数字逻辑课后习题答案

合集下载

数字逻辑课后习题答案

数字逻辑课后习题答案

第一章开关理论基础1.将下列十进制数化为二进制数和八进制数十进制二进制八进制491100016153110101651271111111177635100111101111737.493111.11117.7479.4310011001.0110111231.3342.将下列二进制数转换成十进制数和八进制数二进制十进制八进制1010101211110161751011100921340.100110.593750.4610111147570110113153.将下列十进制数转换成8421BCD码1997=000110011001011165.312=01100101.0011000100103.1416=0011.00010100000101100.9475=0.10010100011101014.列出真值表,写出X的真值表达式A B C X00000010010001111000101111011111X=A BC+A B C+AB C+ABC5.求下列函数的值当A,B,C为0,1,0时:A B+BC=1(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,1,0时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,0,1时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=06.用真值表证明下列恒等式(1)(A⊕B)⊕C=A⊕(B⊕C)A B C(A⊕B)⊕C A⊕(B⊕C)0000000111010110110010011101001100011111所以由真值表得证。

(2)A⊕B⊕C=A⊕B⊕CA B C A⊕B⊕C A⊕B⊕C00011001000100001111100001011111011111007.证明下列等式(1)A+A B=A+B 证明:左边=A+A B=A(B+B )+A B =AB+A B +A B =AB+A B +AB+A B =A+B =右边(2)ABC+A B C+AB C =AB+AC 证明:左边=ABC+A B C+AB C=ABC+A B C+AB C +ABC =AC(B+B )+AB(C+C )=AB+AC =右边(3)E D C CD A C B A A )(++++=A+CD+E证明:左边=ED C CD A C B A A )(++++=A+CD+A B C +CDE =A+CD+CD E =A+CD+E =右边(4)C B A C B A B A ++=CB C A B A ++证明:左边=CB AC B A B A ++=C B A C AB C B A B A +++)(=C B C A B A ++=右边8.用布尔代数化简下列各逻辑函数表达式(1)F=A+ABC+A C B +CB+C B =A+BC+C B (2)F=(A+B+C )(A+B+C)=(A+B)+C C =A+B (3)F=ABC D +ABD+BC D +ABCD+B C =AB+BC+BD (4)F=C AB C B BC A AC +++=BC(5)F=)()()()(B A B A B A B A ++++=B A 9.将下列函数展开为最小项表达式(1)F(A,B,C)=Σ(1,4,5,6,7)(2)F(A,B,C,D)=Σ(4,5,6,7,9,12,14)10.用卡诺图化简下列各式(1)CAB C B BC A AC F +++=0 ABC00 01 11 1011111化简得F=C(2)CB A D A B A DC AB CD B A F++++=111111AB CD 00 01 11 1000011110化简得F=DA B A +(3)F(A,B,C,D)=∑m (0,1,2,5,6,7,8,9,13,14)1111111111ABCD 00 01 11 1000011110化简得F=DBC D C A BC A C B D C ++++(4)F(A,B,C,D)=∑m (0,13,14,15)+∑ϕ(1,2,3,9,10,11)Φ1ΦΦ1ΦΦ1Φ1AB CD 00 01 11 1000011110化简得F=ACAD B A ++11.利用与非门实现下列函数,并画出逻辑图。

数字逻辑(白中英)课后习题答案

数字逻辑(白中英)课后习题答案

第四章习题答案1.设计4个寄存器堆。

解:寄存器组2. 设计具有4个寄存器的队列。

解:输入数据输出数据3.设计具有4个寄存器的堆栈解:可用具有左移、右移的移位寄存器构成堆栈。

栈顶SR 1SR 2SR 3输入数据输出数据压入弹出4.SRAM 、DRAM 的区别解:DRAM 表示动态随机存取存储器,其基本存储单元是一个晶体管和一个电容器,是一种以电荷形式进行存储的半导体存储器,充满电荷的电容器代表逻辑“1”,“空”的电容器代表逻辑“0”。

数据存储在电容器中,电容存储的电荷一般是会慢慢泄漏的,因此内存需要不时地刷新。

电容需要电流进行充电,而电流充电的过程也是需要一定时间的,一般是0.2-0.18微秒(由于内存工作环境所限制,不可能无限制的提高电流的强度),在这个充电的过程中内存是不能被访问的。

DRAM 拥有更高的密度,常常用于PC 中的主存储器。

SRAM 是静态的,存储单元由4个晶体管和两个电阻器构成,只要供电它就会保持一个值,没有刷新周期,因此SRAM 比DRAM 要快。

SRAM 常常用于高速缓冲存储器,因为它有更高的速率;5. 为什么DRAM 采用行选通和列选通解:DRAM 存储器读/写周期时,在行选通信号RAS 有效下输入行地址,在列选通信号CAS 有效下输入列地址。

如果是读周期,此位组内容被读出;如果是写周期,将总线上数据写入此位组。

由于DRAM 需要不断刷新,最常用的是“只有行地址有效”的方法,按照这种方法,刷新时,是在RAS 有效下输入刷新地址,存储体的列地址无效,一次选中存储体中的一行进行刷新。

每当一个行地址信号RAS 有效选中某一行时,该行的所有存储体单元进行刷新。

6. 用ROM 实现二进制码到余3码转换 解: 真值表如下:8421码 余三码B3B2 B1 B0G3G2 G1G00 0 0 00 0 0 10 0 1 00 0 1 10 1 0 00 1 0 10 1 1 00 1 1 11 0 0 01 0 0 10 1 1 01 0 0 01 0 1 01 1 0 01 1 1 10 0 0 10 0 1 10 1 0 10 1 1 110 0最小项表达式为:G 3=∑)9,8,7,6,5( G 2=∑)9,4,3,2,1( G 1=∑)8,7,4,3,0( G 0=∑)8,6,4,2,0( 阵列图为:G 3G 2G 1GB 3B 2B 1B B 07. 用ROM 实现8位二进制码到8421码转换解:输入为8位二进制数,输出为3位BCD 码,12位二进制数,所以,所需ROM 的容量为:28*12=30728.ROM、EPROM和EEPROM的区别解:ROM 指的是“只读存储器”,即Read-Only Memory。

数字逻辑电路(王秀敏主编)课后习题答案

数字逻辑电路(王秀敏主编)课后习题答案

第1章 概述检 测 题一、填空题1. 在时间和数值上都是连续变化的信号是_______信号;在时间和数值上是离散和量化的信号是_______信号。

2. 表示逻辑函数常用的方法有4种,它们是_______,________,________,_______。

3. 正逻辑体制高电平用逻辑_____表示,低电平用逻辑_____表示。

4. 任何进位计数制,数值的表示都包含两个基本的要素:_______和_______。

5. 102816(96.75)( )( )( )===二、请完成下列题的进制转换1.210(1011001)( )=810(736.4)( )=1610(34)( )F C =2.112(30)( )=102(16.6875)( )= 3.28(1011101)( )=28(1010010.11010)( )=4.82(127.65)( )=162(9.16)( )A = 5.216(1110101100)( )=216(1111.001)( )=三、选择题1.在下列各数中,最小的数是( )(a) 2(101001) (b) 8(52) (c) 16(2)B (d) 10(96)2. 8421(100110000110)( )BCD 余3BCD(A)100110001001 (B)100110001000 (C)110010000110 (D)101100001100四、简述题1.为什么在数字系统中通常采用二进制/2.何为进位计数制? 何为码制? 何为正、负逻辑?3.算术运算、逻辑运算和关系运算的区别?检测题答案一、填空题1. 答案:模拟,数字2. 答案:真值表,逻辑函数式,逻辑图,卡诺图。

3. 答案:1,0;0,14. 答案:基数,位数5. 答案:1100000.11,140.6,60.0二、请完成下列题的进制转换1. 89; 478.5; 80122. 11110; 10000.10113. 135; 122.624. 1010111.110101; 10011010.000101105. 3AC ; F.2三、选择题1.答案:A2. 答案:A四、简述题答案:略习题[题1.1] 将下列十进制数转换为二进制数。

数字逻辑第四版课后练习题含答案

数字逻辑第四版课后练习题含答案

数字逻辑第四版课后练习题含答案1. 第一章1.1 课后习题1. 将十进制数22转换为二进制数。

答:22 = 101102. 将二进制数1101.11转换为十进制数。

答:1101.11 = 1 x 2^3 + 1 x 2^2 + 0 x 2^1 + 1 x 2^0 + 1 x 2^(-1) + 1 x 2^(-2) = 13.753. 将二进制数1101.01101转换为十进制数。

答:1101.01101 = 1 x 2^3 + 1 x 2^2 + 0 x 2^1 + 1 x 2^0 + 0 x 2^(-1)+ 1 x 2^(-2) + 1 x 2^(-4) + 0 x 2^(-5) + 1 x 2^(-6) = 13.406251.2 实验习题1. 合成与门电路设计一个合成与门电路,使得它的输入A,B和C,只有当A=B=C=1时输出为1,其他情况输出为0。

答:下面是一个合成与门电路的示意图。

合成与门电路示意图其中,S1和S2是两个开关,当它们都被打开时,电路才会输出1。

2. 第二章2.1 课后习题1. 将十进制数168转换为八进制数和二进制数。

答:168 = 2 x 8^3 + 1 x 8^2 + 0 x 8^1 + 0 x 8^0 = 250(八进制)。

168 = 10101000(二进制)。

2. 将八进制数237转换为十进制数和二进制数。

答:237 = 2 x 8^2 + 3 x 8^1 + 7 x 8^0 = 159(十进制)。

237 = 010111111(二进制)。

2.2 实验习题1. 全加器电路设计一个全加器电路,它有三个输入A,B和C_in,两个输出S和C_out。

答:下面是一个全加器电路的示意图。

C_in|/ \\/ \\/ \\/ \\/ \\A|________ \\| | AND Gate______| |B|__| XOR |_| S\\\\ /\\ /\\ /\\ /| | OR Gate| ||_| C_out其中,AND Gate表示与门,XOR Gate表示异或门,OR Gate表示或门。

数字逻辑课本习题答案

数字逻辑课本习题答案

习 题 五1. 简述时序逻辑电路与组合逻辑电路的主要区别。

解答组合逻辑电路:若逻辑电路在任何时刻产生的稳定输出值仅仅取决于该时刻各输入值的组合,而与过去的输入值无关,则称为组合逻辑电路。

组合电路具有如下特征:②信号是单向传输的,不存在任何反馈回路。

时序逻辑电路:若逻辑电路在任何时刻产生的稳定输出信号不仅与电路该时刻的输入信号有关,还与电路过去的输入信号有关,则称为时序逻辑电路。

时序逻辑○1○2 电路中包含反馈回路,通过反馈使电路功能与“时序”○3 电路的输出由电路当时的输入和状态(过去的输入)共同决定。

2. 作出与表1所示状态表对应的状态图。

表 1解答根据表1所示状态表可作出对应的状态图如图1所示。

图13.已知状态图如图2所示,输入序列为x=11010010,设初始状态为A,求状态和输出响应序列。

图 2解答状态响应序列:A A B C B B C B输出响应序列:0 0 0 0 1 0 0 14. 分析图3所示逻辑电路。

假定电路初始状态为“00”,说明该电路逻辑功能。

图 3 解答○1根据电路图可写出输出函数和激励函数表达式为 xK x,J ,x K ,xy J y xy Z 1111212=====○2 根据输出函数、激励函数表达式和JK 触发器功能表可作出状态表如表2所示,状态图如图4所示。

表2图4○3由状态图可知,该电路为“111…”序列检测器。

5. 分析图5所示同步时序逻辑电路,说明该电路功能。

图5解答○1根据电路图可写出输出函数和激励函数表达式为 )(D ,x y x D y y x Z 21112121212y x y y y y y x ⊕=+=+=○2 根据输出函数、激励函数表达式和D 触发器功能表可作出状态表如表3所示,状态图如图6所示。

表3图6○3由状态图可知,该电路是一个三进制可逆计数器(又称模3可逆计数器),当x=0时实现加1计数,当x=1时实现减1计数。

6.分析图7所示逻辑电路,说明该电路功能。

数字逻辑+课后答案数字逻辑+课后答案

数字逻辑+课后答案数字逻辑+课后答案

习题解答1-3:(1)(1110101)2=(117)10=(165)8=(75)16 (2)(0.110101.2=(0.828125)10=(0.65)8=(0.D4)16 (3)(10111.01)2=(23.25)10=(27.2)8=(17.4)16 1-7:[N ]原=1.1010;[N ]反=1.0101;N =-0.1010 1-10:(1)(011010000011)8421BCD =(683)10=(1010101011)2 (2)(01000101.1001)8421BCD =(45.9)10=(101101.1110)2 2-4:(1)()();'()()F A C B C F A C B C =++=++(2)()()();'()()()F A B B C A CD F A B B C A CD =+++=+++ (3)[()()];'[()()]F A B C D E F G F A B C D E F G =++++=++++ 2-6:(1)F =A +B (2)F =1 (3)F =A BD +2-7:(1)F (A ,B ,C )=ABC ABC ABC ABC ABC ++++=∑m(0,4,5,6,7);F (A ,B ,C )=()()()A B C A B C A B C ++++++=∏M(1,2,3)(2)F (A ,B ,C ,D )=∑m(4,5,6,7,12,13,14,15);F (A ,B ,C ,D )=∏M(0,1,2,3,8,9,10,11) (3)F (A ,B ,C ,D )=∑m(0,1,2,3,4);F (A ,B ,C ,D )=∏M(5,6,7,8,9,10,11,12,13,14,15) 2-8:(1) F (A ,B ,C )=()A C BC A B C +=+(2)F (A ,B ,C ,D )=()()AB AC BC A B C A B C ++=++++ (3)F (A ,B ,C ,D )=B D B D +=+2-11:(1)F (A ,B ,C ,D )=A BD +, ∑d(1,3,4,5,6,8,10)=0;(2) 123(,,,)(,,,)(,,,)F A B C D BD ABCD ABCD ABDF A B C D BD ABCD ACD A CD F A B C D ABCD ABCD ABC=+++=+++=++,3-1:(1)F (A ,B ,C )=AC BC AC BC +=⋅F (A ,B ,C )=()()A C B C A C B C ++=+++(2)F (A ,B ,C )=∏M(3,6)=B AC AC B AC AC ++=⋅⋅F (A ,B ,C )=∏M(3,6)=()()A B C A B C A B C A B C ++++=+++++(4)F (A ,B ,C ,D )=AB A C BCD AB ++=F (A ,B ,C ,D )=0AB A C BCD A B A B ++=+=++3-3:F (A ,B ,C )=[()()][()()]A B C B C A C B C B C ABC ABC ABC +++⋅+++=++ 3-7:(2)根据真值表,列出逻辑函数表达式,并化简为“与非”式。

数字逻辑课后题答案

数字逻辑课后题答案
解:为分析问题的方便,下面写出状态表:
当输入序列和相应的输出序列为00/0时,A、B、C、D都符合条件,但当序列为01/1时要转为B态或C态,就排除了A、D态;下一个序列为00/0时,B、C保持原态,接着序列为10/0时,B态转为A态,C态转为D态,但当最后一个序列为11/1时,只有D态才有可能输出1,这就排除了B态。故确定该同步时序电路的初始状态为C态。
真值表:
用xx化简:Y7=0,Y6=A,Y5=B,Y4=C,Y3=0,Y2=D ,Y1=0,Y0=D 。
逻辑电路如下图所示,在化简时由于利用了无关项,本逻辑电路不需要任何逻辑门。
3.7 设计一个能接收两位二进制Y=y1y0,X=x1x0,并有输出Z=z1z2的逻辑电路,当Y=X时,Z=11,当Y>X时,Z=10,当Y<X时,Z=01。用“与非”门实现该逻辑电路。
⑶ (33.333)10=(21.553F7)16=(100001.010101)2=(41.25237)8
1.5 如何判断一个二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除?
解: 一个二进制正整数被(2)10除时,小数点向左移动一位, 被(4)10除时,小数点向左移动两位,能被整除时,应无余数,故当b1=0和b0=0时, 二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除.
∴537-846=-309
[537-846]10补=[537]10补+[-846]10补=0537+9154=9691
∴537-846=-309
1.10 将下列8421BCD码转换成二进制数和十进制数:
⑴ (0110,1000,0011)8421BCD=(1010101011)2=(683)10

数字逻辑(第二版)毛法尧课后题答案(1-6章)

数字逻辑(第二版)毛法尧课后题答案(1-6章)

习题一1.1 把下列不同进制数写成按权展开式:⑴(4517.239)10= 4×103+5×102+1×101+7×100+2×10-1+3×10-2+9×10-3⑵(10110.0101)2=1×24+0×23+1×22+1×21+0×20+0×2-1+1×2-2+0×2-3+1×2-4⑶(325.744)8=3×82+2×81+5×80+7×8-1+4×8-2+4×8-3⑷(785.4AF)16=7×162+8×161+5×160+4×16-1+A×16-2+F×16-31.2 完成下列二进制表达式的运算:1.3 将下列二进制数转换成十进制数、八进制数和十六进制数:⑴(1110101)2=(165)8=(75)16=7×16+5=(117)10⑵(0.110101)2=(0.65)8=(0.D4)16=13×16-1+4×16-2=(0.828125)10⑶(10111.01)2=(27.2)8=(17.4)16=1×16+7+4×16-1=(23.25)101.4 将下列十进制数转换成二进制数、八进制数和十六进制数,精确到小数点后5位:⑴(29)10=(1D)16=(11101)2=(35)8⑵(0.207)10=(0.34FDF)16=(0.001101)2=(0.15176)8⑶(33.333)10=(21.553F7)16=(100001.010101)2=(41.25237)81.5 如何判断一个二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除?解: 一个二进制正整数被(2)10除时,小数点向左移动一位, 被(4)10除时,小数点向左移动两位,能被整除时,应无余数,故当b1=0和b0=0时, 二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除.1.6 写出下列各数的原码、反码和补码:⑴0.1011[0.1011]原=0.1011; [0.1011]反=0.1011; [0.1011]补=0.1011⑵0.0000[0.000]原=0.0000; [0.0000]反=0.0000; [0.0000]补=0.0000⑶-10110[-10110]原=110110; [-10110]反=101001; [-10110]补=1010101.7 已知[N]补=1.0110,求[N]原,[N]反和N.解:由[N]补=1.0110得: [N]反=[N]补-1=1.0101, [N]原=1.1010,N=-0.10101.8 用原码、反码和补码完成如下运算:⑴0000101-0011010[0000101-0011010]原=10010101;∴0000101-0011010=-0010101。

数字逻辑课后习题答案

数字逻辑课后习题答案

第一章开关理论基础1.将下列十进制数化为二进制数和八进制数十进制二进制八进制491100016153110101651271111111177635100111101111737.493111.11117.7479.4310011001.0110111231.3342.将下列二进制数转换成十进制数和八进制数二进制十进制八进制1010101211110161751011100921340.100110.593750.4610111147570110113153.将下列十进制数转换成8421BCD码1997=000110011001011165.312=01100101.0011000100103.1416=0011.00010100000101100.9475=0.10010100011101014.列出真值表,写出X的真值表达式A B C X00000010010001111000101111011111X=A BC+A B C+AB C+ABC5.求下列函数的值当A,B,C为0,1,0时:A B+BC=1(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,1,0时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,0,1时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=06.用真值表证明下列恒等式(1)(A⊕B)⊕C=A⊕(B⊕C)A B C(A⊕B)⊕C A⊕(B⊕C)0000000111010110110010011101001100011111所以由真值表得证。

(2)A⊕B⊕C=A⊕B⊕CA B C A⊕B⊕C A⊕B⊕C00011001000100001111100001011111011111007.证明下列等式(1)A+A B=A+B 证明:左边=A+A B=A(B+B )+A B =AB+A B +A B =AB+A B +AB+A B =A+B =右边(2)ABC+A B C+AB C =AB+AC 证明:左边=ABC+A B C+AB C=ABC+A B C+AB C +ABC =AC(B+B )+AB(C+C )=AB+AC =右边(3)E D C CD A C B A A )(++++=A+CD+E证明:左边=ED C CD A C B A A )(++++=A+CD+A B C +CDE =A+CD+CD E =A+CD+E =右边(4)C B A C B A B A ++=CB C A B A ++证明:左边=CB AC B A B A ++=C B A C AB C B A B A +++)(=C B C A B A ++=右边8.用布尔代数化简下列各逻辑函数表达式(1)F=A+ABC+A C B +CB+C B =A+BC+C B (2)F=(A+B+C )(A+B+C)=(A+B)+C C =A+B (3)F=ABC D +ABD+BC D +ABCD+B C =AB+BC+BD (4)F=C AB C B BC A AC +++=BC(5)F=)()()()(B A B A B A B A ++++=B A 9.将下列函数展开为最小项表达式(1)F(A,B,C)=Σ(1,4,5,6,7)(2)F(A,B,C,D)=Σ(4,5,6,7,9,12,14)10.用卡诺图化简下列各式(1)CAB C B BC A AC F +++=0 ABC00 01 11 1011111化简得F=C(2)CB A D A B A DC AB CD B A F++++=111111AB CD 00 01 11 1000011110化简得F=DA B A +(3)F(A,B,C,D)=∑m (0,1,2,5,6,7,8,9,13,14)1111111111ABCD 00 01 11 1000011110化简得F=DBC D C A BC A C B D C ++++(4)F(A,B,C,D)=∑m (0,13,14,15)+∑ϕ(1,2,3,9,10,11)Φ1ΦΦ1ΦΦ1Φ1AB CD 00 01 11 1000011110化简得F=ACAD B A ++11.利用与非门实现下列函数,并画出逻辑图。

数字逻辑课后题答案

数字逻辑课后题答案

数字逻辑课后题答案在每一个课堂完毕后,我们都需要做一下课后题来稳固知识,本文是为大家收集的数字逻辑课后题答案,欢送参考借鉴。

学校新来了一位老师,五个学生分别听到如下的情况:(1)是一位姓王的中年女老师,教语文课;(2)是一位姓丁的中年男老师,教数学课;(3)是一位姓刘的青年男老师,教外语课;(4)是一位姓李的青年男老师,教数学课;(5)是一位姓王的老年男老师,教外语课。

他们每人听到的四项情况中各有一项正确。

问:真实情况如何?答案:姓刘的老年女老师,教数学。

提示:假设是男老师,由(2)(3)(5)知,他既不是青年、中年,也不是老年,矛盾,所以是女老师。

再由(1)知,她不教语文,不是中年人。

假设她教外语,由(3)(5)知她必是中年人,矛盾,所以她教数学。

由(2)(4)知她是老年人,由(3)知她姓刘。

甲、乙、丙三人中有一人是牧师,一人是骗子,一人是赌棍.牧师只说真话,骗子只说假话,赌棍有时说真话有时说假话.甲说:“丙是牧师.”乙说:“甲是赌棍.”丙说:“乙是骗子.”那么请问甲、乙、丙三人各是什么职业?答案:甲是赌棍,乙是牧师,丙是骗子牧师说真话,不可能说别人是牧师,因此甲一定不是牧师.假设乙是牧师,那么甲一定是赌棍,那么丙就是骗子,符合题意.假设丙是牧师,那么乙就是赌棍,甲是骗子,此时甲不可能说出“丙是牧师”这句真话,因此矛盾.提示:这是一道逻辑推理的试题,重点中学的考试中很愿意考这样的题型,解答这类问题时首先要从所给的条件中理清各局部之间的关系,然后进展分析推理,排除一些不可能的情况,逐步归纳,找到正确的答案。

数学竞赛后,小明、小华、小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌.王老师猜想:"小明得金牌;小华不得金牌;小强不得铜牌."结果王老师只猜对了一个.那么小明得牌,小华得牌,小强得牌。

答案:逻辑问题通常直接采用正确的推理,逐一分析,讨论所有可能出现的情况,舍弃不合理的情形,最后得到问题的解答.这里以小明所得奖牌进展分析。

(完整版)数字逻辑课后习题答案

(完整版)数字逻辑课后习题答案

习题五5.1 分析图5.35所示的脉冲异步时序电路。

解:各触发器的激励方程和时钟方程为:;;1K J 11==1K ,Q J 232==1K ,Q Q J 3323==;CP CP 1=132Q CP CP == ∴各触发器的状态方程为:(CP 的下降沿触发);11n 1Q Q =+ (Q 1的下降沿触发);321n 2Q Q Q =+ (Q 1的下降沿触发)321n 3Q Q Q =+该电路是一能自启动的六进制计数器。

5.2 已知某脉冲异步时序电路的状态表如表5.29所示,试用D 触发器和适当的逻辑门实现该状态表描述的逻辑功能。

解:表5.29所示为最小化状态表。

根据状态分配原则,无“列”相邻(行相邻在脉冲异步时序电路中不适用。

),在“输出” 相邻中,应给AD 、AC 分配相邻代码。

取A 为逻辑0,如下卡诺图所示,状态赋值为:A=00,B=11;C=01;D=10。

于是,二进制状态表如下,根据D 触发器的激励表可画出CP 2、D 2、CP 1、D 1、Z 的卡诺图,得到激励函数和输出函数,以及画出所设计的脉冲异步时序电路。

得激励方程和输出方程:;22x CP =;32212x x Q x D ++=;3221x x Q CP +=;31211x Q x Q D +=。

)Q Q (x Q x Q x Z 2132313+=+=5.3 设计一个脉冲异步时序电路,该电路有三个输入端x 1、x 2和x 3,一个输出端Z 。

仅当输入序列x 1-x 2-x 3出现时,输出Z 产输出脉冲,并且与输入序列的最后一个脉冲重叠。

试作出该电路的原始状态图和状态表。

解:5.4 分析图5.36所示的电平异步时序电路。

解:(一)写出激励函数和输出函数表达式:;1112122y x y y x x Y ++=;1221121y x y x x x Y ++=12y x Z = (二)作状态流程表。

(三) 作时间图。

设输入状态的变化序列为00→01→11→10→00→10→11→01,初始总态为(12x x 12x x ,12y y )=(00,00)。

数字逻辑课后习题答案(科学出版社_第五版)

数字逻辑课后习题答案(科学出版社_第五版)

第一章开关理论基础1.将下列十进制数化为二进制数和八进制数十进制二进制八进制49 110001 6153 110101 65127 1111111 177635 1001111011 11737.493 111.1111 7.7479.43 10011001.0110111 231.3342.将下列二进制数转换成十进制数和八进制数二进制十进制八进制1010 10 12111101 61 751011100 92 1340.10011 0.59375 0.46101111 47 5701101 13 153.将下列十进制数转换成8421BCD码1997=0001 1001 1001 011165.312=0110 0101.0011 0001 00103.1416=0011.0001 0100 0001 01100.9475=0.1001 0100 0111 01014.列出真值表,写出X的真值表达式A B C X0 0 0 00 0 1 00 1 0 00 1 1 11 0 0 01 0 1 11 1 0 11 1 1 1 X=A BC+A B C+AB C+ABC5.求下列函数的值当A,B,C为0,1,0时:A B+BC=1(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,1,0时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,0,1时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=06.用真值表证明下列恒等式(1) (A⊕B)⊕C=A⊕(B⊕C)A B C (A⊕B)⊕C A⊕(B⊕C)0 0 0 0 00 0 1 1 10 1 0 1 10 1 1 0 01 0 0 1 11 0 1 0 01 1 0 0 01 1 1 1 1所以由真值表得证。

(2)A⊕B⊕C=A⊕B⊕CA B C A⊕B⊕C A⊕B⊕C0 0 0 1 10 0 1 0 00 1 0 0 00 1 1 1 11 0 0 0 01 0 1 1 11 1 0 1 11 1 1 0 07.证明下列等式(1)A+A B=A+B证明:左边= A+A B=A(B+B)+A B=AB+A B+A B=AB+A B+AB+A B=A+B=右边(2)ABC+A B C+AB C=AB+AC证明:左边= ABC+A B C+AB C= ABC+A B C+AB C+ABC=AC(B+B)+AB(C+C)=AB+AC=右边(3)EDCCDACBAA)(++++=A+CD+E证明:左边=EDCCDACBAA)(++++=A+CD+A B C+CD E=A+CD+CD E=A+CD+E=右边(4)C B A C B A B A ++=CB C A B A ++证明:左边=CB AC B A B A ++=CB AC AB C B A B A +++)(=C B C A B A ++=右边8.用布尔代数化简下列各逻辑函数表达式(1) F=A+ABC+A C B +CB+C B = A+BC+C B(2) F =(A+B+C )(A+B+C) = (A+B)+C C = A+B(3) F =ABC D +ABD+BC D +ABCD+B C = AB+BC+BD(4) F=C AB C B BC A AC +++= BC(5) F=)()()()(B A B A B A B A ++++=BA 9.将下列函数展开为最小项表达式(1) F(A,B,C) = Σ(1,4,5,6,7)(2) F(A,B,C,D) = Σ(4,5,6,7,9,12,14)10.用卡诺图化简下列各式(1)CAB C B BC A AC F +++=0ABC00 01 11 1011111化简得F=C(2)CB A D A B A DC AB CD B A F++++=111111ABCD 00 01 11 1000011110化简得F=DA B A +(3) F(A,B,C,D)=∑m (0,1,2,5,6,7,8,9,13,14)1111111111AB CD 00 01 11 1000011110化简得F=DBC D C A BC A C B D C ++++(4) F(A,B,C,D)=∑m (0,13,14,15)+∑ϕ(1,2,3,9,10,11)Φ1ΦΦ1ΦΦ1Φ1AB CD 00 01 11 1000011110化简得F=ACAD B A ++11.利用与非门实现下列函数,并画出逻辑图。

数字逻辑课后答案

数字逻辑课后答案

F = ABC + ABC
= (A + B + C)(A + B + C )
10
1
0
1
1
F的卡诺图 的卡诺图 ABC
湖南理工学院计算机与信息工程系通信教研室 陈进制作
第2章习题 章习题 2.8用卡诺图化简法求出最简与-或表达式和最简或-与表达式。 ⑵ F(A, B, C, D ) = BC + D + D(B + C )⋅ (AD + B) 解: 画出逻辑函数的卡诺图。 先转换成与或表达式
Y2 = B Y2 = A
EN = 1 门2、4打开 Y1 = B
A B EN Y1 Y2
湖南理工学院计算机与信息工程系通信教研室 陈进制作
第3章习题 章习题 3.13 在图3.65(a)所示的D触发器电 路中,若输入端D的波形如图 3.66(b) 所示,试画出输出端Q的波 形(设触发器初态为0)。 解: 触发器初态为0 在CP=1期间, Qn+1=D Q CP D
F = (A + B)(A + C)(C + D )(B + D )
湖南理工学院计算机与信息工程系通信教研室 陈进制作
第2章习题 章习题 2.9用卡诺图判断函数F(A,B,C,D)和G(A,B,C,D) 之间的关系。
F(A, B, C, D ) = BD + A D + CD + ACD G (A, B, C, D ) = BD + CD + ACD + ABD
⊕ ⊕⊕⊕ ⊕
⊕ ⊕⊕⊕ ⊕⊕
⑵ (1100110)2 = 64+32+4+2 = (102)10 = (0001 0000 0010)8421码 (1100110)2 =( 1010101 )格雷码 ?

数字逻辑 课后习题答案

数字逻辑 课后习题答案
第一章
1. 什么是模拟信号?什么是数字信号?试举出实例。
解答 模拟信号-----指在时间上和数值上均作连续变化的信号。例如,温度、压
力、交流电压等信号。 数字信号-----指信号的变化在时间上和数值上都是断续的,阶跃式的,或
者说是离散的,这类信号有时又称为离散信号。例如,在数 字系统中的脉冲信号、开关状态等。
第二章
1 假定一个电路中,指示灯 F 和开关 A、B、C 的关系为 F=(A+B)C
试画出相应电路图。 解答
电路图如图 1 所示。
图1
2 用逻辑代数的公理、定理和规则证明下列表达式:
(1) AB + AC = AB + AC (2) AB + AB + AB + AB = 1 (3) AABC = ABC + ABC + ABC
= (A + B) ⋅ (A + B) =B
( ) F = BC + D + D ⋅ B + C ⋅ (AC + B)
= BC + D + (B + C)(AC + B) = BC + D + BC(AC + B) = BC + D + AC + B = B + D + AC
(3) (33.33)10 =(?)2 =(?)8 =(?)16
23
3
21
6………… .1
2
8…………..0
2
4…………..0
2 2…………..0
2 1 ………. 0
0…………1
0.3 3
×
2
0.6 6

数字逻辑课后答案 第三章

数字逻辑课后答案  第三章

第三章 时序逻辑1.写出触发器的次态方程,并根据已给波形画出输出 Q 的波形。

解:2. 说明由RS 触发器组成的防抖动电路的工作原理,画出对应输入输出波形解:3. 已知JK 信号如图,请画出负边沿JK 触发器的输出波形(设触发器的初态为0)1)(1=+++=+c b a Qa cb Q nn4. 写出下图所示个触发器次态方程,指出CP 脉冲到来时,触发器置“1”的条件。

解:(1),若使触发器置“1”,则A 、B 取值相异。

(2),若使触发器置“1”,则A 、B 、C 、D 取值为奇数个1。

5.写出各触发器的次态方程,并按所给的CP 信号,画出各触发器的输出波形(设初态为0)解:6. 设计实现8位数据的串行→并行转换器。

B A B A D +=DC B A K J ⊕⊕⊕==Q AQ B Q D Q C Q E Q F Q7. 分析下图所示同步计数电路解:先写出激励方程,然后求得状态方程状态图如下:该计数器是五进制计数器,可以自启动。

8. 作出状态转移表和状态图,确定其输出序列。

解:求得状态方程如下故输出序列为:000119. 用D 触发器构成按循环码(000→001→011→111→101→100→000)规律工作的六进制同步计数器解:先列出真值表,然后求得激励方程PS NS 输出N0 0 0 0 0 1 00 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1化简得:逻辑电路图如下:n Q 2n Q 1n Q 012+n Q 11+n Q 10+n Q n n n nn n n n n n nnQ Q Q Q Q Q Q Q Q Q Q Q Z 121002*********+==+==+++nnn nnn nnnn QQ Q D QQ Q D QQ Q Q D 121211121122+====+==+++10. 用D 触发器设计3位二进制加法计数器,并画出波形图。

《数字逻辑与数字系统》课后习题答案

《数字逻辑与数字系统》课后习题答案
《数字逻辑与数字系统》课后习题答案
-1-
《数字逻辑与数字系统》课后习题答案
-2-
《数字逻辑与数字系统》课后习题答案
-3-
《数字逻辑与数字系统》课后习题答案
-4-
《数字逻辑与数字系统》课后习题答案
-5-
《数字逻辑与数字系统》课后习题答案
-6-
《数字逻辑与数字系统》课后习题答案
-7-
《数字逻辑与数字系统》课后习题答案
- 15 -
-8-
《数字逻辑与数字系统》课后习题答案
-9-
《数字逻辑与数字系统》课后习题答案
- 10 -
《数字逻辑与数字系统》课后习题答案
- 11 -
《数字逻辑与数字系统》课后习题答案
- 12 -
《数字逻辑与数字系统》课后习题答案
- 13 -
《数字逻辑与数字系统》课后习题答案
- 14 -
《数字逻辑与数Βιβλιοθήκη 系统》课后习题答案
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题五
5.1 分析图5.35所示的脉冲异步时序电路。

解:各触发器的激励方程和时钟方程为:
1K J 11==;1K ,Q J 232==;1K ,Q Q J 3323==
CP CP 1=;132Q CP CP ==
∴各触发器的状态方程为:
11n 1Q Q =+ (CP 的下降沿触发);
321n 2Q Q Q =+ (Q 1的下降沿触发);
321n 3Q Q Q =+ (Q 1的下降沿触发)
该电路是一能自启动的六进制计数器。

5.2 已知某脉冲异步时序电路的状态表如表5.29所示,试用D 触发器
和适当的逻辑门实现该状态表描述的逻辑功能。

解:表5.29所示为最小化状态表。

根据状态分配原则,无“列”相邻
(行相邻在脉冲异步时序电路中不适用。

),在“输出” 相邻中,应
给AD 、AC 分配相邻代码。

取A 为逻辑0,如下卡诺图所示,状态赋
值为:A=00,B=11;C=01;D=10。

于是,二进制状态表如下,根据
D 触发器的激励表可画出CP 2、D 2、CP 1、D 1、Z 的卡诺图,得到激励函数和输出函数,以及画出所设计的脉冲异步时序电路。

得激励方程和输出方程:
22x CP =;
32212x x Q x D ++=; 3221x x Q CP +=;
31211x Q x Q D +=;
)Q Q (x Q x Q x Z 2132313+=+=。

5.3 设计一个脉冲异步时序电路,该电路有三个输入端x 1、x 2和x 3,一个输出端Z 。

仅当输入序列x 1-x 2-x 3出现时,输出Z 产输出脉冲,并且与输入序列的最后一个脉冲重叠。

试作出该电路的原始状态图和状态表。

解:
5.4 分析图5.36所示的电平异步时序电路。

解:(一)写出激励函数和输出函数表达式:
1112122y x y y x x Y ++=;
1221121y x y x x x Y ++=;
12y x Z =
(二)作状态流程表。

(三) 作时间图。

设输入状态12x x 的变化序列为00→01→11→10→00→10→11→01,初始总态为(12x x ,
12y y )=(00,00)。

从本题的状态流程表推演出总响应序列为
(三)电路功能:当输入状态12x x 的变化序列为01→11→10→00时,电路输出高电平1,
其余情况输出低电平0。

因此,该电平异步时序电路为01→11→10→00序列检测器。

5.5 某电平异步时序电路有输入x 1和x 2及输出Z 。

当输入x 1为0,输入x 2从0跳变到1时,输出Z 为1;当输入x 1为1,输入x 2从1跳变到0时,输出Z 也为1;当输入x 1和x 2相同时,输出Z 则为0;当为其他情况时,输出Z 保持不变。

试建立该电路的原始流程表。

5.6 将表5.30所示原始流程表简化为最简流程表。

解:从隐含表得相容状态对有:(1,3)、(2,4)、(2,5)、(4,5)、(5,6)。

作合并图得最大相容类为(1,3)、(2,4,5)、(5,6)。

用a代表(1,3),b代表(2,4),c代表(5,6)得最小化流程表:5.7判断图5.37电平异步时序电路是否存在竞争。

相关文档
最新文档