函数项级数收敛性定义

合集下载

数学分析2课件:13-1函数项级数及其一致收敛性

数学分析2课件:13-1函数项级数及其一致收敛性

x(1,1) 1 x n 1
n1
而右端极限为,
故原级数在(-1,1)不一致收敛。
但限制x [a,a],a 1,则
sup
x(a,a )
|
sn( x)
s( x) |
sup
x(a,a )
| 1 xn 1 x
1 1
x
|
sup | xn | an , x(a,a) 1 x 1 a
[( xn ) 0,单调增] 1 x
故 un( x)在数集D上一致收敛。
n1
证毕。
注1 在这个定理的条件下,可得| un( x) | 也一致收敛。
n1
注2 不是每个收敛级数都有优级数。
例8
sin n
nx
p
,
cos n
nx
p
,(
p
1)在(,)一致收
敛。
优级数均为
1 np
.
(1)n sin nx的优级数为 np
1, np
一致收敛。
xn在[a,a](a 1)的优级数为 an,一致收敛。
an为绝对收敛级数,则 an sin nx, an cos nx
n1
n1
n1
在(,)一致收敛,且| an | 就是其优级数。
n1
全体收敛点的集合称为收敛域。
un( x) s( x)
n1
——和函数。
例5
xn 1 x x2 x3
n0
lim
n
sn( x)
lim
n
1 xn 1 x
1 , 1 x 发散,
| x | 1 | x | 1
xn在( 1,1)内收敛于s( x)
1
.
n0

(整理)函数项级数的一致收敛性.

(整理)函数项级数的一致收敛性.

第三节 函数项级数的一致收敛性本节将讨论函数项级数有关性质。

定义 1 设 )(1x u ,)(2x u ,……,)(x u n ,……,是集合E 上的函数列,我们称形为)(1x u +)(2x u +……+)(x u n +……为E 上的函数项级数,简记为∑∞=1)(n nx u。

其中)(x u n 称为第n 项.)(x u k +)(1x u k ++……+)(x u n +……也记为∑∞=kn n x u )(. 记号中n 可以用其它字母代之.同研究常数项级数一样,我们类似可以定义其收敛性。

定义 2 设∑∞=1)(n nx u是集合E 上的函数项级数,记∑==ni i n x u x S 1)()(=)(1x u +)(2x u +……+)(x u n ,它称为级数∑∞=1)(n nx u的部分和函数(严格地说是前n 项部分和函数). {})(x S n 称为∑∞=1)(n nx u的部分和函数列。

如果{})(x S n 在0x 点收敛,我们也说∑∞=1)(n nx u在0x 点收敛或称0x 为该级数的收敛点。

如果|)(|1∑∞=n nx u在0x 点收敛,我们称∑∞=1)(n n x u 在0x 点绝对收敛。

非常容易证明绝对收敛一定收敛。

{})(x S n 的收敛域也称为该级数的收敛域。

如果{})(x S n 在0x 点不收敛,我们说∑∞=1)(n nx u在0x 点发散。

如果{})(x S n 在D 上点态收敛于)(x S ,我们称∑∞=1)(n nx u在D 上点态收敛于)(x S . )(x S 称为该级数的的和函数。

)()()(x S x S x R n n -=称为该级数关于前n 项部分和的余项.{})(x R n 称为该级数的余项函数列.如果{})(x S n 在D 上一致收敛于)(x S ,我们称∑∞=1)(n nx u在D 上一致收敛于)(x S ,或∑∞=1)(n nx u在D 上一致收敛. 如果{})(x S n 在D 上内闭一致收敛于)(x S ,我们称∑∞=1)(n n x u 在D 上内闭一致收敛.用N -ε的进行叙述将是: 设∑∞=1)(n nx u是D 上函数项级数,)(x S 是D 上函数。

函数列及其一致收敛性

函数列及其一致收敛性

函数列 nx(1 x )n }在区间 0,1]非一致收敛. { [
函数列及其一致收敛性
2 sup | f n ( x ) f ( x ) | . 1 n x[0,1]
显然, sup | f n ( x ) f ( x ) |} 0. lim{
n x[0,1]
nx 函 数 列 { }在 区 间0, 一 致 收 敛 [ 1] . 1 n x
2){nx(1 x)n }
1 n0 n0 1 | f n0 ( x0 ) f ( x0 ) | [( ) ] 0 . 3 3 即函数列x n }在区间0,1)非一致收敛 { [ .
1
1
函数列 f n ( x ) 一致收敛于 f ( x ) 的 y
y f ( x)
几何意义:
0, N N , 对于序号大于N
成 立 , 解 得n
l n l n , 取N [ ] lnx lnx
函数列及其一致收敛性
§9.2 函数项级数
1 , 证 明 其 在0,1)收 敛. ( 例2 设f n ( x ) n x 1 证 :x (0,1), 有 lim 0, n n x
1 1 1 | f n ( x ) f ( x ) || 0| 0, 要使不等式 n x n x n
即 0, N N , n N , x I , 有 | f n ( x) f ( x) |
sup | f n ( x ) f ( x ) | .
xI
即lim{sup | f n ( x ) f ( x ) |} 0.
n xI
充分性 lim{sup | f n ( x ) f ( x ) |} 0.

函数项级数一致收敛性判别及应用

函数项级数一致收敛性判别及应用

函数项级数一致收敛性判别及应用函数项级数是由一系列函数的和组成的级数,通常用于描述函数的展开式或泰勒级数。

对于某些函数项级数,我们希望判断其在一定的条件下是否具有一致收敛性,这对于分析和解决问题具有很大的价值。

本文将介绍一些函数项级数一致收敛性的判别方法及其应用。

一、函数项级数收敛的定义设 $f_n$ 为定义在区间 $I$ 上的函数序列,如果存在函数 $f$ 使得$\lim_{n\to\infty}f_n(x)=f(x)$ 对于所有 $x\in I$ 成立,则称函数序列$\{f_n\}$ 在 $I$ 上逐点收敛于函数 $f$,并记为 $f_n\to f$($n\to\infty$)。

二、Weierstrass 判别法Weierstrass 判别法是判断函数项级数一致收敛性的重要方法之一。

它通常用于非负函数项级数。

证明如下:设 $s_N(x)=\sum_{n=1}^{N}f_n(x)$ 为前 $N$ 项和函数,$s(x)=\sum_{n=1}^{\infty}f_n(x)$ 为级数的和函数。

由于 $|f_n(x)|\leq M_n$,所以对于 $m>n$,有 $|s_m(x)-s_n(x)|=|\sum_{k=n+1}^{m}f_k(x)|\leq\sum_{k=n+1}^{m}|f_k(x)|\leq \sum_{k=n+1}^{m}M_k$。

三、Abel 判别法1. 证明 Riemann 积分的线性性如果函数 $f(x)$ 和 $g(x)$ 在区间 $[a,b]$ 上 Riemann 可积,则它们的线性组合$\alpha f(x)+\beta g(x)$ 也在 $[a,b]$ 上 Riemann 可积,并且$$\int_a^b(\alpha f(x)+\beta g(x))dx=\alpha \int_a^bf(x)dx+\beta\int_a^bg(x)dx$$如果 $f(x)$ 和 $g(x)$ 在 $[a,b]$ 上一致连续,则它们的线性组合也在$[a,b]$ 上一致连续。

函数列及其一致收敛性

函数列及其一致收敛性

对每一个x I, 0,N N ,n N , 有 | fn ( x) f ( x) | .
例1 设fn ( x) xn , 证明其在(0,1)收敛.
证:x (0,1),有 lim xn 0, n 0,要使不等式
| fn ( x) f ( x) || xn 0 | xn
成立, 解得n ln , 取N [ ln ]
lim{sup |
n xI
fn(x)
f
( x) |} 0.
函数列及其一致收敛性
§9.2 函数项级数
证:必要性 函数列{ fn ( x)}在区间I一致收敛于极限函数f ( x)
即 0, N N ,n N ,x I , 有 | fn ( x) f ( x) |
sup | fn( x) f ( x) | .
的所有曲线 y fn( x) (n N ),
都落在曲线 y f ( x) 与
y f (x) 所夹的带状区域内. O
y f (x) y f (x)
a
y f (x) y fn(x)
bx
函数列及其一致收敛性
§9.2 函数项级数
定理1 (函数列的柯西一致收敛准则) 函数列{ fn( x)}
2) 0
1 3
0, N
N , n0
N , x0
(
1
)
1 n0
3
[0,1), 有
|
fn0 ( x0 )
f
(
x0
)
|
[(
1 3
)
1 n0
]n0
1 3
0.
即函数列{ xn }在区间[0,1)非一致收敛.
函数列 fn( x) 一致收敛于 f ( x) 的 y

函数项级数收敛性

函数项级数收敛性

函数项级数收敛性函数项级数是指由函数项按照一定规则排列组成的级数。

在研究级数的收敛性时,我们通常关注的是序列的部分和序列,即部分和序列的极限是否存在。

在本文中,我们将介绍函数项级数的收敛性及其相关概念。

1. 函数项级数的定义考虑一个函数项级数$\displaystyle \sum _{n=1}^{\infty } a_{n} ( x)$,其中$\displaystyle a_{n} ( x)$为关于变量$\displaystyle x$的函数。

对于任意固定的$\displaystyle x$,元素$\displaystyle a_{n} ( x)$称为级数的通项。

部分和序列$\displaystyle S_{n} ( x)$定义为$\displaystyle S_{n} ( x) =\sum _{k=1}^{n} a_{k} ( x)$。

2. 函数项级数的收敛性函数项级数的收敛性与序列的收敛性密切相关。

函数项级数$\displaystyle \sum _{n=1}^{\infty } a_{n} ( x)$在某一点$\displaystylex$收敛,即当$\displaystyle n$趋于无穷时,部分和序列$\displaystyleS_{n} ( x)$的极限存在,记为$\displaystyle \sum _{n=1}^{\infty } a_{n} ( x) =S( x)$。

如果对于所有$\displaystyle x$都有$\displaystyle S( x) \neq\infty ,S( x) \neq -\infty$,则称级数在$\displaystyle x$上绝对收敛。

3. 收敛性判定准则对于函数项级数的收敛性判定,有以下几个准则:3.1 Cauchy准则函数项级数$\displaystyle \sum _{n=1}^{\infty } a_{n} ( x)$在某一点$\displaystyle x$处收敛的充分必要条件是,对于任意正数$\displaystyle \varepsilon$,存在一个正整数$\displaystyle N$,使得当$\displaystyle m,n>N$时,$\displaystyle \left| \sum _{k=n}^{n+m} a_{k} ( x)\right|<\varepsilon$。

函数的级数和收敛性

函数的级数和收敛性

函数的级数和收敛性函数的级数是数学中的重要概念之一,它在分析学中具有广泛的应用。

级数是由一系列函数项按照一定的规律相加而得到的,而级数的收敛性则是指级数是否能够趋向于一个有限的值。

在本文中,我们将探讨函数的级数以及它的收敛性。

一、级数的定义函数的级数可以表示为:S = f(1) + f(2) + f(3) + ...其中,f(n)是一个函数项,n是一个自然数。

二、级数的收敛性级数的收敛性与函数项的和是否有限有关。

如果函数项的和有限,那么级数是收敛的;如果函数项的和是无限的,那么级数是发散的。

三、级数的收敛判别法有多种方法可以判断一个级数的收敛性,下面介绍其中几种常见的方法。

1. 比较判别法比较判别法是通过将给定级数与一个已知的级数进行比较来判断级数的收敛性。

如果已知级数收敛且比较级数的函数项的绝对值小于等于已知级数的函数项的绝对值,那么该级数也是收敛的。

2. 比值判别法比值判别法使用级数的函数项的绝对值之间的比值来判断级数的收敛性。

如果函数项的绝对值之间的比值随着n的增大而趋于0,那么该级数是收敛的。

3. 根值判别法根值判别法使用级数的函数项的绝对值的n次方根来判断级数的收敛性。

如果函数项的绝对值的n次方根随着n的增大而趋于0,那么该级数是收敛的。

四、级数的应用级数在数学中具有广泛的应用,其中一些常见的应用包括:1. 泰勒级数泰勒级数是一种将一个函数表示为无限项的级数的方法。

通过泰勒级数,我们可以将复杂的函数表示为简单的级数,从而更容易进行计算和近似。

2. 无穷级数无穷级数是一个有无限个项的级数。

无穷级数的研究对于了解数列和函数的性质以及数学分析的发展具有重要意义。

3. 特殊函数许多特殊函数,如正弦函数、余弦函数和指数函数,都可以通过级数展开来表示。

这些特殊函数在数学和物理学中广泛应用。

结论函数的级数和收敛性是数学中重要的概念,对于数学分析和应用领域具有重要作用。

通过对级数的研究,我们可以更好地理解各种函数的性质和行为,为数学和科学领域的进一步发展提供基础。

10.1 函数项级数

10.1 函数项级数

(2)有限个可导函数的和仍是可导函数,
且和函数的导数等于导函数的和; (3)有限个可积函数的和仍是可积函数, 且和函数的积分等于积分函数的和;
问题
无限个函数的和(函数项级数)是否具有这些性 质呢?
再考察例1:
研究级数 u n ( x ) x ( x 2 x ) ( x 3 x 2 ) ( x n x n 1 )

x a
S ( t )dt
x a
x un t dt un ( t )dt a n 1 n 1
定理5(和函数的可导性)
设un C 1 ( I )( n N ), 若级数 un 在I上处处
n 1
收敛于函数S : I R , u 在I上一致收敛于 n
当 z 1 时, 加绝对值后的级数收敛 原级数收敛 当 z 1 时, 加绝对值后的级数发散

用的比值法
原级数发散
1 当 z 1 时, 取 模 后 的 级 数 2 收 敛 原 级 数 收 敛 n n 1
收敛域为z 1
1 ( 2) (cos x ) n n 1 3 4 n
函数项级数
一、函数项级数基本概念
定义1 设un ( z )是定义在区域 上的复变函数列, D
称表达式 : u1 u2 un 或
u
n 1

n
为区域D上的复函数项级数 简称 , 函数项级数,un ( z )称为它的通项. 前 n 项之和S n ( z ) uk ( z )
设un C ( I )( n N ), 若函数项级数 un 在
n 1

I上一致收敛于 : I R , 则和函数S C ( I ). S

函数项级数的收敛域..

函数项级数的收敛域..


n 1
定义5 若函数项级数 un ( x )在I收敛,
n 1

Rn ( x ) S ( x ) Sn ( x ) un1 ( x ) un2 ( x )
函数项级数的收敛域
余和
§9.2 函数项级数
例1、讨论函数项级数 x n的收敛域.
n0
n 解:当 | x | 1时, x 发散; n 0 n 当 | x | 1时, x 收敛. n 0

cos nx 函数项级数 的收敛域为R {2k | k Z }. n n0

函数项级数的收敛域
§9.2 函数项级数
三、函数项级数的一致收敛概念
函数项级数 un ( x )在区间I 一致收敛于和函数S ( x )
n 1
0,N N , n N , x I,有
x n1
1 xn 1 x
1)x [1 ,1 ], 0, 要使不等式
1 xn 1 xn | x |n (1 )n | Sn ( x ) S ( x ) || | | | 1 x 1 x 1 x 1 x

成立. 解得n
在收敛,为函数项级数的收敛点; 则为函数项级数的发散点; 若数项级数 un ( )发散,
定义3
使函数项级数 un ( x )收敛的全体收敛点的集合,
n 1

n 1

称为收敛域; 当收敛域是区间时,称为收敛区间.
函数项级数的收敛域
§9.2 函数项级数
定义4 若函数项级数 un ( x )在I收敛,
| Sn ( x) S( x) || Rn ( x) | .
函数项级数 un ( x )在区间I 非一致收敛于和函数S ( x )

函数项级数一致收敛性判别及应用

函数项级数一致收敛性判别及应用

函数项级数一致收敛性判别及应用【摘要】本文主要讨论了函数项级数的一致收敛性判别及其应用。

首先介绍了一致收敛性判别定理,然后探讨了函数项级数在实际问题中的应用。

接着列举了几个常见的一致收敛性判别法则,帮助读者更好地理解一致收敛性。

通过应用举例,展示了函数项级数一致收敛性在数学和工程领域的实际应用。

最后讨论了函数项级数一致收敛性的收敛区域,为读者进一步深入研究提供了指导。

通过本文的学习,读者可以更好地理解函数项级数的一致收敛性及其实际应用,为相关领域的研究和应用提供了理论支持。

【关键词】函数项级数、一致收敛性、判别定理、应用、常见法则、收敛区域、举例、总结1. 引言1.1 引言函数项级数一致收敛性是函数分析中一个重要的概念,它涉及到函数序列在整个定义域上的一致收敛性问题。

在实际应用中,我们常常需要判断函数项级数是否一致收敛,以及在一致收敛的条件下如何进行求和。

掌握函数项级数一致收敛性的判别方法和应用是非常必要的。

在本文中,我们将深入探讨函数项级数的一致收敛性判别定理以及其应用。

我们将介绍一致收敛性的判别定理,包括一些常见的判别法则,以及如何判断函数项级数在整个定义域上的一致收敛性。

接着,我们将讨论函数项级数一致收敛性在实际问题中的应用,通过具体的示例来说明如何利用一致收敛性来求出函数项级数的和函数。

我们将讨论函数项级数一致收敛性的收敛区域,即函数序列的收敛性对应的区域范围。

通过本文的学习,读者将能够更加深入地理解函数项级数的一致收敛性及其在实际问题中的应用。

希望本文能够帮助读者更好地理解函数分析中关于一致收敛性的重要概念,进而提高对函数序列和级数问题的认识和应用能力。

2. 正文2.1 一致收敛性判别定理一致收敛性是函数项级数收敛性中的重要性质,它在分析数学中有着广泛的应用。

一致收敛性判别定理是判断函数项级数是否一致收敛的重要工具。

在实际问题中,我们经常需要判断一个函数项级数是否一致收敛,以确保我们得到的结果是可靠的。

函数项级数的一致收敛性及基本性质

函数项级数的一致收敛性及基本性质


rn ( x ) < ε,
根据定义, 根据定义, 所给级数在区间[ 0,+∞ ]上一致收敛于 s( x ) ≡ 0.
例3
研究例1中的级数 研究例 中的级数
x + ( x 2 x ) + ( x 3 x 2 ) + + ( x n x n 1 ) +
在区间( 内的一致收敛性. 在区间 0 , 1]内的一致收敛性 内的一致收敛性
上一致收敛. 所以级数∑ ∫x ui ( x )dx 在[ a, b ]上一致收敛 上一致收敛
x i =1
0

在区间[ 定理3 定理3 如果级数 ∑ un ( x ) 在区间 [ a, b ] 上收敛
n =1

于 和 s ( x ) , 它 的 各 项 un ( x ) 都 具 有 连 续 导 数
n =1 ∞ ∞
上都连续, 在区间[ [ a, b ] 上都连续, 且 ∑ un ( x ) 在区间[ a, b ] 上一
n =1
上也连续. 致收敛于 s( x ) , 则 s( x ) 在[ a, b ] 上也连续.

上任意点. 设 x 0 , x 为[a, b]上任意点.由
s( x ) = sn ( x ) + rn ( x ), s( x 0 ) = sn ( x0 ) + rn ( x 0 )
0
0

x
x
x0
又由级数的一致收敛性,对任 给正数 ε 必 有
N = N (ε ) 使得当 n > N 时,对 [ a, b ]上的一切 x ,都 对 上的一切 都 ε 有 rn ( x ) < . ba
于是, 于是,当 n > N 时有

函数项级数的一致收敛性及一致收敛级数的基本性质

函数项级数的一致收敛性及一致收敛级数的基本性质

y S(x)
y Sn (x)
I
x
定理(柯西收敛原理)

un ( x)在I上一致收敛于S( x) 0, N ( ) N ,
n1
当n N ( )时, x I ,p N , un1( x) un p( x) .

推论 若 un ( x)在I上一致收敛,则 {un( x)}在I上一致 n1
即 0, N ( x0 , ) 0,当n N ( x0 , )时, | fn ( x0 ) f ( x0 ) |
定义 设 fn(x)在点集I上逐点收敛于f (x),且对
任意 0, 存在与x无关N ( ), 使得当n N时, 对一
切x I , 都有 fn(x) f (x) , 则称 fn(x)在I上一
>
N
时有
rn (x) (0 x )
这说明级数在 [0, +∞) 上一致收敛于 S(x) 1 . x 1
余项 rn (x) 一致收敛于 0
几何解释 : (如图)
0, N N , 当n > N 时, S(x) Sn (x) 表示 曲线 y Sn (x) 总位于曲线 y S(x) 与y S(x)
之间.
y S(x)
y S(x)


例.
求证fn ( x)

1
x n2
x2
在(, )上一致收敛.
证明: x (, ),
lim
n
fn ( x)

x
lim
n
1

n2
x
2

0, 逐点收敛于f ( x)

函数项级数一致收敛性

函数项级数一致收敛性

函数项级数一致收敛性有关问题的讨论函数项级数是微积分的主要内容之一,是数学分析研究的重点.用函数项级数(或函数列)来表示(或定义)一个函数,判断其一致收敛性是关键.从函数项级数一致收敛的定义及性质出发,下面主要讨论函数项级数(或函数列)一致收敛性的判别及其应用.1 函数项级数一致收敛的相关定义定义1.1[]1(31)P 设函数列{})(x S n 是函数项级数∑∞=1)(n nx u的部分和函数列,若,0>∀ε 存在正整数)(εN ,当n >)(εN 时,不等式∑=-nk kx S x u1)()(=)()(x S x S n -<ε对I 上一切x 都成立,则称∑∞=1)(n nx u在I 上一致收敛于()S x .一致收敛的定义还可以用下面的方式来表达: 定义1.1[]2(67)'P 函数列{})(x S n (或∑∞=1)(n nx u)在I 上一致收敛于()S x⇔∞→n lim Ix ∈sup )(x R n =0)()(sup lim =-∈∞→x S x S n Ix n ,其中)(x R n =()()n S x S x -称为函数项级数∑∞=1)(n nx u的余项.定义1.2 函数列{})(x S n 在I 上非一致收敛于()S x⇔00>∃ε,0>∀N ,N n >∃0,I x ∈∃0,使得)()(000x S x S n -≥0ε.定义 1.3 函数列{})(x S n 在区间()b a ,内的任一闭区间上一致收敛时,称{})(x S n 在区间()b a ,内闭一致收敛.2 一致收敛函数项级数的性质[]3(417430)P -定理2.1(逐项取极限) 设级数∑∞=1)(n nx u在0x 的某个空心邻域0U (0x )={}δ<-<||0:0x x x 内一致收敛,0lim x x →()n n u x c =.则∑∞=1n nc收敛,且limx x →∑∞=1)(n nx u=∑∞=→1)(lim 0n n x x x u =∑∞=1n n c . (1)定理2.2(连续性) 若)(x u n 在区间I 上连续(1,2,n =⋅⋅⋅),∑∞=1)(n nx u在I 上一致收敛,则()S x≡∑∞=1)(n n x u 在I 上连续.定理2.2' 若)(x u n 在(,)a b 内连续(1,2,n =⋅⋅⋅),∑∞=1)(n nx u在(,)a b 内闭一致收敛,则()S x ≡∑∞=1)(n nx u在(,)a b 内连续.定理2.3(逐项求导) 若级数∑∞=1)(n nx u区间I 上满足以下三条:(1)级数∑∞=1)(n nx u在I 上收敛(或验证在I 上至少有一个收敛点);(2))(x u n 在I 上有连续导数(1,2,n =⋅⋅⋅); (3)1()n n u x ∞='∑在I 上一致收敛(或在I 的任一内闭区间上一致收敛),则∑∞=1)(n nx u区间I 上可微,且可逐项求导,即在I 上有d dx∑∞=1)(n n x u =1()n n d u x dx ∞=⎛⎫⎪⎝⎭∑ (2) 定理2.4(逐项求积分) 若级数∑∞=1)(n nx u的各项连续,并且此级数在[,]a b 上一致收敛,则有11()()b bn n aan n u x dx u x dx ∞∞===∑∑⎰⎰(3)一般地,若当∞→n 时,()0bn aR x dx →⎰,则上式为真.3 一致收敛性的判断判别一致收敛的方法有多种,下面将分别进行介绍和讨论.3.1 利用一致收敛的定义通常称定义1.1为“N -ε法”,定义1.2为“确界法”,从中还可以得到一种更简便的方法“放大法”:若,0n n N α+∀∈∃>,使得)(,)()(I x x S x S n n ∈∀≤-α,且n →∞时,0n α→,则n →∞时,()n S x 在I 上一致收敛于()S x .例1 讨论级数2321()()()n n u x x xx x x ∞==+-+-+⋅⋅⋅∑在下列区间的一致收敛性.(1)210≤≤x , (2)10≤≤x . 解 令nnk k n x x u S ==∑=1)(,则001;()lim ()1 1.nn x S x S x x →∞≤<⎧==⎨=⎩ (1)当210≤≤x 时,()0S x =. ,0>∀ε若)()(x S x S n -=ε<⎪⎭⎫⎝⎛≤nn x 21,只要2ln 1lnε>n ,取1ln[]ln 2N ε=,则当N n >时,∀]21,0[∈x 均有)()(x S x S n -=0)(-x S n <ε. 因此∑∞=1)(n nx u 在]21,0[上一致收敛于零. (2)方法1 取0ε,使2100<<ε,不论n 多大,只要取nx 21=,就有)21()21(n n n S S -=021ε>.因此,∑∞=1)(n nx u在[0,1]上收敛而非一致收敛.方法2 01;()()()11.nn n x x R x S x S x x ⎧≤<=-=⎨=⎩故01sup ()1n x R x ≤≤≡.因此,∑∞=1)(n nx u在[0,1]上非一致收敛.注意在(1)中找N 的方法与技巧,对()()n S x S x -适当放大时,应使N 与x 无关,只与ε有关. 例2 设101()()n n i if x f x nn -==+∑,1,2,n =⋅⋅⋅,其中()f x 为连续函数,证明序列{}()n f x 在任何有限闭区间[,]a b 上一致收敛.证 记{}()n f x 的极限函数为()F x ,则111101()lim ()()()()(01;0,1,,1).i n n x x i n i n xn x i i n i i F x f x f t dt f t dt f x nn n i n θθ+--++→∞+======++<<=⋅⋅⋅-∑∑⎰⎰由于()f x 在[,1]a b +上连续,故在[,1]a b +上一致连续,即,0>∀ε()0δδε∃=>,使对于',''[,1]x x a b ∀∈+,只要当'''x x δ-<时,就有(')('')f x f x ε-<.取1[]1N δ=+,则当,n N a x b >≤≤时,有()11()()[,1][,1]0,1,,1i i i i i i x x x a b x a b i n n n n n N n n nθθδ++-+<<<+∈+++∈+=⋅⋅⋅-且,.于是110011()()()().n n i n i i i i F x f x f x f x n n n n nθεε--==-≤++-+<=∑∑因此{}()n f x 在[,]a b 上一致收敛于()f x .例3 试证:221(1)nn n n x∞=-+∑在(,)-∞+∞内一致收敛. 证 易知(,)x ∀∈-∞+∞,当n 充分大时,22n n x ⎧⎫⎨⎬+⎩⎭单调减且趋于0.故该级数为莱布尼茨型级数.则有2211()0(1)1n n R x n x n +≤≤→+++ ()n →+∞所以级数 221(1)nn n n x ∞=-+∑在(,)-∞+∞内一致收敛. 3.2 柯西准则判断一致收敛性[]5(31)P定理3.2(一致收敛的柯西准则) 函数项级数1()n n u x ∞=∑ (部分和函数列()nSx )在I 上一致收敛的充分必要条件为:,0>∀ε总存在正整数N =)(εN ,使N n >时,不等式12()()()n n n p u x u x u x +++++⋅⋅⋅+<ε )()((x S x S n p n -+<)ε对任意的正整数p 和I 上任意的x 都成立.当1=p 时得到函数项级数一致收敛的必要条件.推论 函数项级数1()n n u x ∞=∑在数集I 上一致收敛⇒函数列{})(x un在I 上一致收敛于零,即,0>∀ε+∈∃N N ,当n N >时,I x ∈∀都有)(x u n <ε.例4 设{}()n u x 为[,]a b 上的可导函数列,且在[,]a b 上1()nk k u x C ='≤∑,C 是不依赖与x 和n的正数.证明:若1()n n u x ∞=∑在[,]a b 上收敛,则必为一致收敛.证 0ε∀>,取m 充分大,将[,]a b m 等分,使得4b a m Cε-<.顺次以12,,,m x x x ⋅⋅⋅表示各小区间段的中点.由已知得,∑∞=1)(n i nx u收敛⇒()0,,,i i i i N N x n N εε∀>∃=>时,有1()2n pk i k n u x ε+=+<∑,()p N +∀∈.令12max{,,,}m N N N N =⋅⋅⋅,则[,]x a b ∀∈(不妨设x 位于第i 个小区间段,{}1,2,,i m ∈⋅⋅⋅),于是11111()()(())()()iin p n pn p n pn pxxkkikkikx x k n k n k n k n k n u x u x u t dt u x u t dt +++++=+=+=+=+=+''=+≤+∑∑∑∑∑⎰⎰2.222i C x x εεεε<+-≤+=原命题得证.注意:在证明过程中对1()n pkk n u x +=+∑进行变形时,有一个重要方法可利用—阿贝尔变换.3.3 判别函数项级数一致收敛性的常用方法判别函数项级数一致收敛性除根据定义和柯西准则外,还可以根据级数各项的特性来判别,常用以下判别法.3.3.1 Weierstrass 判别法 定理3.3.1 (Weierstrass 判别法)[]1(32)P 设函数项级数1()n n u x ∞=∑定义在数集I 上,1nn M∞=∑为收敛的正项级数,若对一切x I ∈,有(),n n u x M ≤1,2,n =⋅⋅⋅,则函数项级数1()n n u x ∞=∑在I 上一致收敛.其中1nn M∞=∑称为1()n n u x ∞=∑的优级数,因此该定理也称为优级数判别法.求优级数的方法有多种,主要有以下方法:(1)观察法; 例5 证明:21cos n nxn ∞=∑在x <+∞时一致收敛. 提示:22cos 1nx n n≤可证. (2)找出()n u x 的最大值法; 例6 证明21(1)nn xx ∞=-∑在[0,1]上一致收敛.提示:求出通项()n u x 的最大值点(求导法),2nx n =+时. (3)利用已知不等式法; 例7 讨论5211n nxn x∞=+∑在区间x <+∞上的一致收敛性. 解 当x <+∞时,552212n x n x +≥,于是,3522112nx n x n ≤+.又因31212n n ∞=∑收敛,故级数 5211n nxn x∞=+∑在(,)-∞+∞上一致收敛. (4)利用某些已知公式进行变形,等等. 例8 证明21nxn x e∞-=∑在(0,)+∞内一致收敛.证 利用泰勒公式,2212nxn x e nx =+++⋅⋅⋅ ()x R ∈.从而 222222222122nxx x x en x n x nnx -=<=+++⋅⋅⋅(0)x >. 而级数212n n∞=∑一致收敛,因此由优级数判别法可知原级数在(0,)+∞内一致收敛.3.3.2 Abel 判别法和Dirichlet 判别法对级数1()nn u x ∞=∑,若()n u x =()()n na xb x .定理3.3.2 (Abel 判别法)[]1(33)P 设(1)()1n n a x ∞=∑在区间I 上一致收敛;(2)对于每一个x I ∈,{}()n b x 是单调的;(3){}()n b x 在I 上一致有界,即对一切x I ∈和n N +∈,存在正数M ,使得()n b x M ≤,则级数1()n n u x ∞=∑在I 上一致收敛.定理3.3.3 (Dirichlet 判别法)[]1(34)P 设(1)()1n n a x ∞=∑的部分和函数列1()()nnk k Sx a x ==∑(1,2,)n =⋅⋅⋅在I 上一致有界;(2)对于每一个x I ∈,{}()n b x 是单调的; (3)在I 上,()0n b x →→,()n →∞,则级数1()nn ux ∞=∑在I 上一致收敛.例9讨论1n ∞=在区间0x <<+∞上的一致收敛性.解(1)n -=.由于1(1)n n ∞=-∑收敛,且与x 无关,故它对x 而言是一对于每一个(0,)x ∈+∞1≤.因此由Abel 判别法可知原级数在(0,)+∞上一致收敛.例10讨论(1)211)n n n -∞=10x ≤上的一致收敛性.解(1)21(1)2k k nk -=-≤∑,记()n b x =.>,故()nb x≤→(10)x≤,故()nb x单调一致地趋于零.因此,由Dirichlet判别法知,级数在[10,10]-上一致收敛.例11 证明21(1)sin1nnnxx nxx∞=--∑在1(,1)2内一致收敛.证原级数=11(1)sin11nn nnx xnxx x∞=-⋅+-∑.其中11n x+对任意1(,1)2x∈关于n单调,且一致有界:111n x≤+.下面考察级数1(1)sin1nnnx xnxx∞=--∑.因为111sin2sin sin22sin2n nk kxkx kxx===∑∑1111[cos()cos()]222sin2nkk x k xx==--+∑1cos cos()112212sin sin sin224xx nxx-+=≤≤1((,1),1,2,)2x n∈=⋅⋅⋅所以1sinnkkx=∑在1(,1)2内一致有界.而21(1)1,(,1)112n nn nx x xxx x x x--=∈-+++⋅⋅⋅+关于n单减,又2111001n nn nx xx x x nx n--≤≤<→+++⋅⋅⋅+1(,1)2x∈.所以(1)1nnx xx--在1(,1)2上单减一致收敛于0.由Dirichlet判别法可知,级数1(1)sin1nnnx xnxx∞=--∑在1(,1)2内一致收敛.则由Abel判别法可知原级数在1(,1)2上一致收敛.3.3.3 Dini定理定理3.3.4(Dini定理)[]3(407)P设()0nu x≥,在[,]a b上连续,1,2,n=⋅⋅⋅.又1()nnu x∞=∑在[,]a b上收敛于连续函数()f x ,则1()n n u x ∞=∑在[,]a b 上一致收敛于()f x .证 (反证法) 若1()n n u x ∞=∑在[,]a b 上非一致收敛,则00ε∃>,使得0,,[,]N N n N x a b +∀∈∃>∃∈,有00()n R x ε≥.取1N =,知11n ∃>,1[,]x a b ∃∈使110()n R x ε≥,令1N n =知21n n ∃>,2[,]x a b ∃∈ ,使220()n R x ε≥,如此下去,我们得到{}n 的子序列12k n n n <<⋅⋅⋅<<⋅⋅⋅使得0()k n k R x ε≥(1,2,)k =⋅⋅⋅ (1) 利用致密性原理,在有界数列{}k x 里,存在收敛子列{}0[,]j k x x a b →∈ ()j →+∞,因()n R x 单减(关于n ),所以m N +∀∈,当jk n m >时,有0()()j k j jm k n k R x R x ε≥≥ (因式(1)) 由于()()()m m R x f x S x ≡-连续,所以j →+∞时,对0()j m k R x ε≥取极限,知 00()m R x ε≥, ()m N +∀∈, 与1()n n u x ∞=∑在[,]a b 上收敛矛盾.证毕.注意:Dini 定理在和函数便于求得的情况下应用比较方便.例12 证明函数列1(),(1,2,)(1)n x nnf x n xe n==⋅⋅⋅++在区间[0,1]上一致收敛.证 当n →∞时,(1)n x x e n +→,且(1)(1,2,),n x xn e n+=⋅⋅⋅都在[0,1]上连续,故由Dini 定理可知函数列(1)n x n ⎧⎫+⎨⎬⎩⎭在[0,1]上一致收敛于xe .由于(1)1111e (1)(1)(1)x n x nx x xn x n n n xe e n x x e e e n n ++---=+⎡⎤+++++⎢⎥⎣⎦(1)1xn x n x e e n ≤+-+- 1(1)1xnn x e e n =-++-在[0,1]上一致收敛于0()n →∞.又11xe+,11nx nx e n ⎛⎫++ ⎪⎝⎭(1,2)n =⋅⋅⋅在[0,1]上连续,因此,在[0,1]上,当n →∞时,原函数列一致收敛于11xe+. 3.4 一致有界与等度连续 定义3.4.1{}()n f x 在I 上一致有界,是指:,0>∃M 对一切I x ∈,都有()(1,2,n f x M n ≤=)⋅⋅⋅成立.例13[]3(410)P 设{}()n f x 在区间[0,1]上一致有界,试证存在一个子序列,在[0,1]的一切有理点收敛.证 我们知道[0,1]的全体有理点可以排成一个数列{}n a .因{}()n f x 一致有界,故{}1()n f a 是有界数列.由致密性原理知其中存在收敛的子序列.为了便于叙述,记此收敛的子序列为{}1,1()n f a ,于是{}{}1,()()n n f x f x ⊂在1x a =处收敛.同理,因{}1,2()nfa 是有界数列,又必存在收敛子列{}2,2()n f a .即{}{}2,1,()()n n f x f x ⊂,{}2,()n f x 在12,x a a =处都收敛.如此不断地进行下去,不断地在子序列里取子序列,使{},()k n f x 在12,,,k x a a a =⋅⋅⋅处收敛,于是得到一串子序列:1,11,21,31,2,12,22,32,3,13,23,33,,1,2,3,(),(),(),,(),(),(),(),,(),(),(),(),,(),(),(),(),,(),n n n n n n n n f x f x f x f x f x f x f x f x f x f x f x f x f x f x f x f x ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅最后能用上表对角线元素组成一个子序列{},()n n f x ,即1,12,23,3(),(),(),f x f x f x ,⋅⋅⋅,(),n n f x ⋅⋅⋅易知此序列在点(1,2,)i a i =⋅⋅⋅上收敛.事实上,{}(1,2,)i a i ∀∈⋅⋅⋅,已知上面的子序列中第i 个子序列在i a 处收敛,而,1,1(),()i i i i f x f x ++⋅⋅⋅是第i 个子序列的子序列,故{},()n n f x 在i a 点上收敛.由此知{},()n n f x 在{}12,,,,n a a a ⋅⋅⋅⋅⋅⋅上收敛.定义 3.4.2 设Ω是区间I 上定义的函数族,Ω上的函数在I 上等度连续,是指:0ε∀>,0δ∃>,当12x x I ∈,且12x x δ<-时有12()()()f x f x f ε-<∀∈Ω.特别,I 上定义的函数序列{}()n f x ,在I 上等度连续,是指:0,0εδ∀>∃>,当12x x I∈,且12x x δ<-时有12()()()n n f x f x n N ε+-<∀∈.例14 设函数序列()n f x 在区间[,]a b 上等度连续的,且有()0,1,2,n f x n ≥=⋅⋅⋅.试证:若在[,]a b 上有()()n f x f x →()n →∞,则在[,]a b 上有()()n f x f x →→()n →∞.证 因{}n f 等度连续,0,0εδ∀>∃>,当12x x I ∈,且12x x δ<-时有12()()2n n f x f x ε-<,令∞→n 取极限可得εε<≤-2)()(21x f x f .此即表明)(x f 在I 上一致连续,从而()f x 连续.由Dini 定理知,在[,]a b 上,()()n f x f x →→()n →∞.4 函数项级数非一致收敛的判断这里也给出几种巧证函数项级数非一致收敛的方法,这些方法为一些教科书所忽视,但对判别函数项级数非一致收敛却十分有用.4.1 利用定义法判别(见例1用“N ε-法”) 4.2 利用柯西准则法判别由函数项级数一致收敛的柯西准则,可以得到以下命题. 命题 4.2.1 ()1n n u x ∞=∑在区间I 上非一致收敛⇔00,,,,,N N n N x I p N ε++∃>∀∈∃>∃∈∃∈有1().n pkk n u x ε+=+≥∑(证明略)特别,当n →∞时,若通项n u 在区间I 上非一致收敛于0,则函数项级数()nu x ∑在区间I 上非一致收敛.根据函数列一致收敛的概念,又有以下命题.命题 4.2.2 若函数项级数1()nn ux ∞=∑在区间I 上逐点收敛,且在区间I 中存在一点列{}n x ,使lim ()0n n n u x →∞≠,则函数项级数1()n n u x ∞=∑区间I 上非一致收敛.(证明略) 例15 证明级数1sin n nxn ∞=∑在0x =的邻域内非一致收敛.分析 要证片段01sin n pk n kx k ε+=+≥∑(某个事先给定的正数).取p n =,又在[,]42ππ上恒有sin sin 4x π≥,则只要使[,]42kx ππ∈,就有2211sin 11sin sin 424nn k n k n kx k k ππ=+=+≥⋅≥∑∑. 为此,取4n x x nπ==,因为12n k n +≤≤,所以(1)244442n k n nnnπππππ<+≤⋅≤⋅=,即[,]442k n πππ⋅∈.则n N +∀∈,有2220111sin()sinsin 144sin 24nnnnk n k n k n k kx n k kk πππε=+=+=+⋅=≥>==∑∑∑因此可取0ε=(证明略) 例16 证明:11(1)x n n x e n n ∞=⎡⎤-+⎢⎥⎣⎦∑在(0,)+∞上非一致收敛. 证 因为n N +∀∈,当x →+∞时,易知1(1)x n x e n n ⎡⎤-+⎢⎥⎣⎦→∞. 所以对任意(0,)x ∈+∞,当n →∞时,通项1(1)x n x e n n ⎡⎤-+⎢⎥⎣⎦非一致收敛于0. 所以原级数在(0,)+∞非一致收敛.例17 讨论级数112sin3n n n x∞=∑在(0,)+∞上的一致收敛性. 解 显然原级数在(0,)+∞上逐点收敛,取2(0,)3nn n x =∈+∞,1,2,n =⋅⋅⋅,有1()2sin1()2n n n nu x n =→→∞,故原级数在(0,)+∞上非一致收敛. 4.3 利用一致收敛函数列的性质判别[8](3637)P -一致收敛函数列的性质:设各项连续的函数列{})(x S n 在区间上一致收敛于)(x S ,则对任何以)(00I x x ∈为极限的数列{}n x ,都有 )()(lim 0x S x S n n =∞→.由上性质可得如下命题: 命题4.3.1 若连续的函数项级数1()n n u x ∞=∑(记1()()nnk k Sx u x ==∑)在区间I 上逐点收敛于)(x S ,且{}0,:n x I x I ∃∈∃⊂ 0lim n n x x →∞=有0lim ()()n n n S x S x →∞≠,则函数项级数1()nn ux ∞=∑在区间I 上非一致收敛于)(x S .(证明略)例18 讨论函数项级数1sin ([0,1))pn nxp n ∞=∈∑在[0,]π上的一致收敛性. 解 由Dirichlet 判别法易知该级数在区间[0,]π上逐点收敛,设其和函数为()S x ,则(0)0S =.取1[0,](1,2,)n x n nπ=∈=⋅⋅⋅,则0()n x n →→∞,而11111sinsin sin 1()sin n nn n nknp k k k k k k k kk n n n u x k k n n n ======≥≥=∑∑∑∑∑所以 10111lim ()lim sin sin 0(0)nn k n n n k k ku x xdx S n n →∞→∞==≥=>=∑∑⎰.故原级数在[0,]π上非一致收敛.4.4 利用和函数的连续性质及端点发散性判别 命题4.4.1 若连续函数项级数1()nn ux ∞=∑在区间I 上逐点收敛于和函数)(x S ,且0x I ∃∈,)(x S 在0x 处不连续,则函数项级数1()nn ux ∞=∑在区间I 上非一致收敛于)(x S .(证明略)命题4.4.2[9](63)P 若函数项级数1()nn ux ∞=∑在区间(,]a b (或(,)a +∞)上逐点收敛,但在左端点x a =处发散,n N +∀∈,()n u x 在左端点x a =(右)连续,则函数项级数1()n n u x ∞=∑在区间(,]a b(或(,)a +∞)上非一致收敛.证 用反证法. 假设函数项级数1()nn ux ∞=∑在区间(,]a b (或(,)a +∞)上一致收敛.即0,,,(,]N N n N x a b ε+∀>∃∈∀>∀∈或(,)a +∞,有12()()()n n n p u x u x u x ε+++++⋅⋅⋅+<.又因n N +∈,()n u x 在左端点x a =(右)连续,令x a →(或a +),对上式两端取极限,得12()()()n n n p u a u a u a ε+++++⋅⋅⋅+≤则级数收敛,与已知矛盾,故函数项级数1()n n u x ∞=∑在区间(,]a b (或(,)a +∞)上非一致收敛.例19 讨论函数项级数1nxn ne∞-=∑在区间为(0,)+∞上的一致收敛性.解 易知函数项级数1nxn ne∞-=∑在区间(0,)+∞上逐点收敛,且每一项都在0x =处连续,而函数项级数1nxn ne∞-=∑在0x =处发散,故该函数项级数在(0,)+∞上非一致收敛.该题还可利用其它方法判别,但相比较而言此方法更为简便. 例20 讨论0(1)nn x x∞=-∑在区间01x ≤≤上的一致收敛性.解 10()(1)(1)1nnkk n n k k S x x xx x x +===-=-=-∑∑.于是101;()lim ()0 1.n n x S x S x x →∞≤<⎧==⎨=⎩取0ε,使0102ε<<,不论n多么大,只要取x = ,就有011122n S S ε-=-=>因此,级数(1)nn x x∞=-∑在[0,1]上收敛而非一致收敛.5 综合应用例21[]4(368)P证明级数2312(1)x nn e n∞=+-∑在任何有界区间[,]a b 上一致收敛.证 [,]x a b ∀∈,12(1)nn n∞=-∑,且余项()()23221()0()111cn e R x n n n n ≤≤+→→∞+++ {}(max ,)c a b =, 故 [,]lim sup ()0n n x a b R x →∞∈=.所以级数12(1)nn n∞=-∑[,]a b 上一致收敛.例22 证明:级数(1)1(1)nxn x n nxen xe ∞---=⎡⎤--⎣⎦∑在闭区间01x ≤≤上收敛但非一致收敛,而它的和在此区间上是连续函数.证 考虑部分和(1)1()(1)nkx k x nxn k S x kxe k xe nxe ----=⎡⎤=--=⎣⎦∑,显然在[0,1]上其极限函数()S x 存在(即级数的和)且连续:()lim ()0n n S x S x →∞==.但此级数在[0,1]上非一致收敛.用反证法.若不然,则对任给的0ε>,存在数()N N ε=,使当n N ≥时,对于[0,1]上的一切x 值,均有()()n S x S x ε-<.今取1012e ε-=,应有11()()2n S x S x e --<.取01x x n ==,则也应有11()()2n S x S x e --<,但另一方面,却有10000()()()n n S x S x S x eε--==>,矛盾.证毕.例23[]4(385)P 证明函数11()x n f x n ∞==∑在(1,)+∞无穷次可微. 证 (1)先证()f x 在(1,)+∞上可微.任取0(1,)x ∈+∞,则0δ∃>使得00112x x δδ<+≤<+<∞.在0[1,2]x δδ++上,考察111ln ()x x n n nn n∞∞=='=-∑∑.由于01ln ln 0,[1,2]x n n x x n n δδδ+≤≤∈++ 而121ln lim 0n n n n δδ++→∞⋅=.由比较判别法知11ln n n nδ∞+=∑收敛.从而函数项级数1ln x n nn ∞=-∑在0[1,2]x δδ++一致收敛.故函数()f x 在0[1,2]x δδ++上可微且111ln ()()x x n n n f x n n ∞∞==''==-∑∑,则001ln ()x n nf x n∞='=-∑.由0(1,)x ∈+∞的任意性,()f x 在(1,)+∞上可微,且1ln ()x n nf x n ∞='=-∑. (2)再证对任意自然数k ,均有 ()1(1)ln ()k k k xn nfx n ∞=-=∑. 事实上,当1k =时,由(1)知结论成立.假设m k =时结论成立,则当1m k =+时,考察: 1111(1)ln (1)ln ()k k k k x xn n n nn n ++∞∞==--'=∑∑. 由于1111(1)ln ln k k k x n n n n δ++++-≤,0[1,2]x x δδ∈++.而1121ln lim 0k n n n n δδ+++→∞⋅=.故级数111ln k n n nδ+∞+=∑收敛,从而函数项级数1(1)ln ()k k xn nn ∞=-'∑在0[1,2]x δδ++一致收敛,故函数()()k f x 在0[1,2]x δδ++可微,且 11()'11(1)ln (1)ln (())()k k k k k x xn n n nfx n n ++∞∞==--'==∑∑. 由以上证明可知函数()f x 在(1,)+∞无穷次可微.通过以上对函数项级数(函数列)一致收敛非一致收敛相关问题的讨论,希望能对这部分内容的学习提供一些参考.。

函数项级数的收敛性

函数项级数的收敛性

函数项级数的收敛性函数项级数是数学中的一个重要概念,它由一系列函数项相加而成。

在研究函数项级数的性质时,我们经常关注其是否收敛。

本文将探讨函数项级数的收敛性,并给出相应的定义和判定条件。

一、函数项级数的定义函数项级数可以表示为:\[ \sum_{n=1}^{\infty} f_n(x) \]其中,$f_n(x)$是定义在某个集合上的函数序列,$x$是集合中的一个元素。

函数项级数的求和是对函数序列$f_n(x)$进行加法运算,得到一个新的函数。

二、函数项级数的部分和函数项级数的部分和表示为:\[ S_n(x)=\sum_{k=1}^{n} f_k(x) \]三、函数项级数的收敛性判定函数项级数的收敛性判定是判断函数项级数的部分和序列$S_n(x)$是否收敛。

常见的收敛性判定方法有以下几种:1. Cauchy收敛准则对于任意给定的正数$\epsilon$,存在正整数N,使得对于任意的$m > n > N$和任意的$x$,都有:\[ |S_m(x)-S_n(x)|< \epsilon \]当满足上述条件时,函数项级数在集合中的每一个元素$x$处一致收敛。

2. Weierstrass判别法如果存在正数列$b_n$,使得对于任意的$n$和$x$,都有:\[ |f_n(x)|\leq b_n \]并且级数$\sum b_n$收敛,则函数项级数在集合中的每一个元素$x$处一致收敛。

3. Abel判别法若存在正数$M$,使得对于任意的$n$和$x$,都有:\[ |S_n(x)|\leq M \]且函数序列$f_n(x)$单调,即对于任意的$x$,都存在$n_0$,当$n\geq n_0$时,有:\[ |f_n(x)|\geq |f_{n+1}(x)| \]则函数项级数在集合中的每一个元素$x$处一致收敛。

四、函数项级数的应用函数项级数在数学和物理等领域有广泛的应用。

例如,在数学分析中,利用函数项级数的收敛性,可以证明一些重要的数学定理,如傅里叶级数的收敛性定理。

推荐-函数项级数收敛性定义 精品

推荐-函数项级数收敛性定义 精品

可积性与可微 性
? 原因
一致收敛定义
设函数项级数
un
(
x)在区间I收敛于和函数S
(
x).
n1
若 0,N N ,n N (通用 ),x I ,有
S(x) Sn (x) Rn (x)
则称函数项 级数
un
(
x)在区间I
一致收敛
n1
或 一致收敛于和函数S(x).
一致收敛的几何 意义
x
n在
I
n0
内闭一致收敛
若对a,b I, 函数序列Sn (x)在a,b上一致收敛于S(x),
则称Sn (x)在I上内闭一致收敛于S (x).
性质: 函数列在 I上一致收敛
函数列在 I上内闭一致收敛
S(x) Sn(x) Rn(x)
几何解释: 只要 充分大 在区间 上所有曲线
将位于两条曲线 y s(x)
y
y s( x)
y s( x)
之间.
y S(x) y S(n x)
o
I
x
1)在[-1 ,1- ](其中0 1)一致收敛,
xn
x [1 ,1 ]
x
xn
un
(
)
u1
(
)
u2
(
)
u3
(
)
un
(
)
(2)
n1
(i)若级数(2)收敛,则称 级数 (1) 在点收敛
称为函数项级数 (1)的 收敛点
(ii)若级数(2)发散,则称级数 (1) 在点 发散
注意
函数项级数在某点x的收敛问题, 实质上是数项级数的收敛问题.
4、收敛域与收敛区间定义
un

函数项级数的一致收敛

函数项级数的一致收敛

rn ( x ) =
对 X 上一切 x 都成立,则称 {S n ( x )} 在 X 上一致 一致 收敛于 收敛 S (x) 一致收敛的定义还可以用下面的方式来表达:
∞ ∑ u n ( x) n =1
k = n +1


uk (x) < ε

定义2 定义 设 S n − S = sup S n ( x) − S ( x) 如果

lim ∫ S n ( x)dx ≠ ∫ S n ( x)dx
n →∞ 0 0
1
1
这就提出了一个问题:设级数 ∑ u ( x) 在 X 上收敛于 S (x)
n =1 n

又设级数的每一项 un (x) 在 X 上连续。对于求导和求积, 也有类似的问题,要回答这些问题,必须引进非常重要 的概念:一致收敛 一致收敛
ε > 0 可得 N ( N 是一个仅与 ε 有关的确定的项数,它与
[a, b] 上的 x 无关),使
1 S N ( x ) − S ( x ) < ( a ≤ x ≤ b) 3 对 [a, b] 上任一点 x0 ,显然也有 S N ( x) − S ( x) < 1 3 再由 S N (x) 在点 x0 连续性,可得 η > 0 ,使 x − a < η 时 1 S N ( x) − S ( x) < 3
n =1
∞ d ∞ d ∑ un ( x ) = ∑ dxun ( x ) dx n=1 n =1
四、一致收敛级数的判别方法 定例7 定例 若对充分大的 n ,恒有实数 an ,使得 un ( x ) ≤ an 对 X 上任意的 x 都成立,并且数项级数 ∑ an收敛,则

数学分析 第十一章 函数项级数

数学分析 第十一章 函数项级数
f ( x) .
例 8. 证明: x n 在(0,1)不一致收敛于 f ( x ) 0 .
例 9. 设 f n ( x ) x n (1 x )n . 证明: f n ( x ) 在 (0,1) 一 致收敛于0 .
例 10.设 f n ( x ) x ,[a , b] ( 1,1) . 证明: f n ( x ) 在 [a , b]一致收敛于0 .
f n p ( x ) f n ( x ) .
定义. 设 f n ( x ), f ( x ) 是定义在 X 上函数, 令
f n f sup f n ( x ) f ( x ) : x X
定理 1.6. { f n ( x )}在 X 一致收敛于 f ( x ) 的充要条 件是: lim f n f 0 .
的一致收敛性.
若 0, N , 使得当 n N 时, x X , 都有 fn ( x ) f ( x )
则当 n 时,{ f n ( x )} X 上一致收敛于 f ( x ) . 在
{ f n ( x )}在 X 上不一致收敛于 f ( x )
0 0 , N , nN N , xnN X ,使得
2.函数序列的一致收敛性
定义. 给定{ f n ( x )} . n , f n ( x ) 是定义在 X 上的
函数, 又设 f ( x )也是 X 上函数. 若 0, N ,
使得当n N 时, x X , 都有
fn ( x ) f ( x )
则称当 n 时, f n ( x ) 在 X 上一致收敛于
Sn p ( x ) Sn ( x ) uk ( x ) .
k n1

关于函数项级数的收敛性

关于函数项级数的收敛性

关于函数项级数的收敛性作者: xxx 指导老师:xxx摘 要:级数是表示初等函数的一种工具,其核心问题是级数的和(或和函数),即收敛问题,包括收敛和一致收敛,本文试图对函数项级数的收敛、一致收敛、非一致收敛的常用判别方法进行了较为系统的和总结,并对其中几种收敛性的判断方法作了重点讨论。

关键词 :函数项级数 收敛 一致收敛 判别方法1 引 言作为数项级数的推广,函数项级数项级数的收敛性问题一直是数学分析中级数的重点和难点,在实际应用中也比较广泛。

在这篇文章中,本文先对函数项级数的收敛给出本质说明,由于函数项级数的收敛与数项级数的收敛本质都是逐点收敛,因此这篇论文重点是论述函数项级数一致收敛的定义以及类似于数项级数收敛的判别方法或相关定理,并对某些定理的适用范围作出归纳。

.2 函数项级数一致收敛的定义我们知道,所谓函数项级数()nu x ∑在某区间I 收敛,是指它逐点收敛.意即:对I 中每固定一点x I ∈,作为数项级数,1n u x n ∞=∑()总是收敛的,因此对于收敛性,可以用数项级数的各种判别法逐点进行判断。

定义1 :函数序列{()}n S x 在集合D 上点态收敛于是指对于任意的0x D ∈,数列0()n S x 收敛于0()S x ,用” N ε-”语言来表示的话,就是:对任意给定的0ε>, 可以找到N ,当n>N 时,成立:0|()()|n S x S x ε-<一般来说,这里的N 应理解为0(,)N x ε,即N 不仅与ε有关,而且随着0x 的变化而变化。

这意味着在D ,{()}n S x 的收敛速度可能大相径庭。

如果{()}n S x 不仅在D 上点点收敛,而且在D 上的收敛速度具有某种整体一致性,也即此时的N 仅与ε有关而与0x 无关.(充要条件)设{n S }是函数项级数()n u x ∑的部分和函数列,若{()n S x }在数集D上一致收敛于 ()S x ,则称函数项级数()nu x ∑一致收敛于函数()S x ,或称()nu x ∑在D 上一致收敛.推论:(必要条件)函数项级数()nu x ∑在数集数集D 上一致收敛,则称函数列{()nu x }在D 上一致收敛于0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n 1
函数项级数的前 n项 和
S n ( x) uk ( x) u1 ( x) u2 ( x) un ( x)
k 1 n
称为函数项级数的n项 部分和函数列
简称
部分和
3、在某固定点收敛定义
un ( x) u1 ( x) u2 ( x) u3 ( x) un ( x) (1)
P33 14
二、一致收敛概念
1、有限个连续函数的和 仍是连续函数
2、有限个函数的和的导数 等于他们的导数的和
3、有限个函数的和的积分 等于他们的积分的和
问题:
1、有限个连续函数的和仍是连续函数 2、有限个函数的和的导数等于他们的导数的和
3、有限个函数的和的积分等于他们的积分的和
对于无限个函数的和是否具有这些性质呢?
称为定义在A上的函数项级数,简记为 un ( x) 或 n 1


un ( x)
un ( x) u1 ( x) u2 ( x) u3 ( x) un ( x)
n 1
2、部分和定义
un ( x) u1 ( x) u2 ( x) u3 ( x) un ( x) (1)
n 1
A,函数项级数(1)在处对应 一个数项级数(2)
un ( ) u1 ( ) u2 ( ) u3 ( ) un ( ) (2)
n 1

(i)若级数(2)收敛, 则称 级数 (1)
在点收敛 在点发散
称为函数项级数(1)的 收敛点
对于函数项级数 ( x)在I上连续, u( n x), 若每一项u n
n 1

且级数在X ) S (x) . I 上收敛 u( n x
n 1 上是否也连续 ?
(2).若每一项un ( x)在X I上可导, S ( x)在X I 上是否也可导?
(3).若S ( x)可导, 是否有S ( x) u n ( x)成立 ?
un ( ) u1 ( ) u2 ( ) u3 ( ) un ( ) (2)
n 1

收敛点 (ii)函数项级数 (1)的全体收敛点的集合 , 称为它的 收敛域 收敛区间
(i)若级数(2)收敛, 则称 是函数项级数(1)的
(iii)若收敛域 是一个区间 , 称为 此区间是函数项级数(1)的
n 1
S ( x) Sn ( x) Rn ( x)
n 1
则称函数 项 级数 un ( x)在区间I
一致收敛

一致收敛于和函数 S ( x).
一致收敛的几何 意义
S ( x) Sn ( x) Rn ( x)
几何解释: 只要
在区间
充分大 上所有曲线
将位于两条曲线
从上例可以看出 , 这个函数项级数 x n 在(-1,1)非 一致收敛,
(ii)若级数(2)发散, 则称级数 (1)
注意
函数项级数在某点x的收敛问题,
实质上是数项级数的收敛问题.
4、收敛域与收敛区间定义
un ( x) u1 ( x) u2 ( x) u3 ( x) un ( x) (1)
n 1
A,函数项级数(1)在处对应 一个数项级数(2)
9.2 函数项级数
1、函数项级数的收敛域 2、一致收敛概念 3、一致收敛判别法 4、和函数的分析性质
一、函数项级数的收敛域
u1 , u2 , u3 ,, un ,
u1 u2 u3 un
(1)
(2)
数项级数
u1 ( x) , u2 ( x) , u3 ( x) ,, un ( x) ,
y s ( x)
y s( x )
之间.
y

o
yS (x) y S( ) n x
y s( x )
I
x
1)在[-1 ,1- ](其中0 1)一致收敛,
x
n
x [1 ,1 ]
x
x
n
x
在[-1 ,1- ]一致收敛,
un ( x) u1 ( x) u2 ( x) u3 ( x) un ( x) (1)
n 1

5、和函数的定义
函数项级数(1)在收敛域的每一点与其 所对应的数项级数的和对应,
这种对应法则构成定义 在收敛域上的函数,设 此函数是S ( x),即

n 1
lim S n ( x) S ( x)
n
点态收敛于S ( x)
S ( x) un ( x) u1 ( x) u2 ( x) u3 ( x) un ( x)
称S ( x)是函数项级数(1)在收敛域的
和函数
也就是说, 函数项级数的收敛性就是指它的部分和函数列的收敛性.
6、余和的定义
函数项
(几何级数,等比级数)
n=1
I
(4).若S ( x)在 a, b可积, 是否有 S ( x)dx un ( x)dx?
b b a

答案: 都是不一定
n1
a
连续性
可积性与 可微 性
?
原因
一致收敛定义
设函数项级数 un ( x)在区间I收敛于和函数S ( x).

若 0, N N , n N (通用),x I , 有
(3)
u1 ( x) u2 ( x) u3 ( x) un ( x) (4)
函数项级数
本节讨论的函数项级数, 是在数项级数的基础上的一种推广形式, 即把数项级数的一般项由数推广到函数. 当函数取确定数值时它就是数项级数. 明确以上关系对于掌握相关概念 和理论是十分必要的.
现在我们将级数概念从数推广到函数上去. 讨论一般项为函数的级数的有关知识.
1、函数项级数的定义
设 {un ( x)} 是定义在数集A上的一个函数列,即
u1 ( x) , u2 ( x) , u3 ( x) ,, un ( x) ,
将他们依次 用加号连接起来,即
(1)
u1 ( x) u2 ( x) u3 ( x) un ( x) (2)
相关文档
最新文档