第五章 小波变换基本原理
小波变换及其在信号处理中的应用
小波变换及其在信号处理中的应用小波变换(Wavelet Transformation),是用来处理时-频局部分析的一种具有多分辨率的信号分析工具。
小波变换涉及到基函数与尺度函数的选择和求解,能够将时间域和频率域相结合,从而得到更加清晰、准确的分析结果。
因此,在信号处理中应用极为广泛。
一、小波变换的原理及基本概念小波变换其实就是把一个时域信号进行分解或重构,在分解中进行多分辨率分析,在重构中实现还原。
在进行小波变换处理时,我们需要先选定一组小波基函数,对原始信号进行一定的变换,从而实现信号的时间-频率分析。
小波基函数被分为一个系列,常见的有Daubechies小波、Haar小波、Coiflets小波、Symlets小波等。
这些小波函数不仅具有平滑性和对称性,而且能够在不同尺度上实现信号的精确分析,可以更加准确的描述信号的局部性质。
二、小波变换在信号处理中的应用小波变换具有很强的局部分析能力,不仅仅可以把时域和频率域联系在一起,还可以对复杂的信号进行分解和重构,从而得出更加准确的分析结果。
因此,在信号处理中,小波变换有着非常广泛的应用,如:1、地震探测地震信号是一个典型的非平稳信号,使用小波变换可以对地震信号进行多分辨率分析和孔径分辨率优化,从而提高地震探测的准确性。
2、医学图像处理在医学图像处理中,小波变换能够使用不同的小波函数对图像进行分解和重构,从而实现图像的去噪、增强、分割等处理,提高图像处理的效果和准确性。
3、音频处理小波变换可以将音频信号进行分解和重构,从而对音频进行时-频局部分析和处理,可用于音频去噪、降噪、分割、信号提取等,提高音频处理的效果和准确性。
4、金融分析小波变换可对金融数据进行分解,实现不同尺度、不同频率、不同时间的分析,提供金融数据的多维度分析,有利于对股市趋势进行判断和预测。
5、图像压缩小波变换能够将图像进行分解,通过去掉一些高频细节信息,实现图像压缩,从而实现图像的存储与传输,提高图像传输的速度和效率。
小波变换课件
消失矩性质
消失矩定义:小波变换在高频部分具有快速衰减的特性
消失矩性质与信号处理:在信号处理中,消失矩性质使得小波变换能够有效地提取信号的 高频成分
消失矩与多分辨率分析:消失矩性质是实现多分辨率分析的关键,能够同时获得信号在不 同尺度上的信息
消失矩的应用:在图像处理、语音识别、信号去噪等领域,消失矩性质都有着广泛的应用
图像去噪:小波变换能够将噪声与 图像信号进行分离,从而去除噪声
语音处理
小波变换在语音 信号处理中的应 用
小波变换在语音 识别和合成中的 应用
小波变换在语音 增强和去噪中的 应用
小波变换在语音 编码和压缩中的 应用
其他应用领域
信号处理 图像处理 语音处理 模式识别
小波变换的优缺点分析
小波变换的优点
用的特征信息
图像处理:小波变换在图像 处理中也有广泛的应用,如
图像压缩、去噪、增强等
图像处理
图像压缩:小波变换能够去除图像 中的冗余信息,实现高效的图像压 缩
图像融合:将多个图像的小波系数 进行融合,可以得到一个新的、包 含多个图像信息的图像
添加标题
添加标题
添加标题
添加标题
图像增强:通过调整小波系数,可 以突出图像的某些特征,提高图像 的视觉效果
多维小波变换算法:介绍多维小波变换的基本原理和算法实现,包括多维小波变换 的定义、性质、算法流程等。
多维小波变换在图像处理中的应用:介绍多维小波变换在图像处理中的应用,包括 图像压缩、图像去噪、图像增强等。
多维小波变换的优缺点:介绍多维小波变换的优缺点,包括优点如多尺度分析、方 向性、时频局部化等,以及缺点如计算量大、需要选择合适的小波基等。
数学表达式:对于任意实数a,如果f(t)的小波变换为Wf(s,a),则f(t-a)的小波变换仍为 Wf(s,a)
小波变换原理
小波变换原理
小波变换是一种信号分析方法,它可以将一个信号分解成不同频率和时间的小波基函数的线性组合。
这种分解能够提供关于信号局部特征的信息,并且具有较好的时频局部化性质。
小波变换的基本原理是利用小波基函数对信号进行多尺度分析。
小波基函数是一组函数,它们具有有限时间和频率的特性。
通过对不同尺度的小波基函数进行缩放和平移,可以得到不同频率和时间的基函数。
在小波变换中,通常采用离散小波变换(DWT)进行信号分析。
离散小波变换将信号分解成不同尺度和位置的小波系数,每个小波系数表示信号在相应尺度和位置上的能量。
小波变换的优点之一是可以提供多分辨率的信号分析。
通过对信号进行分解,可以得到不同尺度上的信息,从而揭示信号在局部的频率特征。
这对于处理非平稳信号和突发信号非常有用。
小波变换还具有较好的时频局部化性质。
在时域上,小波基函数具有较短的时域长度,可以更好地描述信号的瞬时特征。
在频域上,小波基函数具有较宽的频带,可以更好地描述信号的频率特征。
小波变换在信号处理、图像处理、模式识别等领域有着广泛的应用。
它可以用于信号去噪、压缩、特征提取等任务,也可以用于图像边缘检测、纹理分析等任务。
总之,小波变换是一种多尺度信号分析方法,通过对信号进行分解,可以提取信号在不同尺度和位置上的特征。
它具有较好的时频局部化性质,可以有效地描述非平稳信号和突发信号的特征。
小波变换及其应用
小波变换及其应用小波变换是一种数学工具,可以将时间或空间上的信号分解成不同频率的成分。
它广泛应用于信号处理、图像压缩、模式识别、金融分析等领域。
本文将介绍小波变换的基本原理、算法和应用。
一、基本原理小波变换采用一组基函数,称为小波基。
小波基是一组具有局部化和可逆性质的基函数。
它们具有一个中心频率和一定的时间或空间长度,可以表示不同频率范围内的信号。
小波基函数可以表示为:y(t) = A * ψ(t - τ)/s其中,y(t)是信号的值,A是尺度系数,ψ是小波基函数,τ是位移参数,s是伸缩系数。
通过改变A、τ、s的值,可以得到不同频率、不同尺度的小波基。
小波变换的基本思想是将信号分解成不同频率的小波基函数,在不同尺度上进行分解,得到信号的多尺度表示。
具体来说,小波变换包括两个步骤:分解和重构。
分解:将信号按照不同频率和尺度进行分解,得到信号的局部频谱信息。
分解通常采用多层小波分解,每一层分解都包括高频和低频分量的计算。
重构:将小波分解得到的频域信息反变换回时域信号,得到信号的多尺度表示。
重构也采用多层逆小波变换,从小尺度到大尺度逐层反变换。
二、算法小波变换的算法有多种,包括离散小波变换(DWT)、连续小波变换(CWT)和快速小波变换(FWT)等。
其中离散小波变换最常用,具有计算速度快、计算量小、精度高等优点。
下面简要介绍DWT算法。
离散小波变换是通过滤镜组将信号进行分解和重构的过程。
分解使用高通和低通滤波器,分别提取信号的高频和低频成分。
重构使用逆滤波器,恢复信号的多尺度表示。
DWT的算法流程如下:1. 对信号进行滤波和下采样,得到低频和高频分量;2. 将低频分量进一步分解,得到更低频和高频分量;3. 重复步骤1和2,直到达到最大分解层数;4. 逆小波变换,将多尺度分解得到的信号重构回原始信号。
三、应用小波变换在信号和图像处理中有广泛应用。
其中最常见的应用是压缩算法,如JPEG2000和MPEG-4等。
小波变换课件
小波变换的基本思想是将信号分 解成一系列的小波函数,每个小 波函数都有自己的频率和时间尺
度。
小波变换通过平移和缩放小波函 数,能够适应不同的频率和时间 尺度,从而实现对信号的精细分
析。
小波变换的特点
01
02
03
多尺度分析
小波变换能够同时分析信 号在不同频率和时间尺度 上的特性,提供更全面的 信号信息。
图像去噪
利用小波变换去除图像中的噪声,提高图像的清晰度和质 量。
在小波变换中,噪声通常表现为高频系数较大的值,通过 设置阈值去除这些高频系数,可以达到去噪的效果。去噪 后的图像能够更好地反映原始图像的特征和细节。
图像增强
ቤተ መጻሕፍቲ ባይዱ
利用小波变换增强图像的某些特征,突出显示或改善图像的某些部分。
通过调整小波变换后的系数,可以增强图像的边缘、纹理等特定特征。这种增强 方式能够突出显示图像中的重要信息,提高图像的可读性和识别效果。
在信号处理、图像处理、语音识别等 领域有广泛应用。
特点
能够同时分析信号的时域和频域特性 ,具有灵活的时频窗口和多分辨率分 析能力。
离散小波变换
定义
离散小波变换是对连续小波变换 的离散化,通过对小波函数的离 散化处理,实现对信号的近似和
细节分析。
特点
计算效率高,适合于数字信号处理 和计算机实现。
应用
在信号处理、图像处理、数据压缩等领域有广泛应用,如语音压缩、图像压缩 、数据挖掘等。
CHAPTER 04
小波变换在图像处理中的应用
图像压缩
利用小波变换对图像进行压缩,减少存储空间和传输带宽的 需求。
通过小波变换将图像分解为不同频率的子带,去除高频细节 ,保留低频信息,从而实现图像压缩。压缩后的图像可以通 过逆小波变换重新构造,保持图像质量的同时减小数据量。
小波变换ppt课件
自适应压缩
在此添加您的文本16字
小波变换的自适应性质使得它在压缩过程中能够根据信号 的特性进行动态调整,进一步提高压缩效率。
信号去噪
有效去噪 多尺度分析 自适应去噪
小波变换能够检测到信号中的突变点,从而在去噪过程 中保留这些重要特征,同时去除噪声。
小波变换的多尺度分析能力使其在去噪过程中能够同时 考虑信号的全局和局部特性,实现更准确的去噪效果。
小波变换的算法优化
1 2
小波变换算法的分类
介绍不同类型的小波变换算法,如连续小波变换、 离散小波变换等。
算法优化策略
探讨如何优化小波变换算法,以提高计算效率和 精度。
3
算法实现技巧
介绍实现小波变换算法的技巧和注意事项。
小波变换在实际应用中的挑战与解决方案
01
小波变换在信号处理中的应用
介绍小波变换在信号处理领域的应用,如信号去噪、特征提取等。
小波变换ppt课件
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
01
小波变换是一种信号处理方法, 它通过将信号分解成小波函数的 叠加,实现了信号的多尺度分析 。
02
小波变换在图像处理中的应用
探讨小波变换在图像处理领域的应用,如图像压缩、图像增强等。
03
实际应用中的挑战与解决方案
分析小波变换在实际应用中面临的挑战,并提出相应的解决方案。
THANKS
感谢观看
离散小波变换具有多尺度、多方向和自适应的特点,能够提供信号或图像在不同尺 度上的细节信息,广泛应用于信号降噪、图像压缩和特征提取等领域。
小波包变换的基本原理和使用方法
小波包变换的基本原理和使用方法引言:小波包变换(Wavelet Packet Transform)是一种信号分析技术,它在小波变换的基础上进一步拓展,能够提供更丰富的频域和时域信息。
本文将介绍小波包变换的基本原理和使用方法,帮助读者更好地理解和应用这一技术。
一、小波包变换的基本原理小波包变换是一种多分辨率分析方法,它利用小波基函数对信号进行分解和重构。
与传统的傅里叶变换相比,小波包变换能够提供更精细的频域和时域信息,适用于非平稳信号的分析。
小波包变换的基本原理如下:1. 信号分解:首先将原始信号分解为不同频率的子信号,通过迭代地将信号分解为低频和高频部分,形成小波包树结构。
2. 小波基函数:在每一层分解中,选取合适的小波基函数进行信号分解。
小波基函数具有局部性和多分辨率特性,能够更好地捕捉信号的局部特征。
3. 分解系数:分解过程中,每个子信号都会生成一组分解系数,用于表示信号在不同频率上的能量分布。
分解系数可以通过滤波和下采样得到。
二、小波包变换的使用方法小波包变换在信号处理领域有广泛的应用,包括信号去噪、特征提取、模式识别等。
下面将介绍小波包变换的常见使用方法。
1. 信号去噪:小波包变换可以提供更丰富的频域和时域信息,因此在信号去噪领域有较好的效果。
通过对信号进行小波包分解,可以将噪声和信号分离,然后对噪声进行滤波处理,最后通过重构得到去噪后的信号。
2. 特征提取:小波包变换可以提取信号的局部特征,对于信号的频率变化和时域特征有较好的描述能力。
通过对信号进行小波包分解,可以得到不同频率下的分解系数,进而提取出信号的主要特征。
3. 模式识别:小波包变换在模式识别中也有广泛的应用。
通过对信号进行小波包分解,可以得到不同频率下的分解系数,进而提取出信号的特征向量。
利用这些特征向量,可以进行模式分类和识别。
4. 压缩编码:小波包变换可以将信号进行有效的压缩编码。
通过对信号进行小波包分解,可以将信号的主要信息集中在少量的分解系数中,从而实现信号的压缩。
小波分析简述(第五章)PPT课件
六、多分辨率分析(Multi-resolution Analysis ,MRA),又称为多尺度分析
若我们把尺度理解为照相机的镜头的话,当尺 度由大到小变化时,就相当于将照相机镜头由 远及近地接近目标。在大尺度空间里,对应远 镜头下观察到的目标,只能看到目标大致的概 貌。在小尺度空间里,对应近镜头下观察目标, 可观测到目标的细微部分。因此,随着尺度由 大到小的变化,在各尺度上可以由粗及精地观 察目标,这就是多尺度(即多分辨率)的思想。
小波变换(Wavelet Transform)
1
整体概况
概况一
点击此处输入 相关文本内容
01
概况二
点击此处输入 相关文本内容
02
概况三
点击此处输入 相关文本内容
03
2
主要内容
一、小波的发展历史 二、小波定义 三、连续小波变换 四、小波变换的特点 五、离散小波变换 六、多分辨率分析 七、Mallat算法 八、小波的应用 九、小波的进展
傅立叶分析是把一个信号分解成各种不同频率的正弦波, 因此正弦波是傅立叶变换的基函数。同样,小波分析是 把一个信号分解成由原始小波经过移位和缩放后的一系 列小波,因此小波是小波变换的基函数,即小波可用作 表示一些函数的基函数。
8
• 小波变换的反演公式
xtc1 0 a d2a W xa T ,a,td
26
小波基函数和滤波系数(db 2--正交,不对称 )
db小波
“近似”基函 数
“细节”基 函数
“正变换” 低频 和
高频 “滤波系数 “ ”反变换” 低频 和
• 小波基必须满足的条件—允许条件
ˆ2
c d
ˆ00
tdt0
9
四、小波变换的特点
小波变换的数学基础及原理解析
小波变换的数学基础及原理解析小波变换是一种信号分析方法,可以将信号分解成不同频率的小波成分,从而揭示信号的局部特征。
它在信号处理、图像处理、数据压缩等领域有着广泛的应用。
本文将从数学基础和原理解析两个方面来介绍小波变换。
一、数学基础小波变换的数学基础主要包括信号的时频分析和小波函数的定义。
在时频分析中,我们希望能够同时观察到信号的时域特征和频域特征。
然而,传统的傅里叶变换只能提供信号的频域信息,无法提供时域信息。
小波变换通过引入尺度参数,可以在时频域上同时进行分析。
小波函数是小波变换的基础,它是一种特殊的函数形式。
与傅里叶变换中的正弦函数和余弦函数不同,小波函数具有局部化的特点,即在时域上具有有限长度。
这种局部化的特性使得小波函数能够更好地描述信号的局部特征。
二、原理解析小波变换的原理可以通过连续小波变换和离散小波变换来解析。
连续小波变换是将信号与小波函数进行内积运算,得到信号在不同尺度和位置上的小波系数。
离散小波变换是连续小波变换的离散形式,通过对信号进行采样和离散化,得到离散的小波系数。
在连续小波变换中,小波函数是一个连续的函数,可以用于对连续信号的分析。
而在离散小波变换中,小波函数是一个离散的序列,可以用于对离散信号的分析。
离散小波变换通过多级滤波和下采样的方式来实现信号的分解和重构。
小波变换的核心思想是多尺度分析,即对信号进行多次分解,每次分解都将信号分解成低频部分和高频部分。
低频部分包含信号的整体特征,高频部分包含信号的细节特征。
通过不断分解和重构,可以得到信号在不同尺度上的小波系数,从而揭示信号的局部特征。
小波变换还具有一些重要的性质,如平移不变性、尺度不变性和能量守恒性。
平移不变性表示信号的平移对小波系数没有影响;尺度不变性表示信号的尺度变化对小波系数的影响是可逆的;能量守恒性表示信号的能量在小波分解和重构过程中是守恒的。
三、应用领域小波变换在信号处理、图像处理、数据压缩等领域有着广泛的应用。
小波变换的基本概念和原理
小波变换的基本概念和原理小波变换是一种数学工具,用于分析信号的频谱特性和时域特征。
它在信号处理、图像处理、数据压缩等领域有着广泛的应用。
本文将介绍小波变换的基本概念和原理。
一、什么是小波变换?小波变换是一种将信号分解为不同频率的成分的数学工具。
它类似于傅里叶变换,但不同之处在于小波变换不仅能提供频域信息,还能提供时域信息。
小波变换使用一组称为小波基函数的函数族,通过对信号进行连续或离散的变换,将信号分解为不同尺度和频率的成分。
二、小波基函数小波基函数是小波变换的基础。
它是一个用于描述信号特征的函数,具有局部性和可调节的频率特性。
常用的小波基函数有Morlet小波、Haar小波、Daubechies 小波等。
这些小波基函数具有不同的性质和应用场景,选择适当的小波基函数可以更好地适应信号的特征。
三、小波分解小波分解是将信号分解为不同尺度和频率的过程。
通过对信号进行连续或离散的小波变换,可以得到小波系数和小波尺度。
小波系数表示信号在不同尺度和频率下的能量分布,而小波尺度表示不同尺度下的信号特征。
小波分解可以将信号的局部特征和全局特征分离开来,为信号分析提供更多的信息。
四、小波重构小波重构是将信号从小波域恢复到时域的过程。
通过对小波系数进行逆变换,可以得到原始信号的近似重构。
小波重构可以根据需要选择保留部分小波系数,从而实现信号的压缩和去噪。
五、小波变换的应用小波变换在信号处理、图像处理、数据压缩等领域有着广泛的应用。
在信号处理中,小波变换可以用于信号去噪、特征提取、模式识别等任务。
在图像处理中,小波变换可以用于图像压缩、边缘检测、纹理分析等任务。
在数据压缩中,小波变换可以将信号的冗余信息去除,实现高效的数据压缩和存储。
六、小波变换的优势和局限性小波变换相比于傅里叶变换具有一些优势。
首先,小波变换可以提供更多的时域信息,对于非平稳信号和瞬态信号具有更好的分析能力。
其次,小波变换可以实现信号的局部分析,对于局部特征的提取和分析更为有效。
小波变换基本原理及应用
小波变换基本原理及应用
小波变换是一种数学工具,它可以将一个时域信号转换为频域信号。
它的基本原理是通过将信号与一组特定的小波函数进行卷积运算,从而得到信号的频域表示。
小波变换具有多尺度分析的特点,可以从不同的时间和频率尺度上分析信号的特征。
小波变换的应用非常广泛。
在信号处理领域,小波变换被广泛应用于信号压缩、滤波、去噪和特征提取等方面。
由于小波变换能够提供更准确的时频分析结果,相比于传统的傅里叶变换具有更好的局部性和时频局部化特性,因此在时频分析领域也得到了广泛的应用。
在图像处理中,小波变换可以用于图像的压缩和去噪。
小波变换可以将图像分解为不同尺度和方向的小波系数,通过丢弃一部分系数可以实现图像的压缩。
同时,小波变换还可以通过去除高频小波系数来实现图像的去噪,从而提高图像的质量。
小波变换还可以应用于金融分析领域。
在金融时间序列分析中,小波变换可以用于提取金融数据中的周期性和趋势性信息。
通过对金融数据进行小波变换,可以将数据分解为不同尺度的波动成分,从而更好地分析和预测金融市场的走势。
小波变换还在语音和图像识别、地震信号处理、生物医学信号处理等领域得到了广泛的应用。
小波变换的多尺度分析特性使其能够更好地适应不同信号的特点,从而提供更准确和有效的分析结果。
小波变换是一种强大的数学工具,具有广泛的应用前景。
它可以在时域和频域上对信号进行分析,从而提取信号的特征和信息。
通过合理地选择小波函数和尺度,可以实现对不同信号的定性和定量分析。
小波变换的应用领域包括信号处理、图像处理、金融分析等,为这些领域提供了一种有效的工具和方法。
小波变换的基本原理与应用探究
小波变换的基本原理与应用探究引言:小波变换是一种数学工具,具有在时频域上分析信号的能力。
它的基本原理是将信号分解成不同频率的小波,从而更好地理解信号的特性。
小波变换在信号处理、图像压缩、模式识别等领域有着广泛的应用。
本文将探究小波变换的基本原理和一些实际应用。
一、小波变换的基本原理小波变换的基本原理可以通过以下几个步骤来理解:1. 选择合适的小波函数:小波函数是小波变换的基础,不同的小波函数适用于不同类型的信号。
常见的小波函数有Haar小波、Daubechies小波等。
选择合适的小波函数可以更好地适应信号的特性。
2. 信号分解:通过小波函数对信号进行分解,将信号分解成不同频率的小波系数。
这个过程类似于将信号通过滤波器组进行滤波,得到不同频率的分量。
3. 尺度变换:小波变换不仅可以分析信号的频率特性,还可以分析信号的时间特性。
通过尺度变换,可以观察信号在不同时间尺度上的变化情况。
4. 重构信号:通过小波系数和小波函数的逆变换,可以重构原始信号。
这个过程类似于将不同频率的小波系数通过滤波器组进行合成,得到原始信号。
二、小波变换的应用小波变换在许多领域都有着广泛的应用。
以下是一些常见的应用领域:1. 信号处理:小波变换可以用于信号的去噪、特征提取和边缘检测等任务。
通过分析信号的小波系数,可以更好地理解信号的特性,从而实现对信号的有效处理。
2. 图像压缩:小波变换在图像压缩中有着重要的应用。
通过对图像进行小波变换,可以将图像分解成不同频率的小波系数。
根据小波系数的重要性,可以选择保留重要的小波系数,从而实现对图像的压缩。
3. 模式识别:小波变换可以用于模式识别任务中的特征提取。
通过提取信号的小波系数,可以获取信号的局部特征,从而实现对模式的识别。
4. 金融分析:小波变换在金融分析中有着广泛的应用。
通过对金融时间序列进行小波变换,可以分析不同频率的波动性,从而帮助投资者进行决策。
结论:小波变换作为一种有效的信号分析工具,在多个领域都有着广泛的应用。
小波变换算法实现
小波变换算法实现小波变换是现代信号处理领域中一种重要的分析方法,用于将一个时间域上的信号转换成频率-时间域上的信号。
小波变换具有时频局部化的特性,可以更好地描述信号的瞬时特征。
下面将介绍小波变换的基本原理和算法实现。
一、小波变换的基本原理小波变换本质上是将一个信号分解成不同频率和时间的成分。
它利用小波函数作为基函数,通过对信号的卷积和迭代分解,将信号分解为近似系数和细节系数。
近似系数表示信号在不同尺度上的低频成分,而细节系数表示信号在不同尺度上的高频成分。
通过迭代分解和重构,可以得到一系列尺度不同的近似系数和细节系数。
这些系数可以用于信号的压缩、去噪、边缘检测等各种信号处理任务,具有很强的应用价值。
二、小波变换的实现步骤小波变换的实现分为分解和重构两个步骤。
下面将详细介绍每个步骤的算法实现。
1.分解(1)选择小波基函数:需要选择一种合适的小波基函数作为分解的基础。
常见的小波基函数有Haar、Daubechies、Symlets等。
(2)信号补零:为了使信号长度满足小波变换的要求,需要对信号进行补零操作,通常在信号末尾添加0。
(3)小波滤波器:通过卷积操作将信号分解为低频和高频的部分。
低频部分即近似系数,高频部分即细节系数。
(4)采样:将滤波后的信号进行降采样,得到下一层的近似系数和细节系数。
(5)重复分解:将降采样后的近似系数和细节系数作为输入,重复进行上述分解操作,得到更高阶的近似系数和细节系数。
2.重构(1)插值:将近似系数和细节系数进行上采样,补齐0,得到重构所需的长度。
(2)小波滤波器:将插值后的系数与小波滤波器进行卷积操作,得到重构后的信号。
(3)重复重构:将重构信号作为输入,重复进行上述重构操作,得到原始信号的近似恢复。
三、小波变换的优缺点小波变换有以下几个优点:(1)时频局部化:小波函数具有时频局部化的特性,能更好地描述信号的瞬时特征。
(2)多分辨率分析:小波变换能够将信号在不同尺度上进行分解,分析信号的低频和高频成分。
小波变换原理公式
小波变换原理公式小波变换是一种信号处理和数据分析的方法,它可以将信号分解成不同尺度的频率成分。
小波变换的原理公式如下:W(a, b) = ∫f(t)ψ*[(t-b)/a]dt其中,W(a, b)表示小波系数,a和b分别表示尺度参数和平移参数。
f(t)是原始信号,ψ(t)是小波基函数。
小波变换的原理可以通过对其公式进行解释。
首先,尺度参数a控制小波基函数的压缩或扩展程度,即决定了小波基函数在时间轴上的拉伸。
当a较大时,小波基函数会被拉伸,从而对应较低频率的成分;而当a较小时,小波基函数会被压缩,对应较高频率的成分。
平移参数b则决定了小波基函数在时间轴上的平移,即决定了小波基函数的起始位置。
通过改变平移参数b,可以对不同时间段的信号进行分析。
小波变换的过程可以分为两个步骤:分解和重构。
首先,通过不同尺度和平移参数的组合,对原始信号进行分解,得到一系列小波系数。
这些小波系数表示了不同频率和时间范围的信号成分。
然后,通过逆小波变换,将这些小波系数重构成原始信号。
小波变换具有多尺度分析的特点,可以对信号的局部特征进行捕捉。
相比于傅里叶变换,小波变换更适用于非平稳信号的分析,因为小波基函数在时间和频率上都有局部性。
小波变换在许多领域都有广泛的应用。
在信号处理中,小波变换可以用于信号去噪、特征提取、边缘检测等。
在图像处理中,小波变换可以用于图像压缩、图像增强等。
在金融分析中,小波变换可以用于股票价格预测、风险管理等。
在生物医学领域,小波变换可以用于心电信号分析、脑电信号分析等。
小波变换是一种强大的信号处理和数据分析工具,其原理公式提供了一种理论基础。
通过对尺度和平移参数的调节,可以对不同频率和时间范围的信号成分进行分析和提取。
小波变换在许多领域都有广泛的应用,为解决实际问题提供了有效的工具和方法。
小波变换及其应用研究
小波变换及其应用研究小波变换是一种数学处理方法,可以将信号分解成不同频率的成分,并将这些成分表示为小波函数的线性组合。
由于小波变换在信号处理、数据压缩、图像处理等领域具有广泛应用,因此引起了学术界和工业界的浓厚兴趣。
本文将介绍小波变换的基本原理和应用研究情况。
一、小波变换基本原理小波变换的基本思想是利用小波函数对信号进行分解和重构。
小波函数是一类局部化的基函数,具有局部化的时间和频率特性,因此可以更好地描述非平稳信号。
它在时间轴上缩放和平移,可以得到不同尺度和位置的小波函数。
而小波分解就是利用一系列小波函数对原始信号进行分解,每个小波函数对应一定频率范围内的信号成分。
一般而言,小波分解可以采用离散小波变换(DWT)或连续小波变换(CWT)。
离散小波变换是一种通过有限个小波函数对信号进行分解和重构的方法。
在离散小波变换中,首先将原始信号进行低通和高通滤波,分别得到一个低频子带和一个高频子带,然后对低频子带进行下采样,得到一个更低频的子带。
这个过程可以迭代进行,直到所有子带都被分解成较小的尺度和不同频率的成分。
离散小波变换的计算速度快,并且可以处理分别采样的非平稳信号。
连续小波变换是一种将信号分解为不同尺度和频率的连续成分的方法。
在连续小波变换过程中,小波函数是在尺度和平移的两个参数上变化的函数,因此可以得到连续的小波系数和小波函数。
连续小波变换的计算过程中需要对小波函数进行积分,因此消耗的计算资源比较大。
但它可以对数据进行更准确的频域分析和时域分析。
二、小波变换的应用小波变换在信号处理、数据压缩、图像处理、生物医学工程、金融学等领域有着广泛的应用。
以下是小波变换的一些典型应用场景:1. 信号处理小波变换的一个主要应用是数字信号处理,它可以将信号变换到小波域中,在小波域的不同频段中分析和处理信号。
在噪音滤波、信号去噪、信号降采样等领域都有广泛应用。
例如,在生物医学信号处理领域,小波变换可以用来分析心电信号、脑电信号、代谢信号等,从而实现信号的可视化和定量化。
小波变换的原理及使用方法
小波变换的原理及使用方法引言:小波变换是一种数学工具,可以将信号分解成不同频率的成分,并且能够捕捉到信号的瞬时特征。
它在信号处理、图像处理、模式识别等领域有着广泛的应用。
本文将介绍小波变换的原理和使用方法。
一、小波变换的原理小波变换是一种基于基函数的变换方法,通过将信号与一组小波基函数进行卷积运算来实现。
小波基函数具有局部化的特点,可以在时域和频域中同时提供信息。
小波基函数是由一个母小波函数通过平移和缩放得到的。
小波变换的数学表达式为:W(a,b) = ∫ f(t) ψ*(a,b) dt其中,W(a,b)表示小波变换的系数,f(t)表示原始信号,ψ(a,b)表示小波基函数,a和b分别表示缩放因子和平移因子。
二、小波变换的使用方法1. 信号分解:小波变换可以将信号分解成不同频率的成分,从而实现信号的频域分析。
通过选择合适的小波基函数,可以将感兴趣的频率范围突出显示,从而更好地理解信号的特征。
在实际应用中,可以根据需要选择不同的小波基函数,如Haar小波、Daubechies小波等。
2. 信号压缩:小波变换可以实现信号的压缩,即通过保留主要的小波系数,将信号的冗余信息去除。
这样可以减小信号的存储空间和传输带宽,提高数据的传输效率。
在图像压缩领域,小波变换被广泛应用于JPEG2000等压缩算法中。
3. 信号去噪:小波变换可以有效地去除信号中的噪声。
通过对信号进行小波变换,将噪声和信号的能量分布在不同的频率区间中,可以将噪声系数与信号系数进行分离。
然后,可以通过阈值处理或者其他方法将噪声系数置零,从而实现信号去噪。
4. 信号边缘检测:小波变换可以捕捉到信号的瞬时特征,因此在边缘检测中有着广泛的应用。
通过对信号进行小波变换,可以得到信号的高频部分,从而实现对信号边缘的检测。
这对于图像处理、语音识别等领域的应用非常重要。
结论:小波变换是一种强大的数学工具,可以在时域和频域中同时提供信号的信息。
它可以用于信号分解、信号压缩、信号去噪和信号边缘检测等应用。
小波变换的基本原理与理论解析
小波变换的基本原理与理论解析小波变换(Wavelet Transform)是一种在信号处理和图像处理领域中广泛应用的数学工具。
它通过将信号分解成不同频率和时间的小波分量,可以有效地捕捉信号的局部特征和时频特性。
本文将介绍小波变换的基本原理和理论解析。
一、小波变换的基本原理小波变换的基本原理可以概括为两个步骤:分解和重构。
1. 分解:将原始信号分解为不同尺度和频率的小波分量。
这个过程类似于频谱分析,但是小波变换具有更好的时频局部化特性。
小波分解可以通过连续小波变换(Continuous Wavelet Transform,CWT)或离散小波变换(Discrete Wavelet Transform,DWT)来实现。
在连续小波变换中,原始信号与一组母小波进行卷积,得到不同尺度和频率的小波系数。
母小波是一个用于分解的基本函数,通常是一个具有有限能量和零平均的函数。
通过在时间和尺度上的平移和缩放,可以得到不同频率和时间的小波分量。
在离散小波变换中,原始信号经过一系列低通滤波器和高通滤波器的处理,得到不同尺度和频率的小波系数。
这种方法更适合于数字信号处理,可以通过快速算法(如快速小波变换)高效地计算。
2. 重构:将小波分量按照一定的权重进行线性组合,恢复原始信号。
重构过程是分解的逆过程,可以通过逆小波变换来实现。
二、小波变换的理论解析小波变换的理论解析主要包括小波函数的选择和小波系数的计算。
1. 小波函数的选择:小波函数是小波变换的核心,它决定了小波变换的性质和应用范围。
常用的小波函数有Morlet小波、Haar小波、Daubechies小波等。
不同的小波函数具有不同的时频局部化特性和频谱性质。
例如,Morlet小波适用于分析具有明显频率的信号,而Haar小波适用于分析信号的边缘特征。
选择合适的小波函数可以提高小波变换的分辨率和抗噪性能。
2. 小波系数的计算:小波系数表示了信号在不同尺度和频率上的能量分布。
小波变换基本原理.doc
小波变换基本原理.doc第五章小波变换基本原理问题①小波变换如何实现时频分析?其频率轴刻度如何标定?—尺度②小波发展史1910 Harr 小波80 年代初兴起Meyer—小波解析形式小波80 年代末 Mallat 多分辨率分析— WT 无须尺度构造?和小波函数—滤波器组实现90 年代初 Daubechies 正交小波变换90 年代中后期 Sweblews 第二代小波变换③小波变换与短时傅里叶变换比较a.适用领域不同 b.STFT 任意窗函数WT(要容许性条件)④小波相关概念,数值实现算法多分辨率分析(哈尔小波为例)Daubechies正交小波构造MRA 的滤波器实现⑤小波的历史地位仍不如FT,并不是万能的5.1连续小波变换一. CWT 与时频分析1t b1.概念: CWT (a, b)S(t) * ()dtaa2.小波变换与 STFT 用于时频分析的区别STFT小波变换基函数(t )(t mT )e jwt(t)1* ( t b )a a时频轴平移 +调制(线性频轴)平移+伸缩 a —尺度—对数频轴基函数特包络恒定,振荡不同振荡恒定,包络恒定征时频分辨(t mT )e jwt,[mT,w]附近w0附近b, 率 a适用情况渐变信号突变信号2 轴spectrogram scalogram结果复数实数3.WT 与 STFT 对比举例( Fig5–6, Fig5–7)二. WT 几个注意的问题1.WT 与(t) 选择有关—应用信号分析还是信号复原2.母小波(t ) 必须满足容许性条件2( w)C dww①隐含要求(0) 0,即(t) 具有带通特性②利用 C可推出反变换表达式S(t) 1 1 CWT (a,b) (t b)dadbC a 2 a3.CWT 高度冗余(与 CSTFT 相似)4.二进小波变换(对平移量 b 和尺度进行离散化)2 m , b n 2 m 1 ( t b)m(2m t n)a a,b (t )m,n (t ) 2 2a adm,n CWT (2 m , n 2 m ) S(t ) m,n * (t) dt 5.小波变换具有时移不变性S(t ) C W T(a, b)S(t b0 ) C WT(a,b b0 )6.用小波重构信号S(t)d m,n m,n (t )正交小波 d m,n m,n (t ) m n mn中心问题:如何构建对偶框架?m, n如何构建正交小波?5.2 分段逼近学习目的—理解 MRA一.分段逼近的引入很显然采样率越高,T s越小,PAM逼近误差越小,采样率无误信号近似ADC 差T s 1t f s1.采样率增大的尺度体现11, 0 t 1(t)0,其它1 t 用平移的(t ) 版本对S(t)作近似逼近函数(t n) 2 ( 2t n)S(t) C0,n (t n) S(t) 2 C1, n (2t n)1 尺度 an n 2m一般式: S(t) 2 2 C m,n (2m t n) 尺度 a 2 m nm ,a 0, 逼近收敛于S( )m 0, a , 逼近0(t)2.两尺度函数间关系 1 张成 V0空间(t)(2t)(2t 1)1 ①张成空间满足 V0 V11 (2t)空间②两尺度空间差异在哪?张成 V13.表征细节的小波变换的引入121 (2t 1)(t )(2t)(t ) (t)2 (t ) 表细节发现(t) (t )(2t 1)2S( t)2 C1, n (2t n)nn 2m,2m 121, 2 m (2t 2m) C1, 2 m 1 (2t 2m 1) m m2 C1,2m(t m) (t m) (t m) (t m)2C1, 2m 12 m mmC1,2 nC1, 2 n 1(tC1,2 nC1, 2n 1(t n) n2n)2m nV1 V0 W0 4.推广m=-1 V 1尺度m=0V0m=1V0m=2V1 W0V1V2V1V1W0VV1V W 1W1WVmWm W 2 W 1 W0 2W1WV m Wm 3Wm 2 W m 1, mm , 逼近精度V lim V m W 2 W 1 W0 W1mm , 逼近精度V 0m2 2 (2m t n) 包含信息量决定形成最简单的 MRA 二.分段逼近与小波变换(哈尔小波)1.信号的尺度逼近与小波表示m尺度逼近 2 2C m,n ( 2m t n)S(t )n小波表示 S(t )d m,n 2 2 (2m t n)Harr 小波mn2.Harr 小波特性①同一尺度平移正交性:(t n) * (t n )dt( n n )同尺度 m 也满足m,n(t )m,n * (t) dt(n n )作变量替换即可证明②尺度,平移均正交(m m )m,n (t ), m , n (t )2 2(2m t n) * ( 2m t n ) dtm, m n ,nm信号在正交基函数上投影即为小波系数2 2 (2m t n) 形成正交基mS(t) * (2 m t n)dtd m ,n 2 2分段逼近的推广—MRA 一.多分辨率分析含义①由内空间 0 V m 1Vm 1组成②若 V 0 空间尺度函数 (t) 平移正交: (t ) * (t n) ( n) 则(t )为 V 0 空间尺度函数 ,任一函数 S(t)可用 (t) 表示S(t )C n (t n)nC n S(t) * (t n)dt③ S(t) V m 当且仅当 S( 2t) V m 1成立④ V m 交集为 0V mm⑤平方可积空间即为 V m 并集逼近lim V mL 2 (R)m问题: Harr 小波构成最简单 MRA如何构造选其它具体的 MRA 体系二.正交小波函数的系统构造1.两尺度方程引入①低通滤波器与尺度关系Harr 小波满足(t)(2t )(2t 1) 2 1 (2t ) 1(2t 1)22 h 01 1满足 ( t) 2 h 0 (n) (t n) 卷积关系2 22 n②频域反映令 h 0 (n)H 0 (w)(t)(w)( t2 ( 2w))2h 0 H 0 ( w) (w)2 (2w) 2H 0 (w) ( w)即 (2w) H 0 (w) ( w)③含义a. H 0 (0) 1, h 0 (n)为 LPFb .根据 MRA , ( w) H 0w w H 0 ( w( ) ( ) 2 k ) (0)22k 1c. (0) 12.QMF 的引入① (t) 的尺度正交关系的频域反映(t) * (tn)(n)(t n)e j n w (w)频域也正交1 ( w) * (w) e jnw dw (n)2n两边对 n 求和1 ( w) * (w) e inw dw 1 2n利用泊松求和公式f ( n)e jnwF (w 2n )nn(令 f (n) 1,则 F ( w)2 (w) )有ejnw2( w 2n )nn1 e jnw( w2n )2n(w) * ( w)n( w 2n ) dw 12( w 2n ) dw 1(w)n即:(w 2n 21(w21)2k )nk② QMF 正交镜像滤波器组的导出利用两尺度关系(wk ) H 0 (w2k )1k22对 k 分奇偶讨论w2ww2nH 0 ( 2 2n ) ( 2 2n ) nH 0 ( 2 (2n1) ) ( 2(2n 1) )12222H 0 ( w)(w2n )H 0 (w)(w(2n 1) )12n2n2( w) 2(w2H 0H 0 )122H 0 ( w) 2H 0 (w2H 0 (w) H 0 * ( w) H 0 ( w )H 0 * (w 2) 1)③含义a.H 0 (0) 1 H 0 ( ) 1, H 0 (w ) 为H 0 (w)镜像b.功率互补条件—半带条件P( w) H 0 (w) H 0 * ( w)1H 0 (w2)H 0 (w) 223.正交小波滤波器满足的条件①频域关系根据( x), ( x k) 0 可推出H 0 (w)H 1 * (w) H 0 (w) H 1 * ( w) 0上式的解为 H 1 (w)e jw H 0 * (w)②时域关系令 h 1 ( n)H 1 ( w) h 0 ( n) H 0 (w) 根据 H (w)h( n)e jnwnh 0 ( n) H 0 * ( w)( 1)n h 0 ( n) H 0 * ( w) ( 1) n 1 h 0 (1 n) e jw H 0 * (w ) h 1 (n) ( 1) n h 0 (1 n) e jw H 0 * ( w)③易证 H 1 (w)也为 QMF④小波滤波器同样满足两尺度关系(t)2h 1 ( k) (2t k)k( w) H 1 ( w) ( w) H 1 ( w ) H 0 ( w)2 2 2 k 2 2k 4.尺度与小波滤波器频域关系的矩阵表示H 0 (w) H 1 ( w) H 0 ( w) H 0 ( w ) H 0 (w) H 1 * (W) H 1 ( w) H 1 ( w ) 5. m,n (t) 与 m ,n (t ) 的 MRA 解释m,n(t )W m正交补L2Wm,n(t )V mm 1S(t )d m,nm,n(t )mnd m, n S(t ) m,n * (t)dt1 0 0 1WmWm 1例:求 Harr 小波的频域尺度函数和小波函数1 1 h 11 1 h 0222 2wj w 2wjw解: ( w)H 0 ( e Cos( 22 k )2 k 1)ek 1k 1Sin( w2)w 2h 1 (n)e jnw1 (1 e jw ) jww ) H 1 (w) j e 2 Sin(n22ww w 4) 2(S i n(w) H 1 ( 2 ) ( 2 )(w) w4其频域幅值图如 Fig5–13 所示可发现其缺陷在于波纹太大(原因—时域紧支撑)例:理想 LPF 也构成正交小波1w H 0 ( w)2 0其它Sin2 (1 n)解: h 0 (n) IFT H 0 ( w)(1 n)Sinc( )函数 Sinc 小波三.有关小波函数的一些概念1.小波消失矩(vanishing moment )满足m 1 (k )t k (t) dt0, k 0,1, N 1 则称 (t )具有 N 阶消失矩①母小波 (t ) 平滑度由消失矩决定,消失矩越大,则(w) 频域衰减越快(t ) 越平滑②消失矩越大,小波振荡程度越高2.小波正则度( regularity )①定义:小波 (t) 的连续可导次数②正则度为 n 的小波(t) 具有( n+1)阶消失矩(必要条件)1.根据 MRA 理论①小波和尺度函数均可由无穷频域次乘积得出,最终由h0 ( n) 决定②不关心其解析表达式2.MRA 理论离散小波的数值实现滤波器组5.4 小波变换与数字滤波器组一.时间离散小波变换的实现途径1.不能直接对定义式离散化实现mdm,n S(t), m, n (t) S(t ),2 2 (2m t n)令l kT (T采样周期)当 m 较小时,2m t n 不为整数2.第一代小波变换:根据MRA 理论,由数字滤波器组实现( Mallat 算法)(根据尺度函数和小波函数)3.第二代小波变换: Swelden算法二. Mallat 算法1.两个近似假设① S(t)由某一尺度空间函数近似② C m,n由采样数据直接近似mC m,n 2 2S(t) * ( 2m t n)dt(t)( w)(t n) e (2m t n) e 由预测和更新滤波器进行交替提升实现n 1S(t ) C m0n m0n (t ) d k ,n kn (t) n k m0 njnw(w)jnw2m(2 m w) 2mm m2 2 e jn 2 m w (2 m w)1 mnC m,n2 2S( w) * (2 m w)e j 2m w dw 2当分辨率 m 足够高时* (2 m w) 0mC m,n221S( w)e j 2 m nw dw2mm2 2 S(2 m n) 22S(t ) t 2m n故可直接用样本数据取代2.Mallat 算法①分解算法a.推导m*m 1Cm 1,nS(t )1 , n(t )dt 2 2 n) dt 2m 1S(t )* ( 2mt2n)dt2m 1两尺度关系 2 2S(t ) 2 h 0 (i ) * ( 2m t (2n i)) dt imh 0 (i )S(t )2 2 * ( 2m t (2ni ))dti2 h 0 (i)S(t),m, 2n i(t)2 h 0 (i )C m, 2 n iiii 2n i2 h 0 (i 2n)C m ,ii同理 d m 1, n 2h 1 (i 2n)C m, iib.滤波器组实现(滑动内积 +下采样)Cm,nH 0 * (w) 2Cm 1,nh 0 ( n)H 1 * (w) 2dm 1,nh 1 ( n)②重构算法a.推导(由两尺度关系,正交关系,及奇偶讨论可导出)C m,n2h0 (n 2i )C m 1,i h1 (n 2i )d m 1,ii ib.滤波器组实现(上采样 +滤波)dm 1, n2H 1 (w)S(i) Cm 1, n2H 0 (w)5.5小波变换的应用一.小波地位小波曾火热一时,但小波不是万能的,在某些应用场合特别适用小波无法求解微分方程纯数字和物理地位不如FT二.信号检测方面应用发动机声音中的撞击声检测傅里叶分析:时间平均作用模糊了信号局部特性Gabor 变换:仍需长窗去包含振荡波形小波变换:小波基可任意窄三.降噪应用1.适用场合经典滤波:要求信号与噪声频率足够窄且不重合高斯类噪声和脉冲噪声宽带噪声小波去噪2.滤波效果①经典滤波:丢失波形尖锐处信息②小波降噪:基本保留波形尖锐处信息(与小波基选择有关)3.滤波手段①传统方法: Prony 参数建模法②小波降噪a. 信号系数阈值比较反变换输出小波变换分解重构b.可证明其统计最优性c.阈值比较(阈值 T 可基于信号标准差得出)硬阈值:比较 d m,n软阈值:考虑 d m,n符号,及其其它系数相关性4.小波基选择:小波基应与主体信号量相近相似度越高,主小波系数越大,噪声系数则越小NI 信号处理工具箱。
小波变换 原理
小波变换原理
小波变换是一种数学工具,通过将信号分解成一系列基于不同尺
度和频率的小波,以提取信号的时域和频域信息。
与傅里叶变换不同,小波变换的基函数具有有限长度,因此不仅能捕捉信号的时间变化,
也能对信号的瞬时特征进行分析。
小波变换的原理可以用以下的步骤描述:
1. 将原始信号表示为一组离散的数据点,称为离散时间序列。
2. 选择适当的小波作为基函数,将离散时间序列进行小波分解,
得到一组小波系数。
3. 根据小波系数,可以重构原始信号并提取不同尺度和频率的信息。
小波变换可以用来处理不同类型的信号,例如语音、图像、视频
以及生物医学信号等。
在这些应用中,小波变换可以通过提取信号的
特征来实现信号的分析和处理。
例如,在音频处理中,小波变换可以
用来将语音信号分为不同的频带,并对这些频带进行更精细的处理;
在图像处理中,小波变换可以用来分析图像的纹理和形态,并提取出
不同频率的图像细节。
除了常见的小波变换之外,还有一些其他类型的小波变换,例如
小波包变换和连续小波变换。
这些方法在应用中有各自的优势和适用性。
小波变换作为一种通用的信号分析和处理工具,在许多实际应用中发挥了重要作用。
通过深入理解小波变换的原理和应用,可以更加有效地处理和分析各种类型的信号,提高信号处理的准确性和效率。
小波变换的基本原理
10.2小波变换的基本原理地质雷达的电磁波信号和地震波信号都是非平稳随机时变信号,长期以来,因非平稳信号处理的理论不健全,只好将其作为平稳信号来处理,其处理结果当然不满意。
近年来,随着科学技术的发展和进步,国内外学术界已将注意力转向非平稳随机信号分析与处理的研究上,其中非平稳随机信号的时频表示法是研究热点之一。
在这一研究中,戈勃展开、小波变换、维格纳分布与广义双线性时频分布等理论发展起来,这些方法既可以处理平稳信号过程,也可以处理非平稳随机时变信号。
小波变换是上世纪80年代中后期逐渐发展起来的一种数学分析方法。
1984年法国科学家J.M OLET在分析地震波的局部特性时首先使用了小波这一术语,并用小波变换对地震信号进行处理。
小波术语的含义是指一组衰减震动的波形,其振幅正负相间变化,平均值为零,是具有一定的带宽和中心频率波组。
小波变换是用伸缩和平移小波形成的小波基来分解(变换)或重构(反变换)时变信号的过程。
不同的小波具有不同带宽和中心频率,同一小波集中的带宽与中心频率的比是不变的,小波变换是一系列的带通滤波响应。
它的数学过程与傅立叶分析是相似的,只是在傅立叶分析中的基函数是单频的调和函数,而小波分析中的基函数是小波,是一可变带宽内调和函数的组合。
小波变换在时域和频域都具有很好的局部化性质,较好地解决了时域和频域分辨率的矛盾,对于信号的低频成分采用宽时窗,对高频成分采用窄时窗。
因而,小波分析特别适合处理非平稳时变信号,在语音分析和图象处理中有广泛的应用,在地震、雷达资料处理中将有良好的应用前景。
下边就小波分析的基本原理、主要作用及在雷达资料处理中的应用三方面作以介绍。
10.2.1小波分析的基本原理小波函数的数学表达正弦调和波形小波波形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 小波变换基本原理问题①小波变换如何实现时频分析?其频率轴刻度如何标定? —尺度 ②小波发展史③小波变换与短时傅里叶变换比较a .适用领域不同 b.STFT 任意窗函数 WT (要容许性条件) ④小波相关概念,数值实现算法多分辨率分析(哈尔小波为例) Daubechies 正交小波构造 MRA 的滤波器实现⑤小波的历史地位仍不如FT ,并不是万能的5.1 连续小波变换一.CWT 与时频分析 1.概念:⎰+∞∞--ψ=dt abt t S ab a CWT )(*)(1),( 2.小波变换与STFT 用于时频分析的区别小波 构造?1910 Harr 小波80年代初兴起 Meyer —小波解析形式80年代末 Mallat 多分辨率分析—WT 无须尺度和小波函数—滤波器组实现90年代初 Daubechies 正交小波变换90年代中后期 Sweblews 第二代小波变换3.WT 与STFT 对比举例(Fig 5–6, Fig 5–7) 二.WT 几个注意的问题1.WT 与)(t ψ选择有关 — 应用信号分析还是信号复原2.母小波)(t ψ必须满足容许性条件 ∞<ψ=⎰∞+∞-ψdw ww C 2)(①隐含要求 )(,0)0(t ψ=ψ即具有带通特性 ②利用ψC 可推出反变换表达式⎰⎰+∞∞-+∞∞-ψ-ψ=dadb ab t b a CWT a C t S )(),(11)(23.CWT 高度冗余(与CSTFT 相似)4.二进小波变换(对平移量b 和尺度进行离散化) )2(2)()(1)(2,22,,n t t a b t at n b a m mn m b a mm-ψ=ψ⇒-ψ=⇒•==--ψdt t t S n CWT d n m m m n m )(*)()2,2(,,⎰+∞∞---ψ=•=5.小波变换具有时移不变性),()(),()(00b b a CWT b t S b a CWT t S -↔-↔6.用小波重构信号 ∑∑∑∑+∞-∞=+∞-∞=+∞-∞=+∞-∞=ψψ=m n m n nm nm nm n m t dt d t S )(ˆ)(ˆ)(,,,,正交小波 中心问题:如何构建对偶框架{}n m ,ˆψ如何构建正交小波?5.2 分段逼近P1. =)(t φ逼近函数)2(2)(n t n t -→-φφ)2(2)()()(S ,1,0n t C t S n t C t nn nn -≈⇒-≈∑∑φφ 尺度21=a ⇒一般式:∑-=-≈nm m nm m a n t Ct S 2)2(2)(,2尺度φ)(,0,τS a m 逼近收敛于→∞→ 0,,0→∞→→逼近a m2.两尺度函数间关系 )12()2()(-+=t t t φφφ①张成空间满足10V V ⊂ ②两尺度空间差异在哪? 3.表征细节的小波变换的引入很显然采样率越高,s T 越小, 逼近误差越小,采样率∞→无误差发现2)()()12(2)()()2(t t t t t t ϕφφϕφφ-=-+=⇒∑-≈⇒nn n t C S )2(2)t (,1φ 12,2+=m m n⎥⎦⎤⎢⎣⎡--+-∑∑+m m m m m t C m t C )122()22(212,12,1φφ⎥⎦⎤⎢⎣⎡---+-+-=∑∑+m m m m m t m t C m t m t C 2)()(2)()(212,12,1ϕφϕφ ∑∑-•-+-•+→++nn n mn n n t C C n t C C n m )(2)(212,12,112,12,1ϕφ001W V V ⊕=⇒ 4.推广⇓⊕⊕⊕⊕⊕=⊕⊕=⊕=⇒----012011011W W W W V W W V W V V m m0121W W W V V ⊕⊕⊕=--∞- ↑⊕⊕⊕=---m W W W V m m m m ,123,lim ,1012=↓↓⊕⊕⊕⊕⊕==↑↑∞---∞→∞V m W W W W V V m m m 逼近精度逼近精度⎭⎬⎫⎩-)2(22n t m m ϕ包含信息量决定 →形成最简单的MRA尺 度2V二.分段逼近与小波变换(哈尔小波) 1.信号的尺度逼近与小波表示 尺度逼近 ∑→-nm nm m t S n t C)()2(2,2φ 小波表示 ∑∑+∞-∞=+∞-∞=-=m n m mnm n t dt S )2(2)(2,ϕ Harr 小波2.Harr 小波特性①同一尺度平移正交性:⎰+∞∞-'-='--)()(*)(n n dt n t n t δϕϕ②尺度,平移均正交 ⎰∞+∞-''''+''='-->=<n n m m m m m m n m n m dt n t n t t t ,,2)(,,)2(*)2(2)(),(δδϕϕϕϕ⇒⎭⎬⎫⎩⎨⎧-⇒形成正交基)2(22n t m m ϕ⎰∞+∞--=dt n t t S d mm n m )2(*)(22,ϕ影即为小波系数信号在正交基函数上投 分段逼近的推广—MRA 一.多分辨率分析含义①由内空间 ⊂⊂⊂⊂+-110m m m V V V 组成②若0V 空间尺度函数)(t ϕ平移正交:⎰+∞∞-=-)()(*)(n n t t δφφ则)(t ϕ为0V 空间尺度函数,任一函数S(t)可用表示)(t φ③成立当且仅当1)2()(+∈∈m m V t S V t S ④{}00=m mm V V 交集为⑤平方可积空间即为并集逼近m V )(lim 2R L V m m =∞→ 问题:Harr 小波构成最简单MRA⇓同尺度m 也满足⎰+∞∞-''-=)()(*)(,,n n dt t t n m n m δϕϕ 作变量替换即可证明⎰∑∞+∞--=-=dtn t t S C n t C t S n nn )(*)()()(φφ如何构造选其它具体的MRA 体系 二.正交小波函数的系统构造 1.两尺度方程引入 ①低通滤波器与尺度关系Harr 小波满足 ⎥⎦⎤⎢⎣⎡-+=-+=)12(21)2(212)12()2()(t t t t t φφφφφ∑-=⎥⎦⎤⎢⎣⎡=nn t n h th 卷积关系满足)()(2)2(212100φφ②频域反映令 )2(2)2()()()()(00w tw t w H n h φφφφ↔⇒↔↔)()(00w w H h φφ↔*⇒)()()2()()(2)2(200w w H w w w H w φφφφ==⇒即③含义a. LPF n h H 为)(,1)0(00=b .根据MRA ,∏∞==Φ=Φ100)0()2()2()2()(k k wH w w H w φc.1)0(=Φ 2.QMF 的引入①)(t φ的尺度正交关系的频域反映⎰+∞∞-=-)()(*)(n n t t δφφ⇒↔--)()(w e n t jnw φφ 频域也正交⎰∑+∞∞-=njnw n dw e w w )()(*)(21δφφπ两边对n 求和 ⎰∑+∞∞-=⇒ninw dw e w w 1)(*)(21φφπ利用泊松求和公式∑∑+=-nnjnwn w F en f )2()(π(令)(2)(,1)(w w F n f πδ==则) 有 ∑∑+=-nnjnwn w e)2(2πδπ∑∑-=⇒nnjnwn w e)2(21πδπ⎰∑+∞∞-=-⇒ndw n w w w 1)2()(*)(πδφφ∑⎰+∞∞-=-ndw n w w 1)2()(2πδφ即:∑∑=+⇒=-knk w n w 1)2(1)2(22πφπφ② QMF 正交镜像滤波器组的导出 利用两尺度关系∑=++k k wH k w 1)2()2(20ππφ对k 分奇偶讨论1))12(2())12(2()22()22(2020=+++++++⇒∑∑nn n wn w H n w n w H πφππφπ1))12(2()2()22()2(22220=+++++∑∑nnn ww H n w wH πφππφ 1)2()2(2020=++⇒πwH w H1)2(*)()(*)()()(00002020=+++=++⇒πππw H w H w H w H w H w H ③含义a.镜像为)()(,1)(1)0(0000w H w H H H ππ+=⇒=b.功率互补条件—半带条件 )(*)()(00w H w H w P =20)(π+w H1π20)(w H3.正交小波滤波器满足的条件 ①频域关系根据0)(),(=-k x x φϕ可推出0)(*)()(*)(1010=+++ππw H w H w H w H 上式的解为 )(*)(01π+-=-w H e w H jw ②时域关系 令 ∑-=↔↔njnw e n h w H w H n h w H n h )()()()()()(0011根据)(*)1()1()()(*)1()1()(*)()1()(*)(0010010000πππ+↔--=+↔--+↔--↔-⇒---w H e n h n h w H en h w H n h w H n h jw n jwn n③易证 QMF w H 也为)(1④小波滤波器同样满足两尺度关系∏∑∞==Φ=-=20111)2()2()2()2()()2()(2)(k k kwH w H w w H w k t k h t ϕφϕ4.尺度与小波滤波器频域关系的矩阵表示⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡++1001)()()()()(*)()()(11001010ππππw H w H w H w H W H w H w H w H 5.{}{}解释的与MRA t t n m n m )()(,,φϕ {}{}m nm mnm V t W t →→)()(,,φϕ 正交补 112+-⊕⊕⊕=⇒m m m W W W L⎰∑∑∞+∞-+∞-∞=+∞-∞===dtt t S d t dt S n m n m m n m n nm )(*)()()(,,,,ϕϕ例:求Harr 小波的频域尺度函数和小波函数⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=2121212110h h 解: 2)2()2()2()(11210w w Sin e w Cos e w H w k k w j k w j k •===Φ∏∏∞=∞=-+- ∑⋅⋅=-==---nwj jwjnww Sin e j e e n h w H )2()1(21)()(211 4)4()()2()2()(21w w Sin w w w H w =⇒=Φ=ϕϕ 其频域幅值图如Fig 5–13所示可发现其缺陷在于波纹太大 (原因—时域紧支撑) 例:理想LPF 也构成正交小波⎪⎩⎪⎨⎧≤=其它021)(0πw w H解:[]())1()1(2)()(00n n Sin w H IFT n h --==ππ 小波函数Sinc Sinc →•)( 三.有关小波函数的一些概念 1.小波消失矩 (vanishing moment ) 满足 阶消失矩具有则称N t N k dt t t k m k )(1,1,0,0)()(1ϕϕ-===⎰+∞∞-①母小波)(t ϕ平滑度由消失矩决定,消失矩越大,则)(w ϕ频域衰减越快)(t ϕ越平滑②消失矩越大,小波振荡程度越高 2.小波正则度(regularity ) ①定义:小波)(t ϕ的连续可导次数②正则度为n 的小波)(t ϕ具有(n +1)阶消失矩(必要条件) 四.问题讨论1.根据MRA 理论①小波和尺度函数均可由无穷频域次乘积得出,最终由)(0n h 决定 ②不关心其解析表达式2.MRA 理论 离散小波的数值实现5.4 小波变换与数字滤波器组一.时间离散小波变换的实现途径 1.不能直接对定义式离散化实现)2(2),()(),(2,,n t t S t t S d m mn m n m -==ϕϕ 令 )(采样周期→=T kT l 当m 较小时,n t m -2不为整数2.第一代小波变换:根据MRA 理论,由数字滤波器组实现3.第二代小波变换:Swelden 算法 由预测和更新滤波器进行交替提升实现 二.Mallat 算法 1.两个近似假设①∑∑∑-=+=nn m k nkn nk n m n m t dt C t S t S 1,000)()()()(ϕφ似由某一尺度空间函数近②n m C ,由采样数据直接近似 ⎰∞+∞--=dt n t t S C m m n m )2(*)(22,φm m w jnm jnw w e n t w e n t w t m----•↔-⇒↔-⇒↔2)2()2()()()()(2φφφφφφ滤波器组(Mallat 算法) (根据尺度函数和小波函数))2(2)2(2222w e n t m wjn m mm m-⋅⋅---↔-⇒φφ⎰∞+∞---⋅=⇒dw e w w S C w nj m mnm m 22,)2(*)(221φπ当分辨率m 足够高时 0)2(*→-w m φnt m m m nwj mn m m mt S n S dwe w S C --=---∞+∞--==⋅≈⇒⎰22222,)(2)2(2)(212π故可直接用样本数据取代 2.Mallat 算法 ①分解算法 a.推导⎰⎰⎰∞+∞--∞+∞-∞+∞-----=-==-dtn t t S dtn t t S dt t t S C m m m m n m n m )222(*)(2)2(*)(2)()(1121*,1,1φφφ两尺度关系 ⎰∑∞+∞--+-⋅im m dt i n t i h t S ))2(2(*)(2)(2021φ∑∑∑⎰++∞+∞->=<⋅=+-=iiin m i n m im m C i h t t S i h dti n t t S i h 2,02,020)(2)(),()(2))2(2(*2)()(φφ∑-+='i i m C n i h in i ,0)2(22同理-=-i m n m C n i h d ,1,1)2(2②重构算法a.推导(由两尺度关系,正交关系,及奇偶讨论可导出)⎪⎭⎫⎝⎛-+-=∑∑--i i i m i m n m d i n h C i n h C ,11,10,)2()2(2b.滤波器组实现(上采样+滤波)5.5 小波变换的应用一.小波地位小波曾火热一时,但小波不是万能的,在某些应用场合特别适用 小波无法求解微分方程纯数字和物理地位不如FT 二.信号检测方面应用 发动机声音中的撞击声检测傅里叶分析:时间平均作用模糊了信号局部特性 Gabor 变换 :仍需长窗去包含振荡波形 小波变换 : 小波基可任意窄 三.降噪应用 1.适用场合经典滤波:要求信号与噪声频率足够窄且不重合 高斯类噪声和脉冲噪声 → 宽带噪声 → 小波去噪 2.滤波效果①经典滤波:丢失波形尖锐处信息②小波降噪:基本保留波形尖锐处信息(与小波基选择有关) 3.滤波手段①传统方法:Prony 参数建模法②小波降噪b.可证明其统计最优性c.阈值比较(阈值T 可基于信号标准差得出) 硬阈值:比较n m d ,软阈值:考虑n m d ,符号,及其其它系数相关性 4.小波基选择:小波基应与主体信号量相近相似度越高,主小波系数越大,噪声系数则越小 NI 信号处理工具箱分解重构。