贝叶斯统计原理及方法优秀PPT

合集下载

Bayes(贝叶斯)估计

Bayes(贝叶斯)估计


参数作为随机变量
• 条件分布: p(x1,x2,..xn | )
精选完整ppt课件
几个学派(3)
• 信念学派:
• 带头人:Fisher
• 观点:概率是频率

主观不是概率,而是信念度

参数不是随机变量,仅是普通变量
• 似然函数: L( | x1,x2,..xn)
精选完整ppt课件
批评1:置信区间
后验风险:
• Bayesian风险与后验风险
(L(,)p(x|) ()d)dx
• 后验分析最小=>Bayesian风险最小
精选完整ppt课件
两种常用损失函数:
• 平方损失:
L(,)()2
– 最小Bayesian风险估计:后验期望
• 点损失:
L(a,
)
0,|
a
|
1,|
a
|
– 最大后验密度估计
精选完整ppt课件
• 3、联合分布密度->条件分布密度
• p(x1,x2,..xn | ), 是随机变量
• 4、确定的先验分布() • 5、利用Bayesian公式求后验分布密度 • 6、使用后验分布做推断(参数估计、假设检验)
精选完整ppt课件
例1:两点分布b(1,p)的
• 1. 联合分布:p(x|)nxx(1)nx
• 使得 h ( |r ) p (x |)* ( )与先验分布同类型
• 若p(x|)服从正态分布,选正态分布 • 若p(x|)服从两点分布,选Beta分布 • 若p(x|)服从指数分布,选逆Gamma分布
精选完整ppt课件
Bayes统计推断问题
• 参数估计:
– 点估计 – 区间估计

简单贝叶斯方法ppt课件

简单贝叶斯方法ppt课件
P ( X x | C 0 ) P ( C 0 ) P ( X x | C 0 ) P ( C 0 ) 0 0 P ( C 0 | X x ) 0 P ( X x ) P ( X x | C 1 ) P ( C 1 ) P ( X x | C 0 ) P ( C 0 ) 0 0 0
从这个意义上讲,它是一个“执果索因”的条 件概率计算公式.相对于事件B而言 ,概率论中 把 P(Ai) 称为先验概率( Prior Probability), 而 把 P(Ai|B) 称 为 后 验 概 率 ( Posterior Probability),这是在已有附加信息(即事件 B已发生)之后对事件发生的可能性做出的重新 认识,体现了已有信息带来的知识更新.
简单贝叶斯方法
本节内容纲要
• • • • • • 贝叶斯定理回顾 简单贝叶斯(Naï ve Bayes) 贝叶斯分类法:二类别 对分类法的实用评价 不对称错误分类代价和贝叶斯风险分类 贝叶斯风险分类:多类别
贝叶斯定理回顾
定义 事件组A1,A2,…,An (n可为),称为样 本空间S的一个划分,若满足:
– 目标是预测类别C – 特别地, 我们想找能够最大化P(C| A1, A2,…,An )的 C值
• 能否从直接数据中估计P(C| A1, A2,…,An )?
贝叶斯分类方法
• 方法:
– 使用贝叶斯定理对于分类变量C的所有值计算后验概率 P(C | A1, A2, …, An) ,
P ( A A A | C ) P ( C ) P ( C | A A A ) P ( A A A )
i 1
P ( A P ( B |A j) j)
式子就称为贝叶斯公式。
贝叶斯定理回顾

《贝叶斯估计》PPT课件

《贝叶斯估计》PPT课件

前面的分析总结如下:人们根据先验信息对参数θ
已有一个认识,这个认识就是先验分布π (θ )。通
过试验,获得样本。从而对θ 的先验分布进行调整,
调整的方法就是使用上面的贝叶斯公式,调整的结
果就是后验分布 ( x1,。, xn后) 验分布是三种信息 的综合。获得后验分布使人们对θ 的认识又前进一
1)
,
x

0,1, n
( x)
(n 2)
x (1 )nx ,0 1
(x 1)(n x 1)

X ~ Be(x 1, n x 1)
9
贝叶斯统计学首先要想方设法先去寻求θ的先验分布。 先验分布的确定大致可分以下几步: 第一步,选一个适应面较广的分布族作先验分布族, 使它在数学处理上方便一些,这里我们选用β分布族
步,可看出,获得样本的的效果是把我们对θ的认识
由π(θ)调整到 应建立在后验分布
( 。x1,所,以xn)对θ的统计推断就 ( 的x1,基础, xn上) 。
7
例1 设事件A(产品为废品)的概率为 ,即P(A) 。 为了估计 而作n次独立观察,其中事件A出现次数
为X,则有X服从二项分布 b(n, )
第三章 贝叶斯估计
§3.1贝叶斯推断方法 一 、统计推断中可用的三种信息
美籍波兰统计学家耐(E.L.Lehmann1894~1981) 高度概括了在统计推断中可用的三种信息:
1.总体信息,即总体分布或所属分布族给我们 的信息。譬如“总体是指数分布”或“总体是正 态分布”在统计推断中都发挥重要作用,只要有 总体信息,就要想方设法在统计推断中使用。
假设Ⅱ 当给定θ后,从总体p(x|θ)中随机抽取一个样 本X1,…,Xn,该样本中含有θ的有关信息。这种信 息就是样本信息。

贝叶斯统计及其推断(PowerPoint 123页)

贝叶斯统计及其推断(PowerPoint 123页)

1.先验矩法
历史数据得的估计值1,..., k
计算
1 +...+k
k
, S2
1 k 1
k
(i
i 1
)2
令E =
Var
(
)2 (
1)
S2
解得 , 的一个估计 ,
先验分布的确定
2.利用先验分位数
若历史经验得 ( )的下P1和上P2分位数L和U
则有
L 0
( ) 1(1 ) 1d ( )T ( )
解:m(x) p(x, )d p(x | ) ( )d , ( | x) p(x, ) / p(x, )d p(x | ) ( ) / m(x).
求解的例子
设x b(n, ), ~ U (0,1).求m(x), ( | x)
解:m(x)
1 0
Cnx
x
(1
)nx
1d
Cnx
函数为P(x)=c.h(x)
则称h(x)为P(x)的核
由于 ch(x)dx 1(或 ch(x) 1) x
c
1
从而P(x) h( x)
h(x)dx
h(x)dx
即P( x)由核唯一确定,
除了相差一个常数倍外,核也由P(x)唯一确定
计算的简化---边缘密度的核
例3.1.设x ~ N (1, 4)
可信区间——选择标准
由上例知的1 可信区间a, b不唯一
选择区间长度最短的。假如,某人年龄的两个
1 可信区间为30,40和38,41,则38,41更好,
精度更高,信息更精确
可信区间——选择标准
a, b为1 可信区间,则
b
a ( | x)d 1

贝叶斯估计PPT课件

贝叶斯估计PPT课件
贝 叶 斯 统 计(Bayesian Statistics)
(Bayes,Thomas)(1702─1761)
贝叶斯是英国数学家.1702年生于伦敦;1761年4月17日 卒于坦布里奇韦尔斯.
贝叶斯是一位自学成才的数学家.曾助理宗教事务,后来 长期担任坦布里奇韦尔斯地方教堂的牧师.1742年,贝叶斯被 选为英国皇家学会会员.
如今在概率、数理统计学中以贝叶斯姓氏命名的有贝叶 斯公式、贝叶斯风险、贝叶斯决策函数、贝叶斯决策规则、贝 叶斯估计量、贝叶斯方法、贝叶斯统计等等.
贝叶斯方法(Bayesian approach )
• 贝叶斯方法是基于贝叶斯定理而发展起来用于系 统地阐述和解决统计问题的方法(Samuel Kotz和 吴喜之,2000)。
P(
i) n
i
,i
1,2,...,n
若这个分布的概率部 绝分 大在 0附近,那么,该产品为 "信得过产"品 ,
可见假定以后每天取 都几 抽件产品与历史的 资不 料合格率分布一 ,
使用单位就可以确"认 免为 检产品 ".
基于上述三种信息(总体信息、样本信息和先验信息)进行的 统计推断被称为贝叶斯统计学。它与经典统计学的主要差别在于 是否利用先验信息。贝叶斯统计学派把任意一个未知参数都看成 随机变量,应用一个概率分布去描述它的未知状况,该分布称为 先验分布。
信息处理
样 本 信 息
先 验 信 息 贝 叶 斯 定 理
后 验 信 息
统 计 推 断
从概率论的Bayes公式谈起
设自然状态有k种, 1,2,…, k, P(i)表示自然状态i发生的先验概率分布, P(x︱i)表示在状态i条件,事件为x的概 率。 P(i ︱x )为i发生的后验概率。

贝叶斯统计ppt课件

贝叶斯统计ppt课件
3
(一)预备知识
4
5
(二)基本思想
6
(三)常用MCMC算法 Gibbs抽样(吉布斯采样算法)
7
8
立即更新的Gibbs抽样
每次迭带的时候 的一些元素已经被跟新了,如果在更
新其他的元素时不使用这些更新后的元素会造成一定程度 的浪费。事实上, Gibbs抽样 可通过在每一步都利用近似 得到的其他元素的值来获得更好的效果。这种方法改进了 练的混合,换句话说,链能更加迅速,更加详尽的搜索目 标分布的支撑空间。
x=(x1,x2,…,xn)T 的函数,即
(x) (x1,x2, , xn )
在一般场合下,这三种估计是不同的,
当后验分布h(θ| x )对称时,这三种估计 是相等的。
31
三 Bayes区间估计
经典区间估计
参数θ是未知常数(非随机变量),其置信 度为1-α的区间估计[θL ,θU]满足
P(L U ) 1
理解为进行了大量重复试验,随机区间 [θL ,θU ]包含常数θ的概率为1-α (θL ,Θu样本x的 函数,是随机变量)。
32
三 Bayes区间估计
经典统计学中,对给定的样本容量n,若进 行多次反复的抽样,得到了众多个不同的 区间,其中每个区间,要么包含θ的真值, 要么不包含θ的真值。
=
0 0
建议分布为N( 0 ,I),再由它生成一个随机向量作为 0
1,然后看接受概率a,设先验 ( )为均匀分布,设 p(x,x' )=p(x',x),则a min(1, ( ' ))
( )
15
三、MCMC方法的收敛性诊断
要多久链才可以不依赖于其初始值以及需 要多久该链能完全挖掘目标分布函数支撑 的信息。

十大经典算法朴素贝叶斯讲解PPT

十大经典算法朴素贝叶斯讲解PPT


在人工智能领域,贝叶斯方法是一种非常具有 代表性的不确定性知识表示和推理方法。
贝叶斯定理:

P(A)是A的先验概率或边缘概率。之所以称为“先验”是因为它不考 虑任何B方面的因素。 P(A|B)是已知B发生后A的条件概率,也由于得自B的取值而被称 作A的后验概率。 P(B|A)是已知A发生后B的条件概率,也由于得自A的取值而被称 作B的后验概率。 P(B)是B的先验概率或边缘概率,也作标准化常量(normalized constant).
购买电脑实例:

购买电脑实例:
P(X | buys_computer = “no”) P(buys_computer = “no”) = 0.019×0.357 = 0.007

因此,对于样本X,朴素贝叶斯分类预测 buys_computer =”yes” 特别要注意的是:朴素贝叶斯的核心在于它假设向量 的所有分量之间是独立的。
扩展:


该算法就是将特征相关的属性分成一组,然后假设不 同组中的属性是相互独立的,同一组中的属性是相互 关联的。 (3)还有一种具有树结构的TAN(tree augmented naï ve Bayes)分类器,它放松了朴素贝叶斯中的独 立性假设条件,允许每个属性结点最多可以依赖一个 非类结点。TAN具有较好的综合性能。算是一种受限 制的贝叶斯网络算法。
Thank you!
贝叶斯算法处理流程:
第二阶段——分类器训练阶段: 主要工作是计算每个类别在训练样本中出现 频率以及每个特征属性划分对每个类别的条件 概率估计。输入是特征属性和训练样本,输出 是分类器。 第三阶段——应用阶段:

Hale Waihona Puke 这个阶段的任务是使用分类器对待分类项进行分类 ,其输入是分类器和待分类项,输出是待分类项与类 别的映射关系。

《贝叶斯决策理论》PPT课件

《贝叶斯决策理论》PPT课件
常表示为
p (x )~ N (, )
多元正态分布的性质
等密度点的轨迹是超椭球面
R 1
R 2
R 22 (12 22) p(x2)dx
R 1
P ( 1)(11 22) (21 11) p(x 1)dx (12 22) p(x2)dx
R 2
R 1
一旦R 1 和 R 2 确定,风险 R 就是先验概率 P (1 ) 的线性函数,可表
示为
RabP(1)
a22(1222) p(x2)dx
R 11P(1x)12P(2 x)p(x)dx
R1
21P(1x)22P(2 x)p(x)dx
R2
R11P(1)p(x1)12P(2)p(x2)dx
R 1
21P(1)p(x1)22P(2)p(x2)dx
R2
P (2 ) 1 P (1 ) p ( x 1 ) d x p ( x 1 ) d x 1
2.3 正态分布时的统计决策
贝叶斯分类器的结构可由条件概率密度 和先验概率来决定
最受青睐的密度函数——正态分布,也称 高斯分布
合理性:中心极限定理表明,在相当一般的 条件下,当独立随机变量的个数增加时,其 和的分布趋于正态分布
简易性
2.3.1 正态分布的定义及性质
单变量正态分布由两个参数完全确定,即 均值和方差
模式识别的目的就是要确定某一个给定 的模式样本属于哪一类
可以通过对被识别对象的多次观察和测
量,构成特征向量,并将其作为某一个
判决规则的输入,按此规则来对样本进 行分类
作为统计判别问题的模式分类
在获取模式的观测值时,有些事物具有 确定的因果关系,即在一定的条件下, 它必然会发生或必然不发生
例如识别一块模板是不是直角三角形,只要 凭“三条直线边闭合连线和一个直角”这个 特征,测量它是否有三条直线边的闭合连线 并有一个直角,就完全可以确定它是不是直 角三角形

贝叶斯公式算法 ppt课件

贝叶斯公式算法 ppt课件

我们看到,当n较大时,直接计算Pn(k) Cnk pkqnk 是颇为麻烦的。实际上,当n很大时,p很小时,
可利用下列泊松近似公式计算:
Pn (k)
Cnk
pk qnk
(np)k k!
enp
当n 20, p 0.1时,就可用上述公式近似运算,而
当n 100, p 0.01时,近似效果则非常好。
定理 : 在n重贝努里试验中事件A恰好发 生k次的概率为
Pn (k) Cnk pk (1 p)nk , k 0,1, 2,, n
例:据报道,有10%的人对某药有 胃肠道反应。为考察某厂的产品质量, 现选5名患者服用此药, 试求下列事件的概率。
(1)有人有反应; (2)不超过2人有反应; (3)至少有3人有反应。
n
P(B) P( Ai )P(B|Ai )
i 1
全概率公式的来由, 不难由上式看出:
“全”部概率P(B)被分解成了许多部分之和.
它的理论和实用意义在于:
在较复杂情况下直接计算P(B)不易,但B总是 伴随着某个Ai出现,适当地去构造这一组Ai 往往可以简化计算.
我们还可以从另一个角度去理解 全概率公式. 某一事件B的发生有各种可能的原因
运用乘法公式得
将此例中所用的方法推广到一般的情形,就 得到在概率计算中常用的全概率公式.
全概率公式:
设 A1,A2,…,An 是 两 两 互 斥 的 事 件 , 且 P(Ai)>0, i =1,2,…,n, 另有一事件B, 它总是与 A1, A2, … ,An之一同时发生,则
n
P(B) P( Ai )P(B|Ai )
12 3
B发生总是伴随着A1,A2运,用A加3 之法公一式同得时发生,

Bayes统计(Full) PPT

Bayes统计(Full) PPT
B:试制10个产品,有9个高质量产品。 依Bayes思想,B的发生可以再用来修正判断
即求: (1|B), (2|B),此时(1)=0.7 (2)=0.3 P(B|1)=10*0.99*0.1=0.387 P(B|2)=10*0.79*0.3=0.121 P(B)= P(B|1)(1)+ P(B|2)(2) =0.307 (1|B)=P(B|1)(1)/P(B)=0.883; (2|B)=P(B|2)(2)/P(B)=0.117; 经理将两个建议的可信程度调整为0.883,0.117
基本观点是:把数据(样本)看成是来自具有 一定概率分布的总体,所研究的对象是这个总 体而不局限于数据本身。适用于“大样本”情 形;
第三种信息:先验信息 在抽样之前关于统计问题的一些信息,一般 来源于经验和历史资料。 现实例子:Savage(1961)的实验 牛奶?茶?谁先倒入 海顿(Haydn)?莫扎特(Mozart)?
公司经理考虑增加投资以改进生产设备,下属部门 有两种意见:
1:改进后,高质量产品可占90度理为根0.4据, 过2的去可两信部程门度意为见0有.6.效情况,认为1可信程 (1)=0.4; (2)=0.6; (过去的经验,主观概率)
为慎重起见,经理决定进行小规模实验观其结果。 实验结果如下:
Bayes统计(Full)
频率(经典)学派的观点
概率指的是相对频率,是真实世界的客观属性。 参数是固定的未知常数。由于参数不会波动,因
此不能对其进行概率描述。 统计过程应该具有定义良好的频率稳定性。如:
一个95%的置信区间应覆盖参数真实值至少95% 的频率。
统计学更多关注频率推断
贝叶斯学派的观点
三种信息 总体信息 即总体分布或总体所属分布族给我们的信息。 “总体服从正态分布”: 样本信息

朴素贝叶斯分类ppt课件

朴素贝叶斯分类ppt课件
件是次品的概率是多少
解 设事件 A 为“任取一件为次品”,
事件 Bi 为" 任取一件为 i 厂的产品" ,i 1,2,3.
B1 B2 B3 , Bi Bj , i, j 1,2,3.
2021精选ppt
9
由全概率公式得
30% 2% A 1% 1%
B1
20% B3
50%
B2
P( A) P(B1)P( A B1) P(B2 )P( A B2 ) P(B3 )P( A B3 ). P(B1) 0.3, P(B2 ) 0.5, P(B3 ) 0.2, P( A B1) 0.02, P( A B2 ) 0.01, P( A B3 ) 0.01,
2021精选ppt
28
统计结果
天气 E1
温度 E2
湿度 E3
有风 E4
打网球
PN
PN
PN
P NP
N
晴 2/9 3/5 热 2/9 2/5 高 3/9 4/5 否 6/9 2/5 9/14 5/14
云 4/9 0/5 暖 4/9 2/5 正常 6/9 1/5 是 3/9 3/5
雨 3/9 2/5 凉 3/9 1/5
• P(x2|y):表示y的细胞异常的概率是0.18(后验概率)
2021精选ppt
22
22
朴素贝叶斯分类
• 朴素贝叶斯分类的工作过程如下:
• (1) 每个数据样本用一个n维特征向量X= {x1,x2,……, xn}表示,分别描述对n个属性A1,A2,……,An样本的n个
度量。
• (2) 假定有m个类C1,C2,…,Cm,给定一个未知的数据样 本X(即没有类标号),分类器将预测X属于具有最高后验

贝叶斯算法PPT

贝叶斯算法PPT
有腿

类别 哺乳动物 非哺乳动物 非哺乳动物 哺乳动物 非哺乳动物 非哺乳动物 哺乳动物 非哺乳动物 哺乳动物 非哺乳动物 非哺乳动物 非哺乳动物 哺乳动物 非哺乳动物 非哺乳动物 非哺乳动物 哺乳动物 非哺乳动物 哺乳动物 非哺乳动物
类别

Q2 分类问题
税号 1 2 3 4 5 6 7 8 9 10 去年退税 是 否 否 是 否 否 是 否 否 否 婚姻状况 单身 婚姻中 单身 婚姻中 离婚 婚姻中 离婚 单身 婚姻中 单身 可征税收入 125k 100k 70k 120k 95k 60k 220k 85k 75k 90k 逃税 否 否 否 否 是 否 否 是 否 是
2、获取训练样本 这里使用运维人员曾经人工检测过的1万个账号作为训练样本。
3、计算训练样本中每个类别的频率 用训练样本中真实账号和不真实账号数量分别除以一万,得到:
P(C = 0) = 8900/10000 = 0.89 P(C = 1) = 1100/10000 = 0.11
4、计算每个类别条件下各个特征属性划分的频率 P(a1<=0.05| C = 0) = 0.3 P(0.05<a1<0.2|C = 0) = 0.5 P(a1>0.2| C = 0) = 0.2 P(a2<=0.1| C = 0) = 0.1 P(0.1<a2<0.8 | C=0) = 0.7 P(a2>0.8| C = 0) = 0.2 P(a3 = 0|C = 0) = 0.2 P(a3 = 0|C = 1) = 0.9 P(a1<=0.05| C = 1) = 0.8 P(0.05<a1<0.2| C = 1) = 0.1 P(a1>0.2| C = 1) = 0.1 P(a2<=0.1| C = 1) = 0.7 P(0.1<a2<0.8 | C=1) = 0.2 P(a2>0.8| C = 0) = 0.1 P(a3 = 1|C = 0) = 0.8 P(a3 = 1|C = 1) = 0.1

贝叶斯学习过程PPT课件

贝叶斯学习过程PPT课件

0 0
n 0
0
n ˆn
先验知识和经验数据各自的贡献取决于 和 的比值,这个比值称为决断因子(dogmatism)
当获得足够多的样本后, 和 的具体数值 的精确假定变得无关紧要, 将收敛于样本均 值
第28页/共48页
高斯情况:单变量, 未知, 已知
• 观察结论
• 随着样本数n的递增, 单调递
,其中的未知参数表示为向量
第20页/共48页
贝叶斯估计
• 贝叶斯估计 • 最大似然估计
第21页/共48页
贝叶斯估计
• 为明确数据集D的作用,类似于ML估计,贝叶斯决策所需后验概率可重新写作 • 简化
第22页/共48页
贝叶斯估计
• 核心问题
• 已知一组训练样本D,这些样本都是从固定但未知的概率密度函数p(x)中独立抽取的,要求根据这些样 本估计
第13页/共48页
ML估计-高斯情况: 未知
μ

• 在 下的对数似然
• 对数似然方程
• 的ML估计
数据集D的样本均值
第14页/共48页
ML估计-高斯情况: 和
• x为单变量情况 • 参数向量 • 在 下的对数似然
均未知
• 对数似然方程
μΣ
第15页/共48页
ML估计-高斯情况: 和
• x为单变量情况 • 的ML估计
第11页/共48页
最大化问题
• ML估计的解通过最大化似然函数或对数似然函数实现
第12页/共48页
最大化问题 • 记 表示p维参数向量
, 表示梯度算子
• 全局最大值的必要条件(似然方程)

等价的(对数似然方程)
• 似然方程或对数似然方程的解并不是获得全局最大值的充分条件

贝叶斯决策理论与统计判别方法PPT课件

贝叶斯决策理论与统计判别方法PPT课件

• P(ωi)=P(ωj)时决策面方程
WT(X-X1)=0
第32页/共55页
W=μi-μj W=μi-μj
正态分布概率模型下的最小错误率贝叶斯决策
一维特征
第33页/共55页
正态分布概率模型下的最小错误率贝叶斯决策
二维特征
第34页/共55页
正态分布概率模型下的最小错误率贝叶斯决策
三维特征
第35页/共55页
第14页/共55页
二维向量的协方差矩阵
第15页/共55页
多元正态分布
• 协方差矩阵 • 协方差矩阵并不只对正态分布有用 • 特性: 协方差矩阵是一个对称矩阵 • 特性: 协方差矩是正定的
第16页/共55页
多元正态分布的性质
• (1)参数μ与Σ对分布具有决定性
• 与单变量相似,记作p(X)~N(μ,Σ)
The action of a linear transformation on the feature space will convert an arbitrary normal distribution into another normal distribution.
第20页/共55页
正态分布概率模型下的最小错误率贝叶斯决策
第46页/共55页
正态分布概率模型下的最小错误率贝叶斯决策
• 最小距离分类器与线性分类器
• 两者都是线性分类器 • 最小距离分类器是线性分类器的一个特例 • 最小距离分类器在正态分布情况下,是按超球体分布以及先验概率相
等的前提下,才体现最小错误率的 • 只有在一定条件下,最小距离分类器同时又是最小错误率分类器 • 最小距离分类器的概念是分类器中是最常用的,因为它体现了基于最
• 前者是一个椭圆,而后者则是圆

贝叶斯统计 ch贝叶斯推断

贝叶斯统计 ch贝叶斯推断
为贝叶斯因子。
贝叶斯因子表示数据x支持原假设的程度。
33
三、简单假设Θ0={θ0}对简单假设Θ1={θ1}
1.贝叶斯因子的计算方法及其含义。 在这种场合,两种简单假设的后验概率分别为:

其中p(x/θ)为样本的分布,这时后验机会比为:
如果要拒绝原假设Θ0={θ0},则必须有:α0/α1小于1 ,即:
贝叶斯统计 ch贝叶斯推断.ppt
第二章 贝叶斯推断
§2.1 条件方法 §2.2 估计 §2.3 区间估计(可信区间) §2.4 假设检验 §2.5 预测 §2.6 似然原理
2
§2.1 条件方法
1.后验分布的特点:未知参数的后验分布是集三种信 息(总体、样本和后验)于一身,它包含了所有可供 利用的信息。故有关的参数估计和假设检验等统计推 断都按一定方式从后验分布提取信息,其提取方法与 经典统计推断相比要简单明确得多。
对若干对(n,x)的值算得的后验方差和后验均方差列入表2.2中。 表2.2 和 的后验均方差
nx
Var
MSE
3 0 1/5 0.02667 0.16 0 0.06667 0.26
10 0 1/12 0.00588 0.08 0 0.01282 0.11
10 1 2/12 0.01068 0.10 1/10 0.01512 0.12
需要检验的假设是: H0:θ=0,H1:θ=1
若从该总体中抽取一个容量为n的样本x, 试计算贝 叶斯因子及作出相应的决策。
解:先计算似然函数:

再计算贝叶斯因子:
最后进行数值分析:假设n=10, =2。则贝叶斯因子
为:
,这个数很小,所以应该拒绝H0
15
例2.6 在例2.3中,在选用共轭分布下,不合格品率θ的后验分布 为贝塔分布,它的后验方差为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( ) 0
( ) 0
( 1) 1 ( )
E(X2)
( 1) 2
Var( X
)
E(X
2)
[E(X
)]2
2
7
贝塔函数
函数
B(a, b) 1 xa1(1 x)b1dx 0
称为贝塔函数,其中参数 a>0,b>0.
贝塔函数的性质: (1) B(a,b) B(b, a)
(2) B(a,b) (a)(b) (a b)
2
(2) ( 1) ( ) 当为自然数n时,有 (n 1) n(n) n!
5
伽玛分布
如果随机变量 X 具有概率密度函数
p(
x)
(
)
x
e 1 x
,
0,
x0 x0
则称 X 服从伽玛分布, 记作 X~Ga(α,λ).
其中α>0 为形状参数,λ>0 为尺度参数.
6
E(X)
x e xdx 1 1 ( x) e xd ( x)
3
课程考核:闭卷考试
成绩评定 平时(20分)
=作业+考勤+课堂表现
期末(80分)
=卷面(100分) ×
80%
总评(100分)
=平时+期末
比例
20%
80%
100%
学分数
2
课堂上讲过的习题、练习题和作业的题目要会.
4
伽玛函数
函,其中α>0.
伽玛函数的性质: (1) (1) 1; (1)
23
15
贝叶斯方法(Bayesian approach )
• 贝叶斯方法是基于贝叶斯定理而发展起来用于系 统地阐述和解决统计问题的方法(Samuel Kotz和 吴喜之,2000)。
• 贝叶斯推断的基本方法是将关于未知参数的先 验信息与样本信息综合,再根据贝叶斯定理,得 出后验信息,然后根据后验信息去推断未知参数 (茆诗松和王静龙等,1998年)。 “贝叶斯提出了一种归纳推理的理论(贝叶斯定 理),以后被一些统计学者发展为一种系统的统计 推断方法,称为贝叶斯方法.”──摘自《中国大百 科全书》(数学卷)
17
本书共六章,可分二部分。前三章围绕先验分 布介绍贝叶斯推断方法。后三章围绕损失函数介绍 贝叶斯决策方法。阅读这些内容仅需要概率统计基 本知识就够了。
Byaes统计学派与经典统计学派虽然有很大区别, 但是它们各有优缺点,各有其适用的范围,作为研 究者一定要博采众长,以获得一种更适合解决实际 问题的方法。而且,在不少情况下,二者得出的结 论在形式上是相同的。
16
序言
英国学者T.贝叶斯1763年在《论有关机遇问 题的求解》中提出一种归纳推理的理论,后被一 些统计学者发展为一种系统的统计推断方法,称 为贝叶斯方法。采用这种方法作统计推断所得的 全部结果,构成贝叶斯统计的内容。认为贝叶斯 方法是唯一合理的统计推断方法的统计学者,组 成数理统计学中的贝叶斯学派,其形成可追溯到 20世纪 30 年代。到50~60年代,已发展为一个 有影响的学派。时至今日,其影响日益扩大。
➢ 贝叶斯学派的观点:除了上述两种信息以外, 统计推断还应该使用第三种信息:先验信息。
21
§1.1 三种信息
• 一、总体信息,即总体分布或总体所属分布给我 们的信息。
• 例如:”总体是正态分布“
• 说明:总体信息是很重要的信息,为了获取此种 信息往往耗资巨大。
• 二、样本信息,即从总体抽取的样本给我们的信 息。(愈多愈好)
• 人们希望通过对样本的加工和处理对总体的某些 特征做出较为精确的统计推断。
• 例:有了样本观察值,我们可根据它大概知道总 体的一些特征数(均值、方差等)在一个什么范 围内。
22
•经典统计学:基于以上两种信息进行的统计推断被 称为经典统计学。 •说明:它的基本观点是把数据(样本)看成是来自 具有一定概率分布的总体,所研究对象是这个总体而 不局限于数据本身。 •据现有资料看,这方面最早的工作是高斯和勒让德 德误差分析、正态分布和最小二乘法。从十九世纪末 期到二十世纪中叶,经皮尔逊、费歇和奈曼等人杰出 的工作创立了经典统计学。 •随着经典统计学的持续发展与广泛应用,它本身的 缺陷也逐渐暴露出来了。
10
贝塔分布
如果随机变量 X 具有概率密度函数
p(
x)
(a b) (a)(b)
xa
1
(1
x)b1
,
0 x 1
0,
其它
那么称 X 服从贝塔分布,记作 X~Be(a,b),其中参
数 a>0,b>0.
特别,如果 a=b=1,那么 X 服从[0,1]上的均
匀分布.
13
贝塔分布的数学期望和方差
若X ~ Be(a, b)
E( X ) (a b) 1 xa (1 x)b1dx
(a)(b) 0
(a b) (a 1)(b) a (a)(b) (a b 1) a b
E(X
2)
(a
a(a 1) b)(a b
1)
Var( X
)
(a
ab b)2(a
b
1)
14
(Bayes,Thomas)(1702─1761)
贝叶斯是英国数学家.1702年生于伦敦;1761年4月17日 卒于坦布里奇韦尔斯.
贝叶斯是一位自学成才的数学家.曾助理宗教事务,后来 长期担任坦布里奇韦尔斯地方教堂的牧师.1742年,贝叶斯被 选为英国皇家学会会员.
如今在概率、数理统计学中以贝叶斯姓氏命名的有贝叶 斯公式、贝叶斯风险、贝叶斯决策函数、贝叶斯决策规则、贝 叶斯估计量、贝叶斯方法、贝叶斯统计等等.
Bayesian Statistics
贝叶斯统计
1
贝叶斯统计
预修要求:已修过概率论与数理统计
基本教材: 茆诗松编,贝叶斯统计
中国统计出版社,2005年.
2
[1] 贝叶斯统计与决策.Berger J O.中国统计出版 社.1998 [2] 现代贝叶斯统计.Kotz S,吴喜之.中国统计出版 社.1999 [3] 贝叶斯统计推断.张尧庭、陈汉峰.科学出版 社.1991
18
目录
第一章先验分布与后验分布 第二章 贝叶斯推断 第三章 先验分布的确定 第四章 决策中的收益、损失与效用 第五章 贝叶斯决策 第六章 统计决策理论
19
第一章先验分布与后验分布
统计学中有两个主要学派:频率学派与贝叶斯 学派。下面从统计推断的三种信息来说明他们之 间的区别与联系。
20
➢ 经典学派的观点:统计推断是根据样本信息 对总体分布或总体的特征数进行推断,这里 用到两种信息:总体信息和样本信息;
相关文档
最新文档