高等数学第十二章常微分方程习题课
高等数学下册第十二章习题答案详解
高等数学下册第十二章习题答案详解1.写出下列级数的一般项: (1)1111357++++;2242468x x +++⋅⋅⋅⋅;(3)35793579a a a a -+-+.解:(1)121n U n =-;(2)()2!!2n n xU n =;(3)()211121n n n a U n ++=-+; 2.求下列级数的和: (1) 23111555+++;(2) 11(1)(2)n n n n ∞=++∑;(3)1n ∞=∑.解:(1) 因为21115551115511511145n n n n S =+++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎣⎦=-⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎣⎦从而1lim 4n n S →∞=,即级数的和为14. (2)()()()()()()()111111211n u x n x n x n x n x n x n x n =+-+++⎛⎫-=⎪+-++++⎝⎭从而()()()()()()()()()()()()()()11111211212231111111211nS x x x x x x xx x n x nx n x n x x x n x n ⎛-+-=+++++++⎝⎫++-⎪+-++++⎭⎛⎫-=⎪++++⎝⎭因此()1lim 21nn S x x →∞=+,故级数的和为()121x x +(3)因为nU =-从而(11n S n =-+-+-++-+=-=所以lim 1n n S →∞=13.判定下列级数的敛散性:(1)1n ∞=∑;(2)1111166111116(54)(51)n n +++++⋅⋅⋅-+;(3)231232222(1)3333nn n --+-+-+;(4)1155n ++.解:(1) (11n S n =++++=从而lim n n S →∞=+∞,故级数发散.(2) 1111111115661111165451111551n S n n n ⎛⎫=-+-+-++- ⎪-+⎝⎭⎛⎫=- ⎪+⎝⎭从而1lim 5n n S →∞=,故原级数收敛,其和为15.(3)此级数为23q =-的等比级数,且|q |<1,故级数收敛.(4)∵n U =lim 10n n U →∞=≠,故级数发散. *4.利用柯西审敛原理判别下列级数的敛散性:(1)11(1)n n n +∞=-∑;(2)1cos 2n n nx ∞=∑; (3)()0111313233n n n n ∞=+-+++∑.解:(1)当P 为偶数时,()()()()122341111112311111231111112112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n pn n n +++++++++++----=++++++++-+--=++++⎛⎫⎛⎫-=----- ⎪ ⎪+-+-++++⎝⎭⎝⎭<+当P 为奇数时,()()()()1223411111123111112311111112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n n n +++++++++++----=++++++++-+-+=++++⎛⎫⎛⎫-=---- ⎪ ⎪+-++++⎝⎭⎝⎭<+因而,对于任何自然数P ,都有12111n n n p U U U n n++++++<<+, ∀ε>0,取11N ε⎡⎤=+⎢⎥⎣⎦,则当n >N 时,对任何自然数P 恒有12n n n p U U U ε++++++<成立,由柯西审敛原理知,级数()111n n n +∞=-∑收敛.(2)对于任意自然数P ,都有()()()1212121cos cos cos 12222111222111221121112212n n n pn n n pn n n p n p n p n U U U xn p x xn n ++++++++++++++++=+++≤+++⎛⎫- ⎪⎝⎭=-⎛⎫=- ⎪⎝⎭<于是, ∀ε>0(0<ε<1),∃N =21log ε⎡⎤⎢⎥⎣⎦,当n >N 时,对任意的自然数P 都有12n n n p U U U ε++++++<成立,由柯西审敛原理知,该级数收敛.(3)取P =n ,则()()()()()121111113113123133213223231131132161112n n n pU U U n n n n n n n n n n ++++++⎛⎫=+-+++-⎪++++++⋅+⋅+⋅+⎝⎭≥++++⋅+≥+>从而取0112ε=,则对任意的n ∈N ,都存在P =n 所得120n n n p U U U ε++++++>,由柯西审敛原理知,原级数发散.习题12-21.用比较判别法法判别下列级数的敛散性: (1)1114657(3)(5)n n ++++⋅⋅++; (2)22212131112131nn +++++++++++;(3)π1sin 3n n ∞=∑;(4)n ∞=; (5)11)1(0nn aa ∞=+>∑; (6)11(21)nn ∞=-∑.解:(1)∵ ()()21135n U nn n =<++而211n n ∞=∑收敛,由比较审敛法知1n n U ∞=∑收敛. (2)∵221111n n n U n n n n++=≥=++ 而11n n ∞=∑发散,由比较审敛法知,原级数发散.(3)∵ππsinsin 33lim lim ππ1π33n nn n n n→∞→∞=⋅=而1π3n n ∞=∑收敛,故1πsin 3n n ∞=∑也收敛.(4)∵321n U n=<=而3121n n∞=∑收敛,故1n ∞=收敛.(5)当a >1时,111n n nU a a =<+,而11n n a ∞=∑收敛,故111n n a∞=+∑也收敛. 当a =1时,11lim lim022n n n U →∞→∞==≠,级数发散.当0<a <1时,1lim lim 101n nn n U a →∞→∞==≠+,级数发散.综上所述,当a >1时,原级数收敛,当0<a ≤1时,原级数发散.(6)由021lim ln 2xx x →-=知121lim ln 211nx n→∞-=<而11n n ∞=∑发散,由比较审敛法知()1121n n ∞=-∑发散.2.用比值判别法判别下列级数的敛散性:(1)213n n n ∞=∑;(2)1!31n n n ∞=+∑; (3)232233331222322n n n +++++⋅⋅⋅⋅; (4) 12!n n n n n ∞=⋅∑. 解:(1) 23n n n U =,()2112311lim lim 133n n n n n nU n U n ++→∞→∞+=⋅=<,由比值审敛法知,级数收敛.(2) ()()111!311lim lim 31!31lim 131n n n n n nn n n U n U n n ++→∞→∞+→∞++=⋅++=⋅++=+∞所以原级数发散.(3) ()()11132lim lim 2313lim 21312n nn n n n n nn U n U n n n +++→∞→∞→∞⋅=⋅⋅+=+=> 所以原级数发散.(4) ()()1112!1lim lim 2!1lim 21122lim 1e 11n nn n nn n nnn n n U n n U n n n n n +++→∞→∞→∞→∞⋅+=⋅⋅+⎛⎫= ⎪+⎝⎭==<⎛⎫+ ⎪⎝⎭故原级数收敛.3.用根值判别法判别下列级数的敛散性:(1)1531nn n n ∞=⎛⎫⎪+⎝⎭∑; (2)()11ln(1)n n n ∞=+∑; (3)21131n n n n -∞=⎛⎫ ⎪-⎝⎭∑; (4)1nn n b a ∞=⎛⎫⎪⎝⎭∑,其中,,,()n n a a n a b a →→∞均为正数.解:(1)55lim1313n n n n →∞==>+,故原级数发散. (2) ()1lim01ln 1n n n →∞==<+,故原级数收敛.(3)121lim 1931nn n n n -→∞⎛⎫==<⎪-⎝⎭, 故原级数收敛.(4) lim limn n nb b a a →∞==, 当b <a 时,b a <1,原级数收敛;当b >a 时,b a >1,原级数发散;当b =a 时,ba=1,无法判定其敛散性.习题12-31.判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛?(1) 1+;(2)111(1)ln(1)n n n ∞-=-+∑;(3)2341111111153555333⋅-⋅+⋅-⋅+;(4)112(1)!n n n n ∞+=-⋅∑; (5)11ln (1)n n n n∞-=-⋅∑; (6)()11113∞--=-∑n n n n; *(6)1(1)111(1)23nnn n∞=-++++⋅∑. 解:(1)()11n n U-=-,级数1n n U ∞=∑>0n =,由莱布尼茨判别法级数收敛,又11121nn n Un∞∞===∑∑是P <1的P 级数,所以1nn U∞=∑发散,故原级数条件收敛. (2)()()111ln 1n n U n -=-+,()()1111ln 1n n n ∞---+∑为交错级数,且()()11ln ln 12n n >++,()1lim0ln 1n n →∞=+,由莱布尼茨判别法知原级数收敛,但由于()11ln 11n U n n =≥++ 所以,1nn U∞=∑发散,所以原级数条件收敛.(3)()11153n n nU -=-⋅,显然1111115353n n n n n n U ∞∞∞=====⋅∑∑∑,而113n n ∞=∑是收敛的等比级数,故1nn U∞=∑收敛,所以原级数绝对收敛.(4)由()121!+=-nn n u n2122=<==⨯⨯,由正项级数的根值判别法知,2!n n 收敛,则级数()1121!∞+=-∑nn n n 收敛,112(1)!n n n n ∞+=-⋅∑绝对收敛. (5)函数()ln =xf x x在[)e,+∞为单调递减函数,则当n 充分大时()ln 1ln 1+>+n n n n ,且ln lim 0→∞=n n n ,由莱布尼兹判别法知交错级数收敛,又ln 1>n n n ,而调和级数11∞=∑n n是发散的,则11ln (1)n n nn∞-=-⋅∑条件收敛. (6)111310333+-+---=-=>n n n n nn n n n u u ,则1+>n n u u ,又1lim 03-→∞=n n n,根据莱布尼兹判别法知()11113∞--=-∑n n n n 收敛,又由比较判别法知1131133-+=<+n n nn n n ,则级数()11113∞--=-∑n n n n 收敛,则级数()11113∞--=-∑n n n n绝对收敛. *(6)由于11111123n nn ⎛⎫⋅>++++ ⎪⎝⎭ 而11n n ∞=∑发散,由此较审敛法知级数 ()11111123nn nn ∞=⎛⎫-⋅++++ ⎪⎝⎭∑发散. 记1111123n U nn ⎛⎫=⋅++++ ⎪⎝⎭,则()()()()()()1222111111123111111112311111111231110n n U U n n n n n n n n n n n n n n +⎛⎫⎛⎫-=-++++- ⎪⎪+⎝⎭⎝⎭+⎛⎫=-++++ ⎪⎝⎭++⎛⎫⎛⎫-=++++ ⎪ ⎪⎝⎭+++⎝⎭>即1n n U U +> 又11111lim lim12311d n n n n U n n x n x→∞→∞⎛⎫=++++ ⎪⎝⎭=⎰ 由1111lim d lim 01t t t t x t x →+∞→+∞==⎰ 知lim 0n n U →∞=,由莱布尼茨判别法,原级数()11111123nn n n ∞=⎛⎫-⋅++++ ⎪⎝⎭∑收敛,而且是条件收敛. 2.如果级数23111111122!23!2!2nn ⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的和用前n 项的和代替,试估计其误差.()()()()()()()12121211111=1!22!211111!21!21111=11!222111=11!21211!2n n n n n n nn n n n n n n σ++++++⎛⎫⎛⎫++⎪⎪++⎝⎭⎝⎭⎛⎫⎛⎫++ ⎪ ⎪++⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎛⎫ ⎪+⎝⎭-=+<3.若2lim n n n u →∞存在,证明:级数1n n u ∞=∑收敛.221211lim =lim ,.1n n n n n n n u n u nnu ∞→∞→∞=∞=∑∑存在而收敛所以也收敛*4.证明:若21nn u∞=∑收敛,则1nn u n ∞=∑绝对收敛. 222211111110221,2.n n n n n n n n n n n n u u u n n nu u n n u un n∞∞∞===∞∞===≤+∑∑∑∑∑<而和都收敛,由比较审敛法得知收敛从而收敛,即绝对收敛习题12-41.求下列函数项级数的收敛域: (1)11x n n∞=∑;(2)()1111n xn n ∞+=-∑.2.求下列幂级数的收敛半径及收敛域: (1)2323nx x x nx +++++;(2)1!nnn n x n∞=∑; (3)21121n n x n ∞-=-∑;(4)21(1)2nn x n n∞=-⋅∑. 解:(1)因为11limlim 1n n n n a n a n ρ+→∞→∞+===,所以收敛半径11R ρ==收敛区间为(-1,1),而当x =±1时,级数变为()11nn n ∞=-∑,由lim(1)0nx nn →-≠知级数1(1)n n n ∞=-∑发散,所以级数的收敛域为(-1,1).(2)因为()()1111!11lim lim lim lim e 1!11nn n n n n n n n n a n n n a n n n n ρ-+-+→∞→∞→∞→∞⎡⎤+⎛⎫⎛⎫==⋅===+ ⎪⎢⎥ ⎪+⎝⎭+⎝⎭⎣⎦所以收敛半径1e R ρ==,收敛区间为(-e,e).当x =e 时,级数变为1e !∞=∑n n n n n,()()()()11111!11!11e e e e +++++++⎛⎫=== ⎪+⎝⎭+n n nnn n n nnn n n n u n n u n n n 11e =⎛⎫+ ⎪⎝⎭nn , 在→+∞n 的过程中,11+>n nu u ,又0>n u ,则e =x 时,常数项级数为单调递增函数,1e =u ,则lim 0→∞≠n n u ,由级数收敛的必要条件,级数的一般项不趋于零,则该级数必发散,同理在e =-x 时,()1e !∞=-∑nnn n n 变为交错级数,其中!lim e →∞n n n n n依旧不等于0,,则在e =-x 时也发散,则其收敛域为(),e e -.(3)级数缺少偶次幂项.根据比值审敛法求收敛半径.211212221lim lim 2121lim 21n n n n n nn U x n U n x n x n x ++-→∞→∞→∞-=⋅+-=⋅+= 所以当x 2<1即|x |<1时,级数收敛,x 2>1即|x |>1时,级数发散,故收敛半径R =1.当x =1时,级数变为1121n n ∞=-∑,当x =-1时,级数变为1121n n ∞=--∑,由1121lim 012n n n→∞-=>知,1121n n ∞=-∑发散,从而1121n n ∞=--∑也发散,故原级数的收敛域为(-1,1). (4)令t =x -1,则级数变为212nn t n n∞=⋅∑,因为()()2122lim lim 1211n n n n a n n a n n ρ+→∞→∞⋅===⋅++ 所以收敛半径为R =1.收敛区间为 -1<x -1<1 即0<x <2.当t =1时,级数3112n n ∞=∑收敛,当t =-1时,级数()31112nn n ∞=-⋅∑为交错级数,由莱布尼茨判别法知其收敛.所以,原级数收敛域为 0≤x ≤2,即[0,2] 3.利用幂级数的性质,求下列级数的和函数:(1)11n n nx∞-=∑;(2)2221n n x n ∞+=+∑. ()()()()1112111111111n n n n n n n n nx x x S x nx x x x x x ∞-=∞∞∞-==='''⎛⎫⎛⎫===== ⎪ ⎪-⎝⎭-⎝⎭∑∑∑∑解:()可求得函数在<时收敛,<(2)由2422221lim 23n n n x n x n x++→∞+=⋅+知,原级数当|x |<1时收敛,而当|x |=1时,原级数发散,故原级数的收敛域为(-1,1),记()2221002121n n n n x x S x x n n ++∞∞====++∑∑,易知级数21021n n x n +∞=+∑收敛域为(-1,1),记()211021n n x S x n +∞==+∑,则()212011nn S x x x ∞='==-∑, 故()1011d ln 21xx S x x x +'=-⎰ 即()()1111ln 021x S S x x+-=-,()100S =,所以()()()11ln 121x xS xS x x x x+==<-习题12-51.将下列函数展开成x 的幂级数,并求展开式成立的区间: (1)()()ln 2f x x =+; (2)()2cos f x x =; (3)()()()1ln 1f x x x =++; (4)()2x f =(5)()23f x xx =+;(6)()e e)12(x x f x -=-; 解:(1)()()ln ln 2ln 2ln 11222x x f x x ⎛⎫⎛⎫===++++ ⎪ ⎪⎝⎭⎝⎭由于()()0ln 111nnn x x n ∞==+-+∑,(-1<x ≤1)故()()11ln 11221n nn n x x n +∞+=⎛⎫=+- ⎪⎝⎭+∑,(-2≤x ≤2) 因此()()()11ln ln 22121n nn n x x n +∞+==++-+∑,(-2≤x ≤2)(2)()21cos 2cos 2xf x x +==由()()20cos 1!2nnn x x n ∞==-∑,(-∞<x <+∞)得()()()()()220042cos 211!!22n n n nn n n x x x n n ∞∞==⋅==--∑∑ 所以()()22011()cos cos 222114122!2n nn n f x x x x n ∞===+⋅=+-∑,(-∞<x <+∞) (3)f (x ) = (1+x )ln(1+x ) 由()()()1ln 111n nn x x n +∞==+-+∑,(-1≤x ≤1)所以()()()()()()()()()()()()()1120111111111111111111111111111n nn n n nn n n n n nn n n n n n n n n n x f x x n x x n n x x x n n n n x xn n x xn n +∞=++∞∞==++∞∞+==+∞+=-∞+==+-+=+--++=++--+++--=+⋅+-=++∑∑∑∑∑∑∑ (-1≤x ≤1)(4)()22f x x ==()()()21!!2111!!2n n n n x n ∞=-=+-∑ (-1≤x ≤1) 故()()()()221!!2111!!2n n n n x f x x n ∞=⎛⎫-+=- ⎪⎝⎭∑()()()()2211!!211!!2n n n n x x n ∞+=-=+-∑ (-1≤x ≤1)(5)()()()(220211131313313nn n n nn n x f x x x x x x ∞=+∞+==⋅+⎛⎫=⋅- ⎪⎝⎭=-<∑∑(6)由0e !nxn x n ∞==∑,x ∈(-∞,+∞)得()01e !n nxn x n ∞-=⋅-=∑,x ∈(-∞,+∞)所以()()()()()()0002101e e 2112!!1112!,!21x x n n n n n n n n n n f x x x n n x n x x n -∞∞==∞=+∞==-⎛⎫-=- ⎪⎝⎭=⋅⎡⎤--⎣⎦=∈-∞+∞+∑∑∑∑2.将()2132x x f x ++=展开成()4x +的幂级数.()()()()()()20100102101113212111114x+4141343333134713111114414224222212462241323nn nn n nn nn n nn n x x x x x x x x x x x x x x x x x x x x ∞=∞+=∞=∞+=∞+==-+++++⎛⎫⎛⎫==-=- ⎪ ⎪++-++⎝⎭⎝⎭-+=---+⎛+⎫⎛⎫==-=-< ⎪ ⎪++-++⎝⎭⎝⎭-+=--+=-++∑∑∑∑∑解:而<<<<<-从而()()()10110421146223nn n n n n n x x x ∞+=∞++=++⎛⎫=-+-- ⎪⎝⎭∑∑<<3.将函数()f x 1()x -的幂级数. 解:因为()()()()()211111111!2!!m nm m m m m m n x x x x x n ---+=++++++-<<所以()()[]()()()3221133333331121222222211111!2!!nf x x n x x x n ==+-⎛⎫⎛⎫⎛⎫⎛⎫----+ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=+++++---(-1<x -1<1)即()()()()()()()()()()()()()2323133131313251111111222!23!2!3152111022!nnn nn n f x x x x x n n x x n ∞=⋅⋅⋅⋅⋅⋅--+--=+++++----⋅⋅⋅⋅⋅⋅--=+-<<⋅∑4.利用函数的幂级数展开式,求下列各数的近似值: (1) ln3(误差不超过10.000); (2) cos2︒(误差不超过10.000).解:(1)35211ln 213521n x x x x x x n -+⎛⎫=+++++ ⎪--⎝⎭,x ∈(-1,1) 令131x x +=-,可得()11,12x =∈-, 故()35211111112ln3ln 212325222112n n -+⎡⎤+++++==⎢⎥⋅⋅⋅-⎣⎦- 又()()()()()()()()()()2123212121232521242122112222123222212112222123252111222212112211413221n n n n n n n n n n n r n n n n n n n n n n +++++++++-⎡⎤++=⎢⎥⋅⋅++⎣⎦⎡⎤⋅⋅++=+++⎢⎥⋅⋅+++⎣⎦⎛⎫<+++ ⎪⎝⎭+=⋅+-=+故5810.000123112r <≈⨯⨯61010.000033132r <≈⨯⨯. 因而取n =6则35111111ln32 1.098623252112⎛⎫=≈++++⎪⋅⋅⋅⎝⎭(2)()()2420ππππ909090cos 2cos 11902!4!!2nn n ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==-+-++-∵24π906102!-⎛⎫ ⎪⎝⎭≈⨯;48π90104!-⎛⎫⎪⎝⎭≈ 故2π90cos 2110.00060.99942!⎛⎫ ⎪⎝⎭≈-≈-≈ 5.将函数()d 0arctan x tF x t t=⎰展开成x 的幂级数. 解:由于()21arctan 121n nn t t n +∞==-+∑所以()()()()()20002212000arctan d d 121d 112121n xx nn n n xnnn n t t F t tx t n t x t n n ∞=+∞∞====-+==--++∑⎰⎰∑∑⎰(|x |≤1)6.求下列级数的和函数: (1) 2121n n x n ∞+=+∑;(2)10(1)!n n nx n ∞-=-∑(提示:应用e x 的幂级数展开式);解:(1)可求得原级数的收敛半径R =1,且当|x |=1时,原级数发散.记()21021n n x S x n +∞==+∑则()22011n n S x x x∞='==-∑ ()200111d d ln 121xxx S x x x x x +'==--⎰⎰,即()()11ln 021xS S x x+-=-,S (0)=0 所以()11ln 21xS x x+=-,(|x |<1)(2)由()11!lim lim 0!1n n n n n a n n a n +→∞→∞+==-知收敛域为(-∞,+∞).记()()11!1n n n S x x n ∞-==-∑则()()()111d e !!11nn xx n n x x S x x x x n n -∞∞=====--∑∑⎰,所以()()()e 1e x x S x x x '==+,(-∞<x <+∞)7.试用幂级数解法求下列微分方程的解:222(1)0;(2)0;(3)1;(4)(1);(5)(1)2.y x y y xy y y xy x x y x y x y x x y '''''-=++=''--=-=-'+=-+()()()()()()()()()1220120220120223405121,,11212021=210320435421nn n nn n n n n n n n nnn n n n nnn n n n n n y a x y na xy n n a xn n a x n n a x xa xn n a x a x a a a a a a n n a a ∞∞∞∞--+====∞∞+==∞∞+-==+-'''===-=++++-=++====++=∑∑∑∑∑∑∑∑解:()设则代入原方程得即比较同次幂系数,得一般地()()()()222001423456785801910111291134243042,3,210,,,0,3445783478,0,894589111234781112,12134589121303478414n n k k k n a a n n a a a a a a a a a a a a a a a a a a a a a a a a a a k k-+++==++===================-即所以有所以()()()14145121481221,2,1,2,4589441134347834781112145458945891213k k a a k k k x x x y C x x x C x +===+⎛⎫=++++⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⎝⎭⎛⎫+++++⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⎝⎭因此是方程的解()()()()()()()()()212120222220210211021100,1,2,10,1,2,2111122222n n n n n n n n n n n n nn n n n n n n k k y a x a n n xx a nxa x n n a n a x n n a n a n a a n n a a a k k k ∞=∞∞∞--===∞+=++-=-++=++++=⎡⎤⎣⎦++++===-=+⎛⎫⎛⎫⎛⎫=-=---= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭∑∑∑∑∑()设为该方程的解,代入该方程得即故即从而()()()()01212112242000021351111!2111112121213135211111!22!2!211313513521kk k k nnk k a k a a a a k k k k a a a y a x x x n a a x a x x k +-+⎛⎫- ⎪⎝⎭⎛⎫⎛⎫⎛⎫=-=---=- ⎪⎪ ⎪++-⋅⋅+⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫=+-+-++-++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎡-+++-+⎢⋅⋅⋅⋅⋅-⎣因而()()()()()()22222202135135212011221211111!22!2!2111131351352111313513521121!!n k k x n nn x x x x a n x a x x x k x x x a e a x k y C eC x n ++-+-⎤⎥⎦⎡⎤⎛⎫⎛⎫⎛⎫=+-+-++-+⎢⎥⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎡⎤+-+++-+⎢⎥+⎣⎦⎡⎤=+-+-+-+⎢⎥+⎣⎦-=+-故原方程的通解为11n n ∞-=∑()()()101110111120210001234567213,=,112120111111,,,,,,23243524611,,3571nn n n n n n n nn n n n nn n n y a a x y na x na xx a a x x a a a x a n a x a a a a a a a a a a a ∞∞-==∞∞-==∞++=-'=+⎛⎫-+-= ⎪⎝⎭-+--+-++=⎡⎤⎣⎦+++======⋅⋅⋅⋅==⋅⋅⋅∑∑∑∑∑()设方程的解为从而代入方程得即因而()()()()()()023521242000023521222001,352124621113!!5!!21!!24!!2!!111113!!5!!21!!22!!2!!2n n n n n a a n n a a a x x x y a x x x x n n x x x x x x a x a n n --+=⋅-⋅⋅⎡⎤⎡⎤+++=+++++++++++⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎡⎤⎛⎫⎛⎫⎛⎫=++++++++-++++++⎢⎥ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎣⎦因此()()()()()()()222321200032120212113!!21!!113!!21!!121!!x n x n x n x x a a a e x n x x a e x n x y Ce n ---⎤⎢⎥⎢⎥⎣⎦⎡⎤=-+++++++⎢⎥-⎣⎦⎡⎤=++-++++⎢⎥-⎣⎦=+-+-故方程的通解为()()()()()()01210210102321102311110,20,3=1,11041,0,,32234521123431n n n n nn n n n n n n n n n n n y a x x na xx a x n a n a x x a a a a a n a n a n a a a a n n n n n a a n n n n n y C ∞=∞∞-==∞+=+-=-=-++-=⎡⎤⎣⎦+==-+--=≥=-==-----==---=∑∑∑∑(4)令是该方程的解,代入该方程得即比较系数得以及故因而()()3412.31n n x x x n n ∞=-++-∑是方程的解()()()()10112011121101102231102315,=,2120,22,3111032,1,311nn n n n n n n n nnn n n n n n n n n n n n y a x y na x na x na xa a x x xna n a a x a a x xa a a a a n a n a n a a a a n a n ∞∞-==∞∞∞-===∞+=++'=+--=-++-+-=-⎡⎤⎣⎦-==-+=-++=≥==-=-=-+∑∑∑∑∑∑()设方程的解为则代入方程得即比较系数得从而()()()()()()()()()()()1344331234121242114641131141412411.31n n n n n n n n n n n n n a a a n n n n a n n n n n a n n n y C x x x x n n ----∞-=-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=--==--- ⎪⎪ ⎪⎪⎪++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=-=-≥++=-≥-=+-++--∑即因而原方程的通解为8. 试用幂级数解法求下列方程满足所所给定初始条件的解:2222(1)(2)2(1)20,(0)(1)1;(2),(0)0;(3)cos 0,(0),(0)0.x x y x y y y y dyx y y dx d xx t x a x dt '''-+-+====+='+===()()()()12122212121,,12121201.nn n n n n n n n n n n n n n n n n y a x y na xy n n a x xx n n a x x na x a x y x x ∞∞∞--===∞∞∞--==='''===---+-+==-+∑∑∑∑∑∑()设则代入原方程得比较同次项系数,由初始条件可得方程的解为()1001211125,,00,0..11220nn n n n n n n n n n n y a x y na x y a na x a x xy x x ∞∞-==∞∞-=='====⎛⎫-= ⎪⎝⎭=++∑∑∑∑(2)设则由得代入原方程得比较同次幂系数得方程的解为()()()()21220120123423456246230123232345(3),,10,00,,0232435465102!4!6!23243546nn n n n n n n n dx d x x a t na t n n a t dt dt x a x a a a a a t a t a t a t t t t a a t a t a t a a t a t a t ∞∞∞--======-'====+⋅+⋅+⋅+⋅+⎛⎫+++++-+-+= ⎪⎝⎭++++∑∑∑设则由初始条件所以代入原方程得即4602240012123420310421530264010213024502!2!2!4!203204302!5402!6502!4!,0,220322!434!a t a a a a a a t a t a t a t a a a a a a a aa a aa a a a a a a a a aa a a a a a ++⎛⎫⎛⎫⎛⎫++-+-+-++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+=⋅+=⋅+-=⋅+-=⋅+-+====-=-=-=⋅-+==⋅比较系数得又得到1350024246867824682!0549552!4!2!4!6,0,,656!878!1295512!4!6!8!a a a a a a a a a a a a a t x a t t t t -+==⋅-+--+-+==-===⋅⋅⎛⎫=-+-+- ⎪⎝⎭所以习题12-61.设()f x 是周期为π2的周期函数,它在(,ππ-⎤⎦上的表达式为ππ. 32,0,(),0x f x x x -<≤⎧⎪=⎨<≤⎪⎩试问()f x 的傅里叶级数在πx =-处收敛于何值?解:所给函数满足狄利克雷定理的条件,x =-π是它的间断点,在x =-π处,f (x )的傅里叶级数收敛于()()[]()33ππ11π22π222f f -+-+-=+=+ 2.写出函数ππ. 21,0,(),0x f x x x --<≤⎧⎪=⎨<≤⎪⎩的傅里叶级数的和函数.解:f (x )满足狄利克雷定理的条件,根据狄利克雷定理,在连续点处级数收敛于f (x ),在间断点x =0,x =±π处,分别收敛于()()00122f f -++=-,()()2πππ122f f -++-=,()()2πππ122f f -+-+--=,综上所述和函数.()221π00π102π1π2x x x S x x x --<<⎧⎪<<⎪⎪=-=⎨⎪⎪-=±⎪⎩3. 写出下列以π2为周期的周期函数的傅里叶级数,其中()f x 在),ππ-⎡⎣上的表达式为: (1)π,0π4()π,π04x f x x ⎧≤<⎪=⎨⎪--≤<⎩ ;(2)()2()f x x πx π=-≤<;(3)ππ,π22ππ(),22ππ,π22x f x x x x ⎧--≤<-⎪⎪⎪=-≤<⎨⎪⎪≤<⎪⎩ ; (4)()ππcos ()2f x x x=-≤≤. 解:(1)函数f (x )满足狄利克雷定理的条件,x =n π,n ∈z 是其间断点,在间断占处f (x )的傅里叶级数收敛于()()ππ0044022f f +-⎛⎫+- ⎪+⎝⎭==,在x ≠n π,有()π0π-ππ011π1πcos d cos d cos d 0ππ4π4n a f x nx x nx x nx x -⎛⎫==-+= ⎪⎝⎭⎰⎰⎰()π0π-ππ011π1πsin d sin d sin d ππ4π40,2,4,6,,1,1,3,5,.n b f x nx x nx x nx x n n n-⎛⎫==-+ ⎪⎝⎭=⎧⎪=⎨=⎪⎩⎰⎰⎰于是f (x )的傅里叶级数展开式为()()11sin 2121n f x n x n ∞==--∑(x ≠n π)(2)函数f (x )在(-∞,+∞)上连续,故其傅里叶级数在(-∞,+∞)上收敛于f (x ),注意到f (x )为偶函数,从而f (x )cos nx 为偶函数,f (x )sin nx 为奇函数,于是()π-π1sin d 0πn b f x nx x ==⎰,2π20-π12πd π3a x x ==⎰, ()()ππ22-π0124cos d cos d 1ππnn a f x nx x x nx x n===-⋅⎰⎰ (n =1,2,…) 所以,f (x )的傅里叶级数展开式为:()()221π41cos 3nn f x nx n∞==+-⋅∑ (-∞<x <∞)(3)函数在x =(2n +1)π (n ∈z )处间断,在间断点处,级数收敛于0,当x ≠(2n +1)π时,由f (x )为奇函数,有a n =0,(n =0,1,2,…)()()()πππ2π002222πsin d sin d sin d ππ212π1sin 1,2,π2n nb f x nx x x nx x nx x n n n n ⎡⎤==+⎢⎥⎣⎦=--+=⎰⎰⎰ 所以()()12112π1sin sin π2n n n f x nx n n ∞+=⎡⎤=-⋅+⎢⎥⎣⎦∑ (x ≠(2n +1)π,n ∈z )(4)因为()cos2xf x =作为以2π为周期的函数时,处处连续,故其傅里叶级数收敛于f (x ),注意到f (x )为偶函数,有b n =0(n =1,2,…),()()ππ-π0π0π1212cos cos d cos cos d π2π2111cos cos d π2211sin sin 12211π224110,1,2,π41n n x xa nx x nx xn x n x x n x n x n n n n +==⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎛⎫+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥=+⎢⎥+-⎢⎥⎣⎦⎛⎫=-= ⎪-⎝⎭⎰⎰⎰所以f (x )的傅里叶级数展开式为:()()12124cos 1ππ41n n nxf x n ∞+==+--∑ x ∈[-π,π] 4. 将下列函数()f x 展开为傅里叶级数: (1)()πππ(2)4x xf x =-<<-;(2)()π2sin (0)f x xx =≤≤.解:(1) ()ππ0-ππ11ππcos d d ππ422x a f x nx x x -⎛⎫==-= ⎪⎝⎭⎰⎰ []()ππππ-π-πππ1π11cos d cos d x cos d π4242π1sin 001,2,4n x a nx x nx x nx xnx n n--⎛⎫=-=- ⎪⎝⎭=-==⎰⎰⎰()ππππ-π-π1π11sin d sin d xsin d π4242π11n n x b nx x nx x nx x n-⎛⎫=-=- ⎪⎝⎭=-⋅⎰⎰⎰故()()1πsin 14n n nxf x n∞==+-∑ (-π<x <π)(2)所给函数拓广为周期函数时处处连续, 因此其傅里叶级数在[0,2π]上收敛于f (x ),注意到f (x )为偶函数,有b n =0,()ππ0πππ011cos0d sin d ππ24sin d ππa f x x x x x x x --====⎰⎰⎰()()()()()()ππ0ππ02222cos d sin cos d ππ1sin 1sin 1d π211π10,1,3,5,4,2,4,6,π1n na f x nx x x nx xn x n x x n n n n -===+--⎡⎤⎣⎦-⎡⎤=+-⎣⎦-=⎧⎪-=⎨=⎪-⎩⎰⎰⎰所以()()2124cos2ππ41n nxf x n ∞=-=+-∑ (0≤x ≤2π) 5. 设()π1(0)f x x x =+≤≤,试分别将()f x 展开为正弦级数和余弦级数. 解:将f (x )作奇延拓,则有a n =0 (n =0,1,2,…)()()()()ππ0022sin d 1sin d ππ111π2πn nb f x nx x x nx x n==+--+=⋅⎰⎰从而()()()1111π2sin πnn f x nx n∞=--+=∑ (0<x <π)若将f (x )作偶延拓,则有b n =0 (n =1,2,…)()()ππ00222cos d 1cos d ππ0,2,4,64,1,3,5,πn a f x nx x x nx x n n n ==+=⎧⎪=-⎨=⎪⎩⎰⎰()()ππ0π012d 1d π2ππa f x x x x -==+=+⎰⎰从而()()()21cos 21π242π21n n xf x n ∞=-+=--∑ (0≤x ≤π) 6. 将()211()f x xx =+-≤≤展开成以2为周期的傅里叶级数,并由此求级数211n n∞=∑的和.解:f (x )在(-∞,+∞)内连续,其傅里叶级数处处收敛,由f (x )是偶函数,故b n =0,(n =1,2,…)()()1101d 22d 5a f x x x x -==+=⎰⎰()()()1112cos d 22cos d 0,2,4,64,1,3,5,πn a f x nx x x nx xn n n -==+=⎧⎪-=⎨=⎪⎩⎰⎰所以()()()221cos 21π542π21n n xf x n ∞=-=--∑,x ∈[-1,1]取x =0得,()2211π821n n ∞==-∑,故 ()()22222111111111π48212n n n n n n n n ∞∞∞∞=====+=+-∑∑∑∑ 所以211π6n n ∞==∑ 7. 将函数()12(0)f x x x =-≤≤展开成周期为4的余弦级数.解:将f (x )作偶延拓,作周期延拓后函数在(-∞,+∞)上连续,则有b n =0 (n =1,2,3,…)()()220201d 1d 02a f x x x x -==-=⎰⎰ ()()()222022221ππcos d 1cos d 2224[11]π0,2,4,6,8,1,3,5,πn nn x n xa f x x x xn n n n -==-=--=⎧⎪=⎨-=⎪⎩⎰⎰ 故()()()22121π81cos π221n n x f x n ∞=-=-⋅-∑(0≤x ≤2)8. 设11,02()122,2x x f x x x ⎧≤≤⎪=⎨⎪-<<⎩,()01cos π,2n n a a n x s x x ∞==-∞<∞+<+∑,其中πd 102()cos n a f x n x x =⎰,求()52s -.解:先对f (x )作偶延拓到[-1,1],再以2为周期延拓到(-∞,+∞)将f (x )展开成余弦级数而得到 s (x ),延拓后f (x )在52x =-处间断,所以515511122222221131224s f f f f +-+-⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-+-=-+-⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎛⎫=+= ⎪⎝⎭9.设函数()21(0)f x x x =≤<,而()1sin π,n n n x b s x x ∞==-∞<<+∞∑,其中()πd 1,2,3,102()sin n f x n x xb n ==⎰.求()12s-.解:先对f (x )作奇延拓到,[-1,1],再以2为周期延拓到(-∞,+∞),并将f (x )展开成正弦级数得到s (x ),延拓后f (x )在12x =-处连续,故. 211112224s f ⎛⎫⎛⎫⎛⎫-=--=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 10. 将下列各周期函数展开成为傅里叶级数,它们在一个周期内的表达式分别为: (1)()2111 22f x x x ⎛⎫=--≤< ⎪⎝⎭ ;(2) 3. 21,30,()1,0x x f x x +-≤≤⎧=⎨≤<⎩解:(1) f (x )在(-∞,+∞)上连续,故其傅里叶级数在每一点都收敛于f (x ),由于f (x )为偶函数,有b n =0 (n =1,2,3,…)()()112221002112d 41d 6a f x x x x -==-=⎰⎰, ()()()()112221021222cos2n πd 41cos2n πd 11,2,πn n a f x x x x x xn n -+==--==⎰⎰所以()()12211111cos 2π12πn n f x n x n +∞=-=+∑(-∞<x <+∞)(2) ()()303033011d 21d d 133a f x x x x x --⎡⎤==++=-⎢⎥⎣⎦⎰⎰⎰, ()()()()330330221πcos d 331π1π21cos d cos d 3333611,1,2,3,πn nn xa f x xn x n x x x x n n --==++⎡⎤=--=⎣⎦⎰⎰⎰()()()()33033011πsin d 331π1π21sin d sin d 333361,1,2,πn n n xb f x x n x n x x x x n n --+==++=-=⎰⎰⎰而函数f (x )在x =3(2k +1),k =0,±1,±2,…处间断,故()()()122116π6π11cos 1sin 2π3π3n n n n x n x f x n n ∞+=⎧⎫⎡⎤=-+--+-⎨⎬⎣⎦⎩⎭∑ (x≠3(2k +1),k =0,±1,±2,…)习题十二1. 填空题:(1)级数1211()1n n n ∞=+∑的敛散性是 发散(2)级数1()21nn n n ∞=-∑的敛散性是 收敛 (3)已知幂级数级数级数1(2)04nn n a x x x ∞=+==-∑在处收敛,在处发散,则幂级数1(3)nn n a x ∞=-∑的处收敛域为 (1,5](4) 设函数()1()f x x x ππ=+-<<的傅里叶级数的和函数为(),(5)S x S π则等于 1(5)设函数2()(0)f x x x π=≤≤的正弦函数1sin nn bnx ∞=∑的和函数(),(,2)()S x S x ππ∈=则当x 时, 2(2)x π--2. 选择题:(1) 正项级数1nn a∞=∑收敛的充分条件是( C )。
高等数学基础概念解读及例题演练-常微分方程
22
+
lnx.
习题7.3【答案】 y=-2 x�.1. +-1 .
33
习题7.4【答案】C
习题7.5【答案】 1 习题7.6【答案】 y=[;ex+C2e2x -x(x+2)<f.
’
一 功F dx
=
一 φp dt
·
一 dt dx
=
- 1 e1
-一 ddyt ’,
I j. 今 且_ ddx2y2 _-_ ddx
,( \、
_1…秒 -1e' dt)
d I( I圳 ·-I·- dt
dt飞e1 dt J dx
1( - l
- e1' 命 ·- dt +l- e'
·- ddt2一2y |J ··e一1' -
[例 13]在下列微分方程中,以y=C1ex +C2 cos2x+C3 sin2x为通解的是一·
m+
’-4 0
m
(A)y y" -4y y =
(B)y +y" +4y’ +4y=O
(C)ym -y" -4y’ +4y = 0
- (D)ym -y" +4y’ 4y=O
- 解:容易看出微分方程的三个特征根分别是1,匀, 2i,对比应当(。是正确的.
~CB) Axe2x+e2x(Bcos2x+Csin衍)
CD) Axe xe2x(Bcos2x +Csin2x)
[答案JC
[例10]以 y=Glf+c;e-2x+xe为通解的微分方程是一一·
(A) y"-y’ -2y=3x<f
高等数学第十二章微分方程
dy 1 dy y 2 y 2 。这是贝努利方程, 解出 ? ,得 dx x dx
对于这些类型的方程,它们各自都有固定的解法。如
果所给的方程按上述思路不能转化为已知类型的方程,这 时常用的方法和技巧如下: A.熟悉常用的微分公式; B.选取适当的变量代换,转化成上述可解类型的方程; C.变换自变量和因变量(即有时把 y看成自变量,而 考虑
dx 的方程类型)。 dy
一阶微分方程的解题方法流程图如下。
解题方法流程图
求Pdx Qdy 通解 0 Yes 可分离变量 No Yes
P Q y x
dy 解出 dx = f ( x, y )
No
可分离变 量方程
全微分 方程
齐次方程
dy y ( ) dx x
dy P ( x ) y Q( x ) dx
一阶线性方程
dy P ( x ) y Q( x ) y n dx
dy y (2)齐次方程: dx x
dy P ( x ) y Q( x ) (3)一阶线性微分方程: dx
dy n (4)伯努利方程: P ( x ) y Q( x ) y ( n 0,1) dx
(5)全微分方程:P ( x , y )dx Q( x , y )dy 满足 ,0
y dy du u x 解:令 u ,于是 y ux , ,上式可化为 x dx dx
du 1 u cos u u x sec u u dx cos u
du sec u , 为可分离变量的方程 即x dx
分离变量 积分得 所以 故原方程的通解为
dx cos udu x sin u ln x ln C
常微分方程试题及答案
第十二章 常微分方程(A)一、是非题1.任意微分方程都有通解。
( X )2.微分方程的通解中包含了它所有的解。
( X )3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。
( O )4.函数x e x y ⋅=2是微分方程02=+'-''y y y 的解。
( X )5.微分方程0ln =-'x y x 的通解是()C x y +=2ln 21(C 为任意常数)。
(O )6.y y sin ='是一阶线性微分方程。
( X )7.xy y x y +='33不是一阶线性微分方程。
( O )8.052=+'-''y y y 的特征方程为0522=+-r r 。
( O )9.221xy y x dx dy+++=是可分离变量的微分方程。
( O )二、填空题1.在横线上填上方程的名称①()0ln 3=-⋅-xdy xdx y 是可分离变量微分方程。
②()()022=-++dy y x y dx x xy 是可分离变量微分方程。
③x yy dx dyx ln ⋅=是齐次方程。
④x x y y x sin 2+='是一阶线性微分方程。
⑤02=-'+''y y y 是二阶常系数齐次线性微分方程。
2.x x y x y cos sin =-'+'''的通解中应含 3 个独立常数。
3.x e y 2-=''的通解是21241C x C e x ++-。
4.x x y cos 2sin -=''的通解是21cos 2sin 41C x C x x +++-。
5.124322+=+'+'''x y x y x y x 是 3 阶微分方程。
6.微分方程()06='-''⋅y y y 是 2 阶微分方程。
高等数学 第十二章 常微分方程 习题课
1 4x41 2x2y21 4y4
(0,0) (x,0)
1 4x41 2x2y21 4y4c 为原方程的隐式通解.
例 5. (x3x2y)dx(x2yy3)dy0
又.解dy dx
x3xy2 x2yy3
1
y x
y2
x2 y3 x3
齐次方程
设 u x y,则 y x u ,d d x y u x d d u x .
P y(xys(xiyyn ) syi(y x n )2 coy)s
Q x
例 6. dy3(x1)2(y1)2 dx 2(x1)(y1)
解 .令 u x 1 ,v y 1 ,
则dyd(v1) d v dx d(u1) d u
dv 3u2 v2 du 2uv
3
2
v u v u
x
du dx
1 cosu
,
cousdudxx, xcesinxy .
例 3.(cx o )d dx s yysixn 1 解 . d dx y(tax)n ysexc 一阶线性方程
ye ta xd nx se xe c ta xd nd x x c
e lc n x o ss x e e lc c n x d o c s x
uxd du x1 u u u2 3, xd d u x 1 2 u u 2 u 3 u 4 1 u u 2, 1uduu2 dxx, 1 2ln 1u (2) ln xln c,
ln 1 u (2 ) 2 ln x 2 lc n ,
x2(1u2)2c, x2y2c2.
例 5 .( x 3 x 2 ) d y ( x 2 y y 3 ) d 0 y 事 ,x ( x 实 2 y 2 ) d 上 y x ( x 2 y 2 ) d 0 y
高等数学科学出版社下册课后答案第十二章 微分方程 习题简答
习题 12.11. (1) 是一阶线性微分方程; (2) 是一阶非线性微分方程; (3) 是二阶非线性微分方程; (4)是二阶非线性微分方程.2. (1) 是; (2)是; (3)不是; (4)不是二阶非线性微分方程.3. 验证略,所求特解为 .s i n422x x y ⎪⎪⎭⎫⎝⎛-=π 4.(1) 2y x y '=+,00x y==(2)xy y '-=以及初值条件23x y ==。
习 题 12-21.( 1) C x y =+-1010; (2); C x y +=a r c s i n a r c s i n (3) C e e y x =-+)1)(1(; (4) C x y +-=sin 1C x a a y+--=)1ln(1;2.(1) 2)(arctan 21x y =; (2)0)cos 2(cos =-y x ; (3) )4(412--=x y ; (4) y e xcos 221=+;(5) 0322=+-y y x ; (6) )2(ln 222+=x x y ; 3. (物体冷却的数学模型))20(--=T k dtdT. 4. ).310107(265.45335h h gt +-⨯=π5. 6分钟后,车间内2CO 的百分比降低到%.056.0习题12-31. (1) x C x y sin e )(-+=;(2) x x C y 2cos 2cos -=;(3) 1sin esin -+=-t C s t; (4) 2e 2x C y -+=; (5) )2()2(3-+-=x C x y ;(6))||(ln 12C y yx +=2. (1) 412e e 22++-=x y xx; (2) 11332e 2--=x x x y ; (3) x x y sec =; (4) )cos 1(1x xy --π=; (5) 1e5sin cos =+xx y ; (6).ln 1ln 21⎪⎭⎫ ⎝⎛+=x x y 3.⎰-=dx dx d e y ϕ⎥⎥⎦⎤⎢⎢⎣⎡+⎰⎰C dx e dxd x dx dx d ϕϕϕ)(⎰+=-])([)()(C d e x e x x ϕϕϕϕ.1)()(x Ce x ϕϕ-+-= 4. ,62320⎪⎪⎭⎫⎝⎛-=T t t m F x .0T t ≤≤5 ..224⎪⎭⎫⎝⎛+=C x x y 6. yx ⎥⎦⎤⎢⎣⎡-2)(l n 2x a C .1= 习题12-41. (1) Cxy x =-331; (2) x sin y +y cos x =C ; (3) xe y -y 2=C ;(4) .132C yx y =+- (5)不是全微分方程;(6) 不是全微分方程.2. (1) y x +1, x -y =ln(x +y )+C ; (2) 21y , C x y x =+22.(3) 21y , Cxy y x =--3122; (4) 221y x +为, x 2+y 2=Ce 2x ; (5) 21x , x ln x +y 2=Cx ; (6) 2y x , 032=-x y x .3. (1)2212yx e Cy x =; (2) C y y x y x =++||ln 3113322.4. (1)21ln 2x C x y +-=; (2) x C x x y cos 1tan ++=. 习 题12-51、(1)21c x c e y x ++=(2)21212x y x x c e c =--++(3)12ln y C x C =+ (4)12arcsin()xy c e c =+(5).3231C x x C y +⎪⎪⎭⎫ ⎝⎛+=(6)221121()c y c x c -=+ 2、(1).4521cos 412-++=x x e y x (2) .133++=x x y (3)x y 11+= (4)11y x=-(5) ).4tan(π+=x y3、 .212+=x y 4、2)1()(-=x x f5 、.2⎪⎪⎭⎫ ⎝⎛+==-a xa x e e a a x ach y 这曲线叫做悬链线.习题12-61. (1) 线性相关(2) 线性无关(3) 线性无关(4) 线性无关2. 略.3. (1) y x x x x e C e C e xe -+++=2202x x x e C e C xe -++=221,其中.101C C += (2) ;22x x xe e y y y -=-'-''(3) .342x x x xe e e y ++=- 4. .33221x C x C y ++=习题12-71.(1) y =C 1e -x+C 2e-2x;(2)=C 1e 0x +C 2e-2/3x=C 1+C 2e-2/3x ;(3) y =C 1cos2x +C 2sin2x .(4)x =(C 1+C 2t) e 5t/2;(5) .321x x e C e C y +=-(6).)(221x e x C C y -+=(7)).2sin 2cos (21x C x C e y x +=-(8))3sin 3cos (212x C x C e y x +=.(9) y =C 1cosx +C 2sinx +C 3e x +C 4e -x;(10)).2sin 2cos (4321x C x C e x C C y x +++=(11)w ⎪⎪⎭⎫⎝⎛+=x C x C ex 2sin 2cos 212βββ.2sin 2cos 432⎪⎪⎭⎫⎝⎛++-x C x C ex βββ(12) .sin )(cos )(54321x x C C x x C C C y ++++= (13) x x xxe C e C e C eC y --+++=432221.sin cos 65x C x C ++(14) y =C 1+C 2x +(C 3+C 4x)e x. 2. ϕ(x)=1/2(cosx +sinx +e x).3. ,04852)4(=+'-''+'''-y y y y y .2sin 2cos )(4321x C x C e x C C y x +++=4.略.习题12-81. (1) ;30*x e b y =(2) ;)(210*x e b x b x y -+=(3) .)(21202*x e b x b x b x y -++=(4) *(c o s 2s i n 2).xy x e a xb x =+2.(1).31*+-=x y (2)*y **21y y +=.3)221(22++-=x e x x x 3. (1) .)121(2221x x x e x x e C e C y -++=(2) y .21s i n c o s 21x e x x C x C +++=(3) y *y Y +=.81)(2321x x e e x C x C C +++=-(4) .cos 2sin cos 21x x x C x C y -+=(5).2sin 942cos 31sin cos 21x x x x C x C y +-+=4. y =-1/16 sin2x +1/8 x(1+sin2x) 5..32cos cos 3sin )(++-=x x x x y 6. .221x x x xe e C e C y ++=7.y .1)(ln ln 321xx x C C -++=8. y .2123321x x C x C C -++= 9. .)1(41)1()1ln(2141x x x y +++⎥⎦⎤⎢⎣⎡++-=本章复习题A1.(1)二;(2);(3)ln(ln )xy x x e=+;(4)''2'50y y y -+=;(5)2()x Ax B x e -+. 2. (1) A (2) (A)(3)(C )(4) (B )(5)(C ) 3. (1));(12x x e Ce xy +=(2)3221Cy y x += (3)C x xy +=2;(4)x Ce x y tan 1tan -+-=(5)13423++=x Cx y (6)22)1(1-=-x C y (7)31)1(tan x e C y -=- (8)221ln xCx y +-=(9)C x e x x +=+2)1(;(10)C xy x =-4. (1)322142224181C x C x C x e y x +++-=; (2)2212C x C e xe y x x ++-= (3)21|)cos(|ln C C x y ++-= (4))sin cos (e 212x C x C y x+=x x x2cos e 412-5. (1))1(ln 222+=x x y (2))2sin 22(cos x x e y x +=- (3)x x x y 2sin 31sin 31cos +--= (4)2135672--+=-x e e y x x . 6. 2231()()4f x x x=- 7. 可知当敌舰行245个单位距离时,将被鱼雷击中。
常微分方程习题及答案
第十二章常微分方程(A)一、就是非题1.任意微分方程都有通解。
()2.微分方程的通解中包含了它所有的解。
()3.函数y=3sin x-4cos x就是微分方程y''+y=0的解。
()4.函数y=x2⋅e x就是微分方程y''-2y'+y=0的解。
()5.微分方程xy'-ln x=0的通解就是y=12(ln x)2+C(C为任意常数)。
(6.y'=sin y就是一阶线性微分方程。
()7.y'=x3y3+xy不就是一阶线性微分方程。
()8.y''-2y'+5y=0的特征方程为r2-2r+5=0。
()9.dydx=1+x+y2+xy2就是可分离变量的微分方程。
()二、填空题1.在横线上填上方程的名称①(y-3)⋅ln xdx-xdy=0就是。
②(xy2+x)dx+(y-x2y)dy=0就是。
③x dydx=y⋅lnyx就是。
④xy'=y+x2sin x就是。
⑤y''+y'-2y=0就是。
2.y'''+sin xy'-x=cos x的通解中应含个独立常数。
3.y''=e-2x的通解就是。
4.y''=sin2x-cos x的通解就是。
5.xy'''+2x2y'2+x3y=x4+1就是阶微分方程。
6.微分方程y⋅y''-(y')6=0就是阶微分方程。
7.y=1x所满足的微分方程就是。
)8.y '=9.2y的通解为。
x dx dy +=0的通解为。
y x5dy 2y 10.-=(x +1)2,其对应的齐次方程的通解为。
dx x +111.方程xy '-(1+x 2)y =0的通解为。
12.3阶微分方程y '''=x 3的通解为。
三、选择题1.微分方程xyy ''+x (y ')-y 4y '=0的阶数就是( )。
高等数学课件--第十二章 微分方程12-4 一阶线性微分方程
解 n 2,令
则原方程化为
z y
1 n
1 y
,
dz dx
z (cos x sin x ),
所以
1 y
2
dx dx z e (sin x cos x )e dx C
e [ (sin x cos x ) e
x
代入原方程 ,得 yf ( v ) dx g ( v )( dv ydx ) 0 ,
P ( x ) dx
P ( x ) dx
y u( x )e
u( x )[ P ( x )]e
,
将 y 和 y 代入原方程得
u ( x )e
P ( x ) dx
Q ( x ),
积分得 u( x ) Q( x )e
P ( x ) dx
dx C ,
0
x
ydx x y ,
y f (x)
P
两边求导得 y y 3 x 2 ,
o
x
x
解此微分方程
y y 3 x
y e
dx
2
C
3x e
2
dx
dx
Ce
x
3 x 6 x 6,
2
由 y |x0 0, 得 C 6,
yf ( x ) dx [ 2 xf ( x ) x ]dy 在右半平面
2
( x 0 )内与路径无关
, 其中 f ( x ) 可导 , 且 f ( 1 ) 1 , 求 f ( x ).
[解答]
4 求下列伯努利方程的通
高等数学12常系数非齐次线性微分方程
小 结: 对非齐次方程
ypyqy e x P l( x ) c o sx P n ( x ) s inx
(p, q为常数)
i为特征方程的 k 重根 ( k = 0, 1), 则可设特解:
y * x k e x R m cx o R ~ m s si x n
根据 f (x) 的特殊形式 , 给出特解y*的待定形式,
代入原方程比较两端表达式以确定待定系数 .
2
一、 f(x)exP m (x)型
为实数 , Pm(x)为 m 次多项式 . 设特解为 y*exQ(x),其中 Q (x) 为待定多项式 ,
y * e x [Q (x ) Q (x )]
形式e为xPy m*( x)exQ m(x).
3
Q(x) (2 p )Q (x )(2pq)Q (x)Pm(x)
(2) 若 是特征方程的单根 , 即
2pq0, 2p0,
则Q(x)为m 次多项式, 故特解形式为 y*xQ m (x)ex
(3) 若 是特征方程的重根 , 即
xkexQ m (x)(co sx isinx) Q m (x )(c o sx isin x )
xke x [ ( Q m ( x ) Q m ( x ) ) c o sx ( Q m ( x ) Q m ( x ) ) i s i n x ]
令 RmQm(x)Qm(x)
Rm(Q m(x)Q m(x))i
x k e x Rmcos xR ~msi nx
其R 中 m,R ~m均为 m 次多项式 . 实际上Rm,Rm 均为 m 次实多项式
17
实际上Rm,Rm 均为 m 次实多项式 RmQm(x)Qm(x) Rm(Q m(x)Q m(x))i
高等数学 常微分方程
u e
即
P ( x )d x
P( x) u e
P ( x )d x
u e P( x)
P ( x )d x
非齐次方程
u Q( x ) e dx C 两端积分得 P ( x ) dx 对应齐次方程通解 y C e
故原方程的通解
dy P ( x ) y Q( x ) d x P ( x )d x
【解】①齐次方程
② 贝努里方程
[作业: P268; 同济p304、p309、 同济p315]
y 2x 通解为 Cx 2 y
2x 或 y 2. 1 Cx
第十二章习题课
机动 目录 上页 下页 返回 结束
三、可降阶的高阶微分方程求解
1). y( n) f ( x)型的微分方程
【特点】 方程右端仅含有自变量 x. 【解法】 连续积分 n 次就可得到方程的通解
y x
调换自变量与因变量的地位 , 用线性方程通解公式求解 .
第十二章习题课
dx 化为 2x y2 , dy
机动 目录 上页 下页 返回 结束
17
( 4 ) y
6x 3x y 3x 2 y 2 y3
3
2
y [方法 1] 这是一个齐次方程 .令 u x
[方法 2] 化为微分形式
( 6x 3 3x y 2 )d x ( 3x 2 y 2 y 3 )d y 0
P Q 6x y y x
故这是一个全微分方程 .
第十二章习题课
机动 目录 上页 下页 返回 结束
18
【例2】求下列方程的通解:
( 1) x y y y ( ln x ln y )
高等数学第十二章第五讲 高阶线性微分方程
( B) C1 y1 C2 y2 ( C1 C2 ) y3 ; (C ) C1 y1 C2 y2 (1 C1 C2 ) y3 ;
(89 考研 )
提示:
y1 y3 , y2 y3 都是对应齐次方程的解,
二者线性无关 . (反证法可证)
机动 目录 上页 下页 返回 结束
第十二章 定理 4. 分别是方程
y P( x) y Q( x) y f k ( x) (k 1, 2 ,, n )
的特解, 是方程
n
y P( x) y Q( x) y f k ( x)
k 1
的特解. (非齐次方程之解的叠加原理)
定理3, 定理4 均可推广到 n 阶线性非齐次方程.
(证明略)
思考:
中有一个恒为 0, 则
必线性 相关
机动 目录 上页 下页 返回 结束
定理 2. 性无关特解, 则 y C1 y1 ( x) C2 y2 ( x)
数) 是该方程的通解. (自证) 有特解 例如, 方程 y2 故方程的通解为 tan x 常数 , y1 推论.
第十二章 是二阶线性齐次方程的两个线
成正比, 方向相反. 建立位移满足的微分方程.
解: 取平衡时物体的位置为坐标原点,
建立坐标系如图. 设时刻 t 物位移为 x(t).
(1) 自由振动情况. 物体所受的力有: 弹性恢复力
(虎克定律)
机动 目录 上页 下页
o x x
返回 结束
第十二章
阻力
据牛顿第二定律得
c 令 2 n , k , 则得有阻尼自由振动方程: m m 2 d x dx 2 2 n k x0 2 dt dt (2) 强迫振动情况. 若物体在运动过程中还受铅直外力 H 则得强迫振动方程: 令h , F H sin pt 作用, m d2 x dx 2 2 n k x h sin pt 2 dt dt
高等数学课件微分方程D12习题课2
第十二章
二阶微分方程的
解法及应用
一、两类二阶微分方程的解法 二、微分方程的应用
2019/11/19
高等数学课件
机动 目录 上页 下页 返回 结束
一、两类二阶微分方程的解法
1. 可降阶微分方程的解法 — 降阶法
d2 y dx2
f
(x)
逐次积分求解
d2y dx2
f
(x,dy) dx
2019/11/19
高等数学课件
机动 目录 上页 下页 返回 结束
P327 题4(2) 求解
yay20
yx00,
y x01
提示: 令 yp(x),则方程变为 d p a p 2
dx
积分得
1 p
ax C1,
利用
px 0 yx 0 1得C11
再解
(x)ex(x)
(x)(x)ex
解初值问题: (0)0, (0)1
答案: (x)1ex(2x1)1ex
4
4
2019/11/19
高等数学课件
机动 目录 上页 下页 返回 结束
例3. 设函数 yy(x)在 (, ) 内具有连续二阶导
数, 且 y 0 ,xx(y)是 yy(x)的,函数
x 2 y pxy qy f(x)
令xet ,D d dt
D (D 1 ) p D q y f (et)
练习题: P327 题 2 ;
3 (6) , (7) ;
4(2); 8
2019/11/19
高等数学课件
机动 目录 上页 下页 返回 结束
解答提示
P327 题2 求以 yC 1exC 2e2x为通解的微分方程 . 提示: 由通解式可知特征方程的根为 r11,r22,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解. P x3 xy2 ,Q x 2 y y3 ,
P y
2 xy
Q x
,
原方程是全微分方程 .
( x, y)
u( x, y) (0,0)
Pdx Qdy
( x, y) ( x3 xy2 )dx ( x2 y y3 )dy (0,0)
(x, y)
x
0
(x3
0)dx
y
0 (
x2
y
y3 )dy
dx
2e y
1
x
1
可分离变量 ( x 1)e y 2x c
例 2.
x
y cos
y x
dx
x cos
y x
dy
0
解.
dy dx
x
y cos
x cos
y x
y x
1
y x
cos
cos
y x
y x
齐次方程
令u
y x
,
则
y
u
x
,
dy dx
u
x
du dx
u
x
du dx
1
ucos cos u
令 u x y , 则 du (u2 1) xdx ,
du
u2 1
xdx
,
du u2 1
xdx
,
1 2
ln
u1 u1
1 2
x2
c
ln
u1 u1
x2
2c
xy1 xy1
c2e
x2
.
(c2 e2c )
隐式通解
17
例4.
d d
y x
x(
y
x)
x3(
y
x)2
1
解.
令 z yx,
则
dz dx
d d
y x
解. 令 u x 1 , v y 1 ,
则 d y d(v 1) dv d x d(u 1) du
dv 3u2 v2 du 2uv
3
2
v u v u
2
齐次方程
令
z
v u
,
则 v zu ,
dv z u dz
du
du
z u dz 3 z2 du 2z
21
例7.
u
z 1
1 y x
,
x2
1 y
x
c
e
2
x2 2 ,
y x
1
x2
ce 2 x22
x3
e
x2
2 dx
t x22 (2t ) etdt
et (2t 2)
e
x2 2
(
x2
2)
D D1
2t et
# ( x y y sin y)dx ( x cos y)dy 0
解. ydx xdy ( x y sin y)dx cos y dy 0
d( x y) d sin y ( x y sin y)dx
d( x y sin y) dx x y sin y
(x, y) 1
x y sin y
ln( x y sin y) x lnc
# x y sin y ce x .
r
dx
,
arctan f ( x) r x c ,
arctan f (0) 0 c , c 0
arctan f ( x) r x ,
f ( x) tan(r x) . #
16
例3. xdy ydx ( x3 y2 x)dx
解. d( x y) ( x 2 y2 1)xdx
1 4
x4
1 2
x2 y2
1 4
y4
(0,0) ( x,0)
1 4
x4
1 2
x2 y2
1 4
y4
c
为原方程的隐式通解. 8
例5. ( x3 xy2 )dx ( x2 y y3)dy 0
又解.
dy dx
x3 xy2 x2 y y3
1
y2 x2
y x
y3 x3
齐次方程
设u
y x
,
则
y
xu,
d( xy) ydx xdy
(1)
d(ln xy) ydx xdy
(2)
xy
d
1 xy
ydx xdy x2 y2
(3)
d
y x
xdy ydx x2
(4)
d
x y
ydx xdy y2
(5)
d ln
y x
xdy ydx xy
(6)
d arctan
y x
xdy x2
推广 :
y(n) f x, y(n1)
令 y(n1) p( x), 则 y(n) p( x) 3
2). y f ( y, y) 令 y p( y) , 则 y pp pp f ( p, y) p( y) 的一阶方程 .
判别一阶方程类型 ,然后好求解 .
一阶方程的常见形式:
dy dx
常系数线性微分方程 :
y(n) p1y(n1) pn1y pn y 0
(3)
y(n) p1y(n1) pn1y Pn y f ( x)
(4)
特征方程 r n P1r n1 Pn1r Pn 0
(5)
(5) 式的 n 个根对应 (3) 之通解的 n 项 :
u
,
x
du dx
1 ucos cos u
u
u
1 c5os
u
x
d d
u x
1 cos
u
,
cos
u
du
dx x
,
x
sin
ce
y x
.
例 3.
(cos
x)
d d
y x
y
sin
x
1
解.
d d
y x
(tan
x) y
sec
x
一阶线性方程
y
e tan x
dx
sec
x
etan x
dx
dx
c
elncos x sec x elncos xdx c
f (x, y)
或
P( x, y)dx Q( x, y)dy 0
思考 : 将待解方程化成下列形 式之一 ?
可分离变量 ; 齐次方程 ; 线性方程 ;
伯努利方程 ; 全微分方程 .
积分因子 ? 变量代换 ?
4
例1.
(
x
1)
d d
y x
1
2e
y
解 .
dy dx
2e y
1 ( x 1)1
dy
d d
y x
2x4 y x y3
(不是齐次方程 )
解.
d d
y x
2( xa)4( yb) ( xa)( yb)
2( x2)4( y1) ( x2)( y1)
令 u x 2, v y1,
2a 4b 0 a b 3
a b
2 1
则 d y d(v 1) dv d x d(u 2) du
事实上 , x ( x2 y2 )dx y ( x2 y2 )dy 0
( x2 y2 ) ( xdx ydy) 0
x2 y2 0
(1)
或 xdx ydy 0 (2)
(2)
1 2
x2
1 2
y2
c
或 x2 y2 2c
(3)
(1) 式已包含在此隐式解 (3)中 .
10
寻找积分因子 , 要熟悉几个微分算式 :
(0)
lxim01
1 f(
f2 x)
( f
x) (x
)
15
f
( x)
lim
x0
f
(x) f x0
(0)
lim
x0
1
1 f(
f x
2( )f
x) (x)
f (0) 1 f 2( x) r 1 f 2( x)
f ( x) 1 f 2( x)
r
,
f ( x) 1 f 2( x
)
dx
第十二章 常微分方程 习题课
一. 一阶微分方程 :
1. 可分离变量方程
dy dx
(
x)
(
y)
dy
( y)
(
x)dx
2. 齐次方程
dy dx
f
y x
令u
y x
,
则 y ux,
dy dx
u
x
du dx
u
x
du dx
f (u),
x
du dx
f (u) u ,
f
du (u)
u
dx x
.
1
3. 线性方程 y p( x) y Q( x)
dy dx
u
x
du dx
.
u
x
du dx
1 u2 u u3
,
x
du dx
1
2u2 u4 u u3
1 u2 u
,
udu 1u2
dx x
,
1 2
ln(1
u2
)
ln
x
ln
c
,
ln(1 u2 ) 2ln x 2ln c ,
x2(1 u2 ) 2c , x2 y2 c2 . 9
例5. ( x3 xy2 )dx ( x2 y y3)dy 0
dv du
2u 4v uv