln 2--n n n αααααα解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到: 12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 例14. 已知112111,(1).2n n n aa a n n +==+++证明2n a e <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案)放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。
数列求和中常见放缩方法和技巧含答案
数列求和中常见放缩方法和技巧一、放缩法常见公式: (1)()()111112-<<+n n n n n(2)()12122112--=-+<+=<++n n n n n n n n n (3)()()211++<+<n n n n n (4)122+>n n(二项式定理)(5)1+>x e x,1ln -<x x (常见不等式)常见不等式: 1、均值不等式; 2、三角不等式; 3、糖水不等式; 4、柯西不等式; 5、绝对值不等式;若欲证不等式含有与自然数n 有关的n 项和,可采用数列中裂项求和等方法来解题。
例4. 已知n ∈N*,求n 2n131211<…++++。
2==<=,则()()()11122123221n n n++<+-+-++--1<<例5. 已知*N n ∈且)1n (n 3221a n +++⨯+⨯= ,求证:2)1(2)1(2+<<+n a n n n 对所有正整数n 都成立。
证明:因为n n n n =>+2)1(,所以2)1n (n n 21a n +=+++> , 又2)1()1(+<+n n n n , 所以2)1n (21n 225232)1n (n 232221a 2n +=++++=++++++< ,综合知结论成立。
例6、求证:2222111171234n ++++< 证明:21111(1)1n n n n n<=--- 222221111*********1()().1232231424n n n n ∴++++<++-++-=+-<- 此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。
nn n 1211)1ln(113121+++<+<++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111nn n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例6. 已知函数1212)(+-=x x x f ,证明:对于*N n ∈且3≥n 都有1)(+>n n n f 。
放缩法在数列求和中的基本策略
“放缩法”在数列求和中的基本策略放缩法:为放宽或缩小不等式的范围的方法。
常用在多项式中“舍掉一些正(负)项”而使不等式各项之和变小(大),或“在分式中放大或缩小分式的分子分母”,或“在乘积式中用较大(较小)因式代替”等效法,而达到其证题目的。
所谓放缩的技巧:即欲证B A ≤,欲寻找一个(或多个)中间变量C ,使B C A ≤≤,由A 到C 叫做“放”,由B 到C 叫做“缩”。
常用的放缩技巧有:(1)若,A t A ,A t A ,0t <->+>(2,n 1n <-n n 2>,1n 11n ,1n ->-+-+),0n (n n )1n (n 2>=>+<<+=+-2n 1)1n (n 11n 1n 1).1n n (2n1n n 21n n 2)n 1n (2),1n (n 11n 1)1n (n 1--<=+<++=-+>--=-(3)若,R m b a +∈、、则.b ma ba ,mb a b a +<+>(4)+++<++++221211!n 1!31!211 .211n -+ (5).n 12n 11n 1()3121()211(1n131211222-=--++-+-+<++++ (6)11n n 1n 11n 11n 1n 212n 11n 1<+=++++++≤+++++ 或≥+++++n 212n 11n 1 .21n 2n n 21n 21n 21==++ (7)nn n n 1n 1n 1n 131211==+++>++++ 等等。
注:1、放缩法的理论依据,是不等式的传递性,即若,D C ,C B ,B A >>>则D A >。
2、使用放缩法时,“放”、“缩”都不要过头。
3、放缩法是一种技巧性较强的不等变形,一般用于两边差别较大的不等式。
数列型不等式的放缩技巧九法之欧阳学创编
数列型不等式的放缩技巧九法证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下九种:一 利用重要不等式放缩 1. 均值不等式法 例 1 设.)1(3221+++⋅+⋅=n n S n 求证.2)1(2)1(2+<<+n S n n n 解析 此数列的通项为.,,2,1,)1(n k k k a k =+=2121)1(+=++<+<k k k k k k ,)21(11∑∑==+<<∴nk n nk k S k , 即.2)1(22)1(2)1(2+<++<<+n n n n Sn n n注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式2b a ab +≤,若放成1)1(+<+k k k 则得2)1(2)3)(1()1(21+>++=+<∑=n n n k S nk n ,就放过“度”了!②根据所证不等式的结构特征来选取所需要的重要不等式,这里其中,3,2=n 等的各式及其变式公式均可供选用。
例2 已知函数bxa x f 211)(⋅+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121)()2()1(1-+>++++n n n f f f (02年全国联赛山东预赛题)简析)2211()()1()0(22114111414)(⨯->++⇒≠•->+-=+=n f f x x f xx x x 例3 求证),1(221321N n n n C CC C n n nnnn∈>⋅>++++- .简析 不等式左边=++++n n n n n C C C C 32112222112-++++=-n nn n n 122221-⋅⋅⋅⋅⋅> =212-⋅n n ,故原结论成立.2.利用有用结论例4 求证.12)1211()511)(311)(11(+>-++++n n简析 本题可以利用的有用结论主要有:法1利用假分数的一个性质)0,0(>>>++>m a b ma mb ab 可得⇒12)122563412(2+>-⋅⋅n n n 即.12)1211()511)(311)(11(+>-++++n n 法2利用贝努利不等式)0,1,2,(1)1(≠->≥∈+>+*x x n N n nx x n 的一个特例12121)1211(2-⋅+>-+k k (此处121,2-==k x n )得注:例4是1985年上海高考试题,以此题为主干添“枝”加“叶”而编拟成1998年全国高考文科试题;进行升维处理并加参数而成理科姊妹题。
专题 数列不等式放缩问题(课件)-高考数学二轮专题复习
3 2
an1
3
②,
由② ①得: an 3an1 ,
所以数列{an} 是以 6 为首项,3 为公比的等比数列.
所以 an 6 3n1 2 3n .
(Ⅲ)当
n
1 时,
b1
3 4
1
;
当n
2 时, bn
2an (an 2)2
4 3n (2 3n 2)2
3n (3n 1)2
(3n
3n 1)(3n
a1 a2
an
典型例题讲解:
解:(1) a1 2 ,{3an 2Sn} 是公差为 2 的等差数列,
3a1 2S1 a1 2 ,
3an 2Sn 2 2(n 1) 2n ,
即
Sn
3 2
an
n
,
当n
2
时,
an
Sn
Sn1
3 2
an
n
3 2
an1
(n
1)
,
即 an 3an1 2 ,
an 1 3(an1 1) ,又 a1 1 3 ,
(Ⅰ)求{an} 的通项公式;
(Ⅱ)证明数列
bn 2n
1
是等比数列,并求{bn} 的通项公式;
(Ⅲ)求证:对任意的 n N* , n 1 3 . b i1 i 2
(Ⅰ)解:设等差数列{an} 的公差为 d , d 0 , 因为 a3 3a4 S5 , a1a5 S4 ,
则
aa11
所以 n 1 3 . b i1 i 2
变式练习:
附:本题可以运用糖水不等式进行放缩, 也可以运用指数不等式进行放缩。
变式练习:
变式 4.已知数列{an} 满足 a1 a2 an1 an 2(n 2 且 n N*) ,且 a2 4 .
数列放缩法
以
an an1 2 ,即 an 是公差为 2 的等差数列,由 2 S1 a1 1,得 a1 1 ,所以 an 2n 1
bn 1 1 1 1 1 ( ) an an1 (2n 1)(2n 1) 2 2n 1 2n 1 ,所以
(2)
Bn
1 1 1 1 7 1 7 4 2 n 4 n 4
综上,对一切正整数 n ,有
1 1 1 7 . a1例题】 例 1、设数列 an 满足 a1 3, an1 2an n 1 (1) 求 an 的通项公式; (2) 若 c1 1, bn cn 1 cn
(7)
1 1 1 1 1 1 1 n 1 n 1 n 2 n 3 2n n 1 n 1 n 1 n 1
或
1 1 1 1 n 1 n 2 n 3 2n
1 2n
1 2n
1n 1 2n 2n 2
an
1 an n N * 2 n 1
1 1 1 1 1 2 n 1 n 2 an an1 n 1
1 0故 an1 an a an (n 1) 2 ,即 n1
an1 an
分析: (1) 故数列{
an }为递增数列.
1 1 1 1 求证:数列 , dn bn dn 的前 n 项和 S n 3 an n cn cn1
分析: (1)此时我们不妨设 即
an1 A(n 1) B 2(a n An B)
an1 2an An A B 与已知条件式比较系数得 A 1, B 0.
放缩法技巧及经典例题讲解
数列不等式中的放缩法
数列不等式中的放缩法数列不等式的证明是高中数学一个难点,期中最常见的方法是放缩法,这种方法的思维跳跃性大,不好控制,笔者在多年的教学实践中总结下列几种常见的放缩法.一.裂项放缩例1,已知an=1n2,sn=a1+a2+ …+an 求证sn1)∴sn=a1+a2+ …+an 1),∴sn=a1+a2+ …+anb1所以我们要从第2项开始放大:即要使12=b21-q 取q=12 则b2=14 当n=1时b1=1当n>1时bn=12n+1满足an bn所以sn=a1+a2+a3……+aAT/JINeXTrwZDSX3Y/qtUw==n构造无穷递缩等比数列的方法证明数列不等式是通用方法,其中b1和q的取法是多样的,但是要注意始终保证an bn条件下确定是从第几项开始放大,当然有时候存在前面几项放得太大,也需要确定从第几项开始放大更恰当的问题.例5,已知,an=13n-2n,sn=a1+a2+a3……+an.求证sn0),则有an a1qn-1,若sn为数列{an}的前n项和,则有sn a1(1-qn)1-q .已知正数数列{an}满足an+1an q(q>0),则有an a1qn-1,若为数列{an}的前n项和,则有sn a1(1-qn)1-q例7, 已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N*),其中xn为正实数.(Ⅰ)用xn表示xn+1;(Ⅱ)若x1=4,记an=lgxn+2xn-2 ,证明数列{an}成等比数列,并求数列{xn}的通项公式;(Ⅲ)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn0.∴bn+1bn=32n-1-132n-1=132n-1+1 1时,bn 4a1+an+4a2+an-1+…+4an+a1=4na1+an所以1a1+1a2+…+1an2na1+an其计算过程是对数列{1an进行倒序相加,再应用均值不等式(调和平均数小于或等于算数平均数)就能得到相应的不等式.例8.设数列{an}的前n项和为Sn,对任意n∈N*,都有an>0,且满足(a1+a2+…+an)2=a31+a32+…+.an(1)求数列{an}的通项公式;(2)当09n-14n+3.解(1):当n=1时,a1=s1=a31,所以a1=1.当n=2时,s2=a31+a32,即a1+a2=a31+a32,所以a2=2.由题知,a31+a32+…+a3n=(a1+a2+…+an)2,①a31+a32+…+a3n+a3n-1=(a1+a2+…+an+an+1)2,②由②-①得a3n+1=(a1+a2+…+an+an+1)2-(a1+a2+…+an)2,因为a n+1>0,所以a2n+1=2(a1+a2+…+an)+an+1,③a2n=2(a1+a2+…+an-1)+an(n≥2),④由③-④得a2n+1-a2n=an+an+1,所以an+1-an=1.因为a2-a1=1,所以当n≥1时都有an+1-an=1,所以{an}是以1为首项,以1为公差的等差数列,故an=n.(2)证明:因为bn=(1-λ)(n+12,cn=λ(n+1),所以1bncn=4λ(1-λ)(2n+1)(2n+2)≥16(2n+1)(2n+2)=162n+1-162n+2,所以Tn≥16[(13-14)+(15-16)+…+(12n+1-12n+2)]=16[13+14+15+…+12n+1+12n+2-2(14 +16+…+12n+2)]=16(1n+2+1n+3+…+12n+2-12).设tn=1n+2+1n+3+…+12n+2,倒序相加得2tn=(1n+2+12n+2)+(1n+3+12n+1)+…+(12n+2+1n+2)>43n+4+43n+4+…+43n+4所以tn>2(n+1)3n+4, 从而Tn>16[2(n+1)3n+4-12]=8n3n+4.因为8n3n+4-9n-14n+3=(5n-4)(n-1)(3n+4)(4n+3)≥0,所以Tn>9n-14n+3.<32</n+1-n.。
2019届高考数学二轮复习(理科)知识拓展数列放缩技巧课件(24张)(全国通用)
k2
k 1
35
2n 1 2n 1
33
另一方面:1+ 1 + 1 +…+ 1 > 1 + 1 + 1 +…+ 1 =1- 1 = n ,
49
n2 1 2 23 3 4
n(n 1) n 1 n 1
当 n≥3 时, n >
6n
,
n 1 (n 1)(2n 1)
当 n=1 时,
②等比数列:所面对的问题通常为“Sn<常数”的形式,所构造的等比数列的公比也要满足 |q|∈(0,1),如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,常数
可视为 a1 的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项 1 q
1 公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可.例如常数 2 = 2 ,
an
an
讨类等比数列性质的应用.由 an ≤q 可以得到:an≤an-1q≤an-2q2≤…≤a2qn-2≤ an 1
a qn-1 1
从而可以构造类等比的通项公式进行放缩.
考点一 裂项放缩
例题精讲
n
【例 1】 (1)求
2 的值;
k 1 4k 2 1
(1)解:因为 2 =
2
=
1
-
1
n
,所以
n
n
(3)分子分母同加常数: b > b m (b>a>0,m>0), b < b m (a>b>0,m>0).
a am
a am
此结论容易记混,通常在解题时,这种方法作为一种思考的方向,到了具体问题
《数列中的放缩法》课件
面临的挑战
未来发展放缩法,需要解决的关键问题包括 如何提高放缩法的适用性和可靠性,如何克 服其局限性,以及如何与其他数学工具或算 法更好地结合。此外,如何将放缩法的理论
应用于实际问题的解决也是一大挑战。
放缩法的挑战
在使用放缩法时,需要具备深厚的数学基础 和敏锐的观察力,以选择合适的放缩策略。 此外,如何掌握好放缩的尺度,避免过度或 不足的放缩,也是一大挑战。
放缩法的未来发展
发展方向
随着数学理论和计算机技术的发展,放缩法 有望在更多领域得到应用。例如,结合机器 学习算法,可以自动寻找最优的放缩策略。 此外,随着数学与其他学科的交叉融合,放 缩法有望在解决实际问题中发挥更大的作用 。
洛必达法则
洛必达法则是微积分中的一个重要定理,它可以用来计算某些极限。当一个极限 的分子和分母都趋于零时,洛必达法则可以用来求极限。
在数列中,洛必达法则可以用来研究数列的收敛性和发散性。通过应用洛必达法 则,我们可以对数列的项进行放缩,从而证明一些数学命题。
拉格朗日中值定理
拉格朗日中值定理是微积分中的一个 重要定理,它说明了一个函数在两个 点之间的值与这两点之间某点的导数 之间的关系。
解决导数问题
总结词
在解决与导数相关的问题时,放缩法可 以帮助我们更好地理解函数的性质和行 为。
VS
详细描述
在导数问题中,放缩法可以帮助我们更好 地理解函数的性质和行为。通过放缩法, 可以将函数的导数进行放大或缩小,从而 更好地理解函数的增减性、极值点等性质 。此外,放缩法还可以用于解决一些与导 数相关的不等式问题,例如证明函数的导 数满足某种不等式关系。
泰勒级数展开
泰勒级数展开是数学分析中的一个重要概念,它可以将一 个函数表示为无穷级数的形式。通过泰勒级数展开,我们 可以更好地理解函数的性质和行为。
数列中的放缩技巧
5 , 2
11.证明:
n
1 2 3 2 3 2 1 2 2 2 3
n 2. 2 n
n
n n n ,错位相减求和,即可证明。 2 n 2
2n ,证明: a1 a1 1 a2 a2 1 2n 1 方法一:(放大为等比数列) n2
12.已知 an
②立方型:
1 1 1 1 1 ; 3 n n 1 n n 1 2 n 1 n n n 1
③根式型:
2
n 1 n
2 n 1 n
1 n
2 n n 1
2
n n 1 .
常见裂项: ①分式裂项: 1 11 1 ; nn k k n n k
n2
,失败,可以试着再多保留几项,但难算
1 11 1 1 2 an 23 3
1 1 1 1 5 1 n 1 1 3 2 3 1 4 3
,成功
7. 已知 an
2
n ,证明: a1a3 a5 n 1
2 2 2
a2 n 1
1 . 2n 1
1
1 1 22 32
1 1 1 5 2 2 . 2 2 3 n 3 方法一:多保留几项,好想但是难算; 1 1 4 1 1 2 2 方法二: 2 , 1 n 4n 1 2n 1 2n 1 n2 4 1 1 1 1 1 1 1 1 5 2 5 1 1 2 2 2 1 2 ; 2 3 n 2n 1 2n 1 3 2 n 1 3 3 5 5 7
数列放缩技巧(正式版)
数列放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、裂项放缩例1.(1)求∑=-nk k12142的值; (2)求证:21153nk k=<∑. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k nk (2)因为22211411214121214n n n n n ⎛⎫<==- ⎪--+⎝⎭-, 所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 技巧积累:(1)2221441124412121n n n n n ⎛⎫=<=- ⎪--+⎝⎭(2)1211211(1)(1)(1)(1)n n C C n n n n n n n +==-+--+ (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r rr r r r n r n r n n C T r r rn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn n n 21121)12(21--=- (6) n n n -+<+221(7))1(21)1(2--<<-+n n nn n(8) n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10)!)1(1!1!)1(+-=+n n n n(11)21212121222)1212(21-++=-++=--+<n n n n n n n(12) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(13)111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n nn n11112111111+--<-++⋅⎪⎭⎫⎝⎛+--=n n n n n n n (14) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+(15)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k(16))2(1)1(1≥--<+n n n n n(17)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:n n412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn (4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222n nn -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合n n n -+<+221进行裂项,最后就可以得到答案(4)首先n n n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n nn n n n 当3≥n 时,)12)(1(61++>+n n nn n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ , 当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a<<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b am≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m mk k k k a aa a a a a 111ln ln ,因为)ln (ln 11b a k a akm m m<∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S xN m n ++++=->∈+ 321,1,,,求证:1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n nn111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:111111111111111[(1)](1)(1)1(1)(1)2[(1)]nnm m m m m m m m m m k k n m m k kk m k n n n n n k k +++++++++==++=--<+<+-=+-+--++-=+-∑∑∑故只要证∑∑∑=++==++-+<+<--nk m m n k m nk m m k k k m k k1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m 而正是成立的,所以原命题成立. 例6.已知nnn a 24-=,nnn a a a T +++= 212,求证:23321<++++n T T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n nnn T -+-=-----=+++-++++= 所以111111222244442(41)2(12)222333333232432222(2)321nn nn n n n n n n n nn n n n T ++++++===-+--+-+-⋅==⋅-⋅+⋅-⋅+ ⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n n n n从而231211217131311231321<⎪⎭⎫⎝⎛---++-+-=+++++n n nT T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n , 求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+ 证明:nnnn n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n n x x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++ . 解析:先构造函数有x x x x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n n n +++--<++++因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111nn n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>--- 所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n n n 例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n nn ααααααα 解析:构造函数x x x f ln )(=,得到22ln ln nn n n ≤αα,再进行裂项)1(1111ln 222+-<-≤n n n n n ,求和后可以得到答案 函数构造形式:1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:nn n 1211)1ln(113121+++<+<++++ 解析:提示:2ln 1ln 1ln 1211ln)1ln(++-++=⋅⋅-⋅+=+ n nn n n n n n n所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n ,n n n ln )1ln(11-+<+,相加后可以得到: )1ln(113121+<++++n n 另一方面⎰->ni n ABDE xS 1,从而有)ln(ln |ln 11i n n x x i i n n i n nin --==>⋅---⎰取1=i 有,)1ln(ln 11-->-n n n , 所以有nn 1211)1ln(+++<+ ,所以综上有n n n 1211)1ln(113121+++<+<++++ 例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和e n <+⋅⋅++)311()8111)(911(2 .解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 例14. 已知112111,(1).2n n na a a n n +==+++证明2na e <. 解析: n n n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到n n n a n n a ln )21)1(11ln(ln 1++++<+然后运用x x <+)1ln(和裂项可以得到答案)放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21n n n n a 211ln 2+++≤。
数列放缩
数列放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、裂项放缩例1.(1)求∑=-n k k 12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以3532112112151312111=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C nn(3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rr n r (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12)111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n nn n11112111111+--<-++⋅⎪⎭⎫⎝⎛+--=n n nn n n n(13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15))2(1)1(1≥--<+n n n n n (15) 111)11)((1122222222<++++=+++--=-+-+j i ji j i j i j i ji j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n(2)求证:nn412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222nnn-+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案 (4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例 4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>. 解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=n k m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m nk m nk m m k k n nnn n k m k k111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m nk mnk m m k k k m k k1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nnna a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n n n n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+ 证明:nnnn n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+ 二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n nn∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn+++--<++++ 因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 311212191817161514131213131216533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1)12ln 3ln 2ln 2--n n n ααα解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n n a a a n n +==+++证明2n a e <. 解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到n n n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案)放缩思路:⇒+++≤+n n a n n a )2111(1⇒++++≤+n n a n n a ln )2111ln(ln 1 nn n n a 211ln 2+++≤。
数列放缩法
数列放缩法1.已知数列{}n a 满足*111,21().n n a a a n N +==+∈ (I )求数列{}n a 的通项公式;(II )若数列{}n b 滿足12111*444(1)()n n b b b b n a n N ---=+∈,证明:数列{}n b 是等差数列;(Ⅲ)证明:*122311...()232n n a a a n nn N a a a +-<+++<∈.2. 函数f (x )=xx 414+.求证:f (1)+f (2)+…+f (n )>n +)(2121*1N n n ∈-+.3. 求证:.2n 321132112111<⨯⨯⨯⨯++⨯⨯+⨯+4. 求证:5. 已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a na n n n .求证:11213-++-≥>n n n n a a6. 已知数列}{n a 的前n 项和n S 满足:n n n a S )1(2-+=, 1≥n(1)写出数列}{n a 的前三项1a ,2a ,3a ; (2)求数列}{n a 的通项公式;. 1 n3 2 1 13 2 1 1 2 1 1 1 < ⨯ ⨯ ⨯ ⨯ + + ⨯ ⨯ + ⨯ + Λ Λ(3)证明:对任意的整数4>m ,有8711154<+++m a a a7. 在m (m ≥2)个不同数的排列P 1P 2…P n 中,若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数),则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1( -+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列4321的逆序数63=a .(1)求a 4、a 5,并写出a n 的表达式;(2)令nn n n n a aa ab 11+++=,证明32221+<++<n b b b n n ,n =1,2,….8.已知数列{a n }满足:a 1=1且)2(213221≥=---n a a n n n .(1)求数列{a n }的通项公式;(2)设m ∈N +,m ≥n ≥2,证明(a n +n21)m1(m-n+1)≤mm 12-9. 设数列{n a }满足12,311+-==+n a a a n n(1)求{n a }的通项公式; (2)若11111,1,1++-=-=-==n n n n n n n c c d n a c c b c 求证:数列{n n d b ⋅}的前n 项和31<n s10. 已知正项数列{n a }满足)(,)1(1,1211*+∈⋅++==N n a n a a a n n n (1)判断数列{n a }的单调性; (2)求证:21)1(1112111+<-<+-++n a a n n n n11设)1(433221+++⨯+⨯+⨯=n n a n 求证:2)1(2)1(2+<<+n a n n n答案:5.证明:因为n n n a na )21(1+=+,所以1+n a 与n a 同号,又因为011>=a ,所以0>n a , 即021>=-+n nn n a na a ,即n n a a >+1.所以数列{}n a 为递增数列,所以11=≥a a n , 即nn n n n n a n a a 221≥=-+,累加得:121212221--+++≥-n nn a a . 令12212221--+++=n nn S ,所以n n n S 2122212132-+++= ,两式相减得: n n n n S 212121212121132--++++=- ,所以1212-+-=n n n S ,所以1213-+-≥n n n a , 故得11213-++-≥>n n n n a a . 6.分析:⑴由递推公式易求:a 1=1,a 2=0,a 3=2; ⑵由已知得:1112(1)2(1)n n n n n n n a S S a a ---=-=+----(n>1)化简得:1122(1)n nn a a --=+-2)1(2)1(11---=---n n n n a a ,]32)1([232)1(11+--=+---n n n n a a 故数列{32)1(+-nn a }是以321+-a 为首项, 公比为2-的等比数列. 故1)2)(31(32)1(---=+-n nn a ∴22[2(1)]3n nn a -=-- ∴数列{n a }的通项公式为:22[2(1)]3n n na -=--. ⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。
数列放缩篇(所有类型)
数列放缩篇(所有类型)1}+a_{2}+a_{3}+a_{4}+ \cdots +a_{n}。
A。
(1-q) <a_{1}/A < 1.q < 1.这就是无穷等比放缩的模板。
其中,a_{1}表示数列的首项,q表示公比,A表示一个确定的常数。
三步一分放缩证明标准模板如下:第一步:求出qa_{1}/(1-q) = A \Rightarrow q = 1 - a_{1}/A第二步:验证a_{2} < a_{1}q。
a_{3} < a_{1}q^{2}。
\cdots。
a_{n} < a_{1}q^{n-1}是否成立第三步:证明a_{1}+a_{2}+a_{3}+a_{4}+ \cdots +a_{n} < a_{1}+a_{1}q+a_{1}q^{2}+\cdots+a_{1}q^{n-1} = a_{1}(1-q^{n})/(1-q) < A其中,第二步是验证步骤,第三步是过程步骤。
如果第一步和第二步验证通过,那么第三步的过程就是显然成立的。
数学归纳法是一个常用的证明方法,其标准三步曲如下:第一步:验证n=1时命题成立;第二步:假设n=k时命题成立,证明n=k+1时命题也成立;第三步:由第一步和第二步得出结论,证明命题对所有正整数n成立。
数学归纳法通常用于递推式、矛盾式和求和式的证明。
无穷等比放缩法和数学归纳法都是数学证明中常用的方法,熟练掌握它们可以帮助我们更好地解决数学问题。
1) 当$a_1=2$时,求$a_n$的一个通项公式。
解:由题意可知,$a_{n+1}=a_n+2^n$,因此$a_n=a_{n-1}+2^{n-1}=a_{n-2}+2^{n-2}+2^{n-1}=\cdots=a_1+2^0+2^1+\cdots+2^{n-2}=2^{n-1}+1$,即$a_n=2^{n-1}+1$。
2) 当$a_1\geq 3$时,证明对所有的$a_1\geq 1$,有(i)$a_n\geq n+2$;(ii)$\frac{1}{1+a_1}+\frac{1}{1+a_2}+\cdots+\frac{1}{1+a_n}\l eq 1$。