小学五年级奥数练习数的进位制
五年级上册数学奥数试题第五讲——进位制问题 人教版
第五讲进位制问题例题1 (1)2013=()5=()8=()12=()16(2)(2012)5=()10;(3)(2012)2=()10练习1 (3A2)12=()10;(ADD)16=()10;(2012)5=()12;(2012)8=()12例题2 (1)把三进制数12120120110110121121改写为九进制,它从左向右数第1位数字是多少?(2)(111011001)2=()4=()8练习2 (120011221)3=()9例题3 (5453)7+(6245)7=()7练习3 (123)5 (123)5=()5例题4 在6进制中有三位数abc,化为9进制的cba,这个三位数在十进制中是多少?练习4 在7进制中有三位数abc,化为9进制为cba,这三位数在十进制中是多少?挑战极限例题五一个天平,物品必须放在左盘,砝码必须放在右盘,那么为了能称出1克到1000克,至少需要多少个砝码?例题6 一本书共有2013页,第一天看一页书,从第二天起,每天看到的页数都是以前各天的总和。
如果直到最后剩下的不足以看一次时就一次看完,共需要多少天?作业1、进制互化(1)(11202)4=()10;(2)(1CA)16=()10(2)(3120)10=()16;(4)(1248)10=()5(5)(11202)4=()9;(6)(157)9=()162 、(1)(202)4+(323)4=()4;(2)(21)5(322)5=()53 、一个十进制三位数(abc)10,其中a,b,c均代表某个数码,它的二进制表达式是一个七位数(1abcabc)2,这个十进制的三位数是多少?4 、一个自然数用三进制和四进制表示都为三位数,并且它的各位数字的排列顺序恰好相反,这个自然数用十进制表示是多少?5 、 a,b是自然数,a进制下的数47和b进制下的数74相等,a与b的和的最小值是多少?本周打卡:、1()()()()852109865=== 2、 ()=211010101 ()=87236 ()=542033、 在什么进位制里,十进位制数71记为47?4、 (110101)2+(11101)2 =_______; (1101101)2-(1011110)2 =______;222(101)(1011)(11011)⨯-=________;88888(63121)(1247)(16034)(26531)(1744)----=________;5、一个自然数的七进位制表达式是一个三位数,而这个自然数的九进位制表达式也是一个三位数,而且这两个三位数的数码顺序恰好相反。
小学五年级奥数练习及部分答案--1数列规律的应用--找规律(四)
奥数五年级上一、数列规律的应用--找规律(四) (1)二、等差数列求和的应用--数列(二) (7)三、包含与排除(二) (14)四、小数的巧算--巧算(四) (19)五、行程问题(三) (25)六、行程问题(四) (31)七、牛吃草问题 (36)八、平面图形的面积(二) (39)九、计数问题 (45)十、数的进位制(二) (50)十一、简单抽屉原理(一) (54)十二、简单的统筹规划问题 (60)部分答案 (68)一、数列规律的应用--找规律(四)按一定的顺序排列的一串数,叫做数列,每一个数是数列的一项,排在第几个位置就叫第几项。
要找到数列的规律,必须善于观察,一般可以从以下几方面去观察数列:①数列的每一项怎样随项数变化而变化; ②后面的项与前面的项有什么关系; ③数列分组后有什么规律。
注意:同一个数列,从不同的方面去观察,可以有不同的规律性。
如数列:1,4,9,16,25,36,……规律1:从第2项起每一项比前一项依次大3,5,7,9,11,…… 规律2:每一项=它的项数的平方。
把这个数列看作:12,22,32,42,52,62,……例1、准备题,按规律填数。
(1) 2,9,16,23, , ; (2) 1,2,4,7,11, , ; (3) 21,32,43,54, , ;(4) 2,4,5,10,11,22,23, , ;例2、把自然数中的偶数:2,4,6,8,……依次排成5列(如图)从上到下为列,从左到右为行,最左边的一列叫第一列,最上面一行叫第一行,那么数1994出现在第几行第几列?2 4 6 8 16 14 12 1018 20 22 24 32 30 28 2634363840例3、把自然数如右图排列, ①第10行正中的数是哪个? ②1999在第几行左起第几个 数?例4、自然数如右图排列:①第一行中自左至右第8个数是几? ②自上至下第10行中第8个数是几?例5、把所有自然数按下图规律排列后,从上到下分成A,B,C,D,E 五类,问1991在哪一类?… … … …第一行 1 第二行 2 3 4 第三行567 8 9 第四行 10 11 12 13 14 15 16…1 3 6 10 15 21 …2 59 14 20 …48 13 19 …7 12 18 … 11 17 … 16 …A B C D E 1 2 3 4 8 7 6 5 9 10 11 12 16 15 14 13 17………例6、所有自然数如右图排列, ①300应位于哪个字母下面? ②字母F 下面,从上往下数 第6个数是多少?例7、有列数:2,3,6,8,8, …,从第3个数起,每个数都是前两个数乘积的个位数字,那么这一列数的第80个数是多少?例8、有一列数:1,1989,1988,1,1987, …,从第3个数起,每一个数都是前两个数中大数减小数的差,那么第1989个数是多少?… … … …A B C D E F G 1 2 3 4 7 6 5 8 9 10 11 14 13 12 15 16 …………例9、如数表,第n 行有一个数A,它的下一行(第n+1行)有一个数B,且A 和B 在同一竖列,如果A+B=394,那么n 是多少?例10、右图是一个由数字组成的三角形。
五年级奥数学练习试卷思维培训资料 数的进制
第四讲 数的进制卷Ⅰ教学目标数的进制问题一直是我们教学大纲的一个漏洞,只在三年级春季班讲了一次简单的二进制与十进制的互化之外,再也没有讲过,到了六年级也只是简单提一下.这几年随着二进制与计算机的联系、一年12个月、一周7天等生活中的其它进制问题的凸显,数的进制问题将来一定会是命题的热点.我们常用十进制,可是这并不代表其它进制没有学习的必要,就像我们56个民族,汉族是多数,但其它民族也有可以学习和借鉴之处,更何况在生活中我们用的很多就是二进制、三进制、七进制等等.所以调整了大纲,放了这么一讲,大部分题目都是原创题,不妥之处请批评指教.本讲主要从两个方面来系统地介绍数的进制:一是从进制的基本计数关系、运算法则出发,使学生从十进制的计数思维中解脱出来;二是从进制的转化及应用来说,进一步巩固进制的使用(还有各种进制的整除特征及法则,怕学生难以接受就没放).建议教师专题回顾讲起,先介绍几种进制的计数单位及运算法则,再引出想挑战吗.中间穿插了两个信息点,教师可以简单介绍.下表是十进制与二进制、三进制 、八进制、十六进制的位值(计数单位)对比图:十进制 … 105 104 103 102 101 100 二进制 … 25 24 23 22 21 20 三进制 … 35 34 33 32 31 30 八进制 … 85 84 83 82 81 80 十六进制…16516416316216116n 进制的运算法则是“逢n 进一”、“借一当n”.n 进制的四则混合运算和十进制一样:先乘除,后加减;同级运算,先左后右;有括号,先算括号里面的.7进制乘法表 8进制乘法表12345611234562461113153121521244222633534426511234567112345672461012141631114172225420243034531364364452761我们都学过十进制乘法口诀表,那么聪明的你能写出七进制的乘法口诀表吗?八进制的呢?想挑战吗?专题回顾计算:(1) ;(2) ;(3) ;(4)22(101)(111)+22(1101)(110)-22(1101)(101)⨯22(101101)(111)÷分析:和十进制一样列数式计算,“逢二进一”、“借一当二”.(1)(2)1011111100+1101110111-(3)(4)1101101110111011000001⨯110111101101111100011111专题精讲(一)进制的概念及性质【例1】 (奥数网原创题)在八进制中,1234-456-322=________. 分析:十进制中,两个数的和是整十整百整千的话,我们称为“互补数”,凑出“互补数”的这种方法叫“凑整法”,在n 进制中也有“凑整法”,要凑的就是整n. 原式=1234-(456+322)=1234-1000=234.[前铺] (奥数网原创题)在十进制中,1234-456-544=________.分析:观察两个减数,会发现它们的和是1000.所以,原式=1234-(456+544)=1234-1000=234.[拓展1] (奥数网原创题)在八进制中,63121-1247-16034-26531-1744=________.分析:原式=63121-(1247+26531)-(16034+1744)=63121-30000-20000=13121.[拓展2] (奥数网原创题)在九进制中,14438+3123-7120-11770+5766=________.分析:原式=14438+(3123+5766)-(7120+11770)=14438+10000-20000=4438.[信息提示] 关于八进制的奥秘来自外星世界的太空飞船突然出现在我们上空时将会发生什么样的情况?科学家曾经仔细研究过来自外形世界的信号并发现信息是采用的八进制编码.地球上流行十进制,换句话说,我们有0到9共10个数码.在十进制计数法中,每个数码表示10的某个乘幂,但是,没有任何理由假定外星生物也会使用十进制,来自外星的信息不大可能用十进制编码.在地球上,我们的数学计算用的是十进制,因为我们恰好有10个手指.事实上,我们的语言已经提示了手指同数制的联系——“digit”这个单词兼有两种意思:数或手指.由于十进制来自我们的10只手指,那么八进制会不会透漏一点外星生物的解剖学结构呢?也许八进制会意味着:外星人的每只手上有一个大拇指,3个手指;或者是有着8根触须的怪物;或者是:这种动物长着4只手,而每只手上有一个大拇指,一个小指.甚至还有更荒唐的设想:外星人长着3个头颅,点头和摇头的全部组合刚好是8种!(当然也有可能他们的计数制同其身体结构毫无关系.毕竟,古巴比伦的60进制不能为我们提供关于人体结构的任何信息).【例2】 (奥数网原创题)在六进制中,15+255+3555+45555+555555=________.分析:利用凑整法,十进制中,接近整十整百整千的数,后面会有若干个9,那么类似地,在n 进制中,接近一个比较整的数,后面会有若干位是n-1.原式=(20-1)+(300-1)+(4000-1)+(50000-1)+(1000000-1)=1054320-5=1054311.[前铺] (奥数网原创题)在十进制中,19+299+3999+49999+599999=________.分析:观察各个数,发现每一个都比一个整十整百整千之类的数少1.所以,也可以利用凑整法,原式=(20-1)+(300-1)+(4000-1)+(50000-1)+(600000-1)=654320-5=654315.[拓展] (奥数网原创题)在七进制中,666661-66662-6663-664-65-6=________.分析:原式=(1000000-6)-(100000-5)-(10000-4)-(1000-3)-(100-2)-(10-1)=(1000000-111110)-6+21=555560+12=555602.【例3】 (仁华考题)若是的4倍,那么化为十进制是多少? (62)n (14)n (41)n分析:因为,所以(62)4(14)n n =, 1010(62)4(4)624167n n n n n +=⨯+⎧⎪+=+⎨⎪=⎩710.(41)471(29)=⨯+=[前铺] 表示n 进制数,若,求n. (54)n 10(54)(64)n =【例4】 (仁华考题)在几进制中有4×13=100.分析:我们利用尾数分析来求解这个问题:不管在几进制均有(4)×(3)=(12).但是,式中为100,101010尾数为0.也就是说已经将12全部进到上一位. 所以说进位制为12的约数,也就是12,6,4,3,2.但n 是出现了4,所以不可能是4,3,2进制.我们知道(4)×(13)=(52),因52 < 100,也就是说不到10101010就已经进位,才能是100,于是我们知道<10.所以,只能是6. n n[前铺] 计算:(234)7+(656)7分析:7进制的运算是逢7进1,所以原式=(1223)7.【例5】 (仁华考题)证明10101在任何进制的记数法中,都是一个合数.分析:设在a 进制,则, 4222222(10101)111(1)(1)(1)a a a a a a a a a =⨯+⨯+=+-=+-++可以将其表达为两个均不为1的整数乘积,显然为合数.[前铺] 证明10201在大于2的任何进制的记数法中,都是一个合数.分析:设在b 进制,则,所以不管在任何进制,均是一个非1的4222(10201)121(1)b b b b =⨯+⨯+=+完全平方数,当然是一个合数.卷Ⅱ(二)进制的转化及应用【例6】 (奥数网原创题)把二进制自然数10100001101转化为八进制自然数.分析:二进制数转化为八进制是从个位开始往前每三位转化为八进制.对应关系如下: 二进制 000 001 010 011 100 101 110 111 八进制 0 1 2 3 4 5 6 7 对其进行分组,情况如下:(一定要从后往前)有: 10 100 001 101 2进制 2 4 1 5 8进制 (10100001101)=(2415). 28[拓展1] (奥数网原创题)把二进制小数11.0010010001转化为八进制小数.分析:小数和整数转化的方法类似,只不过是从小数点处,向前和向后都要三位三位数.但是本题的小数点后位数不是3的倍数,所以必须补0. 11. 001 001 000 100 3. 1 1 0 4所以,二进制11.0010010001转化为八进制是3.1104.[拓展2] (奥数网原创题)把二进制循环小数转化为八进制循环小数. 0.10011分析:循环小数转化的方法也类似,但是循环节长度不是3的倍数,所以需要把循环节连写三遍,如下: 0. 100 111 001 110 011 0. 4 7 1 6 3所以,二进制转化为八进制是. 0.100110.47163[拓展3] (奥数网原创题)在几进制中,是一个整数的倒数? 0.1463分析:看到这类问题不知道如何入手的话,可以这样想: 大家都熟悉的十进制循环小数中,循环节的前一半和后一半“互补”,也就是对应位相加10.1428577= 等于9,也就是进制数减1.而的循环节前一半和后一半对应位相加等于7,所以应该是八进制.经0.1463 检验,. 10.14635= [信息提示] 莫尔斯-瑟厄数列在管乐声中有两个调子,用 表示长调,用 表示短调,所有乐曲都可以用类似或表示,就是这种看似既非完全规则、又非全然不规则节奏的神奇模式就是著名的、奇异的二进制数字模式——莫尔斯-瑟厄数列,它可以用0和1的数字串来表示.莫尔斯-瑟厄数列是为了纪念挪威数学家阿克塞尔-瑟厄和普林斯顿大学的马斯登-莫尔斯而命名的.瑟厄引入这个数列,作为一种非周期性的、但又可以通过递推办法而算出来的实例.有好几种办法可以生成莫尔斯-瑟厄数列.第一种:从数0开始,反复进行下列置换:0→01,1→10.换句话说,你一旦见到0,就用01取代它,见到1就用10来取代,从一个单独的0开始,我们就可以得出以下各“代”:你可以用一支笔、一张纸来形成这个数列.从0开始,代之以01,现在你已有了一个两个数码的数列,用01代替0,10代替.从而有了数列0110,下一个二进数模式是01101001,请注意0110是对称的,它是一个回文数,然而01101001则不是.但是,你要顶住!再下面一个模式0110100110010110又是回文了.这种现象是否交替出现?显然,数列的神奇性质只是刚刚开始,奥妙还在后面呢.注意数列的第四行可以译成管乐声中的8个手指记号,如果 表示0, 表示1的话,真是令人惊讶! (未完,见数学知识)【例7】 (奥数网原创题)在三进制中的数12120120110110121121,则将其改写为九进制,其从左向右数第l 位数字是几?分析:我们如果通过十进制来将三进制转化为九进制,那运算量很大.注意到,三进制进动两位则我们注意到进动了3个3,于是为9.所以变为遇9进1.也就是九进制.于是,两个数一组,两个数一组,每两个数改写为九进制,如下表:3进制 12 12 0l 20 11 01 10 12 11 21 9进制 5 5 l 6 4 1 3 5 4 7 所以,首位为5.[总结] 若原为进制的数,转化为进制,则从右往左数每个数一组化为进制.n n kk n k【例8】 (仁华考题)N 是整数,它的b 进制表示是777,求最小的正整数b ,使得N 是十进制整数的四次方.分析:先化为十进制数,,则有,因为N 是7的倍数,2(777)777b b b =⨯+⨯+24777b b x ⨯+⨯+=所以也是7的倍数,又7为质数,所以是7的倍数.于是令,则,4x x 7x t =247772401b b t ⨯+⨯+=则,,则.因为最小,所以也是最小的.即有最小在18进制有21343b b ++=(1)342b b +=18b =t b41810.(777)(7)=[前铺] 在7进制中有三位数,化为9进制是,求这个三位数在十进制中是多少? abc cba分析:都化为十进制数,,27()77497abc a b c a b c =⨯+⨯+=++,于是,,即29()99819cba c b a c b a =⨯+⨯+=++497819a b c c b a ++=++48802a c b =+,因为是8的倍数,也是8的倍数,所以也是8的倍数.于是或,2440a c b =+24a 40c b 0b =8b =但在7进制不可能有8.所以,即,则,所以为5 的倍数,为3的倍数,有0b =2440a c =35a c =a c 或,首位不可以是0,所以,那么,所以0a =5a =5a =3c =77()(503)5493248.abc ==⨯+=[拓展] 设1987可以在进制中写成三位数,且=1+9+8+7,试确定出所有可能的、、b xyz x y z ++x y z 及. b分析:我们注意2()19871987b xyz b x by z x y z ⎧=++=⎨++=+++⎩①②①-②得:(-1)+(-1)=1987-25,则(-1)(+1)+(-1)=1962,即(-1)[(+1)2b x b y b b x b y b b x +]=1962.所以,1962是(-1)的倍数.1962=2×9×109, y b 当-1=9时,=10,显然不满足;b b 当-1=18时,=19,则(-1)[(+1)+]=18×(20+)=1962;则20+=109,b b b b x y x y x y 所以, 545,(929911b x x x y y y z ⎧⎪===⎧⎧⎪⎨⎨⎨===⎩⎩⎪⎪=⎩=19不满足),......则显然,当=109不满足,=2×109不满足,当=9×109也不满足.于是为(59B)=(1987),B 代表11. b b b 1910【例9】 (仁华考题)若能被15整除,自然数n 可以取哪些值? n21-分析:因为,而,如果能被15整除,即 nn 1n 02221=10001111⎛⎫⎛⎫--= ⎪ ⎪ ⎪⎝⎭⎝⎭ 个个2151111=()n21- n 12111⎛⎫ ⎪⎝⎭ 个能被整除,所以n 是4的倍数,n=4,8,12,… 21111()[前铺] 求证:能被7整除.1821-分析:直接用十进制比较困难,我们考虑化为二进制的整除问题.因为.而,于是18181180222110001111⎛⎫⎛⎫-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭ 个个27111=(),所以能被7整除.182218122171111111001001001001001⎛⎫÷÷= ⎪⎝⎭ 个(-)=()()1821-[拓展] 计算:÷26的余数.2003333 3...31⎛⎫⨯⨯⨯- ⎪ ⎪⎝⎭个分析:==,26=(222), 2003333 3...31⎛⎫⨯⨯⨯- ⎪ ⎪⎝⎭ 个2003331000...01⎛⎫⨯- ⎪ ⎪⎝⎭个20033222...2⎛⎫⎪ ⎪⎝⎭ 个23所以÷26=÷(222),(222)整除(222),2003÷3=667……2,所以余数2003333 3...31⎛⎫⨯⨯⨯- ⎪ ⎪⎝⎭个20033222 (2)⎛⎫ ⎪ ⎪⎝⎭ 个2333是(22)=8.3【例10】 (仁华考题)三个两位数恰构成公差为6的等差数列,而在五进制的表示中,这三个数的数字和是依次减少的,那么符合这样要求的等差数列有多少个?分析:设等差数列中最小的那个数表示为5进制为,最大可为5(abc ),最小可为.那么有、、的数字5(322)996287=-⨯=5(20)10=5()abc 55()(11)abc +55()(22)abc +和依次减少,所以、在运算时均必须有进位,不难发现有、55()(11)abc +55()(22)abc +5(24)a 5(43)a 满足,而a 可以取0,1,2,于是共有6组符合要求的数列.[前铺] 用、、、、分别表示五进制中互不相同的数字,如果、、是由小a b c d e 5()ade 5()adc 5()aab 到大排列的连续正整数,那么所表示的整数写成十进制的表示是多少?5()cde 分析:由题意知,,根据进位原则知,.又,55()1()ade adc +=55()1()adc aab +=4,0c b ==1c e -=所以.,且、只能在1,2中取值,所以.即,转化为十进3e =1a d -=a d 2,1a d ==55()(413)cde =制的表示为.22510(413)45153(108)=⨯+⨯+=【例11】 (奥数网原创题)一串数:1,3,4,9,10,12,13,…,由一些正整数组成,它们或者是3的幂,或者是若干个不同的3的幂的和,求这串数中的第100项是多少?分析:将已知数改写成三进制数,得:1 3 4 9 10 12 13110 11 100 101 110 111十进制:三进制:观察发现,在三进制数中,各位上的数字均不是2,若将它们看成二进制数,可以看出,它们与十进制数1,2,3,4,5,6,7,…对应,第100项与十进制数100对应.因为10010=26+25+22=11001002,所【例12】 (仁华考题)称n 个相同的数a 相乘叫做a 的n 次方,记做,并规定.如果某个自然n a 01a =数可以写成2的两个不同次方(包括零次方)的和,我们就称这样的数为“双子数”,如,.它们都是双子数,那么小于1040的双子数有多少个?30922=+523622=+分析:双子数与二进制的联系,,310102(9)(22)(1001)=+=,写成2的两个不同次方(包括零次方)的和,这样的数改写成二进制5210102(36)(22)(100100)=+=后只含有2个1,有,这样的二进制数为11位数,但104101022(1040)(22)(1000000000010000)(10000010000)=+=+=是11位数有限制:先看10位数,于是,这样10位数,选择2个数位填1,其它为0,()**********所以为,再考虑11位数,于是,只有4个“”和紧邻的“1”,于是有5种选择,210C (1000001)*****所以共有种选择方法,所以这样的“双子数”为50个.210550C +=[拓展] 一个非零自然数,如果它的二进制表示中数码l 的个数是偶数,则称之为“坏数”.例如:是“坏数”.试求小于1024的所有坏数的个数. 218=10010()分析:我们现把1024转化为二进制:(1024)=2=(10000000000)2.于是,在二进制中为11位数,但1010是我们只用看10位数中情况.并且,我们把不足10位数的在前面补上0,如=502111...10000...0⎛⎫⎪ ⎪⎝⎭ 5个1个或以上912111...1⎛⎫⎪ ⎪⎝⎭ 个则,可以含2个l ,4个1,6个1,8个l ,10个1.于是为9120111...1⎛⎫ ⎪ ⎪⎝⎭ 个10* * * * * * * * * *⎛⎫ ⎪ ⎪⎝⎭个位置 2268101010101010C C C C C ++++=10910987109876510987654312123412345612345678⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯+++=45+210+210+45+1=511,于是,小于1024的“坏数”有511个.【例13】 (奥数网原创题)在地球上有一个矮人国,这个国家不用通常的十进制,而是用大于十的另一种进制.但是该国家的钟表与中国的本质上相同(当然可能钟面标的数字有区别,这不是本质区别).一名司机开车在笔直的公路上匀速行驶,每小时的速度是整数.当钟表的时针与分针垂直的时候,司机发现他刚好经过路边的一个里程碑,上面的数字是一个两位数.当钟表的时针与分针再次垂直的时候,司机再次发现他刚好经过路边的里程碑,上面的数字是刚才那个两位数的数字颠倒过来.当钟表的时针与分针第三次垂直的时候,司机第三次发现他刚好经过路边的里程碑,上面的数字是一个三位数,是在第一次的那个两位数中间插了一个数字.在该国家的进制数尽量小的情况下,司机的时速是多少?(请把答案转化成十进制)分析:每个小时,时针走过周,分针走过1周,也就是分针比时针多走过周.两次垂直之间,分1121112针比时针多走过半周,所以时间为小时. 111621211÷=显然,第三次所经过的里程碑的首位是1.设矮人国用N 进制,设第一次的里程数是,则第二次的1X 里程数是,再设第三次的里程数是.则有.从个位上看,X+X 个位是2,所1X 1YX 1112X YX X +=⨯以2X=N+2,N 必须是偶数,. 12NX =+.也就是说,车的时速等于(1)111(1)1(1)222N N N N X X NX N X N N --=+--=++--+=,所以N 最小是12,时速是121. (1)611(1)21112N N N N --÷=专题展望六年级还会继续学习数的进制哦!练习四1. (例4)在几进制中有125×125=16324.分析:因为,且,所以.再来看尾数,101010(125)(125)(15626)⨯=1562516324 10n ,16324的末位是4,所以25-4=21进到上一位.即n 为21的约数,也就是1,3,101010(5)(5)(25)⨯=7,21,因为原式中出现了6,所以n 只能是7.2. (例8)在6进制中有三位数,化为9进制为,求这个三位数在十进制中为多少? abc cba分析:()=×62+×6+=36+6+;()=×92+×9+=81+9+.所以36+6abc 6a b c a b c cba 9c b a c b a a b +=81+9+;于是35=3b+80;因为35是5的倍数,80也是5的倍数.所以3也必须是5c c b a a c a c b 的倍数,又(3,5)=1.所以,=0或5.b ①当=0,则35=80;则7=16;(7,16)=1,并且、≠0,所以=16,=7:但是在6,9进b ac a c a c a c 制,不可以有一个数字为16.②当=5,则35=3×5+80;则7=3+16;mod 7后,3+2≡0,所以=2或者2+7(为整数).因b a c a c c c k k 为有6进制,所以不可能有9或者9以上的数,于是=2.于是,35=15+80×2;=5.于是() c a a abc 6=(552)=5×62+5×6+2=212.所以.这个三位数在十进制中为212.63. (例9)试求除以992的余数是多少?200621(-)分析:因为被除数与2的次幂有关,所以我们可以用二进制来解决.,,在二进制中一定能整除1029921111100000=()() 2006220061221111⎛⎫= ⎪⎝⎭ 个(-) 515502111000⎛⎫ ⎪ ⎪⎝⎭ 个个或个以上的,因为能整除,所以余数为21111100000() 20001602111000⎛⎫ ⎪ ⎪⎝⎭ 个个21111100000(),所以原式的余数为63.543210211111122222263=+++++=()4. (例9)求证能被5整除. 151413121110982222222221-+-+-+-++-分析:15141312111098151311914121081010222222222222122222222211010101010101010101010101010101101010101010101-+-+-+-++-=+++++-+++++=-= ()()()()()又,显然能被整除,所以得证.25101=()2101010101010101()2101()5. (例10)一个10进制的三位数,把它分别化为9进制和8进制数后,就又得到了2个三位数.老师发现这3个三位数的最高位数字恰好是3、4、5,那这样的三位数一共有多少个?分析:我们设(3)=(4)=(5);我们知道(4) 在(400)~(488)之间,也就是4×92~ab 10cd 9ef 8cd 9995×92-1,也就是324~406;还知道(5) 在(500)~(577)之间,也就是5×82~6×82-1,也就是ef 888320~383;又知道(3) 在(300)~(399)之间.所以,这样的三位数应该在324~383之间,于是ab 101010有383-324+1=60个三位数满足条件.6. 一个g 进制数,,要计算它的十进制数时,有一54321543210N a g a g a g a g a g a =⋅+⋅+⋅+⋅+⋅+个简便算法:,这样进行5次乘法和5次加法,543210(((())))N a g a g a g a g a g a =⋅+⋅+⋅+⋅++现在请你用简便算法求出六进制数的N.=(6)312150N =(10)_____分析:如按,则需进行15(=5+4+3+2+1)次乘法和5次加54321543210a g a g a g a g a g a ⋅+⋅+⋅+⋅+⋅+法,显然浪费时间.根据题目中给出的简便算法 =(6)312150N =543210361626165606⨯+⨯+⨯+⨯+⨯+⨯=((((3×6+1)×6+2)×6+1)×6+5)×6+0=(10)25211数学知识莫尔斯-瑟厄数列也可以用别的办法来生成乐音数列:每一代都可以由其前代挂上它的“补数列”而得出,这意味着如果你看到了0110,就在它的后面加挂1001.此外,还有第三种办法来生成它.一开始先写0,1,2,3,…,然后把它们改写成二进制数:0,1,10,11,100,101,110,111,….(本书第21节的“第一步探索”中将详细阐述二进制数,如果你渴望了解背景信息,不妨直接跳到那里去阅读.)现在,对每个二进制数字求和,并取其模2同余.也就是说,把每个和数用2去除,并取其余数.例如,二进数11求数字和后奖成为2,在最后的数列中就应当用0表达,通过这种办法可以得出数列0,1,1,0,1,0,0,1……同欺其他办法是一致的!让果戈尔博士来告诉你,何以这一数列如此迷人.首先,它是自相似的,这意味着你可以取数列的一段而生成全部无穷数列!例如,逐项相间地截取,可以复制全部数列.也就是说,你可以取最前面的二个数,再跳过二个,如此等等.其次,数列没有任何周期性.例如,不会出现,诸如00,11,00,11这类情况.然而,数列虽然没有周期可言,它去决非随机,它具有极强的短程与长程结构.例如,不可能有两个以上相邻的项是完全一样的.发现数列中所存在的模式的方法是傅里叶频谱,用它来分析本数列时显示出了明显的波峰.采用这种数学方法,你可以绘出一个图像,表明数列中项的位置与数据频度,在第三维上有着更稠密的频率分量,而在二维图像上不过是极其简单的一个黑点.数列的生长极其迅速,下面是第8代:有时候,按此种方式把数列堆积在它自身之上时会冒出一些模式,在这里,你能看出什么名堂来吗?表示莫尔斯——瑟厄数列的另外一种办法是使用超市里常用的商品分类的“条形码”,看到1的时候是一根垂直线段,而在出现0时则跳过一段空白.为了使肉眼更易辨识,当两个1连续出现时,可以用短横加以联接.我们可以用喜欢的植物图形来描述莫尔斯——瑟厄数列,用花朵表示1,空档表示0:倘若采用较高的树木,图形甚至更加好看.你能否对行、列作出巧妙安排以便更好地显示出数列的模式?在这种神奇的森林里漫步会有什么感受?不妨去想一想,你握着心上人的玉手,走入这个一望无际的莫尔斯——瑟厄森林中去的美妙情景哦!。
小学奥数-数的进制问题B提高版
数的进制问题B知识梳理一、数的进制1.十进制:我们常用的进制为十进制,特点是“逢十进一”。
在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。
比如二进制,八进制,十六进制等。
2.二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。
因此,二进制中只用两个数字0和1。
二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。
二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。
注意:对于任意自然数n ,我们有n 0=1。
3.k 进制:一般地,对于k 进位制,每个数是由0,1,2,,1k -()共k 个数码组成,且“逢k 进一”.1k k >()进位制计数单位是0k ,1k ,2k ,.如二进位制的计数单位是02,12,22,,八进位制的计数单位是08,18,28,.4.k 进位制数可以写成不同计数单位的数之和的形式1110110n n n n k n n a a a a a k a ka k a ---=⨯+⨯++⨯+()十进制表示形式:1010101010n n n n N a a a --=+++; 二进制表示形式:1010222n n n n N a a a --=+++;为了区别各进位制中的数,在给出数的右下方写上k ,表示是k 进位制的数如:8352(),21010(),123145(),分别表示八进位制,二进位制,十二进位制中的数.5.k 进制的四则混合运算和十进制一样先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
二、进制间的转换:一般地,十进制整数化为k 进制数的方法是:除以k 取余数,一直除到被除数小于k 为止,余数由下到上按从左到右顺序排列即为k 进制数.反过来,k 进制数化为十进制数的一般方法是:首先将k 进制数按k 的次幂形式展开,然后按十进制数相加即可得结果.如右图所示:例题精选例题1 ① 222(101)(1011)(11011)⨯-=________;② 2222(11000111(10101(11(-÷=))) );③88888(63121)(1247)(16034)(26531)(1744)----=________;【解析】 ① 对于这种进位制计算,一般先将其转化成我们熟悉的十进制,再将结果转化成相应的进制: 2221010101010(101)(1011)(11011)(5)(11)(27)(28)(11100)⨯-=⨯-==; ② 可转化成十进制来计算:222101010102(11000111(10101(11(199)(21)(3)(192)(11000000-÷=-÷==)))); 如果对进制的知识较熟悉,可直接在二进制下对22(10101(11÷))进行除法计算,只是每次借位都是2,可得222222(11000111(10101(11(11000111(111(11000000-÷=-=))))));③十进制中,两个数的和是整十整百整千的话,我们称为“互补数”,凑出“互补数”的这种方法叫“凑整法”,在n 进制中也有“凑整法”,要凑的就是整n . 原式88888(63121)[(1247)(26531)][(16034)(1744)]=-+-+ 8888(63121)(30000)(20000)(13121)=--=;【答案】(1)、10(11100),(2)、2(11000000),(3)、8(13121)例题2 在几进制中有413100⨯=? 【解析】 利用尾数分析来解决这个问题:由于101010(4)(3)(12)⨯=,由于式中为100,尾数为0,也就是说已经将12全部进到上一位.所以说进位制n 为12的约数,也就是12,6,4,3,2中的一个. 但是式子中出现了4,所以n 要比4大,不可能是4,3,2进制.十进制 二进制十六进制八进制另外,由于101010(4)(13)(52)⨯=,因为52100<,也就是说不到10就已经进位,才能是100,于是知道10n <,那么n 不能是12. 所以,n 只能是6.【答案】6例题3 在几进制中有12512516324⨯=?【解析】 注意101010(125)(125)(15625)⨯=,因为1562516324<,所以一定是不到10就已经进位,才能得到16324,所以10n <.再注意尾数分析,101010(5)(5)(25)⨯=,而16324的末位为4,于是25421-=进到上一位.所以说进位制n 为21的约数,又小于10,也就是可能为7或3. 因为出现了6,所以n 只能是7.【答案】7例题4 10个砝码,每个砝码重量都是整数克,无论怎样放都不能使天平平衡,这堆砝码总重量最少为_________克。
小学五年级奥数练习及部分答案--1数列规律的应用--找规律(四)
奥数五年级上一、数列规律的应用--找规律(四) (1)二、等差数列求和的应用--数列(二) (7)三、包含与排除(二) (14)四、小数的巧算--巧算(四) (19)五、行程问题(三) (25)六、行程问题(四) (31)七、牛吃草问题 (36)八、平面图形的面积(二) (39)九、计数问题 (45)十、数的进位制(二) (50)十一、简单抽屉原理(一) (54)十二、简单的统筹规划问题 (60)部分答案 (68)一、数列规律的应用--找规律(四)按一定的顺序排列的一串数,叫做数列,每一个数是数列的一项,排在第几个位置就叫第几项。
要找到数列的规律,必须善于观察,一般可以从以下几方面去观察数列:①数列的每一项怎样随项数变化而变化; ②后面的项与前面的项有什么关系; ③数列分组后有什么规律。
注意:同一个数列,从不同的方面去观察,可以有不同的规律性。
如数列:1,4,9,16,25,36,……规律1:从第2项起每一项比前一项依次大3,5,7,9,11,…… 规律2:每一项=它的项数的平方。
把这个数列看作:12,22,32,42,52,62,……例1、准备题,按规律填数。
(1) 2,9,16,23, , ; (2) 1,2,4,7,11, , ; (3) 21,32,43,54, , ;(4) 2,4,5,10,11,22,23, , ;例2、把自然数中的偶数:2,4,6,8,……依次排成5列(如图)从上到下为列,从左到右为行,最左边的一列叫第一列,最上面一行叫第一行,那么数1994出现在第几行第几列?2 4 6 8 16 14 12 1018 20 22 24 32 30 28 2634363840例3、把自然数如右图排列, ①第10行正中的数是哪个? ②1999在第几行左起第几个 数?例4、自然数如右图排列:①第一行中自左至右第8个数是几? ②自上至下第10行中第8个数是几?例5、把所有自然数按下图规律排列后,从上到下分成A,B,C,D,E 五类,问1991在哪一类?… … … …第一行 1 第二行 2 3 4 第三行567 8 9 第四行 10 11 12 13 14 15 16…1 3 6 10 15 21 …2 59 14 20 …48 13 19 …7 12 18 … 11 17 … 16 …A B C D E 1 2 3 4 8 7 6 5 9 10 11 12 16 15 14 13 17………例6、所有自然数如右图排列, ①300应位于哪个字母下面? ②字母F 下面,从上往下数 第6个数是多少?例7、有列数:2,3,6,8,8, …,从第3个数起,每个数都是前两个数乘积的个位数字,那么这一列数的第80个数是多少?例8、有一列数:1,1989,1988,1,1987, …,从第3个数起,每一个数都是前两个数中大数减小数的差,那么第1989个数是多少?… … … …A B C D E F G 1 2 3 4 7 6 5 8 9 10 11 14 13 12 15 16 …………例9、如数表,第n 行有一个数A,它的下一行(第n+1行)有一个数B,且A 和B 在同一竖列,如果A+B=394,那么n 是多少?例10、右图是一个由数字组成的三角形。
小学奥数精讲第四讲 进位制与位值原理
第4讲 进位制与位值原理(二)同步练习: 1. 计算:102(2014)()= 210(101110)()=【答案】见解析【解析】倒取余数法:102(2014)(11111011110)=位值原理法:210(101110)(46)=2. 八进制的1234567化成四进制后,前两位是多少? 【答案】11【解析】先八进制化为二进制:一位变三位:82(1234567)(1010011100101110111)=;再把二进制化为四进制:两位合一位:24(1010011100101110111)(1103211313)=.可见,前两位为11.3. 在几进制中有12512516324⨯=? 【答案】7【解析】注意101010(125)(125)(15625)⨯=,因为1562516324<,所以一定是不到10就已经进位,才能得到16324,所以10<n .再注意尾数分析,101010(5)(5)(25)⨯=,而16324的末位为4,于是25421-=进到上一位.所以说进位制n 为21的约数,又小于10,也就是可能为7或3.因为出现了6,所以n 只能是7.4. 已知100(1)3=+-÷bab b a ,则b =_____. 【答案】7【解析】10110=+bab b a ;100(1)1001003+=+-÷b b a .得313300+=a b .(a ,b )= (9,7),b =7.5. 将6个灯泡排成一行,用○和●表示灯亮和灯不亮,下图是这一行灯的五种情况,分别表示五个数字:1,2,3,4,5.那么●○○●○●表示的数是______.【答案】26【解析】从图中数字1、2、4的表示可知:自右向左第一个灯亮表示1,第二个灯亮表示2,第三个灯亮表示4,第四个灯亮表示8,第五个灯亮表示16,第六个灯亮表示32.因此问题当中的表示168226++=54321●○○○●○○●○○●●●●●●●●●●●●●●●●●●●●6. 在宇宙中有一个使用三进制的星球.小招移居到这个星球后更换身份证,要把年龄从十进制数变为三进制数表示.小招发现,只要在原来十进制年龄末尾添个“0”,就是三进制下的年龄.请问小招多少岁? 【答案】21岁【解析】①设小招为a 岁,得(10)(3)0=a a ,又10(3)(10)03033=⨯+⨯=a a a ,解得0=a ,不合题意,所以小招的年龄不可能是一位数.②设小招是ab 岁,由题意得:(10)(3)0=ab ab .因为(10)10=+ab a b ,(3)0930193=⨯+⨯+⨯=+ab a b a b ,所以1093+=+a b a b ,即2=a b . 又因为0ab 是三进制数,a ,b 都小于3,所以2=a ,1=b .所以,小招为21岁. ③设小招为abc 岁,由题意有,(10)(3)0=abc abc ,因为(10)10010=++abc a b c , 32(3)03332793=⨯+⨯+⨯=++abc a b c a b c ,所以100102793++=++a b c a b c .即732+=a b c .又a 、b 、c 都小于3,所以上述等式不成立. 综上可知小招的年龄是21岁.7. abcd ,abc ,ab ,a 依次表示四位数、三位数、两位数及一位数,且满足abcd -abc -ab -a = 1787,则这四位数=______或______. 【答案】2009或2010【解析】原式可表示成:8898991787+++=a b c d ,则知a 只能取:1或2,当1=a 时,b 无法取,故此值舍去.当2=a 时,0=b ,0=c 或1,d 相应的取9或0.所以这个四位数是:2009或2010.8. 十进制计算中,逢10必须进位,有保密员之间采用r 进位制方式计算,在他们的运算中: 10(166)(133)(24)-=r r ,则r =______.【答案】7【解析】(166)(133)(33)33247-==⨯+=⇒=r r r r r .9. 一个三位数A 的三个数字所组成的最大三位数与最小三位数的差仍是数A ,这个三位数A 是_____. 【答案】495【解析】设这个最大三位数为abc ,那么最小三位数为cba ,于是99()=-=-A abc cba a c ,三位数A 是99的倍数,所有可能值如下:198、297、396、495、594、693、792、891.代入题中检验,得A =495.10. 记号(75)k 表示k 进制的数,如果(70)k 在m 进制中表示为(56)m ,又m 、k 均小于等于10,求k 和m 的值.【答案】8,10==k m【解析】由于()()107077=⨯=k k k ,()()10565656=⨯+=+m m m ;所以567+=m k ,求得8,10==k m .深化练习11. 正整数3、5、6、15可以分别表示为121⨯+,2121⨯+,21212⨯+⨯,321212121⨯+⨯+⨯+,他们的上述表示(又称之为二进制)中1的个数分别是2,2,2,4,都是偶数,像3、5、6、15…这样的数,称为魔数,前10个魔数(从小到大)的和是______. 【答案】115【解析】魔数从小到大排列:11,101,110,1001,1010,1100,1111,10001,10010,10100,……,前10个有5个1在末位,5个1在倒数第二位,5个1在倒数第三位,4个1在倒数第4位,3个1在倒数第5位,和为2345152524232115⨯⨯⨯⨯⨯++++=.12. 四位数1234可通过下面的变换变成1541:现在有一个四位数,通过以上方法变换成3779,那么原来的这个四位数是______. 【答案】3271【解析】设原来这个四位数是,则有37++=a b ,79++=c d ,即11237+=a b ,11279+=c d ,解得3,2,7,1====a b c d ,所以原来这个四位数是3271.13. 一个人今年的年龄恰好等于他出生年的数字和,那么这个人今年的年龄是______. 【答案】5或23【解析】(1)设这个人的出生年为19ab ,根据题意19201719+++=-a b ab102017190010++=---a b a b化简得:112107+=a b .所以111072=-a b 因为9≤b ,所以111071889≥-=a .从而9≥a 推出9=a ,4=b .这个人的年龄为2017199423-=(岁).(2)设这个人的出生年月为20ab ,根据题意 20201720+++=-a b ab , 11215+=a b12==,a b .这个人的年龄为201720125-=(岁).14. 四位数及其逆序数的和是35的倍数,求满足条件的四位数一共有多少个? 【答案】238【解析】()()1001110+=+++abcd dcba a d b c ,可以知道+a d 是5的倍数,+b c 是7的倍数,其中a ,d 不为0,有5/10/15+=a d ,0/7/14+=b c ,(),a d 一共有17组,(),b c 一共有14组,那么一共有1714238⨯=.12+1+21541123415.a、b、c是0~9中不同的数字,用a、b、c共可组成六个数,如果其中五个数之和不小于2009,也不大于2012,那么另一个数是______.【答案】208【解析】这六个数的总和为222(a+b+c).若a+b+c=10,那么六个数总和为2220,所求的数不小于208,不大于211,只有208满足条件;若a+b+c=11,那么六个数总和为2442,所求的数不小于430,不大于433,都不符合条件;若a+b+c=12,那么六个数总和为2664,所求的数不小于652,不大于655,都不符合条件;若a+b+c=13,那么六个数总和为2886,所求的数不小于874,不大于877,都不符合条件;若a+b+c≥14,那么六个数总和不小于3108,那么另一个数超过1000,不符合题意.综上可得,另一个数必是208.。
小五奥数-十进制和二进制
1、进位制的基本原理(1)十进位制我们通过对常用的“十进位制”的进一步认识。
推广到其他非十进位制,概括出进位制原理。
十进位制记数法,只用十个数码:0、1、2、3、4、5、6、7、8、9.它是“位值制”记数法(即同一个数码,在不同的位置上表示不同的数值),如246的百位上的数码2表示200,十位上的数码4表示40,个位上的数码6表示6,即246=200+40+6=2210+4106⨯⨯+一般来说,任何一个十进位制数,都可以用各位数码(共十个不同数码)与10的方幂的乘积的和来表示,其中幂指数比相应数码所在的位数(从右往左数)少1.如 10543210356842=300000500006000800402310+510+610+810+410+210+++++=⨯⨯⨯⨯⨯⨯说明 : ①十进位数 10356842 的下标(10),是为了和其他进位制区别开,一般下标“(10)”省略,即10356842 =356842② 10356842 是“位值制”,一般第二步可以省略不写,可按法则直接写成与10的方幂的乘积的和的形式。
③十进位制数,要“满十进一”。
(2)二进位制类比十进位制数来认识二进位制数,注意相同点和不同点。
二进位制记数法:只用两个数码,即“0”和“1”。
二进位制数也是“位值制”记数法,低位向高位进位要“满二进一”。
如 1+1=10,10+1=11,11+1=100,100+1=101,101+1=110,110+1=111,111+1=1000等等十进位制数和二进位制数对照表如下:十进位制数1,2, 3, 4, 5, 6, 7, 8, …… 二进位制数1,10,11,100,101,110,111,1000, ……二进位制数也可以表示成:以2为底的方幂的乘积的和的形式,例如:020220210=1x2=211=1x2+1x2=2+1=3100=12+02+02=2=4101=12+02+12=2+1=5⨯⨯⨯⨯⨯⨯(2)(2)(2)(2),,,一般来说,任何一个二进位制数,就是各位数码与2的方幂的乘积的和,其中幂指数等于相应数码所在位数(从右往左数)减1.说明 因为“1”乘任何数仍得那个数,其因数1可以省略不写,又因为“0”乘任何数仍得“0”,零项也可以省略不写。
小学五年级奥数练习及部分答案--1数列规律的应用--找规律(四)
奥数五年级上一、数列规律的应用--找规律(四) (1)二、等差数列求和的应用--数列(二) (7)三、包含与排除(二) (14)四、小数的巧算--巧算(四) (19)五、行程问题(三) (25)六、行程问题(四) (31)七、牛吃草问题 (36)八、平面图形的面积(二) (39)九、计数问题 (45)十、数的进位制(二) (50)十一、简单抽屉原理(一) (54)十二、简单的统筹规划问题 (60)部分答案 (68)一、数列规律的应用--找规律(四)按一定的顺序排列的一串数,叫做数列,每一个数是数列的一项,排在第几个位置就叫第几项。
要找到数列的规律,必须善于观察,一般可以从以下几方面去观察数列:①数列的每一项怎样随项数变化而变化; ②后面的项与前面的项有什么关系; ③数列分组后有什么规律。
注意:同一个数列,从不同的方面去观察,可以有不同的规律性。
如数列:1,4,9,16,25,36,……规律1:从第2项起每一项比前一项依次大3,5,7,9,11,…… 规律2:每一项=它的项数的平方。
把这个数列看作:12,22,32,42,52,62,……例1、准备题,按规律填数。
(1) 2,9,16,23, , ; (2) 1,2,4,7,11, , ; (3) 21,32,43,54, , ;(4) 2,4,5,10,11,22,23, , ;例2、把自然数中的偶数:2,4,6,8,……依次排成5列(如图)从上到下为列,从左到右为行,最左边的一列叫第一列,最上面一行叫第一行,那么数1994出现在第几行第几列?2 4 6 8 16 14 12 1018 20 22 24 32302826例3、把自然数如右图排列, ①第10行正中的数是哪个? ②1999在第几行左起第几个 数?例4、自然数如右图排列:①第一行中自左至右第8个数是几? ②自上至下第10行中第8个数是几?例5、把所有自然数按下图规律排列后,从上到下分成A,B,C,D,E 五类,问1991在哪一类?34 36 38 40 … … … …第一行 1 第二行 2 3 4 第三行56789第四行 10 11 12 13 14 15 16 …1 3 6 10 15 21 …2 5 914 20 …4 813 19 …712 18 …11 17 … 16 …A B C D E 1 2 3 4 8 7 6 5 9 10 11 12 16 15 14 13 17………例6、所有自然数如右图排列, ①300应位于哪个字母下面? ②字母F 下面,从上往下数 第6个数是多少?例7、有列数:2,3,6,8,8, …,从第3个数起,每个数都是前两个数乘积的个位数字,那么这一列数的第80个数是多少?例8、有一列数:1,1989,1988,1,1987, …,从第3个数起,每一个数都是前两个数中大数减小数的差,那么第1989个数是多少?… … … …A B C D E F G 1 2 3 4 7 6 5 8 9 10 11 14 13 12 15 16 …………例9、如数表,第n 行有一个数A,它的下一行(第n+1行)有一个数B,且A 和B 在同一竖列,如果A+B=394,那么n 是多少?例10、右图是一个由数字组成的三角形。
五年级下册数学试题奥数专项训练:进位制人教版(2012)
N进制的本质——“逢N进1”。
N进制的换算——“换十求余”。
换算的巧解——利用进制的幂次关系。
二进制的概念请写出十进制中2、4、8、16、32在二进制中的表示,并试着总结十进制中在二进制中的表示。
1. 1.(多项选择题)判断下列哪组的两个数都不可能是二进制数:A、201,100B、243,1001C、87,520D、102,11022. 2.(多项选择题)下列十进制5、9、17、33对应的二进制的表示中正确的是_________.A、5→101B、9→1001C、17→10001D、33→1000013. 3.(多项选择题)下面十进制中1、3、7、15对应的二进制表示正确的是________。
A、1→1B、3→11C、7→111D、15→11114. 4.请写出十进制数12的二进制表示形式_________二进制与十进制的转换判断下列哪些数可能是二进制,将可能的那些数转换为十进制,将不可能的看作十进制,转换为二进制。
26、37、15、1001、11101、101001.1. 1.将下列十进制数换算成二进制:(答案中间请用一个空格隔开答案并按题目顺序填写例:1 11 111)42 = 86 = 21 =213 = 349 = 652 =2. 2.十进制中的奇数在二进制中末尾是几?偶数呢?(答案中间请用一个空格隔开答案并按题目顺序填写例:1 1)3. 3.将下列二进制数换算成十进制:(答案中间请用一个空格隔开答案并按题目顺序填写例:1 2 3)10101=_______ 11111 =_______ 1100100 =_______二进制的计算1011011+110110 1101110-1011 10111*111010 101010100-1001. 1.计算下列二进制数算式:(答案中间请用一个空格隔开答案并按题目从左到右从上到下的顺序填写例:1 1 1 1) 101+101+110 = 1011+1011+1010 =111+111+101 = 10111-1100-101 =2. 2.计算下列二进制数算式:(答案中间请用一个空格隔开答案并按题目从左到右从上到下的顺序填写例:1 1 1 1) 11*11+1011= 101*110+10101=101+1110+10*1011= 1010101*111–10101=3. 3.计算下列二进制数算式:(答案中间请用一个空格隔开答案并按题目从左到右从上到下的顺序填写例:1 1 1 1)10101 * 100 = 111110 –1011 + 11 * 1011 =111 * 101010 –1110 = 101000 * 100 * 11 =八进制的概念请写出十进制中2、4、8、16、32、64 在八进制中的表示,并试着总结十进制中在八进制中的表示;再写出二进制中1000、1000000、100000000在八进制中的表示,并试着总结二进制中在八进制中的表示。
五年级奥数第50讲 进位制与位值原理-
【例5】 (★★★★) 在6进制中有三位数 abc ,化为9进制为 cba,求 这个三位数在十进制中为多少?
1
二、位值原理
【例6】 (★★★) 将一个四位数的数字顺序颠倒过来,得到一个新 的四位数(这个数也叫原数的反序数),新数比原 数大8802 。求原来的四位数。
例3答案:① (11100)2 ② (11000000)2 ③ (500)10 例4答案:248
④ (13121)8
例5答案:22
)2
一、进位制 2.咱要了解的进位制: ⑴本质:n进制就是逢n进一 ⑵n进制下的数字最大为(n-1) 特别的:超过9的一般用大写英文字母表示 3.会变身的进位制:n进制和十进制的相互转化
【例3】 (★★★) ① (101)2(1011)2 (11011)2 ( )2 ② (11000111)2 (10101)2 (11)2 ( )2 ③ (3021)4 (605)7 ( )10 ④ (63121)8 (1247)8 (16034)8 (26531)8 (1744)8 ( )2
进位制与位值原理
一、进位制 1.缤纷多彩的进位制:
六十 进制 二十 进制
二进 制 … … 十六 进制
五进 制 十二 进制
【例1】 (★★★) 把下列各数转化成十进制数: ⑴ (463)8;⑵ (2BA)12;⑶ (5FC)16。
【例2】 (★★★) ⑴把85化成二进制数。 ⑵ (567)10 ( )8 ( )5 (
【例7】 (★★★) 有3个不同的数字,用它们组成6个不同的三位数, 如果这6个三位数的和是1554 ,那么这3个数字分 别是_。
小学五年级奥数练习及部分答案--1数列规律的应用--找规律(四)
奥数五年级上一、数列规律的应用--找规律(四) (1)二、等差数列求和的应用--数列(二) (7)三、包含与排除(二) (14)四、小数的巧算--巧算(四) (19)五、行程问题(三) (25)六、行程问题(四) (31)七、牛吃草问题 (36)八、平面图形的面积(二) (39)九、计数问题 (45)十、数的进位制(二) (50)十一、简单抽屉原理(一) (54)十二、简单的统筹规划问题 (60)部分答案 (68)一、数列规律的应用--找规律(四)按一定的顺序排列的一串数,叫做数列,每一个数是数列的一项,排在第几个位置就叫第几项。
要找到数列的规律,必须善于观察,一般可以从以下几方面去观察数列:①数列的每一项怎样随项数变化而变化; ②后面的项与前面的项有什么关系; ③数列分组后有什么规律。
注意:同一个数列,从不同的方面去观察,可以有不同的规律性。
如数列:1,4,9,16,25,36,……规律1:从第2项起每一项比前一项依次大3,5,7,9,11,…… 规律2:每一项=它的项数的平方。
把这个数列看作:12,22,32,42,52,62,……例1、准备题,按规律填数。
(1) 2,9,16,23, , ; (2) 1,2,4,7,11, , ; (3) 21,32,43,54, , ;(4) 2,4,5,10,11,22,23, , ;例2、把自然数中的偶数:2,4,6,8,……依次排成5列(如图)从上到下为列,从左到右为行,最左边的一列叫第一列,最上面一行叫第一行,那么数1994出现在第几行第几列?2 4 6 8 16 14 12 1018 20 22 24 32 30 28 2634363840例3、把自然数如右图排列, ①第10行正中的数是哪个? ②1999在第几行左起第几个 数?例4、自然数如右图排列:①第一行中自左至右第8个数是几? ②自上至下第10行中第8个数是几?例5、把所有自然数按下图规律排列后,从上到下分成A,B,C,D,E 五类,问1991在哪一类?… … … …第一行 1 第二行 2 3 4 第三行567 8 9 第四行 10 11 12 13 14 15 16…1 3 6 10 15 21 …2 59 14 20 …48 13 19 …7 12 18 … 11 17 … 16 …A B C D E 1 2 3 4 8 7 6 5 9 10 11 12 16 15 14 13 17………例6、所有自然数如右图排列, ①300应位于哪个字母下面? ②字母F 下面,从上往下数 第6个数是多少?例7、有列数:2,3,6,8,8, …,从第3个数起,每个数都是前两个数乘积的个位数字,那么这一列数的第80个数是多少?例8、有一列数:1,1989,1988,1,1987, …,从第3个数起,每一个数都是前两个数中大数减小数的差,那么第1989个数是多少?… … … …A B C D E F G 1 2 3 4 7 6 5 8 9 10 11 14 13 12 15 16 …………例9、如数表,第n 行有一个数A,它的下一行(第n+1行)有一个数B,且A 和B 在同一竖列,如果A+B=394,那么n 是多少?例10、右图是一个由数字组成的三角形。
小学五年级奥数练习及部分答案--10数的进位制(二)
奥数五年级上一、数列规律的应用--找规律(四) (1)二、等差数列求和的应用--数列(二) (7)三、包含与排除(二) (14)四、小数的巧算--巧算(四) (19)五、行程问题(三) (25)六、行程问题(四) (31)七、牛吃草问题 (36)八、平面图形的面积(二) (39)九、计数问题 (45)十、数的进位制(二) (50)十一、简单抽屉原理(一) (54)十二、简单的统筹规划问题 (60)部分答案 (68)十、数的进位制(二)求相同因素的乘积的运算叫作乘方。
乘方是乘法的简便计算。
如:2×2记作22=4,读作2的平方等于4;3×3记作32=9,读作3的平方等于9;10×10记作102=4,读作10的平方等于100。
又如:23=2×2×2=8;33=3×3×3=27;103=10×10×10=1000;一般地,a ×a ×…×a(n 个a 相乘)记作a n ,读作a 的n 次方。
其中a 叫底数,n 叫指数,a n 叫幂,它表示乘方的结果。
加、减法叫第一级运算,乘除法叫第二级运算,乘方叫第三级运算。
在混合运算中,先乘方,后乘除,最后加减,有括号时先算括号内。
注意:规定a n =1(a ≠0)如:20=1;30=1;100=11、十进制计数法我们已经学习过,十进制计数法有以下特点:(1)数字(数码):0、1、2、3、4、5、6、7、8、9;(2)满十进一;(3)位置值原则:用不同数位上的数表示不同单位的数;(4)计数单位和数位顺序。
如:693528.47=6×105+9×104+3×103+5×102+2×105+8×100+4×101+7×10012、二进制计数法前面已经初步学习过二进制,二进制计数法的特点是:(1)2个数字:0、1;(2)满二进一;(3)位置值原则:用不同数位上的数表示不同单位的数;(4)计数单位:由低到高有:…1/23、1/22、1/2、1、2、22、23、24、25、26…如:1011001.01=1×26+0×25+1×24+1×23+0×22+0×2+1×20+0×1/22+1×1/22=89.253、和十进制、二进制一样,任意进制数有类似的特点,K进制计数法(K=2、3、4、5…10、11、12…)的特点是:(1)K个数字:0、1、2、3、…、K-1;(2)满K进一;(3)位置值原则;(4)计数单位由低到高有:…1/K3、1/K2、1/ K、1、K、K 2、K 3、K 4…如:K=4312133=3×45+1×44+2×43+1×42+3×41+3×40=3×1024+1×256+2×64+1×16+3×4+3×1=3487用20, 21, 22, 23,…,2n作单位,可以表示1到2n+1-1的所有自然数(n=1,2,3,…)。
小学五年级数学奥数题专项训练:数字数位问题
小学五年级数学奥数题专项训练:数字数位问题(学习版)编制人:__________________审核人:__________________审批人:__________________编制学校:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的学习资料,如英语资料、语文资料、数学资料、物理资料、化学资料、生物资料、地理资料、历史资料、政治资料、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of learning materials for everyone, such as English materials, language materials, mathematics materials, physical materials, chemical materials, biological materials, geographic materials, historical materials, political materials, other materials, etc. Please pay attention to the data format and writing method!小学五年级数学奥数题专项训练:数字数位问题五年级数学,五年级奥数题。
五年级奥数春季实验班第4讲 数论基础之进位制
得到的新三位数是它的各位数字之和的
倍。
解:设这个三位数是 a0b , a0b =67×(a+b),则 100a+b=67a+67b,得 33a=66b,所以 a=2b,
不妨设此数为 402,则 402÷6=67, 交换个位数字与百位数字为 204,204÷6=34. 所以新三位数是它的各位数字之和的 34 倍。
第四讲 数论基础之进位制
模块 1、十进制和 k 进制的相互转化以及 k 进制下的直接运算
例 1.(1)在二进制下进行加法:(101010)2+(1010010)2=(
)2;
(2)在七进制下进行加法:(1203)7+(64251)7=(
)7;
(3)在九进制下进行加法:(178)9+(8803)9=(
)9;
例 7.一个正整数的各位数字只含有 0 和 1,且能被 522 整除,则这样的正整数中最小的是
。
解:522=2×32×29,所以该数一定能被 2 整除,且只由数字 0 和 1 组成,所以个位数字一定是 0,
又该数能被 9 整除,所以数字和是 9 的倍数,即可能有 9 个 1、18 个 1、……。 最小的数可能有 9 个 1,即 1111111110. 但是 1111111110 不能被 29 整除,我们来分析 101、102、103、……,除以 29 的余数, 同时考虑 101、101+102、101+102+103、……、即累积和除以 29 的余数,列表如下:
1+2+4+8+16+32=63,第 64 个数是 1000000,100−64=36,
又 1+2+4+8+16=31,1+2+4=7,所以第 102 项用 3 进制表示是 1100100,所以第 100 项是 1100010. 用十进制表示是 36+35+3=975.
小学五年级奥数练习及部分答案--1数列规律的应用--找规律(四)
奥数五年级上一、数列规律的应用--找规律(四) (1)二、等差数列求和的应用--数列(二) (7)三、包含与排除(二) (14)四、小数的巧算--巧算(四) (19)五、行程问题(三) (25)六、行程问题(四) (31)七、牛吃草问题 (36)八、平面图形的面积(二) (39)九、计数问题 (45)十、数的进位制(二) (50)十一、简单抽屉原理(一) (54)十二、简单的统筹规划问题 (60)部分答案 (68)一、数列规律的应用--找规律(四)按一定的顺序排列的一串数,叫做数列,每一个数是数列的一项,排在第几个位置就叫第几项。
要找到数列的规律,必须善于观察,一般可以从以下几方面去观察数列:①数列的每一项怎样随项数变化而变化; ②后面的项与前面的项有什么关系; ③数列分组后有什么规律。
注意:同一个数列,从不同的方面去观察,可以有不同的规律性。
如数列:1,4,9,16,25,36,……规律1:从第2项起每一项比前一项依次大3,5,7,9,11,…… 规律2:每一项=它的项数的平方。
把这个数列看作:12,22,32,42,52,62,……例1、准备题,按规律填数。
(1) 2,9,16,23, , ; (2) 1,2,4,7,11, , ; (3) 21,32,43,54, , ;(4) 2,4,5,10,11,22,23, , ;例2、把自然数中的偶数:2,4,6,8,……依次排成5列(如图)从上到下为列,从左到右为行,最左边的一列叫第一列,最上面一行叫第一行,那么数1994出现在第几行第几列?2 4 6 8 16 14 12 1018 20 22 24 32 30 28 2634363840例3、把自然数如右图排列, ①第10行正中的数是哪个? ②1999在第几行左起第几个 数?例4、自然数如右图排列:①第一行中自左至右第8个数是几? ②自上至下第10行中第8个数是几?例5、把所有自然数按下图规律排列后,从上到下分成A,B,C,D,E 五类,问1991在哪一类?… … … …第一行 1 第二行 2 3 4 第三行567 8 9 第四行 10 11 12 13 14 15 16…1 3 6 10 15 21 …2 59 14 20 …48 13 19 …7 12 18 … 11 17 … 16 …A B C D E 1 2 3 4 8 7 6 5 9 10 11 12 16 15 14 13 17………例6、所有自然数如右图排列, ①300应位于哪个字母下面? ②字母F 下面,从上往下数 第6个数是多少?例7、有列数:2,3,6,8,8, …,从第3个数起,每个数都是前两个数乘积的个位数字,那么这一列数的第80个数是多少?例8、有一列数:1,1989,1988,1,1987, …,从第3个数起,每一个数都是前两个数中大数减小数的差,那么第1989个数是多少?… … … …A B C D E F G 1 2 3 4 7 6 5 8 9 10 11 14 13 12 15 16 …………例9、如数表,第n 行有一个数A,它的下一行(第n+1行)有一个数B,且A 和B 在同一竖列,如果A+B=394,那么n 是多少?例10、右图是一个由数字组成的三角形。
五年级奥数学练习试卷思维培训资料 数的进制
第四讲 数的进制卷Ⅰ数的进制问题一直是我们教学大纲的一个漏洞,只在三年级春季班讲了一次简单的二进制与十进制的互化之外,再也没有讲过,到了六年级也只是简单提一下.这几年随着二进制与计算机的联系、一年12个月、一周7天等生活中的其它进制问题的凸显,数的进制问题将来一定会是命题的热点.我们常用十进制,可是这并不代表其它进制没有学习的必要,就像我们56个民族,汉族是多数,但其它民族也有可以学习和借鉴之处,更何况在生活中我们用的很多就是二进制、三进制、七进制等等.所以调整了大纲,放了这么一讲,大部分题目都是原创题,不妥之处请批评指教.本讲主要从两个方面来系统地介绍数的进制:一是从进制的基本计数关系、运算法则出发,使学生从十进制的计数思维中解脱出来;二是从进制的转化及应用来说,进一步巩固进制的使用(还有各种进制的整除特征及法则,怕学生难以接受就没放).建议教师专题回顾讲起,先介绍几种进制的计数单位及运算法则,再引出想挑战吗.中间穿插了两个信息点,教师可以简单介绍.下表是十进制与二进制、三进制 、八进制、十六进制的位值(计数单位)对比图:十进制 (105)104103102101100二进制 ... 25 24 23 22 21 20 三进制 ... 35 34 33 32 31 30 八进制 (8)5 84 83 82 81 80 十六进制…16516416316216116n 进制的运算法则是“逢n 进一”、“借一当n ”.n 进制的四则混合运算和十进制一样:先乘除,后加减;同级运算,先左后右;有括号,先算括号里面的.7进制乘法表 8进制乘法表12345611234562461113153121521244222633534426511234567112345672461012141631114172225420243034531364364452761教学目标我们都学过十进制乘法口诀表,那么聪明的你能写出七进制的乘法口诀表吗?八进制的呢?想挑战吗?计算:(1)22(101)(111)+ ;(2)22(1101)(110)- ;(3)22(1101)(101)⨯ ;(4)22(101101)(111)÷分析:和十进制一样列数式计算,“逢二进一”、“借一当二”.(1) 1011111100+ (2)1101110111-(3)1101101110111011000001⨯ (4)110111101101111100011111(一)进制的概念及性质【例1】 (奥数网原创题)在八进制中,1234-456-322=________.分析:十进制中,两个数的和是整十整百整千的话,我们称为“互补数”,凑出“互补数”的这种方法叫“凑整法”,在n 进制中也有“凑整法”,要凑的就是整n. 原式=1234-(456+322)=1234-1000=234.[前铺] (奥数网原创题)在十进制中,1234-456-544=________.分析:观察两个减数,会发现它们的和是1000.所以,原式=1234-(456+544)=1234-1000=234.[拓展1] (奥数网原创题)在八进制中,63121-1247-16034-26531-1744=________.分析:原式=63121-(1247+26531)-(16034+1744)=63121-30000-20000=13121.[拓展2] (奥数网原创题)在九进制中,14438+3123-7120-11770+5766=________.分析:原式=14438+(3123+5766)-(7120+11770)=14438+10000-20000=4438.专题回顾专题精讲[信息提示] 关于八进制的奥秘来自外星世界的太空飞船突然出现在我们上空时将会发生什么样的情况?科学家曾经仔细研究过来自外形世界的信号并发现信息是采用的八进制编码.地球上流行十进制,换句话说,我们有0到9共10个数码.在十进制计数法中,每个数码表示10的某个乘幂,但是,没有任何理由假定外星生物也会使用十进制,来自外星的信息不大可能用十进制编码.在地球上,我们的数学计算用的是十进制,因为我们恰好有10个手指.事实上,我们的语言已经提示了手指同数制的联系——“digit ”这个单词兼有两种意思:数或手指.由于十进制来自我们的10只手指,那么八进制会不会透漏一点外星生物的解剖学结构呢?也许八进制会意味着:外星人的每只手上有一个大拇指,3个手指;或者是有着8根触须的怪物;或者是:这种动物长着4只手,而每只手上有一个大拇指,一个小指.甚至还有更荒唐的设想:外星人长着3个头颅,点头和摇头的全部组合刚好是8种!(当然也有可能他们的计数制同其身体结构毫无关系.毕竟,古巴比伦的60进制不能为我们提供关于人体结构的任何信息).【例2】 (奥数网原创题)在六进制中,15+255+3555+45555+555555=________.分析:利用凑整法,十进制中,接近整十整百整千的数,后面会有若干个9,那么类似地,在n 进制中,接近一个比较整的数,后面会有若干位是n-1.原式=(20-1)+(300-1)+(4000-1)+(50000-1)+(1000000-1)=1054320-5=1054311.[前铺] (奥数网原创题)在十进制中,19+299+3999+49999+599999=________.分析:观察各个数,发现每一个都比一个整十整百整千之类的数少1.所以,也可以利用凑整法,原式=(20-1)+(300-1)+(4000-1)+(50000-1)+(600000-1)=654320-5=654315.[拓展] (奥数网原创题)在七进制中,666661-66662-6663-664-65-6=________.分析:原式=(1000000-6)-(100000-5)-(10000-4)-(1000-3)-(100-2)-(10-1)=(1000000-111110)-6+21=555560+12=555602.【例3】 (仁华考题)若(62)n 是(14)n 的4倍,那么(41)n 化为十进制是多少?分析:因为(62)4(14)n n =,所以1010(62)4(4)624167n n n n n +=⨯+⎧⎪+=+⎨⎪=⎩,710.(41)471(29)=⨯+= [前铺] (54)n 表示n 进制数,若10(54)(64)n =,求n.分析:有5464n +=,得到12n =.【例4】 (仁华考题)在几进制中有4×13=100.分析:我们利用尾数分析来求解这个问题:不管在几进制均有(4)10×(3)10=(12)10.但是,式中为100,尾数为0.也就是说已经将12全部进到上一位. 所以说进位制n 为12的约数,也就是12,6,4,3,2.但是出现了4,所以不可能是4,3,2进制.我们知道(4)10×(13)10=(52)10,因52 < 100,也就是说不到10就已经进位,才能是100,于是我们知道n <10.所以,n 只能是6.[前铺] 计算:(234)7+(656)7分析:7进制的运算是逢7进1,所以原式=(1223)7.【例5】 (仁华考题)证明10101在任何进制的记数法中,都是一个合数.分析:设在a 进制,则4222222(10101)111(1)(1)(1)a a a a a a a a a =⨯+⨯+=+-=+-++,可以将其表达为两个均不为1的整数乘积,显然为合数.[前铺] 证明10201在大于2的任何进制的记数法中,都是一个合数.分析:设在b 进制,则4222(10201)121(1)b b b b =⨯+⨯+=+,所以不管在任何进制,均是一个非1的完全平方数,当然是一个合数.卷Ⅱ(二)进制的转化及应用【例6】 (奥数网原创题)把二进制自然数10100001101转化为八进制自然数.分析:二进制数转化为八进制是从个位开始往前每三位转化为八进制.对应关系如下: 二进制 000 001 010 011 100 101 110 111 八进制 0 1 2 3 4 5 6 7 对其进行分组,情况如下:(一定要从后往前)有: 10 100 001 101 2进制 2 4 1 5 8进制 (10100001101)2=(2415)8.[拓展1] (奥数网原创题)把二进制小数11.0010010001转化为八进制小数.分析:小数和整数转化的方法类似,只不过是从小数点处,向前和向后都要三位三位数.但是本题的小数点后位数不是3的倍数,所以必须补0.11. 001 001 000 1003. 1 1 0 4所以,二进制11.0010010001转化为八进制是3.1104.[拓展2] (奥数网原创题)把二进制循环小数0.10011转化为八进制循环小数.分析:循环小数转化的方法也类似,但是循环节长度不是3的倍数,所以需要把循环节连写三遍,如下:0. 100 111 001 110 0110. 4 7 1 6 3所以,二进制0.10011转化为八进制是0.47163.[拓展3] (奥数网原创题)在几进制中,0.1463是一个整数的倒数?分析:看到这类问题不知道如何入手的话,可以这样想:大家都熟悉的十进制循环小数10.1428577=中,循环节的前一半和后一半“互补”,也就是对应位相加等于9,也就是进制数减1.而0.1463的循环节前一半和后一半对应位相加等于7,所以应该是八进制.经检验,10.14635=.[信息提示] 莫尔斯-瑟厄数列在管乐声中有两个调子,用表示长调,用表示短调,所有乐曲都可以用类似或表示,就是这种看似既非完全规则、又非全然不规则节奏的神奇模式就是著名的、奇异的二进制数字模式——莫尔斯-瑟厄数列,它可以用0和1的数字串来表示.莫尔斯-瑟厄数列是为了纪念挪威数学家阿克塞尔-瑟厄和普林斯顿大学的马斯登-莫尔斯而命名的.瑟厄引入这个数列,作为一种非周期性的、但又可以通过递推办法而算出来的实例.有好几种办法可以生成莫尔斯-瑟厄数列.第一种:从数0开始,反复进行下列置换:0→01,1→10.换句话说,你一旦见到0,就用01取代它,见到1就用10来取代,从一个单独的0开始,我们就可以得出以下各“代”:你可以用一支笔、一张纸来形成这个数列.从0开始,代之以01,现在你已有了一个两个数码的数列,用01代替0,10代替.从而有了数列0110,下一个二进数模式是01101001,请注意0110是对称的,它是一个回文数,然而01101001则不是.但是,你要顶住!再下面一个模式0110100110010110又是回文了.这种现象是否交替出现?显然,数列的神奇性质只是刚刚开始,奥妙还在后面呢.注意数列的第四行可以译成管乐声中的8个手指记号,如果 表示0, 表示1的话,真是令人惊讶! (未完,见数学知识)【例7】 (奥数网原创题)在三进制中的数12120120110110121121,则将其改写为九进制,其从左向右数第l 位数字是几?分析:我们如果通过十进制来将三进制转化为九进制,那运算量很大.注意到,三进制进动两位则我们注意到进动了3个3,于是为9.所以变为遇9进1.也就是九进制.于是,两个数一组,两个数一组,每两个数改写为九进制,如下表:3进制 12 12 0l 20 11 01 10 12 11 21 9进制 5 5 l 6 4 1 3 5 4 7 所以,首位为5.[总结] 若原为n 进制的数,转化为n k 进制,则从右往左数每k 个数一组化为nk进制.【例8】 (仁华考题)N 是整数,它的b 进制表示是777,求最小的正整数b ,使得N 是十进制整数的四次方.分析:先化为十进制数,2(777)777b b b =⨯+⨯+,则有24777b b x ⨯+⨯+=,因为N 是7的倍数,所以4x 也是7的倍数,又7为质数,所以x 是7的倍数.于是令7x t =,则247772401b b t ⨯+⨯+=,则21343b b ++=,(1)342b b +=,则18b =.因为t 最小,所以b 也是最小的.即有最小在18进制有41810.(777)(7)=[前铺] 在7进制中有三位数abc ,化为9进制是cba ,求这个三位数在十进制中是多少?分析:都化为十进制数,27()77497abc a b c a b c =⨯+⨯+=++,29()99819cba c b a c b a =⨯+⨯+=++,于是497819a b c c b a ++=++,48802a c b =+,即2440a c b =+,因为24a 是8的倍数,40c 也是8的倍数,所以b 也是8的倍数.于是0b =或8b =,但在7进制不可能有8.所以0b =,即2440a c =,则35a c =,所以a 为5 的倍数,c 为3的倍数,有0a =或5a =,首位不可以是0,所以5a =,那么3c =,所以77()(503)5493248.abc ==⨯+=[拓展] 设1987可以在b 进制中写成三位数xyz ,且x y z ++=1+9+8+7,试确定出所有可能的x 、y 、z 及b .分析:我们注意2()19871987b xyz b x by z x y z ⎧=++=⎨++=+++⎩①②①-②得:(2b -1)x +(b -1)y =1987-25,则(b -1)(b +1)x +(b -1)y =1962,即(b -1)[(b +1)x +y ]=1962.所以,1962是(b -1)的倍数.1962=2×9×109, 当b -1=9时,b =10,显然不满足;当b -1=18时,b =19,则(b -1)[(b +1)x +y ]=18×(20x +y )=1962;则20x +y =109,所以,545,(929911b x x x y y y z ⎧⎪===⎧⎧⎪⎨⎨⎨===⎩⎩⎪⎪=⎩=19不满足),......则 显然,当b =109不满足,b =2×109不满足,当b =9×109也不满足.于是为(59B)19=(1987)10,B 代表11.【例9】 (仁华考题)若n21-能被15整除,自然数n 可以取哪些值?分析:因为nn 1n 02221=10001111⎛⎫⎛⎫--= ⎪ ⎪ ⎪⎝⎭⎝⎭个个,而2151111=(),如果n21-能被15整除,即n 12111⎛⎫ ⎪⎝⎭个能被21111()整除,所以n 是4的倍数,n=4,8,12,…[前铺] 求证:1821-能被7整除.分析:直接用十进制比较困难,我们考虑化为二进制的整除问题.因为18181180222110001111⎛⎫⎛⎫-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭个个.而27111=(),于是182218122171111111001001001001001⎛⎫÷÷= ⎪⎝⎭个(-)=()(),所以1821-能被7整除.[拓展] 计算:2003333 3...31⎛⎫⨯⨯⨯- ⎪ ⎪⎝⎭个÷26的余数.分析:2003333 3...31⎛⎫⨯⨯⨯- ⎪ ⎪⎝⎭个=2003331000...01⎛⎫⨯- ⎪⎪⎝⎭个=20033222...2⎛⎫⎪ ⎪⎝⎭个2,26=(222)3,所以2003333 3...31⎛⎫⨯⨯⨯- ⎪ ⎪⎝⎭个÷26=20033222...2⎛⎫ ⎪ ⎪⎝⎭个2÷(222)3,(222)3整除(222)3,2003÷3=667……2,所以余数是(22)3=8.【例10】 (仁华考题)三个两位数恰构成公差为6的等差数列,而在五进制的表示中,这三个数的数字和是依次减少的,那么符合这样要求的等差数列有多少个?分析:设等差数列中最小的那个数表示为5进制为5(abc ),最大可为5(322)996287=-⨯=,最小可为5(20)10=.那么有5()abc 、55()(11)abc +、55()(22)abc +的数字和依次减少,所以55()(11)abc +、55()(22)abc +在运算时均必须有进位,不难发现有5(24)a 、5(43)a 满足,而a 可以取0,1,2,于是共有6组符合要求的数列.[前铺] 用a 、b 、c 、d 、e 分别表示五进制中互不相同的数字,如果5()ade 、5()adc 、5()aab 是由小到大排列的连续正整数,那么5()cde 所表示的整数写成十进制的表示是多少?分析:由题意知55()1()ade adc +=,55()1()adc aab +=,根据进位原则知,4,0c b ==.又1c e -=,所以3e =.1a d -=,且a 、d 只能在1,2中取值,所以2,1a d ==.即55()(413)cde =,转化为十进制的表示为22510(413)45153(108)=⨯+⨯+=.【例11】 (奥数网原创题)一串数:1,3,4,9,10,12,13,…,由一些正整数组成,它们或者是3的幂,或者是若干个不同的3的幂的和,求这串数中的第100项是多少?分析:将已知数改写成三进制数,得:1 3 4 9 10 12 13110 11 100 101 110 111十进制: 三进制:观察发现,在三进制数中,各位上的数字均不是2,若将它们看成二进制数,可以看出,它们与十进制数1,2,3,4,5,6,7,…对应,第100项与十进制数100对应.因为10010=26+25+22=11001002,所以【例12】 (仁华考题)称n 个相同的数a 相乘叫做a 的n 次方,记做n a ,并规定01a =.如果某个自然数可以写成2的两个不同次方(包括零次方)的和,我们就称这样的数为“双子数”,如30922=+,523622=+.它们都是双子数,那么小于1040的双子数有多少个?分析:双子数与二进制的联系,3010102(9)(22)(1001)=+=,5210102(36)(22)(100100)=+=,写成2的两个不同次方(包括零次方)的和,这样的数改写成二进制后只含有2个1,有104101022(1040)(22)(1000000000010000)(10000010000)=+=+=,这样的二进制数为11位数,但是11位数有限制:先看10位数,于是()**********,这样10位数,选择2个数位填1,其它为0,所以为210C ,再考虑11位数,于是(1000001)****,只有4个“*”和紧邻的“1”,于是有5种选择,所以共有210550C +=种选择方法,所以这样的“双子数”为50个.[拓展] 一个非零自然数,如果它的二进制表示中数码l 的个数是偶数,则称之为“坏数”.例如:218=10010()是“坏数”.试求小于1024的所有坏数的个数.分析:我们现把1024转化为二进制:(1024)10=210=(10000000000)2.于是,在二进制中为11位数,但是我们只用看10位数中情况.并且,我们把不足10位数的在前面补上0,如502111...10000...0⎛⎫ ⎪ ⎪⎝⎭5个1个或以上912111...1⎛⎫ ⎪ ⎪⎝⎭个=9120111...1⎛⎫ ⎪ ⎪⎝⎭个则,10* * * * * * * * * *⎛⎫⎪ ⎪⎝⎭个位置可以含2个l ,4个1,6个1,8个l ,10个1.于是为2268101010101010C C C C C ++++=10910987109876510987654312123412345612345678⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯++++ =45+210+210+45+1=511,于是,小于1024的“坏数”有511个.【例13】 (奥数网原创题)在地球上有一个矮人国,这个国家不用通常的十进制,而是用大于十的另一种进制.但是该国家的钟表与中国的本质上相同(当然可能钟面标的数字有区别,这不是本质区别).一名司机开车在笔直的公路上匀速行驶,每小时的速度是整数.当钟表的时针与分针垂直的时候,司机发现他刚好经过路边的一个里程碑,上面的数字是一个两位数.当钟表的时针与分针再次垂直的时候,司机再次发现他刚好经过路边的里程碑,上面的数字是刚才那个两位数的数字颠倒过来.当钟表的时针与分针第三次垂直的时候,司机第三次发现他刚好经过路边的里程碑,上面的数字是一个三位数,是在第一次的那个两位数中间插了一个数字.在该国家的进制数尽量小的情况下,司机的时速是多少?(请把答案转化成十进制)分析:每个小时,时针走过112周,分针走过1周,也就是分针比时针多走过1112周.两次垂直之间,分针比时针多走过半周,所以时间为111621211÷=小时.显然,第三次所经过的里程碑的首位是1.设矮人国用N 进制,设第一次的里程数是1X ,则第二次的里程数是1X ,再设第三次的里程数是1YX .则有1112X YX X +=⨯.从个位上看,X+X 个位是2,所以2X=N+2,N 必须是偶数,12NX =+.(1)111(1)1(1)222N N N N X X NX N X N N --=+--=++--+=.也就是说,车的时速等于(1)611(1)21112N N N N --÷=,所以N 最小是12,时速是121.六年级还会继续学习数的进制哦!1. (例4)在几进制中有125×125=16324.分析:因为101010(125)(125)(15626)⨯=,且1562516324,所以10n.再来看尾数,101010(5)(5)(25)⨯=,16324的末位是4,所以25-4=21进到上一位.即n 为21的约数,也就是1,3,7,21,因为原式中出现了6,所以n 只能是7. 练习四专题展望2. (例8)在6进制中有三位数abc ,化为9进制为cba ,求这个三位数在十进制中为多少?分析:(abc )6=a ×62+b ×6+c =36a +6b +c ;(cba )9=c ×92+b ×9+a =81c +9b +a .所以36a +6b +c =81c +9b +a ;于是35a =3b+80c ;因为35a 是5的倍数,80c 也是5的倍数.所以3b 也必须是5的倍数,又(3,5)=1.所以,b =0或5.①当b =0,则35a =80c ;则7a =16c ;(7,16)=1,并且a 、c ≠0,所以a =16,c =7:但是在6,9进制,不可以有一个数字为16.②当b =5,则35a =3×5+80c ;则7a =3+16c ;mod 7后,3+2c ≡0,所以c =2或者2+7k (k 为整数).因为有6进制,所以不可能有9或者9以上的数,于是c =2.于是,35a =15+80×2;a =5.于是(abc )6 =(552)6=5×62+5×6+2=212.所以.这个三位数在十进制中为212.3. (例9)试求200621(-)除以992的余数是多少?分析:因为被除数与2的次幂有关,所以我们可以用二进制来解决.1029921111100000=()(),2006220061221111⎛⎫= ⎪⎝⎭个(-),在二进制中515502111000⎛⎫ ⎪ ⎪⎝⎭个个或个以上的一定能整除21111100000(),因为20001602111000⎛⎫ ⎪ ⎪⎝⎭个个能整除21111100000(),所以余数为543210211111122222263=+++++=(),所以原式的余数为63.4. (例9)求证151413121110982222222221-+-+-+-++-能被5整除.分析: 15141312111098151311914121081010222222222222122222222211010101010101010101010101010101101010101010101-+-+-+-++-=+++++-+++++=-=()()()()() 又25101=(),显然2101010101010101()能被2101()整除,所以得证.5. (例10)一个10进制的三位数,把它分别化为9进制和8进制数后,就又得到了2个三位数.老师发现这3个三位数的最高位数字恰好是3、4、5,那这样的三位数一共有多少个?分析:我们设(3ab )10=(4cd )9=(5ef )8;我们知道(4cd )9 在(400)9~(488)9之间,也就是4×92~5×92-1,也就是324~406;还知道(5ef )8 在(500)8~(577)8之间,也就是5×82~6×82-1,也就是320~383;又知道(3ab )10 在(300)10~(399)10之间.所以,这样的三位数应该在324~383之间,于是有383-324+1=60个三位数满足条件.6. 一个g 进制数,54321543210N a g a g a g a g a g a =⋅+⋅+⋅+⋅+⋅+,要计算它的十进制数时,有一个简便算法:543210(((())))N a g a g a g a g a g a =⋅+⋅+⋅+⋅++,这样进行5次乘法和5次加法,现在请你用简便算法求出六进制数的N.(6)312150N ==(10)_____分析:如按54321543210a g a g a g a g a g a ⋅+⋅+⋅+⋅+⋅+,则需进行15(=5+4+3+2+1)次乘法和5次加法,显然浪费时间.根据题目中给出的简便算法(6)312150N ==543210361626165606⨯+⨯+⨯+⨯+⨯+⨯=((((3×6+1)×6+2)×6+1)×6+5)×6+0=(10)25211莫尔斯-瑟厄数列也可以用别的办法来生成乐音数列:每一代都可以由其前代挂上它的“补数列”而得出,这意味着如果你看到了0110,就在它的后面加挂1001.此外,还有第三种办法来生成它.一开始先写0,1,2,3,…,然后把它们改写成二进制数:0,1,10,11,100,101,110,111,….(本书第21节的“第一步探索”中将详细阐述二进制数,如果你渴望了解背景信息,不妨直接跳到那里去阅读.)现在,对每个二进制数字求和,并取其模2同余.也就是说,把每个和数用2去除,并取其余数.例如,二进数11求数字和后奖成为2,在最后的数列中就应当用0表达,通过这种办法可以得出数列0,1,1,0,1,0,0,1……同欺其他办法是一致的!让果戈尔博士来告诉你,何以这一数列如此迷人.首先,它是自相似的,这意味着你可以取数列的一段而生成全部无穷数列!例如,逐项相间地截取,可以复制全部数列.也就是说,你可以取最前面的二个数,再跳过二个,如此等等.其次,数列没有任何周期性.例如,不会出现,诸如00,11,00,11这类情况.然而,数列虽然没有周期可言,它去决非随机,它具有极强的短程与长程结构.例如,不可能有两个以上相邻的项是完全一样的.发现数列中所存在的模式的方法是傅里叶频谱,用它来分析本数列时显示出了明显的波峰.采用这种数学方法,你可以绘出一个图像,表明数列中项的位置与数据频度,在第三维上有着更稠密的频率分量,而在二维图像上不过是极其简单的一个黑点.数列的生长极其迅速,下面是第8代:数学知识有时候,按此种方式把数列堆积在它自身之上时会冒出一些模式,在这里,你能看出什么名堂来吗?表示莫尔斯——瑟厄数列的另外一种办法是使用超市里常用的商品分类的“条形码”,看到1的时候是一根垂直线段,而在出现0时则跳过一段空白.为了使肉眼更易辨识,当两个1连续出现时,可以用短横加以联接.我们可以用喜欢的植物图形来描述莫尔斯——瑟厄数列,用花朵表示1,空档表示0:倘若采用较高的树木,图形甚至更加好看.你能否对行、列作出巧妙安排以便更好地显示出数列的模式?在这种神奇的森林里漫步会有什么感受?不妨去想一想,你握着心上人的玉手,走入这个一望无际的莫尔斯——瑟厄森林中去的美妙情景哦!。
小学五年级奥数练习及部分答案--1数列规律的应用--找规律(四)
奥数五年级上一、数列规律的应用--找规律(四) (1)二、等差数列求和的应用--数列(二) (7)三、包含与排除(二) (14)四、小数的巧算--巧算(四) (19)五、行程问题(三) (25)六、行程问题(四) (31)七、牛吃草问题 (36)八、平面图形的面积(二) (39)九、计数问题 (45)十、数的进位制(二) (50)十一、简单抽屉原理(一) (54)十二、简单的统筹规划问题 (60)部分答案 (68)一、数列规律的应用--找规律(四)按一定的顺序排列的一串数,叫做数列,每一个数是数列的一项,排在第几个位置就叫第几项。
要找到数列的规律,必须善于观察,一般可以从以下几方面去观察数列:①数列的每一项怎样随项数变化而变化; ②后面的项与前面的项有什么关系; ③数列分组后有什么规律。
注意:同一个数列,从不同的方面去观察,可以有不同的规律性。
如数列:1,4,9,16,25,36,……规律1:从第2项起每一项比前一项依次大3,5,7,9,11,…… 规律2:每一项=它的项数的平方。
把这个数列看作:12,22,32,42,52,62,……例1、准备题,按规律填数。
(1) 2,9,16,23, , ; (2) 1,2,4,7,11, , ; (3) 21,32,43,54, , ;(4) 2,4,5,10,11,22,23, , ;例2、把自然数中的偶数:2,4,6,8,……依次排成5列(如图)从上到下为列,从左到右为行,最左边的一列叫第一列,最上面一行叫第一行,那么数1994出现在第几行第几列?2 4 6 8 16 14 12 1018 20 22 24 32302826例3、把自然数如右图排列, ①第10行正中的数是哪个? ②1999在第几行左起第几个 数?例4、自然数如右图排列:①第一行中自左至右第8个数是几? ②自上至下第10行中第8个数是几?例5、把所有自然数按下图规律排列后,从上到下分成A,B,C,D,E 五类,问1991在哪一类?34 36 38 40 … … … …第一行 1 第二行 2 3 4 第三行56789第四行 10 11 12 13 14 15 16 …1 3 6 10 15 21 …2 5 914 20 …4 813 19 …712 18 …11 17 … 16 …A B C D E 1 2 3 4 8 7 6 5 9 10 11 12 16 15 14 13 17………例6、所有自然数如右图排列, ①300应位于哪个字母下面? ②字母F 下面,从上往下数 第6个数是多少?例7、有列数:2,3,6,8,8, …,从第3个数起,每个数都是前两个数乘积的个位数字,那么这一列数的第80个数是多少?例8、有一列数:1,1989,1988,1,1987, …,从第3个数起,每一个数都是前两个数中大数减小数的差,那么第1989个数是多少?… … … …A B C D E F G 1 2 3 4 7 6 5 8 9 10 11 14 13 12 15 16 …………例9、如数表,第n 行有一个数A,它的下一行(第n+1行)有一个数B,且A 和B 在同一竖列,如果A+B=394,那么n 是多少?例10、右图是一个由数字组成的三角形。
小学五年级奥数练习及部分答案--1数列规律的应用--找规律(四)
奥数五年级上一、数列规律的应用--找规律(四) (1)二、等差数列求和的应用--数列(二) (7)三、包含与排除(二) (14)四、小数的巧算--巧算(四) (19)五、行程问题(三) (25)六、行程问题(四) (31)七、牛吃草问题 (36)八、平面图形的面积(二) (39)九、计数问题 (45)十、数的进位制(二) (50)十一、简单抽屉原理(一) (54)十二、简单的统筹规划问题 (60)部分答案 (68)一、数列规律的应用--找规律(四)按一定的顺序排列的一串数,叫做数列,每一个数是数列的一项,排在第几个位置就叫第几项。
要找到数列的规律,必须善于观察,一般可以从以下几方面去观察数列:①数列的每一项怎样随项数变化而变化; ②后面的项与前面的项有什么关系; ③数列分组后有什么规律。
注意:同一个数列,从不同的方面去观察,可以有不同的规律性。
如数列:1,4,9,16,25,36,……规律1:从第2项起每一项比前一项依次大3,5,7,9,11,…… 规律2:每一项=它的项数的平方。
把这个数列看作:12,22,32,42,52,62,……例1、准备题,按规律填数。
(1) 2,9,16,23, , ; (2) 1,2,4,7,11, , ; (3) 21,32,43,54, , ;(4) 2,4,5,10,11,22,23, , ;例2、把自然数中的偶数:2,4,6,8,……依次排成5列(如图)从上到下为列,从左到右为行,最左边的一列叫第一列,最上面一行叫第一行,那么数1994出现在第几行第几列?2 4 6 8 16 14 12 1018 20 22 24 32 30 28 2634363840例3、把自然数如右图排列, ①第10行正中的数是哪个? ②1999在第几行左起第几个 数?例4、自然数如右图排列:①第一行中自左至右第8个数是几? ②自上至下第10行中第8个数是几?例5、把所有自然数按下图规律排列后,从上到下分成A,B,C,D,E 五类,问1991在哪一类?… … … …第一行 1 第二行 2 3 4 第三行567 8 9 第四行 10 11 12 13 14 15 16…1 3 6 10 15 21 …2 59 14 20 …48 13 19 …7 12 18 … 11 17 … 16 …A B C D E 1 2 3 4 8 7 6 5 9 10 11 12 16 15 14 13 17………例6、所有自然数如右图排列, ①300应位于哪个字母下面? ②字母F 下面,从上往下数 第6个数是多少?例7、有列数:2,3,6,8,8, …,从第3个数起,每个数都是前两个数乘积的个位数字,那么这一列数的第80个数是多少?例8、有一列数:1,1989,1988,1,1987, …,从第3个数起,每一个数都是前两个数中大数减小数的差,那么第1989个数是多少?… … … …A B C D E F G 1 2 3 4 7 6 5 8 9 10 11 14 13 12 15 16 …………例9、如数表,第n 行有一个数A,它的下一行(第n+1行)有一个数B,且A 和B 在同一竖列,如果A+B=394,那么n 是多少?例10、右图是一个由数字组成的三角形。
五年级上期奥数练习题(数列规律 等差数列 数的进位制 包含与排除 牛吃草 追及 计数 数的整除 分解质因数
练习1 数列规律的应用姓名:_________1、 求等差数列5,7,9,11,···的20项。
2、 在等差数列5,9,13,···中,401是第几项?3、计算1+2+3+ (1000)4、在一个分成64小格的方板的每个格子中放入石子。
如果第一格放入2粒,第二格放入4粒,第三格放入6粒,第四格放入8粒······依此类推,放满64格,一共要放入多少粒石子?5、有一列数:1,1,3,8,22,60,164,448……其中的前三个数是1,1,3,从第四个数起,每个数都是这个数前面两个数之和的2倍。
那么,这列数中的第10个数是6、把所有自然数按下图规律排列后,从上到下分成A,B,C,D,E 五类,问2013在哪一类?7、所有自然数如右图排列,①300应位于哪个字母下面? ②字母F 下面,从上往下数 第6个数是多少?8、有列数:2,3,6,8,8, …,从第3个数起,每个数都是前两个数乘积的个位数字,那么这一列数的第80个数是多少?9、在1997后面写一串数字,写下的每个数字都是它前面两个数字乘积的个位数。
这样得到的一串数是199731……,问这串数字从1开始往右第2002个数字是几?A B C D E 4 3 2 1 5 6 7 8 12 11 10 9 1314 15 16 ……………AB C D E F G 1 2 3 4 7 6 5 8 9 10 1114131215 16 … … … …综合练习:1、5÷7(7÷11)÷(11÷15)÷(15÷21)2、1-2+3-4+5-6+7-8+…+99-100+1013、一个七位数,ABCDEFG,不同的字母代表0-9中不同的数字。
已知ABCD+EFG=9063,ABC + DEFG=2529,则这个七数是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奥 数
十、数的进位制(二)
求相同因素的乘积的运算叫作乘方。
乘方是乘法的简便计算。
如:2×2记作22=4,读作2的平方等于4;
3×3记作32=9,读作3的平方等于9;
10×10记作102=4,读作10的平方等于100。
又如:23=2×2×2=8;
33=3×3×3=27;
103=10×10×10=1000;
一般地,a ×a ×…×a(n 个a 相乘)记作a n ,读作a 的n 次方。
其中a 叫底数,n 叫指数,a n 叫幂,它表示乘方的结果。
加、减法叫第一级运算,乘除法叫第二级运算,乘方叫第三级运算。
在混合运算中,先乘方,后乘除,最后加减,有括号时先算括号内。
注意:规定a n =1(a ≠0)
如:20=1;30=1;100=1
1、十进制计数法
我们已经学习过,十进制计数法有以下特点:
(1)数字(数码):0、1、2、3、4、5、6、7、8、9;
(2)满十进一;
(3)位置值原则:用不同数位上的数表示不同单位的数;
(4)计数单位和数位顺序。
如:693528.47=6×105+9×104+3×103+5×102+2×105+8×100
+4×101
+7×1001 2、二进制计数法
前面已经初步学习过二进制,二进制计数法的特点是:
(1)2个数字:0、1;
(2)满二进一;
(3)位置值原则:用不同数位上的数表示不同单位的数;
(4)计数单位:由低到高有:…1/23、1/22、1/2、1、2、22、23、24、25、26…
如:1011001.01=1×26+0×25+1×24+1×23+0×22+0×2+1×20+0×1/22+1×1/22=89.25
3、和十进制、二进制一样,任意进制数有类似的特点,K进制计数法(K=2、3、
4、5…10、11、12…)的特点是:
(1)K个数字:0、1、2、3、…、K-1;
(2)满K进一;
(3)位置值原则;
(4)计数单位由低到高有:…1/K3、1/K2、1/ K、1、K、K 2、K 3、K 4…
如:K=4
312133=3×45+1×44+2×43+1×42+3×41+3×40
=3×1024+1×256+2×64+1×16+3×4+3×1
=3487
用20, 21, 22, 23,…,2n作单位,可以表示1到2n+1-1的所有自然数(n=1,2,3,…)。
用天平称物体,要使用到的砝码个数最少,能称同最多的不同的重量,选用砝码的方法如下:
(1)砝码和被物体各放在天平的一边,砝码的重量应该是二进制的单位:1,2,4,8,16,32,……。
(2)砝码和被称的物体,可以任意放在天平的两边,砝码的重量应该是三进制的单位:1,3,9,27,81, ……。
例152、计算
(1)23+32 (2)2×3+23
(3)26+43-23×24 (4)8×33-6×32例153、(1)把11011化为十进制数
(2)把1376化为二进制数
例154、把下列各数化为十进制数
(1)111111
(2)
(2)102102
(3)
(3)432
(5)
(4)217
(8)
例155、把10111101110
(2)
化为八进制数例156、计算下列各题
(1) 6534
(7)+4162
(7)
(2) 7642
(8)-4654
(8)
(3) 243
(5)×14
(5)
(4) 10111
(2)÷101
(2)
例157、有1克、2克、4克、8克、16克的砝码各一枚,问在天平上能称出多少种不同重量的物体?
例158、一些重量为1克~63克整克数的药粉,要在天平上核准重量,规定不同重量的砝码最多用1枚。
问最少应准备哪几种不同重量的砝码?。