几何图形中的最值问题

合集下载

几何中的最值问题

几何中的最值问题

几何中的最值问题在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。

最值问题的解决方法通常有两种:(1)应用几何性质:①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点间线段最短;③连结直线外一点和直线上各点的所有线段中,垂线段最短;④定圆中的所有弦中,直径最长。

⑵运用代数证法:①运用配方法求二次三项式的最值;②运用一元二次方程根的判别式。

例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。

变式1:A、B两点分别在直线L的两侧,在直线L上取一点P使P A-PB最大。

ALB例2、如图所示,△ABC中,AB=3,AC=2,以BC为边的△BCP是等边三角形,求AP的最大值、最小值。

A'例3、已知:如图⊙O1与⊙O2相交于C、D,A是⊙O1上一点,直线AD交⊙O2于点B。

⑴当点A在弧CAD上运动到A’点时,作直线A’D交⊙O2于点B’,连结A’C、B’C。

证明:△A’B’C ∽△ABC。

(2)问点A’在弧CAD上什么位置时,S△A’B’C最大,说明理由。

(3)当O1 O2=11,CD=9时,求S△A’B’C的最大值。

BB图1 图2例4、已知:如图△ABC是一块锐角三角形余料,边长BC=120mm,高AD=80mm,要把它加工成一个矩形零件,使矩形的一边在BC上,其余两个顶点分别在AB、AC上,设矩形的长QM=y mm ,宽MN=x mm(1)求证:y=120- x(2)当x与y分别取什么值时,矩形PQMN的面积最大?最大面积是多少?。

几何图形中的极值问题课件

几何图形中的极值问题课件

用于正方形
【例2】 正方形ABCD的边长是8,P是CD上的一点,且PD的长为2
,M是其对角线AC上的一个动点,则DM+MP的最小值是_1_0__.
【评析】本题考查了轴对称-最短路线问题和正方形的性质,根据两 点之间线段最短,确定点M的位置是解题关键.
[对应训练] 2.在△ABC中,AC=BC=6,∠ACB=90°, D是BC边的中点, E是AB上的一个动点,则EC+ED的最小值是_3___5____.
[对应训练] 3.如图,点P是矩形ABCD对角线BD上的一个动点,AB=6,AD=8
,则PA+PC的最小值为__1__0.
用于菱形
【例4】 如图,在边长为6的菱形ABCD中,∠DAB=60°,E为AB 的中点,F为AC上的一个动点,则EF+BF的最小值是_3__3_.
【评析】此题主要考查菱形是轴对称图形的性质,容易出现错误的地方 是对点F的运动状态不清楚,无法判断什么时候会使EF+BF成为最小值 .
[对应训练] 4.△ABC 中,有一点 P 在 AC 上移动.若 AB=AC=5,BC=6,AP
+BP+CP 的最小值为__9__._8_.
用于特殊三角形
【例5】 在△ABC中,∠BAC=30°,在AC,AB边上各取一点M,N ,AB=2,则BM+MN的最小值是__3__.
点拨:过点B作关于AC的对称点B1 , 过点B1作B1N⊥AB于点N交AC于点M, 连接AB1,BM,
∴AO=OB1=2,∴在 Rt△AOB1 中,由勾股定理有,AB1=2 2,
即 PA+PB 的最小值为 2 2
【评析】本题考查的是圆周角定理及勾股定理,解答此题的关键是根 据题意作出辅助线,构造出直角三角形,利用勾股定理求解.
Байду номын сангаас

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形最值问题在几何图形中分两大类:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。

由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。

举例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。

已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP ≤d+r,AP最小时点P在B处,最大时点P在C处。

即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。

(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。

上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。

类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。

(一)直接包含基本图形例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。

(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。

几何最值问题解题技巧

几何最值问题解题技巧

几何最值问题解题技巧
几何最值问题是一个常见的数学问题,它涉及到在给定的几何形状中找到一个或多个点的最大或最小值。

解决这类问题需要一定的技巧和策略。

以下是一些解决几何最值问题的技巧:
1. 转化问题:将最值问题转化为几何问题,例如求点到直线的最短距离,可以转化为求点到直线的垂足。

2. 建立数学模型:根据问题的具体情况,建立适当的数学模型,例如利用勾股定理、三角函数等。

3. 寻找对称性:在几何图形中寻找对称性,例如利用轴对称、中心对称等性质,可以简化问题。

4. 利用基本不等式:利用基本不等式(如AM-GM不等式)可以求出某些量的最大或最小值。

5. 转化为一元函数:将问题转化为求一元函数的最大或最小值,然后利用导数等工具求解。

6. 构造辅助线:在几何图形中构造辅助线,可以改变问题的结构,从而更容易找到最值。

7. 尝试特殊情况:在某些情况下,尝试特殊情况(例如旋转、对称等)可以找到最值。

8. 逐步逼近:如果无法直接找到最值,可以尝试逐步逼近的方法,例如二分法等。

以上技巧并不是孤立的,有时候需要综合运用多种技巧来解决一个问题。

在解决几何最值问题时,需要灵活运用各种方法,不断尝试和调整,才能找到最合适的解决方案。

几何图形中的最值问题

几何图形中的最值问题

几何图形中的最值问题引言:最值问题可以分为最大值和最小值。

在初中包含三个方面的问题:1.函数:①二次函数有最大值和最小值;②一次函数中有取值范围时有最大值和最小值。

2.不等式: ①如x ≤7,最大值是7;②如x ≥5,最小值是5.3.几何图形: ①两点之间线段线段最短。

②直线外一点向直线上任一点连线中垂线段最短,③在三角形中,两边之和大于第三边,两边之差小于第三边。

一、最小值问题例1. 如图4,已知正方形的边长是8,M 在DC 上,且DM=2,N 为线段AC 上的一动点,求DN+MN 的最小值。

解: 作点D 关于AC 的对称点D /,则点D /与点B 重合,连BM,交AC 于N ,连DN ,则DN+MN 最短,且DN+MN=BM 。

∵CD=BC=8,DM=2, ∴MC=6, 在Rt △BCM 中,BM=6822 =10,∴DN+MN 的最小值是10。

例2,已知,MN 是⊙O 直径上,MN=2,点A 在⊙O 上,∠AMN=300,B 是弧AN 的中点,P 是MN 上的一动点,则PA+PB 的最小值是解:作A 点关于MN 的对称点A /,连A /B,交MN 于P ,则PA+PB 最短。

连OB ,OA /,∵∠AMN=300,B 是弧AN 的中点, ∴∠BOA /=300, 根据对称性可知 ∴∠NOA /=600, ∴∠MOA /=900, 在Rt △A /BO 中,OA /=OB=1, ∴A /B=2 即PA+PB=2图4CDMNMMNB例3. 如图6,已知两点D(1,-3),E(-1,-4),试在直线y=x 上确定一点P ,使点P 到D 、E 两点的距离之和最小,并求出最小值。

解:作点E 关于直线y=x 的对称点M , 连MD 交直线y=x 于P ,连PE , 则PE+PD 最短;即PE+PD=MD 。

∵E(-1,-4), ∴M(-4,-1),过M 作MN ∥x 轴的直线交过D 作DN ∥y 轴的直线于N , 则MN ⊥ND, 又∵D(1,-3),则N(1,-1),在Rt △MND 中,MN=5,ND=2, ∴MD=2522+=29。

初中几何最值问题常用解法

初中几何最值问题常用解法

初中几何最值问题常用解法初中几何最值问题一直是学生们的难点,但通过一些常用的解法,我们可以轻松解决这些问题。

以下将介绍9种常用的解法,帮助您更好地理解和学习。

一、轴对称法轴对称法是一种常用的解决最值问题的方法。

通过将图形进行轴对称变换,可以将问题转化为相对简单的问题,从而找到最值。

二、垂线段法垂线段法是指在几何图形中,利用垂线段的性质来求取最值。

例如,在矩形中,要使矩形的周长最小,可以将矩形的一条边固定,然后通过调整其他边的长度,使得矩形的周长最小。

三、两点之间线段最短两点之间线段最短是几何学中的基本原理。

在解决最值问题时,我们可以利用这个原理,找到两个点之间的最短距离。

四、利用三角形三边关系三角形三边关系是指在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边。

利用这个关系,可以解决一些与三角形相关的最值问题。

五、利用余弦定理求最值余弦定理是三角学中的基本定理,它可以用来解决一些与角度和边长相关的问题。

通过余弦定理,我们可以找到一个角的最大或最小余弦值,从而求得最值。

六、利用基本不等式求最值基本不等式是指在一个数列中,平均值总是小于等于几何平均值。

利用这个不等式,可以解决一些与数列相关的最值问题。

七、代数运算求最值代数运算是一种基本的数学运算方法,它可以用来解决一些与代数式相关的最值问题。

例如,通过求导数或微分的方法,可以找到一个函数的最大或最小值。

八、代数方程求最值代数方程是一种基本的数学方程形式,它可以用来解决一些与代数方程相关的最值问题。

例如,通过解二次方程或不等式的方法,可以找到一个表达式的最大或最小值。

九、几何变换求最值几何变换是指在几何图形中,通过平移、旋转、对称等方式改变图形的形状和大小。

利用几何变换的方法,可以解决一些与图形变换相关的最值问题。

例如,在矩形中,要使矩形的面积最大。

几何中的最值问题的解决策略

几何中的最值问题的解决策略

几何中的最值问题的解决策略
在几何中,最值问题通常是要找到一个几何对象的最大值或最小值。

以下是几何中解决最值问题的一些常用策略:
1. 利用性质或定理:利用已知的几何性质或定理来推导出最值问题的解。

例如,利用三角形的角度和性质来证明某个角度或边长的最大值或最小值。

2. 利用几何画图法:通过绘制几何图形,并观察图形的性质来解决最值问题。

例如,通过绘制直角三角形来找到两条边长之和固定时,两条边长的乘积的最大值。

3. 利用代数方法:将几何问题转化为代数问题,并通过求导、求解方程等代数方法来求解最值问题。

例如,通过代数方法来证明一个函数的极值点是函数的最大值或最小值。

4. 利用不等式:通过建立合适的不等式关系来限制几何对象的取值范围,并通过求解不等式来解决最值问题。

例如,通过利用三角不等式来推导出三角函数的最值问题。

5. 利用等式的极值性质:利用等式的极值性质来解决最值问题。

例如,通过证明函数的取值范围,并找到函数在取值范围边界处的最大值或最小值。

综上所述,解决几何中的最值问题需要运用几何性质和定理,绘制几何图形观察性质,以及运用代数方法、不等式关系和极
值性质等。

同时,解决最值问题还需要对几何对象的性质有深刻的理解和运用。

初中几何最值问题类型

初中几何最值问题类型

初中几何最值问题类型
初中几何中的最值问题类型有以下几种:
1.最大值最小值问题:
求某个几何图形的最大面积或最小周长,如矩形、三角形等。

求抛物线的最高点或最低点,即顶点的坐标。

2.极值问题:
求函数图像与坐标轴的交点。

求函数在某个区间内的最大值或最小值,如求二次函数的最
值等。

3.最优化问题:
求物体从一个点到另一个点的路径问题,如两点之间的最短
路径、最快速度等。

4.最长边最短边问题:
求三角形的最长边或最短边,如用三根木棍构成三角形,求
最长边的长度。

5.相等问题:
求两个几何形状中的某个参数,使得它们的某个关系成立,
如求两个相似三角形的边长比、两个等腰三角形的底角角度等。

这些问题类型都需要通过合理的分析和运用相关的几何定理
来解决。

对于初中学生来说,熟练掌握基本的几何概念和定理,灵活运用数学思维和方法,可以较好地解决这些最值问题。


过多做练习和思考,培养几何思维和解决问题的能力。

武汉中考 几何中的最值问题 2

武汉中考 几何中的最值问题 2

二、几何中的最值问题几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形周长或面积)等的最大值或最小值,求几何最值问题的基本方法有: 1、几何定理(公理)法; 2、特殊位置与极端位置法; 求最小值适用于:(1)轴对称模型:两点之间,线段最短(2)直角三角形模型:垂线段最短(直角三角形斜边大于直角边) 求最大值适用于:(1)不等式模型:222a b ab +≤(0,0)2a b a b +≤≥≥ (2)三角形两边之差小于第三边 A 、轴对称模型求最小值 模型理解1、在直线l 上找一点P ,使得其到直线同侧两点A 、B 的距离之和最小。

2、直线12l l 、交于O 、P 是两直线间的一点,在直线12l l 、上分别找一点A 、B ,使得△PAB的周长最短。

3、直线12l l 、交于O ,A 、B 是两直线间的两点,从点A 出发,先到1l 上一点P ,再从P 点到2l 上一点Q ,再回到B 点,求作P 、Q 两点,使四边形APQB 周长最小。

lAB24、从A 点出发,先移动到直线l 上的一点P ,再在l 上移动一段固定的距离PQ ,再回到点B ,求作点P ,使移动的距离最短。

5、A 、B 是位于河两岸的两个村庄,要在这条宽度为d 的河上垂直建一座桥,使得从A 村庄经过桥到B 村庄所走的路程最短。

模型运用16、如图1,正方形ABCD 的边长为2,E 为AB 的中点,P 是AC 上一动点,则PB PE +的最小值是___________17、如图2,O ⊙的半径为2,点A B C 、、在O ⊙上,OA OB ⊥,60AOC ∠=°,P 是OB上一动点,则PA PC +的最小值是__________18、如图3,45AOB ∠=°,P 是AOB ∠内一点,10PO =,Q R 、分别是OA OB 、上的动点,则PQR △周长的最小值是__________ABABEBAOPBC的周长最小,请求出点的正半轴上,OA=3,OB=4,D为边OB的中点。

2024年中考数学重难点《几何最值问题》题型及答案解析

2024年中考数学重难点《几何最值问题》题型及答案解析

重难点几何最值问题中考数学中《几何最值问题》部分主要考向分为五类:一、将军饮马类最值二、动点辅助圆类最值三、四点共圆类最值四、瓜豆原理类最值五、胡不归类最值几何最值问题虽然在中考数学中经常考察的是将军饮马类和辅助圆类,剩余几种虽然不经常考察,但是考到的时候难度都比较大,所以也需要理解并掌握不同类型的几何最值问题的处理办法,这样到考到的时候才能有捷径应对。

考向一:将军饮马类最值一动”“两定异侧普通一动”“两定同侧普通动”两定“一动”两定“两两动”“两定同侧两动”“两定异侧满分技巧将军饮马:。

1.(2023•绥化)如图,△ABC是边长为6的等边三角形,点E为高BD上的动点.连接CE,将CE绕点C 顺时针旋转60°得到CF.连接AF,EF,DF,则△CDF周长的最小值是3+3.【分析】分析已知,可证明△BCE≌△ACF,得∠CAF=∠CBE=30°,可知点F在△ABC外,使∠CAF =30°的射线AF上,根据将军饮马型,求得DF+CF的最小值便可求得本题结果.【解答】解:∵△ABC是等边三角形,∴AC=BC=6,∠ABC=∠BCA=60°,∵∠ECF=60°,∴∠BCE=60°﹣∠ECA=∠ACF,∵CE=CF,∴△BCE≌△ACF(SAS),∴∠CAF=∠CBE,∵△ABC是等边三角形,BD是高,∴∠CBE=∠ABC=30°,CD=AC=3,过C点作CG⊥AF,交AF的延长线于点G,延长CG到H,使得GH=CG,连接AH,DH,DH与AG 交于点I,连接CI,FH,则∠ACG=60°,CG=GH=AC=3,∴CH=AC=6,∴△ACH为等边三角形,∴DH=CD•tan60°=,AG垂直平分CH,∴CI=HI,CF=FH,∴CI+DI=HI+DI=DH=3,CF+DF=HF+DF≥DH,∴当F与I重合时,即D、F、H三点共线时,CF+DF的值最小为:CF+DF=DH=3,∴△CDF的周长的最小值为3+3.故答案为:3+3.2.(2023•德州)如图,在四边形ABCD中,∠A=90°,AD∥BC,AB=3,BC=4,点E在AB上,且AE=1.F,G为边AD上的两个动点,且FG=1.当四边形CGFE的周长最小时,CG的长为.【分析】先确定FG和EC的长为确定的值,得到四边形CGFE的周长最小时,即为CG+EF最小时,平移CG到C'F,作点E关于AD对称点E',连接E'C'交AD于点G',得到CG+EF最小时,点G与G'重合,再利用平行线分线段成比例求出C'G'长即可.【解答】解:∵∠A=90°,AD∥BC,∴∠B=90°,∵AB=3,BC=4,AE=1,∴BE=AB﹣AE=3﹣1=2,在Rt△EBC中,由勾股定理,得EC===,∵FG=1,∴四边形CGFE的周长=CG+FG+EF+EC=CG+EF+1+,∴四边形CGFE的周长最小时,只要CG+EF最小即可.过点F作FC'∥GC交BC于点C',延长BA到E',使AE'=AE=1,连接E'F,E'C',E'C'交AD于点G',可得AD垂直平分E'E,∴E'F=EF,∵AD∥BC,∴C'F=CG,CC'=FG=1,∴CG+EF=C'F+E'F≥E'C',即CG+EF最小时,CG=C'G',∵E'B=AB+AE'=3+1=4,BC'=BC﹣CC'=4﹣1=3,由勾股定理,得E'C'===5,∵AG'∥BC',∴=,即=,解得C'G'=,即四边形CGFE的周长最小时,CG的长为.故答案为:.考向二:动点辅助圆类最值满分技巧动点运动轨迹为辅助圆的三种类型:一.定义法——若一动点到定点的距离恒等于固定长,则该点的运动轨迹为以定点为圆心,定长为半径的圆(或圆弧)二.定边对直角模型原理:直径所对的圆周角是直角思路构造:若一条定边所对的“动角”始终为直角,则直角顶点运动轨迹是以该定边为直径的圆(或圆弧)三.定边对定角模型原理:在同圆或等圆中,同弧所对的圆周角相等思路构造:若一条定边所对的“动角”始终为定角,则该定角顶点运动轨迹是以该定角为圆周角,该定边为弦的圆(或圆弧)1.(2023•徐州)如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为.【分析】由折叠性质可知AC=AC'=3,然后根据三角形的三边不等关系可进行求解.【解答】解:∵∠C=90°,CA=CB=3,∴,由折叠的性质可知AC=AC'=3,∵BC'≥AB﹣AC',∴当A、C′、B三点在同一条直线时,BC'取最小值,最小值即为,故答案为.2.(2023•黑龙江)如图,在Rt△ACB中,∠BAC=30°,CB=2,点E是斜边AB的中点,把Rt△ABC绕点A顺时针旋转,得Rt△AFD,点C,点B旋转后的对应点分别是点D,点F,连接CF,EF,CE,在旋转的过程中,△CEF面积的最大值是4+.【分析】线段CE为定值,点F到CE距离最大时,△CEF的面积最大,画出图形,即可求出答案.【解答】解:∵线段CE为定值,∴点F到CE的距离最大时,△CEF的面积有最大值.在Rt△ACB中,∠BAC=30°,E是AB的中点,∴AB=2BC=4,CE=AE=AB=2,AC=AB•cos30°=2,∴∠ECA=∠BAC=30°,过点A作AG⊥CE交CE的延长线于点G,∴AG=AC=,∵点F在以A为圆心,AB长为半径的圆上,∴AF=AB=4,∴点F到CE的距离最大值为4+,∴,故答案为:.3.(2023•大庆模拟)如图,AB是⊙O的直径,AB=4,C为的三等分点(更靠近A点),点P是⊙O上个动点,取弦AP的中点D,则线段CD的最大值为()A.2B.C.D.【分析】如图,连接OD,OC,首先证明点D的运动轨迹为以AO为直径的⊙K,连接CK,当点D在CK的延长线上时,CD的值最大,利用勾股定理求出CK即可解决问题.【解答】解:如图,连接OD,OC,∵AD=DP,∴OD⊥P A,∴∠ADO=90°,∴点D的运动轨迹为以AO为直径的⊙K,连接CK,AC,当点D在CK的延长线上时,CD的值最大,∵C为的三等分点,∴∠AOC=60°,∴△AOC是等边三角形,∴CK⊥OA,在Rt△OCK中,∵∠COA=60°,OC=2,OK=1,∴CK==,∵DK=OA=1,∴CD=+1,∴CD的最大值为+1,故选:D.考向三:四点共圆类最值满分技巧对角互补的四边形必有四点共圆,即辅助圆产生模型原理:圆内接四边形对角互补∴FD=,在四边形ACBF中,∠ACB=∠AFB=90°,∴A、C、B、F四点共圆,∴∠ACF=∠ABF=45°,∠CAB=∠CFB,∵∠PCD=45°∴∠ACP=∠FCD,又∵△ABE∽△FBD,∴∠BAE=∠BFD,∴∠CAP=∠CFD,∴△CAP∽△CFD,∴,在四边形ACBF中,由对角互补模型得AC+CB=,∴CF=∴,∴AP=1,∴PE=2,故答案为:2考向四:瓜豆原理类最值满分技巧瓜豆原理的特征和结论:∴AB=CD=6,∠B=∠BCD=90°,∵∠BET=∠FEG=45°,∴∠BEF=∠TEG,∵EB=ET,EF=EG,∴△EBF≌△ETG(SAS),∴∠B=∠ETG=90°,∴点G在射线TG上运动,∴当CG⊥TG时,CG的值最小,∵BC=,BE=,CD=6,∴CE=CD=6,∴∠CED=∠BET=45°,∴∠TEJ=90°=∠ETG=∠JGT=90°,∴四边形ETGJ是矩形,∴DE∥GT,GJ=TE=BE=,∴CJ⊥DE,∴JE=JD,∴CJ=DE=3,∴CG=CJ+GJ=+3,∴CG的最小值为+3,故答案为:+3.2.(2023•宿城区二模)如图,矩形ABCD中,AD=6,DC=8,点E为对角线AC上一动点,BE⊥BF,,BG⊥EF于点G,连接CG,当CG最小时,CE的长为.【分析】过点B作BP⊥AC于点P,连接PG,则可得△ABE∽△PBG,进而可知∠BPG为定值,因此CG⊥PG时,CG最小,通过设元利用三角函数和相似比可表示出PG、CP,即可求出结果.【解答】解:如图,过点B作BP⊥AC于点P,连接PG,∵,∠ABC=∠EBF,∴△ABC∽△EBF,∴∠CAB=∠FEB,∵∠APB=∠EGB=90°,∴△ABP∽△EBG,∴=,∠ABP=∠EBG,∴∠ABE=∠PBG,∴△ABE∽△PBG,∴∠BPG=∠BAE,即在点E的运动过程中,∠BPG的大小不变且等于∠BAC,∴当CG⊥PG时,CG最小,设此时AE=x,∵,∴PG=,∵CG⊥PG,∴∠PCG=∠BPG=∠BAC,∴,代入PG=,解得CP=x,∵CP=BC•sin∠CBP=BC•sin∠BAC=,∴x=,∴AE=∴CE=,故答案为:.考向五:胡不归类最值满分技巧胡不归模型解决步骤:模型具体化:如图,已知两定点A、B,在定直线BC上找一点P,使从B走道P,再从P走到A的总时间最小解决步骤:由系数k·PB确定分割线为PBPA在分割线一侧,在分割线PB另一侧依定点B构α角,使sinα=k,α角另一边为BD过点P作PQ⊥BD,转化kPB=PQ过定点A作AH⊥BD,转化(PA+k·PB)min=AH,再依“勾股法”求AH的长即可。

几何中的最值

几何中的最值

几何中的最值几何中的最值问题是指在一定的条件下,求平面几何图形中某个量(如线段长度、角度大小、图形周长或面积)等的最大值或最小值。

求几何最值问题的基本方法有:1、几何定理(公理)法;2、临界状态(特殊位置与极端位置法);解决几何最值问题的通常思路(分析定点、动点,寻找定量)①模型解题:若属于常见模型,调用模型解决问题;②定理解题:若不属于常见模型,寻找定量,借助基本定理解决问题. ③轨迹解题:一般用于压轴题转化原则:尽量减少变量,向定点、定线段、定图形靠拢.一.几何定理:(画出模型)1.线段公理——两点之间,线段最短;2.直线外一点与直线的所有连线中垂线段最短3.三角形三边关系(两边之和大于第三边,两边之差小于第三边)4.两平行线间距离最短;5.过圆内一点,最长的弦为直径,最短的弦为垂直于直径的弦二、常见模型㈠.过河问题llB线段求其和, AB 河两侧,线段求其差, AB 河同侧,㈡、角平分线模型P A +PB 最小,需要点在异侧 |P A -PB |最大, 需要点在同侧蜂蜜蚂蚁C㈢梯子靠墙模型O A ⊥OB,AB=a ,⊿ABP 是等腰直角三角形。

求OP 的最大值 解法一:根据直角三角形斜边上的中线等于斜边的一半,可知a AB OE 2121==是定值,与OP 构造三角形OEP.解法二:根据等腰直角三角形ABP 斜边上的中线等于斜边的一半,可知解法三:A,B,O 三点在以AB 为直径的圆上,即二.常见临界状态(有待补充):三、观察动点的运动轨迹在武汉中考题的压轴题中求最值问题时,仅依靠定理或模型解决不了问题时,需要我们尝试去思考动的运动轨迹是什么,从而帮助我们解题。

一、过河模型1、在直线l 上找一点P ,使得其到直线同侧两点A 、B 的距离之和最小。

2、直线12l l 、交于O 、P 是两直线间的一点,在直线12l l 、上分别找一点A 、B ,使得△PAB的周长最短。

3、如图,圆柱形玻璃杯,高为12cm ,底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为______cm .AB2第2题图4、如图,当四边形P ABN 的周长最小时,a = .5、如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC =8,B 到MN 的距离BD =5,CD =4,P 在直线MN 上运动,则PA PB -的最大值等于 .6、点A 、B 均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P 是x 轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA +QB 的值最小的点,则OP OQ ⋅= .(1)如图1,若点C (x ,0)且-1<x <3,BC ⊥AC ,求y 与x 之间的函数关系式; (2)如图2,当点B 的坐标为(-1,1)时,在x 轴上另取两点E ,F ,且EF =1.线段EF 在x 轴上平移,线段EF 平移至何处时,四边形ABEF 的周长最小?求出此时点E 的坐标.B (-图1 图28、在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点.(1)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;(2)若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,求点E 、F 的坐标.1. (2011湖北荆门3分)分,高为5cm .若一只蚂蚁从P 点开始经过4 】A.13cmB.12cmC.10cmD.8cm2.(2011四川广安3分)如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC 上一点,且PC=23BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是【 】A 、6(4)π+㎝ B 、5cm C 、㎝ D 、7cm3.(2011广西贵港2分)如图所示,在边长为2P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 19、已知:抛物线2(0)y ax bx c a =++≠的对称轴为C ,其中(3,0)A -,(0,2)C -。

初中几何最值问题归纳

初中几何最值问题归纳

初中几何中的最值问题主要涉及到求解图形的最大值或最小值,以下是一些常见的几何最值问题的归纳:
1.矩形最大面积:给定一定的周长,求解能够构成的矩形中面积最大的情况。

这个
问题可以通过对矩形的边长关系进行分析和求导来解决。

2.三角形最大面积:给定一条固定的边长和该边对应的高,求解能够构成的三角形
中面积最大的情况。

通常使用面积公式和高度相关的关系进行求解。

3.圆内接多边形最大面积:给定一个圆,求解能够内接于该圆的正多边形中面积最
大的情况。

通过分析正多边形的边长和面积的关系,可以求解最值。

4.直线与曲线的最短距离:给定一条直线和一条曲线,求解离直线最近的曲线上的
点。

这个问题可以通过计算点到直线的距离并求最小值来解决。

5.圆与线段的最大面积:给定一条线段,求解能够与该线段构成的圆中面积最大的
情况。

这个问题可以通过计算圆的面积与半径的关系进行求解。

这些是初中几何中常见的最值问题的归纳,每个问题都有不同的解题方法和技巧。

在解决这些问题时,需要灵活运用几何知识和数学推理,结合具体的题目条件进行分析和求解。

初中几何中的最值问题

初中几何中的最值问题

初中几何中的最值问题初中几何中的最值问题是指在几何图形中寻找某个量的最大值或最小值的问题。

这些问题通常涉及到面积、周长、角度等几何量。

一般来说,解决初中几何中的最值问题需要掌握以下基本方法:1. 利用代数方法求解有时候,我们可以将几何图形转换为代数式,然后通过求导或者求平方等方法来求解。

例如,在矩形中,当周长一定时,面积最大;当面积一定时,周长最小。

我们可以设矩形的长为x,宽为y,则周长为2(x+y),面积为xy。

当周长一定时,即2(x+y)=k(k为常数)时,可以将y表示成x的函数:y=k/2-x,则面积S=x(k/2-x)=kx/2-x^2。

对S求导得到S'=k/2-2x=0,则x=k/4。

因此,在周长一定时,矩形的长和宽相等时面积最大。

2. 利用平均值不等式平均值不等式是一个重要的不等式,在初中几何中也经常被使用。

该不等式表明对于任意两个正实数a和b,有(a+b)/2>=sqrt(ab)。

例如,在三角形ABC中,如果要求最小的边长,则可以利用平均值不等式:设三角形边长分别为a、b、c,则有a+b>c,b+c>a,c+a>b。

将这三个不等式相加得到2(a+b+c)>a+b+c,则a+b+c>0。

因此,(a+b+c)/3>=sqrt(abc),即(a+b+c)>=3sqrt(abc)。

因此,当三角形的面积一定时,其边长之和最小。

3. 利用相似性质有时候,在几何图形中,我们可以利用相似性质来求解最值问题。

例如,在等腰三角形ABC中,如果要求最大的高,则可以利用相似三角形的性质:设高线AD与BC交于点E,则有AE/ED=BE/EC=AB/BC=2/1。

因此,AE=2ED,BE=2EC。

又因为AD是等腰三角形的高线,所以BD=DC。

则DE=BD-BE=(1/3)BC。

因此,在等腰三角形ABC中,高线对应底边的比值为2:1时,高线最大。

综上所述,在初中几何中解决最值问题需要掌握代数方法、平均值不等式和相似性质等基本方法,并且需要在实际问题中灵活应用这些方法来求解各种复杂的问题。

高三数学立体几何中的最值问题四则

高三数学立体几何中的最值问题四则

立体几何中的最值问题四则1. 用配方法求距离的最值例1. 如图1,正方形ABCD 、ABEF 边长都是1,且平面ABCD 、ABEF 互相垂直,点M 在AC 上移动,点N 在BF 上移动,若CM BN a a ==<<()02。

试求当a 为何值时,MN 的值最小。

图1分析:此题的解题关键是想用含a 的代数式表示距离,再用配方法求最值。

解:过M 作MH AB ⊥,垂足为H ,连结NH ,如图1所示。

在正方形ABCD 中,AB CB ⊥, 所以BC MH //,因为平面AC ⊥平面AE ,所以MH ⊥平面AE ,即MH NH ⊥。

因为CM BN a AB CB BE =====,1,所以AC BF ==2 即AM a =-2, MH AH a BH a ==-=12222,, 由余弦定理求得NH a =22。

所以MN MH NH =+22=-+=-+=-+<<()()()()12222212212022222a a a a a a当a =22时,MN =22,即M 、N 分别移到AC 、BF 的中点时,MN 的值最小,最小值为222. 结合实际找最值位置例2. 在一X 硬纸上,抠去一个半径为3的圆洞,然后把此洞套在一个底面边长为4,高为6的正三棱锥A —BCD 上,并使纸面与锥面平行,则能穿过这X 纸面的棱锥的高的最大值是________。

图2解:如图2所示,假设硬纸上的圆洞刚好卡在B'C'D'处。

设正三棱锥A BCD -的顶点A 在平面BCD 上的射影为A',在平面B'C'D'上的射影为O 。

连结BA'、B'O 并延长分别交CD 、C'D'于E 、E'点,则平面B C D '''//平面BCD ,所以B E BE BC BC''''=, B E B O BE BA ''''==3232,, 即B O BA B C BC ''''=。

专题25平面几何的最值问题

专题25平面几何的最值问题

专题25 平面几何的最值问题阅读与思考几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值. 求几何最值问题的基本方法有:1.特殊位置与极端位置法:先考虑特殊位置或极端位置,确定最值的具体数据,再进行一般情形下的推证.2.几何定理(公理)法:应用几何中的不等量性质、定理.3.数形结合法等:揭示问题中变动元素的代数关系,构造一元二次方程、二次函数等.例题与求解【例1】在Rt △ABC 中,CB =3,CA =4,M 为斜边AB 上一动点.过点M 作MD ⊥AC 于点D ,过M 作ME ⊥CB 于点E ,则线段DE的最小值为 .(四川省竞赛试题)解题思路:四边形CDME 为矩形,连结CM ,则DE = CM ,将问题转化为求CM 的最小值.【例2】如图,在矩形ABCD 中,AB =20cm ,BC =10cm .若在AC ,AB 上各取一点M ,N ,使BM +MN 的值最小,求这个最小值.(北京市竞赛试题)ADMN解题思路:作点B 关于AC 的对称点B ′,连结B ′M ,B ′A ,则BM = B ′M ,从而BM +MN = B ′M +MN .要使BM +MN 的值最小,只需使B ′M 十MN 的值最小,当B ′,M ,N 三点共线且B ′N ⊥AB 时,B ′M +MN 的值最小.【例3】如图,已知□ABCD ,AB =a ,BC =b (b a ),P 为AB 边上的一动点,直线DP 交CB 的延长线于Q .求AP +BQ 的最小值. (永州市竞赛试题)PDA B解题思路:设AP =x ,把AP ,BQ 分别用x 的代数式表示,运用不等式以ab b a 222≥+或a +b ≥2ab(当且仅当a =b 时取等号)来求最小值. 【例4】阅读下列材料:问题 如图1,一圆柱的底面半径为5dm ,高AB 为5dm ,BC 是底面直径,求一只蚂蚁从A 点出发沿圆柱表面爬行到C 点的最短路线. 小明设计了两条路线:图2图1摊平沿AB 剪开ACBBA路线1:侧面展开图中的线段AC .如图2所示.设路线l 的长度为l 1,则l 12 =AC 2=AB 2 +BC 2 =25+(5π) 2=25+25π2. 路线2:高线AB 十底面直径BC .如图1所示.设路线l 的长度为l 2,则l 22 = (BC +AB )2=(5+10)2 =225.∵l 12 – l 22 = 25+25π2-225=25π2-200=25(π2-8),∴l 12 >l 22 ,∴ l 1>l 2 . 所以,应选择路线2.条路线才能使蚂蚁从点A 出发沿圆柱表面爬行到C 点的路线最短. (衢州市中考试题)解题思路:本题考查平面展开一最短路径问题.比较两个数的大小,有时比较两个数的平方比较简便.比较两个数的平方,通常让这两个数的平方相减.【例5】如图,已知边长为4的正方形钢板,有一个角锈蚀,其中AF =2,BF =1.为了合理利用这块钢板,将在五边形EABCD 内截取一个矩形块MDNP ,使点P 在AB 上,且要求面积最大,求钢板的最大利用率. (中学生数学智能通讯赛试题)NME AB解题思路:设DN =x ,PN =y ,则S =xy .建立矩形MDNP 的面积S 与x 的函数关系式,利用二次函数性质求S 的最大值,进而求钢板的最大利用率.1ABD能力训练A 级1.如图,将两张长为8、宽为2的矩形纸条交叉,使重叠部分是一个菱形.容易知道当两张纸条垂直时,菱形的周长有最小值,那么菱形周长的最大值是 . (烟台市中考试题)2.D 是半径为5cm 的⊙O 内一点,且OD =3cm ,则过点O 的所有弦中,最短的弦AB = cm . (广州市中考试题)3.如图,有一个长方体,它的长BC =4,宽AB =3,高BB 1=5.一只小虫由A 处出发,沿长方体表面爬行到C 1,这时小虫爬行的最短路径的长度是 . (“希望杯”邀请赛试题)DD 1第1题图 第3题图 第4题图 第5题图4.如图,在△ABC 中,AB =10,AC =8,BC =6,经过点C 且与边AB 相切的动圆与CB ,CA 分别相交于点E ,F ,则线段EF 长度的最小值是( ) (兰州市中考试题)A .42B .4.75C .5D .4.85.如图,圆锥的母线长OA =6,底面圆的半径为2.一小虫在圆锥底面的点A 处绕圆锥侧面一周又回到点A ,则小虫所走的最短距离为( ) (河北省竞赛试题)A .12B .4πC .62D .636.如图,已知∠MON = 40°,P 是∠MON 内的一定点,点A ,B 分别在射线OM ,ON 上移动,当△P AB 周长最小时,∠APB 的值为( ) (武汉市竞赛试题) A .80° B .100° C .120° D .140° 7.如图, ⌒AD 是以等边三角形ABC 一边AB 为半径的四分之一圆周,P 为AD 上任意一点.若AC =5,则四边形ACBP 周长的最大值是( ) (福州市中考试题) A .15B .20C .15+52D .15+55NM NMAOPBDCBCA DBA PE第6题图 第7题图 第8题图8.如图,在正方形ABCD 中,AB =2,E 是AD 边上一点(点E 与点A ,D 不重合),BE 的垂直平分线交AB 于M ,交DC 与N .(1) 设AE =x ,四边形ADNM 的面积为S ,写出S 关于x 的函数关系式.9.如图,六边形ABCDEF 内接于半径为r 的⊙O ,其中AD 为直径,且AB =CD =DE =F A . (1) 当∠BAD =75°时,求⌒BC 的长; (2) 求证:BC ∥AD ∥FE ;(3) 设AB =x ,求六边形ABCDEF 的周长l 关于x 的函数关系式,并指出x 为何值时,l 取得最大值.10.如图,已知矩形ABCD 的边长AB =2,BC =3,点P 是AD 边上的一动点(P 异于A 、D ).Q 是BC边上任意一点.连结AQ,DQ,过P作PE∥DQ交于AQ于E,作PF//AQ交DQ于F.(1) 求证:△APE∽△ADQ;(3)(无锡市中考试题)BP11.在等腰△ABC中,AB=AC=5,BC=6.动点M,N分别在两腰AB,AC上(M不与A,B重合,N不与A,C重合),且MN∥BC.将△AMN沿MN所在的直线折叠,使点A的对应点为P.B CAB级1.已知凸四边形ABCD中,AB+AC+CD= 16,且S四边彤ABCD=32,那么当AC= ,BD= 时,四边形ABCD面积最大,最大值是.(“华杯赛”试题)2.如图,已知△ABC的内切圆半径为r,∠A=60°,BC=23,则r的取值范围是.(江苏省竞赛试题)DBABAA第2题图第3题图第4题图第5题图3.如图⊙O的半径为2,⊙O内的一点P到圆心的距离为1,过点P的弦与劣弧⌒AB组成一个弓形,则此弓形面积的最小值为.4.如图,△ABC的面积为1,点D,G,E和F分别在边AB,AC,BC上,BD<DA,DG∥BC,DE∥AC,GF∥AB,则梯形DEFG面积的最大可能值为.(上海市竞赛试题)5.已知边长为a 的正三角形ABC ,两顶点A ,B 分别在平面直角坐标系的x 轴,y 轴的正半轴上滑动,点C 在第一象限,连结OC ,则OC 的最大值是 .(潍坊市中考试题)6.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当P A + PD 取最小值时,△APD 中边AP 上的高为( ) (鄂州市中考试题)A .17172B .17174C .17178D .3QABCA BDCPP第6题图 第7题图 第8题图7.如图,正方形ABCD 的边长为4cm ,点P 是BC 边上不与点B ,C 重合的任意一点,连结AP ,过点P 作PQ ⊥AP 交DC 于点Q .设BP 的长为x cm ,CQ 的长为y cm . (1) 求点P 在BC 上运动的过程中y 的最大值;(2) 当y =41cm 时,求x 的值. (河南省中考试题)8.如图,y 轴正半轴上有两点A (0,a ),B (0,b ),其中a >b >0.在x 轴上取一点C ,使∠ACB 最大,求C 点坐标. (河北省竞赛试题)9.如图,正方形ABCD 的边长为1,点M ,N 分别在BC ,CD 上,使得△CM N 的周长为2.求: (1) ∠MAN 的大小;(2) △MAN 的面积的最小值. (“宇振杯”上海市竞赛试题)10,如图,四边形ABCD 中,AD = CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC 于F ,DE 与AB相交于点E .(2)已知AB =15cm ,BC =9cm ,P 是射线DE 上的动点,设DP =x cm(x >0),四边形BCDP 的面积为y cm 2. ①求y 关于x 的函数关系式;MNExB第6题图 第7题图 第8题图 第9题图11.如图,已知直线l :k kx y 42-+=(k 为实数).(1) 求证:不论k 为任何实数,直线l 都过定点M ,并求点M 的坐标;(2) 若直线l 与x 轴、y 轴的正半轴交于A ,B 两点,求△AOB 面积的最小值.(太原市竞赛试题)12.如图,在Rt △ABC 中,∠C =90°,BC =2,AC =x ,点F 在边AB 上,点G ,H 在边BC 上,四边形EFGH 是一个边长为y 的正方形,且AE =AC . (1) 求y 关于x 的函数解析式;。

解决几何图形最值问题的方法(二)---代数方法(教师版)附答案

解决几何图形最值问题的方法(二)---代数方法(教师版)附答案

解决几何图形最值问题的方法(二)附答案---代数方法一、知识要点:几何图形最值问题是近年来各类考试的常考题型,解决这类问题的方法大致有两类,(1)几何方法:利用几何图形的性质求最值.(2)代数方法:借助题目中几何图形的性质建立两个相关变量间的函数关系式,并能通过函数的最值来探求图形中某些元素的最值。

二、题型:(一)利用配方法求几何图形最值1.如图,线段AB的长为4,C为AB上一动点,分别以AC、BC为斜边在AB的同侧作等腰直角△ACD和等腰直角△BCE,那么DE长的最小值是.【分析】设AC=x,BC=4﹣x,根据等腰直角三角形性质,得出CD=22x,CD′=2(4)2x-,根据勾股定理然后用配方法即可求解.解:设AC=x,BC=4﹣x,∵△ABC,△BCD′均为等腰直角三角形,∴CD=22x,CD′=22(4﹣x),∵∠ACD=45°,∠BCD′=45°,∴∠DCE=90°,∴DE2=CD2+CE2=12x2+12(4﹣x)2=x2﹣4x+8=(x﹣2)2+4,∵根据二次函数的最值,∴当x取2时,DE取最小值,最小值为:4.故答案为:2.2.如图,正方形ABCD边长为4,M,N分别是边BC,CD上的两个动点且AM MN⊥,则AN的最小值是()A .4B .5C .25D .42解:∵AM MN ⊥,∴90AMB CMN ∠+∠=而90AMB MAB ∠+∠= ,∴MAB NMC∠=∠又∵90B C ∠=∠= ,∴ABM ∆∽MCN∆∴AB BM MC CN=若设BM x =,则4CM x=-于是有44x x CN =-,∴1(4)4CN x x =-∴221144(2)344DN CN x x x =-=-+=-+即:当2BM =时,DN 取最小值为3,而22AN AD DN =+又4AD =为定值,所以当DN 取最小值时,AN 取最小值此时22435AN =+=即当DN 取最小值3时,AN 取最小值5.故选:B .3.在平面直角坐标系中,已知(2,4)A ,(1,0)P ,B 为y 轴上的动点,以AB 为边构造ABC ∆,使点C 在x 轴上,90BAC ∠= ,M 为BC 的中点,则PM 的最小值为()A .172B 17C .55D 5解:如图,过点A 作AH y ⊥轴于H ,过点C 作CE AH ⊥于E ,则四边形CEHO 是矩形,∴4OH CE ==,∵90BAC AHB AEC ∠=∠=∠= ,∴90ABH HAB ∠+∠= ,90HAB EAC ∠+∠= ,∴ABH EAC ∠=∠,∴AHB ∆∽CEA ∆,∴AH BH EC AE =,即24BH AE=,∴2AE BH =,设BH x =,则2AE x =,∴22OC HE x ==+,4OB x =-,∴(0,4)B x -,(22,0)C x +,∵BM CM =,∴4(1,)2x M x -+,∵(1,0)P ,∴22245416()()2455x PM x x -=+=-+,∴PM 164555=,故选:C .4.如图,在Rt ABC ∆中,90C ∠= ,P 是BC 边上不同于,B C 的一动点,过点P 作PQ AB ⊥,垂足为Q ,连接AP .若3AC =,4BC =,则AQP ∆的面积的最大值是()A .254B .258C .7532D .7516解:设(04)BP x x =<<,由勾股定理得5AB =,∵90PQB C ∠=∠= ,B B ∠=∠,∴PBQ ∆∽ABC ∆,∴PQ QB PB AC BC AB ==,即345PQ QB x ==∴35x PQ =,45x QB =,2211346362575(5()225525225832APQ x x S PQ AQ x x ∆=⨯=⨯⨯-=-+=--+∴当258x =时,AQP ∆的面积最大,最大值是7532.故选:C .5.如图,已知边长为10的正方形ABCD ,E 是BC 边上一动点(与B 、C 不重合),连接AE ,G 是BC 延长线上的点,过点E 作AE 的垂线交DCG ∠的角平分线于点F ,若FG BG ⊥.(1)求证:ABE ∆∽EGF ∆;(2)若2EC =,求CEF ∆的面积;(3)请直接写出EC 为何值时,CEF ∆的面积最大.【分析】(1)利用同角的余角相等,判断出BAE FEG ∠=∠,进而得出ABE ∆∽EGF ∆,即可得出结论;(2)先求出8BE =,进而表示出2EG FG =+,由ABE ∆∽EGF ∆,得出AB BE EG FG=,求出FG ,最后用三角形面积公式即可得出结论;(3)同(2)的方法,即可得出2125(5)22CEF S x ∆=--+,即可得出结论.解:(1)∵四边形ABCD 是正方形,EF AE ⊥,∴90B G AEF ∠=∠=∠= ,∴90BAE AEB ∠+∠= ,90FEG AEB ∠+∠= ,∴BAE FEG ∠=∠,∵90B G ∠=∠= ,∴ABE ∆∽EGF ∆;(2)∵10AB BC ==,2EC =,∴8BE =,∵FG CG =,∴2EG CE CG FG =+=+,由(1)知,ABE ∆∽EGF ∆,∴AB BE EG FG =,∴1082FG FG =+,∴8FG =,∴1128822CEF S CE FG ∆=⋅=⨯⨯=;(3)设CE x =,则10BE x =-,∴EG CE CG x FG =+=+,由(1)知,ABE ∆∽EGF ∆,∴AB BE EG FG =,∴1010x x FG FG -=+,∴10FG x =-,∴22111125(10)(10)5)22222CEF S CE FG x x x x x ∆=⋅=⋅-=--=--+,当5x =时,CEF S ∆的最大值为252.6.如图1,矩形ABCD 中,4AB =,3AD =,把矩形沿直线AC 折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE .(1)求证:DEC EDA ≌;(2)求DF 的值;(3)如图2,若P 为线段EC 上一动点,过点P 作AEC 的内接矩形,使其定点Q 落在线段AE 上,定点M 、N 落在线段AC 上,当线段PE 的长为何值时,矩形PQMN 的面积最大?并求出其最大值.解析:(1)证明:由矩形的性质可知ADC CEA ≌,∴AD CE =,DC EA =,ACD CAE ∠=∠,在ADE 与CED 中AD CE DE ED DC EA =⎧⎪=⎨⎪=⎩∴DEC EDA SSS ≌();(2)解:如图1,∵ACD CAE ∠=∠,∴AF CF =,设DF x =,则4AF CF x ==﹣,在Rt ADF 中,222AD DF AF +=,即2223(4)x x +=-,解得;78x =,即78DF =.(3)解:如图2,由矩形PQMN 的性质得PQ CA∥∴PE PQ CE CA=又∵3CE =,225AC AB BC =+=设03()PE x x =<<,则35x PQ =,即53PQ x =过E 作EG AC ⊥于G ,则PN EG,]∴CP PN CE EG=又∵在Rt AEC 中,EG AC AE CE ⋅=⋅,解得125EG =∴31235x PN -=,即4(3)5PN x =-设矩形PQMN 的面积为S 则224434()3(03)332S PQ PN x x x x =⋅=-+=--+<<所以当32x =,即32PE =时,矩形PQMN 的面积最大,最大面积为3.(二)利用判别式求几何图形最值1.如图,在Rt ABC ∆中,90ACB ∠= ,60A ∠= ,3AC =P 为AB 边上的一个动点,连接PC ,过点P 作PQ PC ⊥交BC 边于点Q ,则BQ 的最大值为________.解:过Q 作QE AB ⊥于E ,过C 作CF AB ⊥于F ,∵在Rt ABC ∆中,90ACB ∠= ,60A ∠= ,3AC =,∴30B ∠= ,∴23AB AC ==36BC ==,∵90AFC ∠= ,60A ∠= ,∴30ACF ∠= ,∴3AF =,3CF =,设PF x =,BQ y =,∴1122QE BQ y ==,32BE y =,∴3332PE y x =-,∵PQ PC ⊥,∴90PEQ CFP CPQ ∠=∠=∠= ,∴90EQP EPQ EPQ CPF ∠+∠=∠+∠= ,∴PQE CPF ∠=∠,∴PEQ ∆∽CFP ∆,∴EQ PE PF CF =,∴333223y y x x --=∴2333)022x y x y +-+=,∵方程有实数解,∴0∆≥,∴233)602y y --≥,整理得,220360y y -+≥,解得2y ≤或18y ≥(舍去),∴2BQ ≤,∴BQ 的最大值为2.故答案为2.【分析】过Q 作QE AB ⊥于E ,过C 作CF AB ⊥于F ,利用相似三角形的性质根据一元二次方程,利用根的判别式解决问题即可.2.如图.直线33=y x 与坐标轴相交于A 、B 两点,动点P 在线段AB 上,动点Q 在线段OA 上、连结OP ,且满足BOP OQP ∠=∠,则当POQ ∠=______度时,线段OQ 的最小值为______.解:如图,过点O 作OE AB ⊥于点E ,过点Q 作QF AB ⊥于点F ,设OQ m =,PE n=∵直线333=+y x A 、B 两点,()(3,0,3A B ∴,3,3OA OB ∴==∴3tan 3OAB ∠=30OAB ∴∠= ,90BOP POQ ∠∠+= ,BOP PQO ∠∠=,90POQ PQO ∠∠∴+= ,90OPQ ∴∠= ,90OEP PFQ ∠∠== ,90OPE FPQ ∠∴+= ,90FPQ PQF ∠∠+= ,OPE PFQ ∠∠∴=,OEP PFQ ∴ ∽,OE PE PF QF∴=,在Rt OAE △中,1322OE OA ==,3332AE OE ==在Rt AQF ∆中,()11322QF AQ m ==-,)3332AF QF m ==-,()()32133333222n m n m ----,整理得,2423930n mn m -+-=,Δ0 ,()2(23)16930m m ∴--,24120m m ∴+-,解得,6(m -舍去)或2m ,m ∴的最小值为2,OQ ∴的最小值为2,此时32n =32PE ∴=22OP OE PE ∴=+3=∴3cos 2OP POQ OQ ∠==∴POQ ∠=30°故答案为:30,2点评:本题考查相似三角形的判定和性质,一元二次方程的根的判别式等知识,学会添加常用辅助线,构造相似三角形解决问题是解题的关键.11。

例谈立体几何最值问题的几种解法

例谈立体几何最值问题的几种解法

思路探寻立体几何最值问题侧重于考查同学们的空间想象、逻辑推理和数学运算等能力.常见的立体几何最值问题是求立体几何图形中某条线段、某个角、体积、表面积的最值,那么如何求解呢?一、利用函数思想在大多数情况下,我们可以把与动点有关的立体几何问题看作函数问题来求解.以其中某一个量,如动点的坐标、线段的长、角的大小为变量,建立关于该变量的关系式,并将其视为函数式,即可利用一次函数、二次函数、三角函数的性质和图象求得最值.例1.如图1,正方体ABCD-A1B1C1D1的棱长为1,P为AA1的中点,M在侧面AA1B1B上,若D1M⊥CP,则ΔBCM).C.5D.2图1图2解:过M作MG⊥平面ABCD,垂足为G,作GH⊥BC于点H,连接MH,以D为坐标原点,建立如图2所示的空间直角坐标系,可得D()0,0,0,C()0,1,0,A()1,0,0,P()1,0,12,D1(0,0,1),B()1,1,0.设M()1,a,b,则D1M=()1,a,b-1,CP=()1,-1,12,∵D1M⊥CP,∴ D1M⋅ CP=12b-a+12=0,∴b=2a-1,∴CH=1-a,MG=2a-1,∴MH=()1-a2+()2a-12=5a2-6a+2,∴SΔBCM=12BC⋅MH=1=可知当a=35时,ΔBCM面积取最小值,为SΔBCM=12×=故选B.在建立空间直角坐标系后,设出点M的坐标,以a、b为变量,构建关于a的函数式SΔBCM=然后将5a2-6a+2看作二次函数式,对其配方,根据二次函数的性质即可知函数在a=35时取最小值.二、运用基本不等式在解答立体几何最值问题时,我们往往可以先根据立体几何中的性质、定义、定理求得目标式;然后将其进行合理的变形,采用拆项、凑系数、补一次项,去掉常数项等方式,配凑出两式的和或积,就可以直接运用基本不等式来求得最值.在运用基本不等式求最值时,要把握三个条件:一正、二定、三相等.例2.已知三棱锥P-ABC的4个顶点均在球心为O、直径为23的球面上,PA=2,且PA,PB,PC两两垂直.当PC+AB取最大值时,三棱锥O-PAB的体积为().A. C.6解:∵PA,PB,PC两两互相垂直,∴三棱锥P-ABC可补全为如图3所示的长方体.则长方体的外接球即为三棱锥P-ABC的外接球,∴PA2+PB2+PC2=()232=12,又PA=2,∴PB2+PC2=10,∵AB2=PA2+PB2=2+PB2,∴PC2+AB2=2+PB2+PC2=12,∴()PC+AB2-2PC⋅AB=12,又PC⋅AB≤()PC+AB22,∴12=()PC+AB2-2PC⋅AB≥()PC+AB2-2()PC+AB22=12()PC+AB2,当且仅当PC=AB时取等号,∴()PC+AB max=26,此时PC=AB=6,PB=图347思路探寻AB 2-PA 2=2,∴V O -PAB =12V C -PAB =16S △PAB ⋅PC =112PA ⋅PB⋅PC =112×2×2×6故选B.根据长方体的性质得到()PC +AB 2-2PC ⋅AB =10后,可发现该式中含有PC 、AB 的和与积,根据基本不等式a +b ≥2ab 求解,即可得到三棱锥O -PAB 的体积.三、转化法运用转化法求解立体几何最值问题有两种思路.一是将问题转化为平面几何问题.先将几何体的表面展开,或将几何体内部满足条件的某些面展开成平面;再在平面内利用平面几何知识,如正余弦定理、两点间的距离最短、三角形的两边之和大于第三边等求解,这样问题就变得十分直观,容易求解了.另一种思路是根据题意和几何图形中的点、线、面的位置关系,明确其中改变的量和不变的量及其关系,根据简单几何体的性质、表面积公式、体积公式,将问题转化为求某些线段或角的最值.再结合简单几何体的性质,几何图形中点、线、面的位置关系求得最值例3.如图4,在正三棱柱ABC -A 1B 1C 1中,AA 1=AB =2,D 在A 1C 上,E 是A 1B 的中点,则()AD +DE 2的最小值是().A.6-7 B.27 C.3+7 D.5+7图4图5解:将平面A 1BC 与平面A 1AC 翻折到同一平面上,连接AE ,如图5所示,设AE ⋂A 1C =F .由题意可知A 1A =AC =BC =2,A 1C =A 1B =22,所以AA 21+AC 2=A 1C 2,所以AA 1⊥AC ,则∠AA 1C =45°,由余弦定理可得cos∠BA 1C =A 1B 2+A 1C 2-BC 22A 1B ⋅A 1C=8+8-42×22×22=34,则sin∠BA 1C =1-cos 2∠BA 1C =故cos∠AA 1B =cos ()∠AA 1C +∠BA 1C =cos ∠AA 1C cos ∠BA 1C -sin ∠AA 1C sin ∠BA 1C =32-148.因为E 是A 1B 的中点,所以A 1E =2,由余弦定理可得AE 2=AA 21+A 1E 2-2AA 1⋅A 1E cos∠BA 1A=4+2-2×2×2×32-148=3+7.因为D 在A 1C 上,所以AD +DE ≥AE ,当A 、E 、D 三点共线时,等号成立,则()AD +DE 2≥3+7.故选C .将平面A 1BC 与平面A 1AC 翻折到同一平面上,就可以把立体几何问题转化为平面几何问题,即可根据勾股定理和余弦定理求得A 1E 以及AE 的值.分析图形可知当A 、E 、D 三点共线时,AD +DE 取得最大值,再结合余弦定理求解即可.例4.已知球O 的表面积为60π,四面体P -ABC 内接于球O ,ΔABC 是边长为6的正三角形,平面PBC ⊥平面ABC ,则四面体P -ABC 体积的最大值为().A.18B.27C.32D.81解:因为球O 的表面积为60π,所以球的半径R ==15,由题意知四面体P -ABC 底面三角形的面积为定值,要使四面体的体积最大,只须使顶点P 到底面的距离最大,又因为平面PBC ⊥平面ABC ,所以当PB =PC 时,点P 到底面的距离最大,而ΔABC 外接圆的半径r =62sin60°=23,则O 到面ABC 的距离为d =R 2-r 2=3,且O 到面PBC 的距离为h =12r =3,设点P 到平面ABC 的距离为H ,则R 2=()H -d 2+h 2,解得H =33,此时体积最大值为V max =13×12×6×6×sin60°×33=27.故选B.解答本题,首先根据球的表面积求得球的半径;再根据题意和几何体的特征明确当PB =PC 时,点P 到底面的距离最大;最后根据外接圆的性质、勾股定理求出点P 到底面的距离,即可求出最大值.除了上述三种方法外,有时还可采用定义法、构造法来求立体几何最值问题的答案.总之,同学们在解题时,要先根据题意和几何体的结构特征寻找取得最值的情形,求得目标式;然后根据目标式的特征,选用合适的方法求最值.(作者单位:贵州省江口中学)48。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何图形中的最值问题引言:最值问题可以分为最大值和最小值。

在初中包含三个方面的问题:1. 函数:①二次函数有最大值和最小值;②一次函数中有取值范围时有最大值和最小值。

2. 不等式:①如x w 7最大值是7;②如x> 5,最小值是5.3.几何图形:①两点之间线段线段最短。

②直线外一点向直线上任一点连线中垂线段最短,③在三角形中,两边之和大于第三边,两边之差小于第三边。

一、最小值问题B镇*A镇♦' -------------------------- '燃气管例1.如图4,已知正方形的边长是8, M在DC上,且DM=2 N为线段AC 上的一动点,求DN+MN勺最小值。

解:作点D关于AC的对称点D,则点D与点B重合,连BM交AC于N,连DN 贝U DN+MN t短,且DN+MN=BM•/ CD=BC=8,DM=2, /• MC=6,在Rt △ BCM中,BM= 82 62=10,••• DN+MN勺最小值是10。

例2,已知,MN是O O直径上,MN=2点A在O O上,/ AMN=3&B是弧AN的中点,P是MN上的一动点,贝U PA+PB的最小值是__________ 解:作A点关于MN的对称点A,连AB,交MN于P,贝U PA+PB最短。

连OB oA,•••/ AMN=30B是弧AN的中点,•••/ BOA=30°,根据对称性可知:丄 NOA=60°,:丄 MOA=900, DDMBNAMOA在 Rt △ A ’BO 中,OA=OB=1,••• A B =、2 即 PA+PB= 2作点A 关于杯上沿 MN 的对称点B ,连接BC 交MN 于点P ,连接BM 过点C 作AB 的垂线交剖开线 MA 于点Do由轴对称的性质和三角形三边关系知例3.如图6,已知两点 D(1,-3),E(-1,-4), 试在直线y=x 上确定一点 P,使点P 到DE 两点的距离之和最小,并求出最小值。

解:作点E 关于直线y=x 的对称点M 连MD 交直线y=x 于P,连PE, 贝U PE+PD 最短;即 PE+PD=MD ••• E(-1,-4),• M(-4,-1),过M 作MN/ x 轴的直线交过 D 作DN/ y 轴的直线于 N, 则 MN_ ND,又 T D(1,-3),则 N(1,-1),在 Rt △ MND 中 ,MN=5,ND=2, • MD= 5? 2 = .. 29。

•••最小值是.29 。

练习1. (2012山东青岛3分)如图,圆柱形玻璃杯高为12cm 底面周长为18cm,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁, 离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为cmII \41订一干4 />is【解】如图,圆柱形玻璃杯展开(沿点A 竖直剖开)后侧面是一个长 18宽12的矩形,AP+ PC为蚂蚁到达蜂蜜的最短距离,且AP=BP由已知和矩形的性质,得DC=9 BD=12在Rt△ BCD中,由勾股定理得BC DC2 BD2. 92 122 15。

••• AP+ PC=BPF PC=BC=15即蚂蚁到达蜂蜜的最短距离为15cm。

2.正方形ABCD边长是4,/ DAC的平分线交CD与点E,点P,Q分别是AD,AE上的动点(两动点不重合),则PQ+DQ勺最小值是解:过点D作DF丄AC垂足为F,则DF即为PQ+DQ勺最小值.•••正方形ABCD的边长是4,• AD=4 / DAC=45 ,在直角△ ADF 中,/ AFD=90 , / DAF=45 , AD=4,••• DF=AD?sin45 =4 二22故答案为23. (2009?陕西)如图,在锐角厶ABC中,AB= 4 , / BAC=45°,/ BAC的平分线交BC于点D, M N分别是AD和AB上的动点,贝U BM + MN的最小值是 ____ .解:过B作关于AD的对称点B,则B在AC上,且AB=A B=4.,MB=M B,B/M N最短,即为B Z H最短。

在Rt△ AHB中,/ BAH= 45°, AB=4- ,• B H=4,• BM+ MN的最小值是 4.4. 如图,菱形ABCD中, AB=2, / A=120°,点P, Q K分别为线段BC, CD, BD上的任意一点,贝U PK+QK勺最小值为 _____解:•••四边形ABCD是菱形,• AD// BC•••/ A=120 ,•••/ B=180 -Z A=180 - 120° =60°,作点P 关于直线BD 的对称点 P ,连接 PQ PC 则P /Q 的长即为PK+Q 啲最小值,由图可知, 当点Q 与点C 重合,CP 丄AB 时PK+QK 勺值最小, 在 Rt △ BCP /中,T BC=AB=2 Z B=60° , ••CP /=BC?si nB=2X25. (2012 兰州)如图,四边形 ABCD 中,Z BAD= 120°,Z B =Z D = 90°,在 BC CD 上 分别找一点 M 汕使厶AMN 周长最小时,则Z AMI ^Z ANM 的度数为【 】A. 130° B . 120° C . 110°D . 100°解:作A 关于BC 和 ED 的对称点A', A 〃,连接A A 〃,交 BC 于M,交CD 于N,则A A 〃即为△ AMN 的周长最小值.作 DA 延长线AHT Z EAB= 120°,• Z HAA = 60°,• Z AA M+Z A "=Z HAA = 60°, •/Z MA A =Z MAA ,Z NAD =Z A ",故选:B .6. (2011?贵港)如图所示,在边长为 2的正△ ABC 中,E 、F 、G 分别为AB AC BC的中点,点P 为线段EF 上一个动点,连接 BP 、GP 则厶BPG 的周 长的最小值是 ______解:要使厶PBG 的周长最小,而 BG=1一定,且Z MA A +Z MAA =ZAMN ZNADF Z(A 〃=Z IANM • Z AMN-Z ANI =Z MA A +Z MAA +Z I NA +Z /_A=2( Z AA M +Z A " ) = 2X 60°= 120°,Rt △ OAB 勺顶点 A的坐标是(9,0) ,tan/ BOA —3 ,3点C 的坐标为(2,0),点P 为斜边OB 上的一个动点,则 解:作A 关于OB 的对称点D,连接CD 交OB 于 P,连接AP,过D 作DN L OA 于N,则此时PA+PQ 的值最小, ••• Rt △ OABI 的顶点 A 的坐标为(9, 0),.・. OA=9 •/ tan / BOA 念 /• AB=3^3,/ B=60°,3•••/ AOB=30 ,••• OB=2AB=^31 1 由三角形面积公式得: &OA E =- X OA< AB=- X OB< AM22即9X3后=6后AM ,9 9 • AM=— , • AD=2X — =9,22•••/ AMB=90,/ B=60°,A Z BAM=30 , •••/ BAO=90,•/ OAM=6°0 ,PA+PC 的最小值为 “ 677.(第二阶段十三)在平面直角坐标系中,1 •/ DN± OA NDA=30 , • AN=-2^67AD=9,由勾股定理得:2DN=.、AD 2 AN 2 9 =9/32 "V5 2 --9 22令在Rt △ DNC 中,由勾股定理得: DC=、.DN 2 CN 2即PA+PC 的最小值是.67 , 解:作A 关于OB 的对称点D,连接CD 交OB 于P ,连接AP, vl■r \ /£ —过D 作DNL OA 于N,则此时PA+PC 勺值最小,• DP=PA 「・ PA+PC=PD+PC=CD 0CA工8. (2013苏州)如图,在平面直角坐标系中, Rt △ OAB 的顶点A 在x 轴的正半轴上,顶点 B 的坐标为(3, J3),点C 的坐标为( -,0),点P 为斜边OB 上的一动点,则△ PAC2 周长的最小值为( ) • B (3 ,「), ••• AB={% OA=3 / B=60°,由勾股定理得:OB=2 ';,由三角形面积公式得: 一X OAK AB 」X OBK AM 2 23 3 • AM 丄,• AD=2X =3, ::, :', •••/ AMB=90,/ B=60°,A ZBAM=30 , •••/ BAO=90,•/ OAM=6°O , •/ DNL OA NDA=30 , • AN-Ag ,由勾股定理得:DN 「:;, 0), • CN =3_~2 在Rt △ DNC 中,由勾股定理得:即厶PAC周长的最小值为5+丄2 29. ( 2013?徐州模拟.仿真一)在平面直角坐标系中,矩形ABCD勺顶点A,B,C的坐标分别是(0, 0),( 20, 0)( 20 , 10)。

在线段AC AB上各有一动点M N,则当BM+M为最小值时,点M的坐标是( )解:如图,作点B关于AC的对称点B',过点B'作B' N丄OB于N, B'N交AC于M贝UB' N=B M+MN=BM+MN N 的长就是BM+MN勺最小值•连接OB ,交DC于P.•••四边形ABCD是矩形,••• DC/ AB, •••/ BAC=/ PCA•••点B关于AC的对称点是B', •••/ PAC=/ BAC•••/ PAC玄PCA •- PA=PC令PA=x,贝U PC=x PD=20-x.在Rt△ ADP中,T PA=PD+A[5,2 2 2二x = (20-x ) +10 ,• x=.•/ cos / B' ON=co3 OPD •- ON OB =DP OP• ON 20=:, • ON=12J yD cO s X O (A) N B得厶 B' GB^A ABCB /G ABB /B ACB' G=16 故 BM+M 的最小值是 16cm. 故答案为:16cm.11.如图,已知正方形 ABCD 勺边长为10,点P 是对角线BD 上的一个动点,M N 分别是BC CD 边上的中点,贝U PM+PN 勺最小值是 解:作点N 关于BD 的对称点N',交AD 与N ,连接N M 贝U N M =AB 最短。

相关文档
最新文档