龙格库塔方法基本原理

合集下载

龙格-库塔方法基本原理3

龙格-库塔方法基本原理3
a2c2h2 fx b21c2h2 ff y O(h3)
2020/4/7
15
令 y(xi1) yi1 对应项的系数相等,得到
c1 c2 1 ,
a2c2
1 2
,
b21c2
1 2
这里有 4 个未知 数,3 个方程。
存在无穷多个解。所有满足上式的格式统称为2阶 龙格 - 库塔格式。
2020/4/7
称为P阶龙格-库塔方法。
其中ai,bij,ci为待定参数,要求上式yi+1在点(xi,yi)处作 Tailor展开,通过相同项的系数确定参数。
2020/4/7
9
Runge-Kutta方法的推导思想
对于常微分方程的初值问题
y f (x, y) a x b
y(a)
y0
的解y=y(x),在区间[xi, xi+1]上使用微分中值定理,有
hf (xi 2
,
yi
1 2
K1 )
K3 hf (xi h, yi K1 2K 2 )
2020/4/7
22
四阶(经典)龙格—库塔法
如果需要再提高精度,用类似上述的处理 方法,只需在区间[xi,xi+1]上用四个点处的斜 率加权平均作为平均斜率K*的近似值,构成一 系列四阶龙格—库塔公式。具有四阶精度,即 局部截断误差是O(h5)。
f x(xi , yi ) f (xi , yi ) f y (xi , yi ) O(h3 )
类似地,若取前P+1项作为y(xi+1)的近似值,便得到
yi1
yi
hyi
h2 2!
yi
hP P!
yi(P)
P阶泰勒方法
其中 yi f , yi f (xi , yi )x f x ff y

龙格库塔算法

龙格库塔算法

龙格库塔算法龙格库塔算法(Runge-Kutta method)是一种常用的数值解微分方程的方法,其基本原理是通过逐步逼近的方式,根据初始条件和微分方程的表达式,计算出方程的近似解。

该方法具有较高的精度和稳定性,在科学计算、物理模拟、工程建模等领域得到广泛应用。

龙格库塔算法的核心思想是将微分方程的解按照一定的步长进行离散化,从而将连续的求解问题转化为离散的迭代过程。

具体来说,龙格库塔算法通过计算函数在一定步长内的平均斜率,来估计下一个点的函数值。

这个平均斜率是通过多次计算函数在不同点上的导数得到的,从而提高了计算的精度。

龙格库塔算法的一般形式可以表示为:k1 = f(tn, yn)k2 = f(tn + h/2, yn + h/2 * k1)k3 = f(tn + h/2, yn + h/2 * k2)k4 = f(tn + h, yn + h * k3)yn+1 = yn + h/6 * (k1 + 2k2 + 2k3 + k4)其中,tn是当前时间点,yn是当前函数值,h是步长,f是微分方程的表达式。

通过多次迭代,可以逐渐逼近微分方程的解。

龙格库塔算法的优点在于其精确度较高,可以通过调整步长来控制计算的精度和效率。

此外,该算法具有较好的数值稳定性,可以有效处理非线性、刚性或高阶微分方程等复杂问题。

因此,在科学和工程计算中,龙格库塔算法被广泛应用于各种数值模拟和求解问题。

需要注意的是,龙格库塔算法并非万能的,对于一些特殊的问题,可能存在数值不稳定性或计算精度不够的情况。

此外,算法的步长选择也需要根据具体问题进行调整,过小的步长会增加计算量,而过大的步长可能导致精度下降。

因此,在使用龙格库塔算法时,需要根据具体问题的特点和要求来选择合适的步长和算法参数,以获得满意的计算结果。

总结起来,龙格库塔算法是一种常用的数值解微分方程的方法,具有较高的精度和稳定性。

通过离散化和迭代的方式,可以逐步逼近微分方程的解。

四阶龙格—库塔法的原理及其应用

四阶龙格—库塔法的原理及其应用

《四阶龙格—库塔法的原理及其应用》
龙格—库塔法(又称龙格库塔法)是由一系列有限的、独立的可能解组成的无穷序列,这些解中每个都与原来的数列相差一个常数。

它是20世纪30年代由匈牙利著名数学家龙格和库塔提出的,故得此名。

1.它的基本思想是:在n 阶方阵M 上定义一个函数,使得当n 趋于无穷时,它在m 中所表示的数值为M 的某种特征值,从而构造出一族具有某种特性的可计算函数f (x)= Mx+ C (其中C 为任意正整数)。

例如,若f (x)=(a-1) x+ C,则称之为(a-1) x 的龙格—库塔法。

2.它的应用很广泛,可以求解各类问题,且能将大量的未知数变换成少数几个已知数,因此它是近似计算的一种重要工具。

3.
它的优点主要有:(1)可以将多项式或不等式化成比较简单的形式;(2)对于同一问题可以用不同的方法来解决,并取得同样的结果;(3)适合处理高次多项式或者不等式,尤其适合处理多元函数的二次型。

龙格-库塔法

龙格-库塔法

四阶龙格-库塔法求解常微分方程的初值问题1.算法原理对于一阶常微分方程组的初值问题⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋯⋯==⋯⋯=⋯⋯⋯⋯=⋯⋯=0020********'212'2211'1)(,,)(,)())(,),(),(,()())(,),(),(,()())(,),(),(,()(n n n n n n n y x y y x y y x y x y x y x y x f x y x y x y x y x f x y x y x y x y x f x y , 其中b x a ≤≤。

若记Tn Tn Tn y x f y x f y x f y x f y y y y x y x y x y y x y )),(,),,(),,((),(),,,())(),(),(()(2102010021⋯⋯=⋯⋯=⋯⋯=,,则可将微分方程组写成向量形式⎩⎨⎧=≤≤=0')()),(,()(y a y b x a x y x f x y微分方程组初值问题在形式上和单个微分方程处置问题完全相同,只是数量函数在此变成了向量函数。

因此建立的单个一阶微分方程初值问题的数值解法,可以完全平移到求解一阶微分方程组的初值问题中,只不过是将单个方程中的函数转向向量函数即可。

标准4阶R-K 法的向量形式如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧++=++=++==++++=+),()21,2()21,2(),()22(61342312143211K y h x hf K K y h x hf K K y h x hf K y x hf K K K K K y y n n n n n n n n n n 其分量形式为n j K y K y K y h x hf K K y K y K y h x hf K K y K y K y h x hf K y y y x hf K K K K K y y n ni i i i j j n nii i i j j n nii i i j j ni i i i j j j j j j i j i j ,,2,1).,,,;(),2,2,2;2(),2,2,2;2(),,,,;(),22(6132321314222212131212111221143211,1,⋯⋯=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+⋯⋯+++=+⋯⋯+++=+⋯⋯+++=⋯⋯=++++=++,,2.程序框图3.源代码%该函数为四阶龙格-库塔法function [x,y]=method(df,xspan,y0,h)%df为常微分方程,xspan为取值区间,y0为初值向量,h为步长x=xspan(1):h:xspan(2);m=length(y0);n=length(x);y=zeros(m,n);y(:,1)=y0(:);for i=1:n-1k1=feval(df,x(i),y(:,i));k2=feval(df,x(i)+h/2,y(:,i)+h*k1/2);k3=feval(df,x(i)+h/2,y(:,i)+h*k2/2);k4=feval(df,x(i)+h,y(:,i)+h*k3);y(:,i+1)=y(:,i)+h*(k1+2*k2+2*k3+k4)/6;end%习题9.2clear;xspan=[0,1];%取值区间h=0.05;%步长y0=[-1,3,2];%初值df=@(x,y)[y(2);y(3);y(3)+y(2)-y(1)+2*x-3];[xt,y]=method(df,xspan,y0,h)syms t;yp=t*exp(t)+2*t-1;%微分方程的解析解yp1=xt.*exp(xt)+2*xt-1%计算区间内取值点上的精确解[xt',y(1,:)',yp1']%y(1,:)为数值解,yp1为精确解ezplot(yp,[0,1]);%画出解析解的图像hold on;plot(xt,y(1,:),'r');%画出数值解的图像4.计算结果。

4阶经典龙格库塔公式求解微分方程

4阶经典龙格库塔公式求解微分方程

4阶经典龙格库塔公式求解微分方程4阶龙格库塔法(也称为四阶Runge-Kutta方法)是一种常用于求解常微分方程的数值方法。

它是由德国数学家卡尔·龙格以及他的学生马丁·威尔海姆·库塔于1901年独立提出的。

以下是详细的介绍。

1.问题描述我们考虑一个典型的常微分方程初值问题:dy/dx = f(x, y),y(x0) = y0其中,x0是给定的初始点,y(x)是我们要求解的函数,f(x,y)是已知的函数。

2.方法原理四阶龙格库塔方法的基本思想是通过使用全区间的函数信息来估计下一步的函数值。

在每个步骤中,我们计算四个不同的估计量,然后将它们组合起来以获取最终的解。

具体来说,我们首先计算在初始点x0上的斜率k1=f(x0,y0)。

然后我们计算在x0+h/2处的斜率k2=f(x0+h/2,y0+h/2*k1),其中h是步长。

以此类推,我们计算k3和k4分别在x0+h/2和x0+h处的斜率。

然后,我们通过加权组合这些斜率来计算下一个点的函数值y1:y1=y0+(h/6)*(k1+2*k2+2*k3+k4)。

3.算法步骤以下是使用四阶龙格库塔法求解常微分方程的详细步骤:步骤1:给定初始条件 y(x0) = y0,选择步长 h 和积分终点 x_end。

步骤2:计算积分步数n:n = (x_end - x0)/h。

步骤3:设置变量x=x0和y=y0,并将步长设置为h。

步骤4:对每个步数i=1,2,...,n,执行以下计算:4.1:计算斜率k1=f(x,y)。

4.2:计算斜率k2=f(x+h/2,y+h/2*k1)。

4.3:计算斜率k3=f(x+h/2,y+h/2*k2)。

4.4:计算斜率k4=f(x+h,y+h*k3)。

4.5:计算下一个点的函数值y1=y+(h/6)*(k1+2*k2+2*k3+k4)。

4.6:将x更新为x+h,y更新为y1步骤5:重复步骤4,直到达到积分终点 x_end。

《龙格-库塔方法》课件

《龙格-库塔方法》课件
优点
适用于求解一般和刚性常微分方程,并且具有较好的稳定性和收敛性。
龙格-库塔方法的原理
1
基本思路
通过将微分方程转化为差分方程,使用逼近公式计算数值解。
2
推导过程
使用泰勒级数展开和积分逼近,推导出不同阶次的龙格-库塔方法公式。
龙格-库塔方法的算法流程
1
步骤分解
包括选择步长、计算斜率、更新数值、迭代等一系列操作。
《龙格-库塔方法》PPT课 件
欢迎大家来到本次的PPT课件《龙格-库塔方法》。在本课程中,我们将一起 探索这一数值计算方法的原理、算法流程、应用领域以及注意事项。
什么是龙格-库塔方法?法。
特点
通过多步骤迭代计算,可以得到精确性较高的数值解。
2
具体实现过程
将算法流程转化为编程语言中的相应代码实现。
图解龙格-库塔方法
龙格-库塔方法示意图
图中展示了使用龙格-库塔方法进行迭代计算的示意 图。
对比其他数值方法的表现
通过与其他数值方法的比较,可以更好地理解龙格库塔方法的优势。
龙格-库塔方法的应用领域
常见应用范围
广泛应用于科学研究、工程计算、物理模拟等领域。
实际计算案例
通过实际案例,展示龙格-库塔方法在解决实际问题中的应用。
注意事项
1 龙格-库塔方法的收敛性和稳定性
在使用龙格-库塔方法时,需要注意数值解的收敛性和算法的稳定性。
2 常见误差和偏差的处理方法
介绍常见的误差和偏差来源,并提供相应的处理方法。
总结
龙格-库塔方法的优势和不足
总结龙格-库塔方法的优点和局限性,指出其适 用性和改进空间。
对未来数值计算的展望
展望未来龙格-库塔方法在数值计算领域的发展 和应用前景。

龙格库塔实验报告

龙格库塔实验报告

一、实验背景常微分方程(ODE)在自然科学、工程技术等领域中具有广泛的应用。

然而,许多微分方程无法得到精确解析解,因此需要借助数值方法进行求解。

龙格-库塔(Runge-Kutta)方法是一种常用的数值求解常微分方程的方法,具有精度高、稳定性好等优点。

本实验旨在通过编写程序,实现四阶龙格-库塔方法,并验证其在求解常微分方程中的有效性和准确性。

二、实验目的1. 理解四阶龙格-库塔方法的基本原理和计算步骤。

2. 编写程序实现四阶龙格-库塔方法。

3. 选取典型常微分方程,验证四阶龙格-库塔方法的求解精度和稳定性。

三、实验原理四阶龙格-库塔方法是一种基于泰勒级数展开的数值方法,其基本思想是将微分方程的解在某个区间内进行近似,并通过迭代计算得到近似解。

具体步骤如下:1. 初始化:给定初始条件y0,步长h,求解区间[a, b]。

2. 迭代计算:对于k=1, 2, ..., n(n为迭代次数),- 计算k1 = f(xk-1, yk-1)(f为微分方程的右端函数);- 计算k2 = f(xk-1 + h/2, yk-1 + h/2 k1);- 计算k3 = f(xk-1 + h/2, yk-1 + h/2 k2);- 计算k4 = f(xk-1 + h, yk-1 + h k3);- 更新y值:yk = yk-1 + (h/6) (k1 + 2k2 + 2k3 + k4);- 更新x值:xk = xk-1 + h;3. 输出结果:输出最终的近似解y(n)。

四、实验步骤1. 编写程序实现四阶龙格-库塔方法。

2. 选取典型常微分方程,如:- y' = -y,初始条件y(0) = 1,求解区间[0, 2π];- y' = y^2,初始条件y(0) = 1,求解区间[0, 1]。

3. 对每个常微分方程,设置不同的步长h和迭代次数n,分别计算近似解y(n)。

4. 将计算得到的近似解与解析解进行比较,分析四阶龙格-库塔方法的精度和稳定性。

龙格库塔 高阶常微分方程组

龙格库塔 高阶常微分方程组

龙格库塔高阶常微分方程组龙格库塔法(Runge-Kutta method)是一种数值解常微分方程的方法,它由卡尔·龙格(Carl Runge)和马丁·康托尔·库塔(Martin Kutta)分别独立发现。

这种方法常常被用来解决高阶常微分方程组,其优点在于精度高且适用范围广。

1. 龙格库塔法的基本原理我们来简要介绍一下龙格库塔法的基本原理。

对于一个一阶常微分方程y′=f(x,y),我们可以通过欧拉法进行数值解,其迭代公式为y_(n+1) = y_n + hf(x_n, y_n)。

而龙格库塔法则通过多个步骤的迭代来提高精度。

常见的四阶龙格库塔法的迭代公式如下:k1 = hf(x_n, y_n)k2 = hf(x_n+1/2h, y_n+1/2k1)k3 = hf(x_n+1/2h, y_n+1/2k2)k4 = hf(x_n+h, y_n+k3)y_(n+1) = y_n + 1/6(k1 + 2k2 + 2k3 + k4)2. 高阶常微分方程组的数值解对于高阶常微分方程组,我们可以通过变量替换的方式将其转化为一组一阶微分方程,然后利用龙格库塔法进行数值解。

以二阶常微分方程为例,我们可以令y1 = y,y2 = y',然后构造一组一阶微分方程:y1' = y2y2' = f(x,y1,y2)这样,我们就可以利用龙格库塔法对其进行数值解了。

3. 个人观点和理解在我看来,龙格库塔法是一种非常有效的数值解法,尤其适用于高阶常微分方程组。

通过多步迭代的方式,可以大大提高数值解的精度,从而在实际问题中得到更为可靠的结果。

当然,龙格库塔法也存在一定的局限性,比如对于一些特殊形式的方程可能不够有效,需要结合其他方法进行求解。

总结回顾通过本文的介绍,我们对龙格库塔法有了更深入的了解。

从基本原理到在高阶常微分方程组中的应用,我们了解了其在数值计算中的重要性。

我也分享了自己对这一方法的个人观点和理解。

matlab四阶龙格库塔法解方程组

matlab四阶龙格库塔法解方程组

matlab四阶龙格库塔法解方程组摘要:一、引言二、龙格库塔法介绍1.龙格库塔法的基本原理2.龙格库塔法的发展历程三、MATLAB 实现四阶龙格库塔法1.MATLAB 中龙格库塔法的函数2.四阶龙格库塔法的MATLAB 实现四、龙格库塔法解方程组的应用1.线性方程组的求解2.非线性方程组的求解五、结论正文:一、引言在数学领域,求解方程组是一项基本任务。

龙格库塔法作为高效数值求解线性方程组的方法,被广泛应用于各个领域。

MATLAB 作为一款强大的数学软件,可以方便地实现龙格库塔法求解方程组。

本文将介绍MATLAB 中四阶龙格库塔法解方程组的原理、实现与应用。

二、龙格库塔法介绍1.龙格库塔法的基本原理龙格库塔法(Runge-Kutta method)是一种求解常微分方程初值问题的数值方法。

它通过求解一组线性方程来逼近微分方程的解,具有较高的数值稳定性和精度。

龙格库塔法可以分为四阶、五阶等多种形式,其中四阶龙格库塔法是较为常用的一种。

2.龙格库塔法的发展历程龙格库塔法由德国数学家卡尔·龙格(Carl Runge)和英国数学家詹姆斯·库塔(James Kutta)分别在1900 年和1901 年独立发现。

自那时以来,龙格库塔法在数学、物理、工程等领域得到了广泛应用,并发展出了多种改进和扩展。

三、MATLAB 实现四阶龙格库塔法1.MATLAB 中龙格库塔法的函数在MATLAB 中,可以使用内置函数ode45、ode23、ode113 等实现龙格库塔法求解常微分方程。

这些函数分别对应四阶、五阶和三阶龙格库塔法。

2.四阶龙格库塔法的MATLAB 实现以下是一个使用MATLAB 实现四阶龙格库塔法求解方程组的示例:```matlabfunction [x, status] = solve_system_with_ode45(A, B, x0)% 定义方程组func = @(t, x) A * x + B;% 初始条件x0 = [1; 2];% 时间区间tspan = [0, 10];% 求解[x, status] = ode45(func, tspan, x0);end```四、龙格库塔法解方程组的应用1.线性方程组的求解线性方程组在数学、物理、工程等领域具有广泛应用。

龙格库塔方法理解及应用

龙格库塔方法理解及应用

龙格库塔方法理解及应用龙格库塔方法是一种常用的数值解微分方程的方法,也是许多科学、工程和经济领域中常用的算法之一。

本文将介绍龙格库塔方法的原理及其应用。

一、龙格库塔方法原理在计算微分方程时,往往需要对方程进行离散化,采用数值方法处理。

龙格库塔方法(Runge-Kutta method)就是一种离散化的数值方法,其原理可以概括为:通过相应的递推公式,将微分方程在离散时间点上进行逼近,从而得到近似的解。

具体来说,假设要求解如下形式的一阶常微分方程:$$ y'=f(t,y) $$其中,$f(t,y)$是已知的函数,$y(t)$是未知函数,并且已知初值$y(t_0)=y_0$。

为了离散化这个方程,我们可以采用以下的递推公式:$$ \begin{aligned} y_1 &=y_0 + h\varphi_1 \\ y_2 &=y_0 +h\varphi_2 \\ \cdots &=\cdots \\ y_n &=y_0 + h\varphi_n \end{aligned} $$其中,$h$是离散时间点的时间步长,$t_n=t_0+nh$,$\varphi_i$是与$t_i$有关的递推公式。

根据龙格库塔方法的不同级别,$\varphi_i$也有不同的形式。

二、龙格库塔方法的应用由于龙格库塔方法的较高精度和鲁棒性,以及易于实现等特点,它在各个领域都有着广泛的应用。

1. 数学领域在数学领域,龙格库塔方法可以用于求解常微分方程、偏微分方程、常微分方程组等等,特别是对于复杂的高阶微分方程,龙格库塔方法更是可以发挥其优势。

2. 物理学领域在物理学领域,各种微分方程是研究物理过程的基础。

龙格库塔方法在求解各种物理问题时也得到了广泛的应用,如天体力学、流体力学、电磁场问题等等。

3. 经济学领域在经济学领域,许多经济问题可以通过微分方程的形式进行建模,并采用龙格库塔方法进行数值求解。

滤波算法 龙格库塔算法-概述说明以及解释

滤波算法 龙格库塔算法-概述说明以及解释

滤波算法龙格库塔算法-概述说明以及解释1.引言1.1 概述概述:滤波算法和龙格库塔算法是计算机科学领域中常用的算法之一,它们在数据处理和数值计算中有着重要的应用价值。

滤波算法被广泛应用于信号处理、图像处理、通信系统等领域,用于消除信号中的噪声和提高数据的质量。

而龙格库塔算法则是一种常用的数值求解微分方程的方法,能够有效地对复杂的数学模型进行数值求解,具有较高的准确性和稳定性。

本文将分别介绍滤波算法和龙格库塔算法的原理、优缺点以及应用领域,希望读者通过本文能够对这两种算法有更深入的了解,并在实际应用中能够灵活运用。

1.2 文章结构本文将分为四个部分来探讨滤波算法和龙格库塔算法。

首先在引言部分,对滤波算法和龙格库塔算法进行简要介绍,并说明本文的结构和目的。

接着在第二部分,详细介绍滤波算法的概念、常见算法和应用场景,以便读者对滤波算法有个全面的了解。

然后在第三部分,深入探讨龙格库塔算法的简介、原理和优缺点,帮助读者更好地理解这一种数值计算方法。

最后,在结论部分对两种算法进行总结,并展望未来可能的发展方向,以及得出结论。

通过以上四个部分的内容,读者能够全面了解和掌握滤波算法和龙格库塔算法的相关知识。

1.3 目的本文的主要目的是介绍和探讨滤波算法和龙格库塔算法这两种在计算机科学和工程领域中广泛应用的算法。

通过对这两种算法的概述、原理和应用进行详细分析,能够帮助读者全面了解它们的工作原理和特点。

同时,通过对这两种算法的比较和讨论,可以帮助读者更好地理解它们在不同应用场景下的适用性和优缺点。

此外,本文还旨在为读者提供一个深入学习和掌握这两种算法的基础知识和入门指南。

通过本文的学习,读者可以加深对滤波算法和龙格库塔算法的理解,为进一步的研究和实践打下坚实的基础。

同时,希望本文能够激发读者对算法领域的兴趣,促使他们深入研究和探索更多先进的算法及其应用。

2.滤波算法2.1 滤波算法概述滤波算法是一种用于处理信号或数据的技术,其主要目的是通过去除噪声或不需要的信息,从而提取出所需的信号或数据。

第7-3龙格-库塔方法

第7-3龙格-库塔方法
§7.3 龙格-库塔方法
一、Taylor展开法
设 y f ( x, y)Βιβλιοθήκη y( x0 ) y0
(1)
在[a,b]上有解 y( x),将y( xn1 )在xn处泰勒展开
y( xn1 )
y( xn )
hy( xn )
h2 2!
y( xn )
h3 3!
y( xn )
截取有限项作为 y( xn1 ) 的近似值,有
四、三阶及四阶龙格-库塔公式
三阶龙格—库塔公式有:
yn1 k1 k2
f f
h yn 6 (k1 ( xn , yn )
1 ( xn 2 h,
4k2 k3 h
yn 2 k1 )
)
k3 f ( xn h, yn hk1 2hk2 )
yn1 k1 k2
f f
1 (h n! x
k )n y
f ( x0, y0 )
(n
1 (h 1)! x
k
)n1 y
f
( x0
h,
y0
k)
(0 1)
其中记号
(h
x
k
y
)
f
(
x0
,
y0
)=hf
x
(
x0
,
y0
)
kf
y
(
x0
,
y0
)
(h
x
k
)2 y
f
(
x0 ,
y0
)
h2
f
xx (
x0 ,
y0
)
2hkf
f ( xn , yn ) h(c2 f x ( xn , yn ) a21k1 f y ( xn , yn )) O(h2 ) f ( xn , yn ) h(c2 f x ( xn , yn ) a21 f y ( xn , yn ) f ( xn , yn )) O(h2 )

(完整版)第二节龙格-库塔方法

(完整版)第二节龙格-库塔方法
en1 en h[( xn , y( xn ), h) ( xn , yn , h)] Tn1
因为单步法是 p阶的:h0 , 0 h h0 满足| Tn1 | Chp1
| en1 || en | hL | en | Ch p1 | en |
其中 1 hL, Ch p1
en O(hp )
即取
K * 1K1 2 K2 yi1 yi h(1K1 2 K2 )
其中1 和 2 是待定常数。若取 K1 f ( xi , yi ) ,则
问题在于如何确定 xi p 处的斜率 K2 和常数 1 和 2 。
仿照改进的欧拉方法,用欧拉方法预测 y( xi p ) 的值,
yi p yi phK1
k2
f ( xn
h 2
,
yn
h 2 k1)
hh k3 f ( xn 2 , yn 2 k2 )
k4 f ( xn h, yn hk3 )
例2:用经典的龙格-库塔方法
求解下列初值问题 h 0.1
dy 。 dx
y
2x y
x (0,1)
解:经典的四阶龙格-库塔公式: y(0) 1
E(h) 1 h
绝对稳定域: 1 h 1
当 R 时, 1 h 1 2 h 0
绝对稳定区间:(2, 0)
❖经典的R-K公式:yn1
yn
h 6
(k1
2k2
2k3
k4 )
k1 f ( xn , yn ) yn
k2
f
(
yn1 yn hf ( xn , yn )
n1 yn1 yn1
n1 n h[ f ( xn , yn ) f ( xn , yn )] [1 hf y ( xn , )]n

龙格库塔法基本原理

龙格库塔法基本原理

龙格库塔法
一、基本原理:
龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。

由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。

该算法是构建在数学支持的基础之上的。

对于一阶精度的欧拉公式有:
yi+1=yi+h*K1 K1=f(xi,yi)
当用点xi处的斜率近似值K1与右端点xi+1处的斜率K2的算术平均值作为平均斜率K*的近似值,那么就会得到二阶精度的改进欧拉公式:
yi+1=yi+h*( K1+ K2)/2
K1=f(xi,yi)
K2=f(xi+h,yi+h*K1)
依次类推,如果在区间[xi,xi+1]内多预估几个点上的斜率值K1、K2、……Km,并用他们的加权平均数作为平均斜率K*的近似值,显然能构造出具有很高精度的高阶计算公式。

经数学推导、求解,可以得出四阶龙格-库塔公式,也就是在工程中应用广泛的经典龙格-库塔算法:
yi+1=yi+h*( K1+ 2*K2 +2*K3+ K4)/6
K1=f(xi,yi)
K2=f(xi+h/2,yi+h*K1/2)
K3=f(xi+h/2,yi+h*K2/2)
K4=f(xi+h,yi+h*K3)
通常所说的龙格-库塔法是指四阶而言的,我们可以仿二阶、三阶的情形推导出常用的标准四阶龙格-库塔法公式计算公式(1)的局部截断误差。

龙格-库塔法具有精度高,收敛,稳定(在一定条件下),计算过程中可以改变步长,不需要计算高阶导数等优点,但仍需计算在一些点上的值,如四阶龙格-库塔法每计算一步需要计算四次的值,这给实际计算带来一定的复杂性,因此,多用来计算“表头”。

第二节_龙格_库塔方法

第二节_龙格_库塔方法

yn1 yn hf ( xn , yn )
n1 yn1 yn1
n1 n h[ f ( xn , yn ) f ( xn , yn )] [1 hf y ( xn , )]n
如果 |1 hf y | 1,则误差是不增的,故可认为是稳定的
例如:对于初值问题
y y
y(
x0
)
a
精确解为
k2
f ( xn
h 2
,
yn
h 2 k1)
hh k3 f ( xn 2 , yn 2 k2 )
k4 f ( xn h, yn hk3 )
例2:用经典的龙格-库塔方法
求解下列初值问题 h 0.1
dy 。 dx
y
2x y
x
(0,1)
解:经典的四阶龙格-库塔公式: y(0) 1
h
y
ae x x0
y y
而实际求解的初值问题为
y(
x0
)
a
a
精确解为 y (a a)e x x0在 xn 处的误差为ae xn x0
可见误差随着 xn的增加呈指数函数增长
y y
如果初值问题为
y( x0 ) a
精确解为 y ae x0 x
y y
实际求解的初值问题为
y( x0 )
2C( h)5 2
y( xn1)
y(h/ 2) n1
y( xn1)
y(h) n1
1 16

|
y(h/ 2) n1
y(h) n1
|
16( y( xn1)
y(h/ 2) n1
)
y( xn1)
y(h) n1
y( xn1)
y(h/ 2) n1

龙格-库塔方法基本原理

龙格-库塔方法基本原理

b21c2
(b31
b32 )c3
1 2
a2b21c2
a3c3 (b31
b32 )
1 3
b21b32c3
1 6
2020/3/28
21
参数的选择不唯一,从而构成一类不同的三阶R-K 公式,下面给出一种常用的三阶R-K公式,形似 simpson公式:
yi
1
yi
1 6
(K1
4K2
K3)
K1
K
2
hf (xi , yi ) h
推导过程与前面类似,由于过程复杂,这 里从略,只介绍最常用的一种四阶经典龙格— 库塔公式。
2020/3/28
23
设 yi+1=yi+c1K1+c2K2+c3K3+c4K4
这里K1、K2、K3、K4为四个不同点上的函数值, 分别设其为
K1=hf (xi, yi) K2=hf (xi+a2h, yi+b21K1) K3=hf (xi+a3h, yi+b31K1+b32K2) K4=hf (xi+a4h, yi+b41K1+b42K2+b43K3) 其中c1、c2、c3、c4、a2、a3、a4、b21、b31、 b32、b41、b42、b43均为待定系数。
在连续系统的仿真中,主要的计算工作是求解一阶微分方程 y' =f(x,y)
y( x0) = y0
解析法只能用来求解一些特殊类型的方程,实际仿真问题中归 结出来的微分方程主要靠数值解法。
主讲人:
由于实际运算只能完成有限项或有限步运算,因此 要将有些需用极限或无穷过程进行的运算有限化,对 无穷过程进行截断,这样产生的误差成为截断误差。

龙格库塔实验报告

龙格库塔实验报告

龙格库塔实验报告龙格库塔实验报告引言:龙格库塔法(Runge-Kutta method)是一种常用的数值求解常微分方程(ODE)的方法。

它是由德国数学家卡尔·龙格(Carl Runge)和马丁·威尔海姆·库塔(Martin Wilhelm Kutta)于19世纪末独立发展而来。

龙格库塔法通过将微分方程转化为一系列逼近值,从而实现对微分方程的数值求解。

本实验旨在通过对龙格库塔法的研究和实践,深入了解其原理和应用。

一、龙格库塔法的原理龙格库塔法的基本思想是将微分方程的解分解为一系列逼近值,然后通过逐步迭代的方式计算这些逼近值。

具体而言,龙格库塔法将求解微分方程的过程分为多个步骤,每个步骤都计算一个逼近值,并利用这些逼近值逐步逼近真实解。

二、龙格库塔法的步骤1. 确定微分方程和初始条件:首先,需要明确待求解的微分方程以及初始条件。

微分方程可以是一阶或高阶的,初始条件是方程在某一点上的已知值。

2. 确定步长:步长(或称为时间间隔)决定了逼近值的精度。

较小的步长能够提高逼近值的准确性,但也会增加计算量。

因此,需要根据具体问题的需求选择合适的步长。

3. 迭代计算:根据龙格库塔法的公式,进行逐步的迭代计算。

首先,根据初始条件计算出第一个逼近值。

然后,利用该逼近值和微分方程的导数计算出下一个逼近值。

重复这一过程,直到达到所需的迭代次数或满足精度要求。

4. 计算误差:为了评估逼近值的准确性,需要计算误差。

误差可以通过与解析解的比较得出,或者通过比较不同步长下的逼近值得出。

较小的误差表明逼近值较为准确。

三、龙格库塔法的应用龙格库塔法广泛应用于科学和工程领域,特别是在求解微分方程模型的数值计算中。

以下是一些常见的应用场景:1. 物理学:龙格库塔法可以用于模拟物体在重力场中的运动,如自由落体、抛体运动等。

通过求解微分方程,可以得到物体的位置、速度等随时间的变化规律。

2. 经济学:龙格库塔法可以用于经济学模型的求解,如经济增长模型、投资模型等。

数值分析9-3(龙格-库塔方法)

数值分析9-3(龙格-库塔方法)
语言实现龙格-库塔方法
总结词
除了Python和MATLAB,还有许多其他编 程语言可以用于实现龙格-库塔方法。
详细描述
例如C、Java和R等编程语言也提供了相应 的数值计算库或框架,可以实现龙格-库塔 方法。使用这些语言实现龙格-库塔方法需 要一定的编程基础和对相应语言的数值计算 库的了解。
龙格-库塔方法可以用于求解偏微分方程的数值解,通过将偏微分方程转化为常微分方程组,利用龙格 -库塔方法进行迭代求解,能够得到较为精确的结果。
积分方程的数值解
积分方程是描述函数与积分之间的关 系的数学模型,常见于物理、工程等 领域。
VS
龙格-库塔方法也可以用于求解积分 方程的数值解,通过将积分方程转化 为常微分方程组,利用龙格-库塔方 法进行迭代求解,能够得到较为精确 的结果。
重要性及应用领域
龙格-库塔方法是数值分析中非常重要的内容, 它为解决常微分方程提供了一种有效的数值方 法。
在科学、工程和经济学等领域中,许多问题都 可以转化为求解常微分方程的问题,因此龙格库塔方法具有广泛的应用价值。
例如,在物理学、化学、生物学、金融学等领 域中,龙格-库塔方法被广泛应用于模拟和预测 各种动态系统的行为。
数值分析9-3:龙格-库塔方法
目录
• 引言 • 龙格-库塔方法概述 • 龙格-库塔方法在数值分析中的应用 • 龙格-库塔方法的实现与编程 • 龙格-库塔方法的改进与优化 • 结论与展望
01 引言
主题简介
龙格-库塔方法是一种用于求解常微 分方程的数值方法。
它通过构造一个离散化的时间序列来 逼近微分方程的解,并利用已知的离 散点来计算新的离散点,逐步逼近微 分方程的真实解。
02 龙格-库塔方法概述
定义与原理

动力学有限元问题的龙格库塔法 知乎

动力学有限元问题的龙格库塔法 知乎

动力学有限元问题的龙格库塔法知乎动力学有限元问题的龙格库塔法1. 介绍动力学有限元问题是一类涉及结构物或系统在时间变化下的运动和响应的问题。

为了解决这类问题,我们可以使用数值方法,其中最常用的之一是龙格库塔法(Runge-Kutta method)。

本文将探讨龙格库塔法在解决动力学有限元问题中的应用,并对其进行深入思考和全面分析。

2. 龙格库塔法的基本原理和应用龙格库塔法是一种数值求解常微分方程的方法,通过迭代逼近来计算方程的数值解。

它的优点在于能够准确地模拟系统的动态行为,并且对于非线性问题也有较好的适用性。

在动力学有限元问题中,我们通常需要求解结构物或系统在时间上的响应,而龙格库塔法可以提供相对精确的数值计算结果。

3. 动力学有限元问题在动力学有限元问题中,我们需要考虑结构物或系统在外部作用下的运动和响应。

这通常涉及到求解质点、刚体或弹性体的运动方程。

通过建立合适的模型和边界条件,我们可以得到动力学方程。

通过数值方法求解这些方程,我们可以得到系统在一段时间内的响应。

4. 龙格库塔法的步骤和计算过程龙格库塔法的基本步骤包括选择适当的时间步长和计算时间步数,以及计算中间步骤的函数值。

具体来说,龙格库塔法将时间区间划分为若干个小时间步,并通过迭代逼近的方式计算每个时间步的系统响应。

这个过程可以通过多种不同的方法进行,其中最常用的是四阶龙格库塔法。

5. 龙格库塔法的优点和缺点龙格库塔法作为数值求解常微分方程的方法,具有一定的优点和缺点。

其优点在于能够准确地模拟系统的动态行为,对于非线性问题也有较好的适用性。

而缺点在于需要选择合适的时间步长和计算步数,以及计算量较大。

在处理某些特殊问题时,龙格库塔法可能会出现数值不稳定或数值误差较大的情况。

6. 对龙格库塔法的个人观点和理解在我个人看来,龙格库塔法是一种非常有效的数值求解方法。

它可以帮助我们更好地理解和分析动力学有限元问题,提供精确的数值计算结果。

通过选择适当的参数和方法,我们可以获得准确的结果,并在实际工程和科学研究中得到有效的应用。

四阶龙格库塔法原理

四阶龙格库塔法原理

四阶龙格库塔法原理四阶龙格库塔法是一种常用的数值解微分方程的数值方法,它的原理和实现方式在工程和科学计算中被广泛应用。

本文将介绍四阶龙格库塔法的原理和基本思想,以及其在实际问题中的应用。

首先,我们来了解一下四阶龙格库塔法的基本原理。

四阶龙格库塔法是一种显式的、四步的、四阶精度的数值积分方法,用于求解常微分方程初值问题。

它的基本思想是通过对微分方程进行多步逼近,从而得到数值解。

具体来说,四阶龙格库塔法通过对微分方程的每一步进行逼近,然后将这些逼近值进行加权平均,从而得到下一个时间步的数值解。

这种方法的优点在于它具有较高的精度和稳定性,适用于多种类型的微分方程。

四阶龙格库塔法的实现方式如下,首先,我们需要将微分方程表示为一个一阶方程组的形式。

然后,我们可以通过迭代的方式,根据当前时间步的数值解,计算出下一个时间步的数值解。

具体的计算过程包括四个步骤,首先,计算出当前时间步的斜率;其次,利用当前时间步的斜率进行一次预测;然后,根据预测值计算出下一个时间步的斜率;最后,利用这四个斜率值进行加权平均,得到下一个时间步的数值解。

这样,我们就可以不断迭代,逐步得到微分方程的数值解。

四阶龙格库塔法在实际问题中有着广泛的应用。

例如,在物理学和工程领域,许多复杂的微分方程往往无法通过解析方法求解,这时就需要借助数值方法来得到近似解。

四阶龙格库塔法作为一种高精度的数值积分方法,可以有效地求解这些复杂的微分方程,为科学研究和工程设计提供了重要的数值工具。

总之,四阶龙格库塔法是一种常用的数值解微分方程的方法,它通过对微分方程进行多步逼近,得到数值解。

这种方法具有较高的精度和稳定性,在实际问题中有着广泛的应用。

希望本文介绍的四阶龙格库塔法的原理和实现方式能够对读者有所帮助,使他们更好地理解和应用这一数值方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h f (xi , yi ) a2hfx b21hff y O(h3)
பைடு நூலகம்K1 =hf(xi, yi)
yi1 yi (c1K1 c2K2 )
y(xi ) c1hf (xi , yi )
c2h f (xi , yi ) a2hfx b21hff y O(h3)
y(xi ) (c1 c2 )hf (xi , yi ) a2c2h2 fx b21c2h2 ff y O(h3)
的斜率值K1和K2的加权平均(或称为线性组合)来求取 平均斜率k*的近似值K,即
K c1K1 c2K2
式中:K1为xi点处的切线斜率值 K1 =hf(xi, yi)=hy'(xi) K2为xi +a2h点处的切线斜率值,比照改进的欧拉
法,将xi+a2视为xi+1,即可得 K2 hf (xi a2h, yi b21K1)
17
若取 a2 b21 塔公式。
1, 2
c1, 就0, 是c2另一1 种形式的二阶龙格 -

yi1 yi K2
K1 hf (xi , yi )
K2
hf
( xi
1 2
h,
yi
1 2
K1)
此计算公式称为变形的二阶龙格—库塔法。式中
xi
1为h区间
2
x的i , x中i1点。也称中点公式。
Q:为获得更高的精度,应该如何进一步推广?
hf (xi , yi )
则上式化为
如下图
y
y y(x)
yi1 yi hf (xi , yi )
K
K
即Euler方法
xi
Euler方法也称为一阶Runge-Kutta方法
xi1
x
2020/7/5
12
二阶龙格—库塔法 在[xi, xi+1]上取两点xi和xi+a2= xi +a2h,以该两点处
这说明每一步计算两个函数值的二阶R-K方法最高阶为 二阶。若要获得更高阶得数值方法,就必须增加计算函数 值的次数。
2020/7/5
19
三阶龙格—库塔法
为进一步提高精度,在区间[xi, xi+1]上除两点xi和
xi+a2= xi +a2h,以外,再增加一点xi+a3= xi +a3h ,用这 三点处的斜率值K1、K2和K3的加权平均得出平均斜率
1 6
,
b21c2
(b31
b32 )c3
1 2
a2b21c2
a3c3 (b31
b32 )
1 3
b21b32c3
1 6
2020/7/5
21
参数的选择不唯一,从而构成一类不同的三阶R-K 公式,下面给出一种常用的三阶R-K公式,形似 simpson公式:
yi
1
yi
1 6
(K1
4K2
K3)
K1 hf (xi , yi )
y(xi1) y(xi ) y(i )(xi1 xi )
其中i (xi , xi1)

y(xi1) y(xi ) hy(i )
2020/7/5
10
引入记号
y(xi1) y(xi ) K
K hy(i ) hf i , y(i )
yi1 yi K
K可以认为是y y(x)在区间[xi , xi1]上的平均斜率
在连续系统的仿真中,主要的计算工作是求解一阶微分方程
y' =f(x,y)
y( x0) = y0
解析法只能用来求解一些特殊类型的方程,实际仿真问题中归 结出来的微分方程主要靠数值解法。
由于实际运算只能完成有限项或有限步运算,因 此要将有些需用极限或无穷过程进行的运算有限化, 对无穷过程进行截断,这样产生的误差成为截断误差 。
y(xi ) hf (xi , y(xi )) O(h2 )
yi hf (xi , yi ) O(h2 )
2020/7/5
3
若取前三项,可得到截断误差为O(h3)的公式
y ( xi 1 )
y(xi ) hy(xi )
h2 2
y(xi ) O(h3 )
yi hf (xi , yi )
y(xi )
hf
(xi ,
yi )
h2 2!
fx ff y O(h3)
将 K2 hy(xi a2h) hf (xi a2h, yi b21K1) 在x=xi处进行Taylor展开:
2020/7/5
14
K2 h f (xi , yi) a2hfx b21K1 f y O(h2)
xia2
xia3
x
20
同理推导二阶公式,将y(xi+1)和yi+1在x=xi处进 行Taylor展开,使局部截断误差达到O(h4),使对
应项的系数相等,得到系数方程组:
c1 c2 c3 1
a2c2
a3c3
1 2
,
a22c2
a32c3
1 3
,
b221c2
(b31
b32 )2 c3
1 3
a2b32c2
2020/7/5
18
二级R-K方法是显式单步式,每前进一步需要计算两个
函数值。由上面的讨论可知,适当选择四个参数c1,c2,a2,
b21,可使每步计算两次函数值的二阶R-K方法达到二阶 精度。能否在计算函数值次数不变的情况下,通过选择不 同的参数值,使得二阶R-K方法的精度再提高呢?
答案是否定的!无论四个参数怎样选择,都不能使公式 的局部截断误差提高到三阶。
2020/7/5
8
一般龙格-库塔方法的形式为 yi1 yi c1K1 c2K2 cpK p K1 hf (xi , yi ) K2 hf (xi a2h, yi b21K1) ••••••••••• K p hf (xi aph, yi bp1K1 bp, p1K p1)
y
只要使用适当的方法求出y ( x)在区 间[xi , xi1]上平均斜率的近似值K
就可得到相应的Runge-Kutta方法
y y(x)
K
2020/7/5
xi
xi1
x
11
如果以y(x)在xi处的斜率作为y(x)在[xi , xi1]上的平均斜率K
即 K hy(xi ) hf [xi , y(xi )]
2020/7/5
7
于是可考虑用函数f(x,y)在若干点上的函数值的 线性组合来构造近似公式,构造时要求近似公式在 (xi,yi)处的Taylor展开式与解y(x)在xi处的Taylor展开式 的前面几项重合,从而使近似公式达到所需要的阶数。 既避免求高阶导数,又提高了计算方法精度的阶数。或 者说,在[xi,xi+1]这一步内多计算几个点的斜率值,然 后将其进行加权平均作为平均斜率,则可构造出更高 精度的计算格式,这就是龙格—库塔(Runge-Kutta) 法的基本思想。
2020/7/5
6
同理,改进Euler公式可改写成
yi
1
yi
1 2
K1
1 2
K2
K1
hf
( xi ,
yi )
K
2
hf
( xi
h,
yi
K1)
局部截断误差为O(h3)
上述两组公式在形式上共同点:都是用f(x,y)在某 些点上值的线性组合得出y(xi+1)的近似值yi+1, 且增 加计算的次数f(x,y)的次数,可提高截断误差的阶。如 欧拉法:每步计算一次f(x,y)的值,为一阶方法。改进欧 拉法需计算两次f(x,y)的值,为二阶方法。
2020/7/5
24
类似于前面的讨论,把K2、K3、K4分别在xi点 展成h的幂级数,代入线性组合式中,将得到的 公式与y(xi+1)在xi点上的泰勒展开式比较,使其 两式右端直到h4的系数相等,经过较复杂的解方 程过程便可得到关于ci,ai,bij的一组特解
a2=a3=b21=b32=1/2 b31=b41=b42=0 a4=b43=1 c1=c4=1/6 c2=c3=1/3
称为P阶龙格-库塔方法。
其中ai,bij,ci为待定参数,要求上式yi+1在点(xi,yi)处作 Tailor展开,通过相同项的系数确定参数。
2020/7/5
9
对于常微分方程的初值问题
y f (x, y) a x b
y(a)
y0
的解y=y(x),在区间[xi, xi+1]上使用微分中值定理,有
R-K方法不是直接使用Taylor级数,而是利用它的思想
2020/7/5
5
Runge-Kutta 方法是一种高精度的单步法,简称R-K法 龙格-库塔(R-K)法的基本思想
Euler公式可改写成
yi1 yi K K hf ( xi , yi )
则yi+1的表达式与y(xi+1)的Taylor展开式的前两项 完全相同,即局部截断误差为O(h2)。
推导过程与前面类似,由于过程复杂,这 里从略,只介绍最常用的一种四阶经典龙格— 库塔公式。
2020/7/5
23
设 yi+1=yi+c1K1+c2K2+c3K3+c4K4
这里K1、K2、K3、K4为四个不同点上的函数值, 分别设其为
K1=hf (xi, yi) K2=hf (xi+a2h, yi+b21K1) K3=hf (xi+a3h, yi+b31K1+b32K2) K4=hf (xi+a4h, yi+b41K1+b42K2+b43K3) 其中c1、c2、c3、c4、a2、a3、a4、b21、b31、 b32、b41、b42、b43均为待定系数。
相关文档
最新文档