人教版高中物理必修一第四章《运动和力的关系》章末优化总结PPT课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F0 = mg
541.
答案:(1)8 m/s2
2.5 s
(2)0.3 s
(3)
41 5
栏目 导引
第四章 运动和力的关系
本部分内容讲解结束
栏目 导引
栏目 导引
第四章 运动和力的关系
(1)物体在水平面上运动的加速度大小 a1; (2)物体运动到 B 处的速度大小 vB; (3)物体在斜面上运动的时间. [思路点拨] (1)根据受力分析,由牛顿第二定律求得从 A 到 B 的 加速度; (2)根据匀加速运动规律求得速度; (3)由牛顿第二定律求得上滑的加速度,根据匀变速运动规律求 得上滑最大位移,然后根据受力分析求得物体下滑的加速度, 由运动学公式可求得时间.
栏目 导引
第四章 运动和力的关系
F 较大时,摩擦力方向将沿斜面向下,受力如 图所示: 由平衡条件得: 沿斜面方向上:Fcos θ=f+mgsin θ 垂直斜面方向上:Fsin θ+mgcos θ=N 当摩擦力达到最大静摩擦力,即 f=μN 时,推力 F 最大. 解得:Fmax=mg(cossinθ-θ+μμsicnoθs θ),
栏目 导引
第四章 运动和力的关系
解析:(1)物体不受摩擦力时受力如图所示:
由平衡条件得:Fcos θ=mgsin θ,解得:F=mgtan θ;
栏目 导引
第四章 运动和力的关系
(2)当推力减小时,摩擦力方向将沿斜面向上,物体受力如图所 示: 由平衡条件得: 沿斜面方向上:Fcos θ+百度文库=mgsin θ 垂直于斜面方向上:Fsin θ+mgcos θ=N 当摩擦力达到最大静摩擦力,即 f=μN 时,推力 F 最小. 解得:Fmin=mg(cossinθ+θ-μμsicnoθs θ),
栏目 导引
第四章 运动和力的关系
栏目 导引
第四章 运动和力的关系
(1)减速过程汽车加速度的大小及所用时间; (2)饮酒使志愿者的反应时间比一般人增加了多少; (3)减速过程汽车对志愿者作用力的大小与志愿者重力大小的 比值. 解析:(1)设减速过程中汽车加速度的大小为 a,所用时间为 t, 由题可得初速度 v0=20 m/s,末速度 vt=0,位移 x=25 m,由 运动学公式得 v20=2ax① t=va0②
栏目 导引
第四章 运动和力的关系
2.常见临界条件 接触与脱离 的临界条件
相对静止或相对 滑动的临界条件
两物体相接触或脱离的临界条件是 弹力 FN=0 两物体相接触且处于相对静止时,常 存在着静摩擦力,则相对静止或相对 滑动的临界条件为静摩擦力达到最 大值或为零
栏目 导引
第四章 运动和力的关系
绳子所能承受的张力是有限的,绳子断与不断 绳子断裂与松
栏目 导引
第四章 运动和力的关系
[解析] (1)物体在 AB 上运动受重力、支持力、摩擦力和拉力 作用,由牛顿第二定律可得:F-μmg=ma,物体在 AB 上运动 的加速度 a=mF-μg=4 m/s2; (2)物体在 AB 做匀加速直线运动,物体从 A 运动到 B 处时的速 度大小为 vB,由速度位移的关系式得:vB2 =2as,解得:vB=8 m/s; (3)物体沿斜面上滑过程中摩擦力沿斜面向下,物体受重力、支 持力、摩擦力作用,由牛顿第二定律可得:mgsin θ+μmgcos θ =ma1,解得:a1=(sin θ+μcos θ)g=8 m/s2;由 mgsin θ>
栏目 导引
第四章 运动和力的关系
(2019·昭阳月考)如图所示,水平面与倾角 θ=37°的斜 面在 B 处平滑相连,水平面上 A、B 两点间距离 s0=8 m.质量 m=1 kg 的物体(可视为质点)在 F=6.5 N 的水平拉力作用下由 A 点从静止开始运动,到达 B 点时立即撤去 F,物体将沿粗糙 斜面继续上滑(物体经过 B 处时速率保持不变).已知物体与水 平面及斜面间的动摩擦因数 μ 均为 0.25.(g 取 10 m/s2,sin 37° =0.6,cos 37°=0.8)求:
的临界条件是绳中张力等于它所能承受的最大 弛的临界条件
张力,绳子松弛的临界条件是 FT=0 当物体在受到变化的外力作用下运动时,其加 速度和速度都会不断变化,当所受合外力最大 加速度最大与 时,具有最大加速度;合外力最小时,具有最 速度最大的临 小加速度.当出现加速度为零时,物体处于临 界条件 界状态,所对应的速度便会出现最大值或最小 值
θ)
栏目 导引
第四章 运动和力的关系
动力学中的多过程问题的求解 1.当题目给出的物理过程较复杂,由多个过程组成时,要明确 整个过程由几个子过程组成,将过程合理分段,找到相邻过程 的联系点并逐一分析每个过程.联系点:前一过程的末速度是 后一过程的初速度,另外还有位移关系等. 2.注意:由于不同过程中力发生了变化,所以加速度也会发生 变化,所以对每一过程都要分别进行受力分析,分别求加速度.
栏目 导引
第四章 运动和力的关系
联立①②式,代入数据得: a=8 m/s2③ t=2.5 s.④ (2)设志愿者反应时间为 t′,反应时间的增加量为Δ t,由运动学 公式得 L=v0t′+x⑤ Δ t=t′-t0⑥ 联立⑤⑥式,代入数据得Δ t=0.3 s.⑦
栏目 导引
第四章 运动和力的关系
(3)设志愿者所受合外力的大小为 F,汽车对志愿者作用力的大 小为 F0,志愿者质量为 m,由牛顿第二定律得 F=ma⑧ 由平行四边形定则得 F02=F2+(mg)2⑨ 联立③⑧⑨式,代入数据得
栏目 导引
第四章 运动和力的关系
求解此类问题时,一定要找准临界点,从临界点入手分析 物体的受力情况和运动情况,看哪些量达到了极值,然后对临 界状态应用牛顿第二定律结合整体法、隔离法求解即可.
栏目 导引
第四章 运动和力的关系
(2019·江西新余高一 期末)如图所示,在倾角为 θ 的粗糙斜 面上,有一个质量为 m 的物体被水平 力 F 推着静止于斜面上,物体与斜面间的动摩擦因数为 μ,且 μ>tan θ,求: (1)力 F 多大时,物体不受摩擦力; (2)为使物体静止在斜面上,力 F 的取值范围.
栏目 导引
第四章 运动和力的关系
为使物体静止在斜面上,力 F 的取值范围是:
mg(sin θ-μcos cos θ+μsin θ
θ)≤F≤mg(cossinθ-θ+μμsicnoθs
θ) .
答案:(1)mgtan θ
mg(sin θ-μcos (2) cos θ+μsin θ
θ)≤F≤mg(cossinθ-θ+μμsicnoθs
章末优化总结
第四章 运动和力的关系
栏目 导引
第四章 运动和力的关系
动力学中的临界和极值问题 1.临界状态与临界值 在物体的运动状态发生变化的过程中,往往达到某一个特定状 态时,有关的物理量将发生突变,此状态即为临界状态,相应 的物理量的值为临界值,临界状态一般比较隐蔽,它在一定条 件下才会出现.若题目中出现“最大”“最小”“刚好”等词 语,常为临界问题.
栏目 导引
第四章 运动和力的关系
研究表明,一般人的刹车反应时间(即图甲中 “反应过程”所用时间)t0=0.4 s,但饮酒会导致反应时间延 长.在某次试验中,志愿者少量饮酒后驾车以 v0=72 km/h 的 速度在试验场的水平路面上匀速行驶,从发现情况到汽车停止, 行驶距离 L=39 m.减速过程中汽车位移 x 与速度 v 的关系曲 线如图乙所示,此过程可视为匀变速直线运动.取重力加速度 g=10 m/s2.求:
栏目 导引
第四章 运动和力的关系
3.求解临界极值问题的三种常用方法
极限法
把物理问题(或过程)推向极端,从而使临界现象 (或状态)暴露出来,以达到正确解决问题的目的
临界问题存在多种可能,特别是非此即彼两种可
假设法 能时,或变化过程中可能出现临界条件,也可能
不出现临界条件时,往往用假设法解决问题
将物理过程转化为数学公式,根据数学表达式解 数学方法
出临界条件
栏目 导引
第四章 运动和力的关系
如图所示,质量 m=1 kg 的光滑小球用细线系在质量为 M=8 kg、倾角为 α=37°的斜面体上,细线与斜面平行,斜面 体与水平面间的摩擦不计,g 取 10 m/s2.试求:
(1)若用水平向右的力 F 拉斜面体,要使小球不离开斜面,拉力 F 不能超过多少? (2)若用水平向左的力 F′推斜面体,要使小球不沿斜面滑动,推 力 F′不能超过多少?
栏目 导引
第四章 运动和力的关系
(2)小球不沿斜面滑动,两者加速度相同,临界条件是细线对小 球的拉力恰好为 0, 对小球受力分析如图: 由牛顿第二定律得:mgtan 37°=ma′ a′=gtan 37°=7.5 m/s2 对整体由牛顿第二定律得: F′=(M+m)a′=67.5 N. [答案] (1)120 N (2)67.5 N
栏目 导引
第四章 运动和力的关系
μmgcos θ 可得:物体的速度为零后,沿斜面下滑,下滑加速度 a2=gsin θ-μgcos θ=4 m/s2,物体上滑的最大距离 s=2vaB21= 4 m;物体上滑的时间 t1=vaB1=1 s;物体下滑的时间 t2,由位移 公式得 s=12a2t22,解得:t2= 2 s;物体在斜面上运动的时间 t =t1+t2=( 2+1) s. [答案] (1)4 m/s2 (2)8 m/s (3)( 2+1) s
栏目 导引
第四章 运动和力的关系
[思路点拨] (1)向右拉斜面体时,小球不离斜面体临界条件是什 么? (2)向左推斜面体时,小球不沿斜面滑动的临界条件是什么? [解析] (1)小球不离开斜面体,两者加速度相同、临界条件为 斜面体对小球的支持力恰好为 0 对小球受力分析如图: 由牛顿第二定律得:tanm3g7°=ma a=tan g37°=430 m/s2 对整体由牛顿第二定律得: F=(M+m)a=120 N.