三角函数 专项训练

合集下载

三角函数大题专项(含问题详解)

三角函数大题专项(含问题详解)

三角函数专项训练1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a ﹣b)sin B.(1)证明a2+b2﹣c2=ab;(2)求角C和边c.2.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.3.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.5.已知函数f(x)=sin2x+sin x cos x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.6.在△ABC中,角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2)(Ⅰ)求cos A的值;(Ⅱ)求sin(2B﹣A)的值7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.8.在△ABC中,角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B=.(Ⅰ)求b和sin A的值;(Ⅱ)求sin(2A+)的值.9.△ABC的角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.10.△ABC的角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.12.已知向量=(cos x,sin x),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.13.在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.14.已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.15.在△ABC中,角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B;(2)若cos B=,求cos C的值.16.设f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a sin2B=b sin A.(1)求B;(2)已知cos A=,求sin C的值.18.在△ABC中,角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.19.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sin A sin B=sin C;(Ⅱ)若b2+c2﹣a2=bc,求tan B.20.在△ABC中,AC=6,cos B=,C=.(1)求AB的长;(2)求cos(A﹣)的值.21.已知函数f(x)=4tan x sin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.22.△ABC的角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.参考答案1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a ﹣b)sin B.(1)证明a2+b2﹣c2=ab;(2)求角C和边c.【解答】证明:(1)∵在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,∴由正弦定理得:=2R=2,∴sin A=,sin B=,sin C=,∵2(sin2A﹣sin2C)=(a﹣b)sin B,∴2()=(a﹣b)•,化简,得:a2+b2﹣c2=ab,故a2+b2﹣c2=ab.解:(2)∵a2+b2﹣c2=ab,∴cos C===,解得C=,∴c=2sin C=2•=.2.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得b sin A=a sin B,又b sin A=a cos(B﹣).∴a sin B=a cos(B﹣),即sin B=cos(B﹣)=cos B cos+sin B sin=cos B+,∴tan B=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由b sin A=a cos(B﹣),得sin A=,∵a<c,∴cos A=,∴sin2A=2sin A cos A=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2A cos B﹣cos2A sin B==.3.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.【解答】解:(1)由,解得,∴cos2α=;(2)由(1)得,sin2,则tan2α=.∵α,β∈(0,),∴α+β∈(0,π),∴sin(α+β)==.则tan(α+β)=.∴tan(α﹣β)=tan[2α﹣(α+β)]==.4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.5.已知函数f(x)=sin2x+sin x cos x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.【解答】解:(I)函数f(x)=sin2x+sin x cos x=+sin2x=sin(2x﹣)+,f(x)的最小正周期为T==π;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,可得2x﹣∈[﹣,2m﹣],即有2m﹣≥,解得m≥,则m的最小值为.6.在△ABC中,角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2)(Ⅰ)求cos A的值;(Ⅱ)求sin(2B﹣A)的值【解答】(Ⅰ)解:由,得a sin B=b sin A,又a sin A=4b sin B,得4b sin B=a sin A,两式作比得:,∴a=2b.由,得,由余弦定理,得;(Ⅱ)解:由(Ⅰ),可得,代入a sin A=4b sin B,得.由(Ⅰ)知,A为钝角,则B为锐角,∴.于是,,故.7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.【解答】解:(Ⅰ)函数f(x)=sin(ωx﹣)+sin(ωx﹣)=sinωx cos﹣cosωx sin﹣sin(﹣ωx)=sinωx﹣cosωx=sin(ωx﹣),又f()=sin(ω﹣)=0,∴ω﹣=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f(x)=sin(2x﹣),将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y =sin(x﹣)的图象;再将得到的图象向左平移个单位,得到y=sin(x+﹣)的图象,∴函数y=g(x)=sin(x﹣);当x∈[﹣,]时,x﹣∈[﹣,],∴sin(x﹣)∈[﹣,1],∴当x=﹣时,g(x)取得最小值是﹣×=﹣.8.在△ABC中,角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B=.(Ⅰ)求b和sin A的值;(Ⅱ)求sin(2A+)的值.【解答】解:(Ⅰ)在△ABC中,∵a>b,故由sin B=,可得cos B=.由已知及余弦定理,有=13,∴b=.由正弦定理,得sin A=.∴b=,sin A=;(Ⅱ)由(Ⅰ)及a<c,得cos A=,∴sin2A=2sin A cos A=,cos2A=1﹣2sin2A=﹣.故sin(2A+)==.9.△ABC的角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC=ac sin B=,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C=;(2)∵6cos B cos C=1,∴cos B cos C=,∴cos B cos C﹣sin B sin C=﹣=﹣,∴cos(B+C)=﹣,∴cos A=,∵0<A<π,∴A=,∵===2R==2,∴sin B sin C=•===,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.10.△ABC的角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sin B=4(1﹣cos B),∵sin2B+cos2B=1,∴16(1﹣cos B)2+cos2B=1,∴16(1﹣cos B)2+cos2B﹣1=0,∴16(cos B﹣1)2+(cos B﹣1)(cos B+1)=0,∴(17cos B﹣15)(cos B﹣1)=0,∴cos B=;(2)由(1)可知sin B=,∵S△ABC=ac•sin B=2,∴ac=,∴b2=a2+c2﹣2ac cos B=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sin x cos x,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣12.已知向量=(cos x,sin x),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【解答】解:(1)∵=(cos x,sin x),=(3,﹣),∥,∴﹣cos x=3sin x,当cos x=0时,sin x=1,不合题意,当cos x≠0时,tan x=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cos x﹣sin x=2(cos x﹣sin x)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最小值﹣2.13.在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sin C=sin A=×=,(2)a=7,则c=3,∴C<A,∵sin2C+cos2C=1,又由(1)可得cos C=,∴sin B=sin(A+C)=sin A cos C+cos A sin C=×+×=,∴S△ABC=ac sin B=×7×3×=6.14.已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【解答】解:f(x)=2sinωx cosωx+cos2ωx,=sin2ωx+cos2ωx,=,由于函数的最小正周期为π,则:T=,解得:ω=1.(2)由(1)得:函数f(x)=,令(k∈Z),解得:(k∈Z),所以函数的单调递增区间为:[](k∈Z).15.在△ABC中,角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B;(2)若cos B=,求cos C的值.【解答】(1)证明:∵b+c=2a cos B,∴sin B+sin C=2sin A cos B,∵sin C=sin(A+B)=sin A cos B+cos A sin B,∴sin B=sin A cos B﹣cos A sin B=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cos B=,∴sin B==.cos A=cos2B=2cos2B﹣1=,sin A==.∴cos C=﹣cos(A+B)=﹣cos A cos B+sin A sin B=+×=.16.设f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2 =2sin2x﹣1+sin2x=2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y =2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sin x+﹣1的图象,∴g()=2sin+﹣1=.17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a sin2B=b sin A.(1)求B;(2)已知cos A=,求sin C的值.【解答】解:(1)∵a sin2B=b sin A,∴2sin A sin B cos B=sin B sin A,∴cos B=,∴B=.(2)∵cos A=,∴sin A=,∴sin C=sin(A+B)=sin A cos B+cos A sin B==.18.在△ABC中,角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.【解答】(Ⅰ)证明:∵b+c=2a cos B,∴sin B+sin C=2sin A cos B,∴sin B+sin(A+B)=2sin A cos B∴sin B+sin A cos B+cos A sin B=2sin A cos B∴sin B=sin A cos B﹣cos A sin B=sin(A﹣B)∵A,B是三角形中的角,∴B=A﹣B,∴A=2B;(Ⅱ)解:∵△ABC的面积S=,∴bc sin A=,∴2bc sin A=a2,∴2sin B sin C=sin A=sin2B,∴sin C=cos B,∴B+C=90°,或C=B+90°,∴A=90°或A=45°.19.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sin A sin B=sin C;(Ⅱ)若b2+c2﹣a2=bc,求tan B.【解答】(Ⅰ)证明:在△ABC中,∵+=,∴由正弦定理得:,∴=,∵sin(A+B)=sin C.∴整理可得:sin A sin B=sin C,(Ⅱ)解:b2+c2﹣a2=bc,由余弦定理可得cos A=.sin A=,=+==1,=,tan B=4.20.在△ABC中,AC=6,cos B=,C=.(1)求AB的长;(2)求cos(A﹣)的值.【解答】解:(1)∵△ABC中,cos B=,B∈(0,π),∴sin B=,∵,∴AB==5;(2)cos A═﹣cos(π﹣A)=﹣cos(C+B)=sin B sin C﹣cos B cos C=﹣.∵A为三角形的角,∴sin A=,∴cos(A﹣)=cos A+sin A=.21.已知函数f(x)=4tan x sin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.【解答】解:(1)∵f(x)=4tan x sin(﹣x)cos(x﹣)﹣.∴x≠kπ+,即函数的定义域为{x|x≠kπ+,k∈Z},则f(x)=4tan x cos x•(cos x+sin x)﹣=4sin x(cos x+sin x)﹣=2sin x cos x+2sin2x﹣=sin2x+(1﹣cos2x)﹣=sin2x﹣cos2x=2sin(2x﹣),则函数的周期T=;(2)由2kπ﹣<2x﹣<2kπ+,k∈Z,得kπ﹣<x<kπ+,k∈Z,即函数的增区间为(kπ﹣,kπ+),k∈Z,当k=0时,增区间为(﹣,),k∈Z,∵x∈[﹣,],∴此时x∈(﹣,],由2kπ+<2x﹣<2kπ+,k∈Z,得kπ+<x<kπ+,k∈Z,即函数的减区间为(kπ+,kπ+),k∈Z,当k=﹣1时,减区间为(﹣,﹣),k∈Z,∵x∈[﹣,],∴此时x∈[﹣,﹣),即在区间[﹣,]上,函数的减区间为∈[﹣,﹣),增区间为(﹣,].22.△ABC的角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=ab sin C=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.。

三角函数单招(大题)

三角函数单招(大题)

三角函数解答题专项训练1.设向量a=(√3sinx,sinx),b=(cosx,sinx),x∈[0,π/2].(1)若∣a∣=∣b∣,求x的值;(2)设函数f(x)=a*b,求f(x)的最大值.2.已知函数f(x)=2sin(x-π/3).(1)写出函数f(x)的周期;(2)将函数f(x)图象上所有的点向左平移π/3个单位,得到函数g(x)的图象,写出函数g(x)的表达式,并判断函数g(x)的奇偶性.3.已知函数f(x)=sinx+√3 cosx-√3.(1)求f(x)的最小正周期;(2)求f(x)在区间[0,2π/3]上的最小值.4.在锐角△ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,若C=45°,b=4√5,sinB= (1)求c 的值; (2)求sinA 的值.5.已知函数f (x )=sinx+√3cosx-√3.(1)求f (x )的最小正周期;(2)求f (x )在区间[0,2π/3]上的最小值.6. 已知函数f (x )=sinx+cosx ,x ∈R.(1)求f (x )的最小正周期和最大值;(2)函数f (x )的图象可由y=sinx 的图象经过怎样的变换得到?2√5 57.已知函数f(x)=2cos²x+√3sin2x-1;(1)求f(π/6)的值;(2)求函数f(x)的最小正周期和单调递增区间.8.已知函数f(x)=4cosx sin(x+π/6)-1.(1)求f(x)的最小正周期;(2)求f(x)在区间[-π/6,π/4]上的最大值和最小值.9.已知函数f(x)=2sinwxcoswx+cos2wx(w>0)的最小正周期为π.(1)求w的值;(2)求f(x)的单调递增区间.10.已知函数f (x )=cosx sin (x+π/3)-√3cos ²x+x ∈R. (1)求f (x )的最小正周期;(2)求f (x )在[-π/4,π/4]上的最大值和最小值.11.已知函数f (x )=√3sinx cosx-cos (2x+π/3)-cos ²x.(1)求f (x )的最小正周期、最值和单调区间.12.已知函数f (x )=sin ²x+√3sinx cosx+2cos ²x (x ∈R ).(1)求函数f (x )的最小正周期;(2)求函数的单调区间;(3)求函数图象的对称中心.√3 4。

三角函数大题专项(含答案)

三角函数大题专项(含答案)

三角函数专项训练令狐采学圆径为1.在△ABC中,角A、B、C对应边a、b、c,外接半1,已知2(sin2A﹣sin2C)=(a﹣b)sinB.证a2+b2﹣c2=ab;(1)明(2)求角C和边c.对边别为a,b,c.已内A,B,C所的分2.在△ABC中,角知bsinA=acos(B﹣).(Ⅰ)求角B的大小;值(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的.为锐tanα=,cos(α+β)=﹣.3.已知α,β角,值(1)求cos2α的;值(2)求tan(α﹣β)的.边ABCD中,∠ADC=90°,∠A=45°,AB=4.在平面四形2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.5.已知函数f(x)=sin2x+sinxcosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小.值内A,B,C所的分对边别为a,b,c.已6.在△ABC中,角知asinA=4bsinB,ac=(a2﹣b2﹣c2)值(Ⅰ)求cosA的;(Ⅱ)求sin(2B﹣A)的值设数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0 7.函<ω<3,已知f()=0.(Ⅰ)求ω;将数y=f(x)的象上各点的坐伸原的图横标长为来(Ⅱ)函个单2倍(坐不),再得到的象向左平移纵标变将图位,图g(x)在[﹣,]上的最得到函数y=g(x)的象,求值小.对边别为a,b,c.已内A,B,C所的分8.在△ABC中,角知a>b,a=5,c=6,sinB=.(Ⅰ)求b 和sinA 的;值(Ⅱ)求sin (2A+)的.值9.△ABC 的角内A ,B ,C 的分对边别为a ,b ,c ,已知△ABC 的面积为.(1)求sinBsinC ;(2)若6cosBcosC =1,a =3,求△ABC 的周.长10.△ABC 的角内A ,B ,C 的分对边别为a ,b ,c ,已知sin (A+C )=8sin2.(1)求cosB ;(2)若a+c =6,△ABC 的面积为2,求b .11.已知函数f (x )=cos (2x﹣)﹣2sinxcosx .(I )求f (x )的最小正周期;(II )求:证当x∈[﹣,],时f (x )≥﹣.12.已知向量=(cosx ,sinx ),=(3,﹣),x∈[0,π].(1)若,求x 的;值(2)记f(x)=,求f(x)的最大和最小以及值值对应值的x的.13.在△ABC中,∠A=60°,c=a.值(1)求sinC的;积(2)若a=7,求△ABC的面.14.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.值(1)求ω的;单调递区间(2)求f(x)的增.内A,B,C所的分对边别为a,b,c,已15.在△ABC中,角知b+c=2acosB.证A=2B;(1)明:(2)若cosB=,求cosC的.值16.设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.单调递区间(Ⅰ)求f(x)的增;图横标长来2(Ⅱ)把y=f(x)的象上所有点的坐伸到原的纵标变图位,得个单倍(坐不),再把得到的象向左平移值图g()的.到函数y=g(x)的象,求对边别为a,b,c,已17.在△ABC中,角内A,B,C所的分知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的.值对边别为a,b,c,已内A,B,C所的分18.在△ABC中,角知b+c=2acosB.证A=2B;(Ⅰ)明:(Ⅱ)若△ABC的面积S=,求角A的大小.对边别a,b,c,且19.在△ABC中,角A,B,C所的分是+=.证sinAsinB=sinC;(Ⅰ)明:(Ⅱ)若b2+c2﹣a2=bc,求tanB.20.在△ABC中,AC=6,cosB=,C=.长(1)求AB的;值(2)求cos(A﹣)的.21.已知函数f(x)=4tanxsin(﹣x)cos(x﹣)﹣.义与(1)求f(x)的定域最小正周期;单调(2)讨论f(x)在区间[﹣,]上的性.对边别为a,b,c,已知内A,B,C的分22.△ABC的角2cosC(acosB+bcosA)=c.(Ⅰ)求C;长(Ⅱ)若c=,△ABC的面积为,求△ABC的周.参考答案圆径为1.在△ABC中,角A、B、C对应边a、b、c,外接半1,已知2(sin2A﹣sin2C)=(a﹣b)sinB.证a2+b2﹣c2=ab;(1)明(2)求角C和边c.证1)∵在△ABC中,角A、B、C对应边【解答】明:(圆径为1,a、b、c,外接半∴由正弦定理得:=2R=2,∴sinA=,sinB=,sinC=,∵2(sin2A﹣sin2C)=(a﹣b)sinB,∴2()=(a﹣b)•,简a2+b2﹣c2=ab,化,得:故a2+b2﹣c2=ab.解:(2)∵a2+b2﹣c2=ab,∴cosC===,解得C=,∴c=2sinC=2•=.对边别为a,b,c.已2.在△ABC中,角内A,B,C所的分知bsinA=acos(B﹣).(Ⅰ)求角B的大小;值(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.3.已知α,β角,为锐tanα=,cos(α+β)=﹣.值(1)求cos2α的;值(2)求tan(α﹣β)的.【解答】解:(1)由,解得,∴cos2α=;(2)由(1)得,sin2,则tan2α=.∵α,β∈(0,),∴α+β∈(0,π),∴sin(α+β)==.则tan(α+β)=.∴tan(α﹣β)=tan[2α﹣(α+β)]==.边ABCD中,∠ADC=90°,∠A=45°,AB=4.在平面四形2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.5.已知函数f(x)=sin2x+sinxcosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最值小.【解答】解:(I)函数f(x)=sin2x+sinxcosx=+sin2x=sin(2x﹣)+,f(x)的最小正周期为T==π;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,可得2x﹣∈[﹣,2m﹣],即有2m﹣≥,解得m≥,则m 的最小值为.6.在△ABC 中,角内A ,B ,C 所的分对边别为a ,b ,c .已知asinA =4bsinB ,ac =(a2﹣b2﹣c2)(Ⅰ)求cosA 的;值(Ⅱ)求sin (2B﹣A )的值【解答】(Ⅰ)解:由,得asinB =bsinA ,又asinA =4bsinB ,得4bsinB =asinA ,式作比得:两,∴a =2b .由,得,由余弦定理,得;(Ⅱ)解:由(Ⅰ),可得,代入asinA =4bsinB ,得.由(Ⅰ)知,A 角,为钝则B 角,为锐∴.于是,,故.设数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0 7.函<ω<3,已知f()=0.(Ⅰ)求ω;图横标长为来将数y=f(x)的象上各点的坐伸原的(Ⅱ)函个单纵标变将图位,2倍(坐不),再得到的象向左平移图g(x)在[﹣,]上的最得到函数y=g(x)的象,求值小.【解答】解:(Ⅰ)函数f(x)=sin(ωx﹣)+sin(ωx ﹣)=sinωxcos﹣cosωxsin﹣sin(﹣ωx)=sinωx﹣cosωx=sin(ωx﹣),又f()=sin(ω﹣)=0,∴ω﹣=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f (x )=sin (2x﹣),函将数y =f (x )的象上各点的坐伸原的图横标长为来2倍(坐不),得到函纵标变数y =sin (x﹣)的象;图再得到的象向左平移将图位,得到个单y =sin (x+﹣)的象,图∴函数y =g (x )=sin (x﹣);当x∈[﹣,],时x﹣∈[﹣,],∴sin (x﹣)∈[﹣,1],∴当x =﹣,时g (x )取得最小是值﹣×=﹣.8.在△ABC 中,角内A ,B ,C 所的分对边别为a ,b ,c .已知a >b ,a =5,c =6,sinB =.(Ⅰ)求b 和sinA 的;值(Ⅱ)求sin (2A+)的.值【解答】解:(Ⅰ)在△ABC中,∵a>b,故由sinB=,可得cosB=.由已知及余弦定理,有=13,∴b=.由正弦定理,得sinA=.∴b=,sinA=;(Ⅱ)由(Ⅰ)及a<c,得cosA=,∴sin2A=2sinAcosA=,cos2A=1﹣2sin2A=﹣.故sin(2A+)==.对边别为a,b,c,已知9.△ABC的角内A,B,C的分△ABC的面积为.(1)求sinBsinC;长(2)若6cosBcosC=1,a=3,求△ABC的周.积S△ABC=【解答】解:(1)由三角形的面公式可得acsinB=,∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.对边别为a,b,c,已知内A,B,C的分10.△ABC的角sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴16(1﹣cosB)2+cos2B﹣1=0,∴16(cosB﹣1)2+(cosB﹣1)(cosB+1)=0,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,∵S△ABC=ac•sinB=2,∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.11.已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;时f(x)≥﹣.证当x∈[﹣,],(II)求:【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sinxcosx,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣12.已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].值(1)若,求x的;值值对应(2)记f(x)=,求f(x)的最大和最小以及值的x的.【解答】解:(1)∵=(cosx,sinx),=(3,﹣),∥,∴﹣cosx=3sinx,时sinx=1,不合意,题当cosx=0,时tanx=﹣,当cosx≠0,∵x∈[0,π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,值值3,当x=0,时f(x)有最大,最大时f(x)有最小,最小值值﹣2.当x=,13.在△ABC中,∠A=60°,c=a.值(1)求sinC的;积(2)若a=7,求△ABC的面.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sinC=sinA=×=,(2)a=7,则c=3,∴C<A,∵sin2C+cos2C=1,又由(1)可得cosC=,∴sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,∴S△ABC=acsinB=×7×3×=6.14.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的;值单调递区间(2)求f(x)的增.【解答】解:f(x)=2sinωxcosωx+cos2ωx,=sin2ωx+cos2ωx,=,数为π,由于函的最小正周期则T=,:解得:ω=1.(2)由(1)得:函数f(x)=,令(k∈Z),解得:(k∈Z),数单调递区间为[](k∈Z).所以函的增:15.在△ABC 中,角内A ,B ,C 所的分对边别为a ,b ,c ,已知b+c =2acosB .(1)明:证A =2B ;(2)若cosB =,求cosC 的.值【解答】(1)明:∵证b+c =2acosB ,∴sinB+sinC =2sinAcosB ,∵sinC =sin (A+B )=sinAcosB+cosAsinB ,∴sinB =sinAcosB﹣cosAsinB =sin (A﹣B ),由A ,B∈(0,π),∴0<A﹣B <π,∴B =A﹣B ,或B =π﹣(A﹣B ),化为A =2B ,或A =π(舍去).∴A =2B .(II )解:cosB =,∴sinB ==.cosA =cos2B =2cos2B﹣1=,sinA ==.∴cosC =﹣cos (A+B )=﹣cosAcosB+sinAsinB =+×=.16.设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.单调递区间(Ⅰ)求f(x)的增;图横标长来2(Ⅱ)把y=f(x)的象上所有点的坐伸到原的个单纵标变图位,得倍(坐不),再把得到的象向左平移图g()的.值到函数y=g(x)的象,求【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sinx﹣(sinx ﹣cosx)2 =2sin2x﹣1+sin2x=2•﹣1+sin2x =sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,数区间为[kπ﹣,kπ+],k∈Z.可得函的增图横标长来2(Ⅱ)把y=f(x)的象上所有点的坐伸到原的图纵标变y=2sin(x﹣)+﹣1的象;倍(坐不),可得个单数y=g(x)=图位,得到函再把得到的象向左平移图2sinx+﹣1的象,∴g()=2sin+﹣1=.对边别为a,b,c,已17.在△ABC中,角内A,B,C所的分知asin2B=bsinA.(1)求B;值(2)已知cosA=,求sinC的.【解答】解:(1)∵asin2B=bsinA,∴2sinAsinBcosB=sinBsinA,∴cosB=,∴B=.(2)∵cosA=,∴sinA=,∴sinC=sin(A+B)=sinAcosB+cosAsinB==.对边别为a,b,c,已18.在△ABC中,角内A,B,C所的分知b+c=2acosB.证A=2B;(Ⅰ)明:(Ⅱ)若△ABC的面积S=,求角A的大小.【解答】(Ⅰ)明:∵证b+c=2acosB,∴sinB+sinC=2sinAcosB,∴sinB+sin(A+B)=2sinAcosB∴sinB+sinAcosB+cosAsinB=2sinAcosB∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B)∵A,B是三角形中的角,∴B=A﹣B,∴A=2B;(Ⅱ)解:∵△ABC的面积S=,∴bcsinA=,∴2bcsinA=a2,∴2sinBsinC=sinA=sin2B,∴sinC=cosB,∴B+C=90°,或C=B+90°,∴A=90°或A=45°.对边别a,b,c,且19.在△ABC中,角A,B,C所的分是+=.证sinAsinB=sinC;(Ⅰ)明:(Ⅱ)若b2+c2﹣a2=bc,求tanB.【解答】(Ⅰ)明:在△证ABC中,∵+=,∴由正弦定理得:,∴=,∵sin(A+B)=sinC.∴整理可得:sinAsinB=sinC,(Ⅱ)解:b2+c2﹣a2=bc,由余弦定理可得cosA=.sinA=,=+==1,=,tanB=4.20.在△ABC中,AC=6,cosB=,C=.长(1)求AB的;值(2)求cos(A﹣)的.【解答】解:(1)∵△ABC中,cosB=,B∈(0,π),∴sinB=,∵,∴AB==5;(2)cosA═﹣cos(π﹣A)=﹣cos(C+B)=sinBsinC﹣cosBcosC=﹣.为内∵A三角形的角,∴sinA=,∴cos(A﹣)=cosA+sinA=.21.已知函数f(x)=4tanxsin(﹣x)cos(x﹣)﹣.义与(1)求f(x)的定域最小正周期;单调(2)讨论f(x)在区间[﹣,]上的性.【解答】解:(1)∵f(x)=4tanxsin(﹣x)cos(x﹣)﹣.数义为{x|x≠kπ+,k∈Z},∴x≠kπ+,即函的定域则f(x)=4tanxcosx•(cosx+sinx)﹣=4sinx(cosx+sinx)﹣=2sinxcosx+2sin2x﹣=sin2x+(1﹣cos2x)﹣=sin2x﹣cos2x=2sin(2x﹣),则数T=;函的周期(2)由2kπ﹣<2x﹣<2kπ+,k∈Z,数区间为kπ﹣得kπ﹣<x<kπ+,k∈Z,即函的增(,kπ+),k∈Z,时区间为﹣,),k∈Z,当k=0,增(∵x∈[﹣,],∴此时x∈(﹣,],由2kπ+<2x﹣<2kπ+,k∈Z,数减区间为kπ+得kπ+<x<kπ+,k∈Z,即函的(,kπ+),k∈Z,时减区间为﹣,﹣),k∈Z,当k=﹣1,(∵x∈[﹣,],∴此时x∈[﹣,﹣),即在区间[﹣,]上,函的∈数减区间为[﹣,﹣),区间为﹣,].增(对边别为a,b,c,已知内A,B,C的分22.△ABC的角2cosC(acosB+bcosA)=c.(Ⅰ)求C;长(Ⅱ)若c=,△ABC的面积为,求△ABC的周.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0简已知等式利用正弦定理化得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.。

三角函数大题专项(含答案)

三角函数大题专项(含答案)

三角函数专项训练1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a﹣b)sin B.(1)证明a2+b2﹣c2=ab;(2)求角C和边c.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.3.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.5.已知函数f(x)=sin2x+sin x cos x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2)(Ⅰ)求cos A的值;(Ⅱ)求sin(2B﹣A)的值7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.8.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B=.(Ⅰ)求b和sin A的值;(Ⅱ)求sin(2A+)的值.9.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.10.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.12.已知向量=(cos x,sin x),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.13.在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.14.已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.15.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B;(2)若cos B=,求cos C的值.16.设f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a sin2B=b sin A.(1)求B;(2)已知cos A=,求sin C的值.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.19.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sin A sin B=sin C;(Ⅱ)若b2+c2﹣a2=bc,求tan B.20.在△ABC中,AC=6,cos B=,C=.(1)求AB的长;(2)求cos(A﹣)的值.21.已知函数f(x)=4tan x sin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.22.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.参考答案1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a﹣b)sin B.(1)证明a2+b2﹣c2=ab;(2)求角C和边c.【解答】证明:(1)∵在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,∴由正弦定理得:=2R=2,∴sin A=,sin B=,sin C=,∵2(sin2A﹣sin2C)=(a﹣b)sin B,∴2()=(a﹣b)•,化简,得:a2+b2﹣c2=ab,故a2+b2﹣c2=ab.解:(2)∵a2+b2﹣c2=ab,∴cos C===,解得C=,∴c=2sin C=2•=.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得b sin A=a sin B,又b sin A=a cos(B﹣).∴a sin B=a cos(B﹣),即sin B=cos(B﹣)=cos B cos+sin B sin=cos B+,∴tan B=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由b sin A=a cos(B﹣),得sin A=,∵a<c,∴cos A=,∴sin2A=2sin A cos A=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2A cos B﹣cos2A sin B==.3.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.【解答】解:(1)由,解得,∴cos2α=;(2)由(1)得,sin2,则tan2α=.∵α,β∈(0,),∴α+β∈(0,π),∴sin(α+β)==.则tan(α+β)=.∴tan(α﹣β)=tan[2α﹣(α+β)]==.4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.5.已知函数f(x)=sin2x+sin x cos x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.【解答】解:(I)函数f(x)=sin2x+sin x cos x=+sin2x=sin(2x﹣)+,f(x)的最小正周期为T==π;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,可得2x﹣∈[﹣,2m﹣],即有2m﹣≥,解得m≥,则m的最小值为.6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2)(Ⅰ)求cos A的值;(Ⅱ)求sin(2B﹣A)的值【解答】(Ⅰ)解:由,得a sin B=b sin A,又a sin A=4b sin B,得4b sin B=a sin A,两式作比得:,∴a=2b.由,得,由余弦定理,得;(Ⅱ)解:由(Ⅰ),可得,代入a sin A=4b sin B,得.由(Ⅰ)知,A为钝角,则B为锐角,∴.于是,,故.7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.【解答】解:(Ⅰ)函数f(x)=sin(ωx﹣)+sin(ωx﹣)=sinωx cos﹣cosωx sin﹣sin(﹣ωx)=sinωx﹣cosωx=sin(ωx﹣),又f()=sin(ω﹣)=0,∴ω﹣=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f(x)=sin(2x﹣),将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y=sin(x﹣)的图象;再将得到的图象向左平移个单位,得到y=sin(x+﹣)的图象,∴函数y=g(x)=sin(x﹣);当x∈[﹣,]时,x﹣∈[﹣,],∴sin(x﹣)∈[﹣,1],∴当x=﹣时,g(x)取得最小值是﹣×=﹣.8.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B=.(Ⅰ)求b和sin A的值;(Ⅱ)求sin(2A+)的值.【解答】解:(Ⅰ)在△ABC中,∵a>b,故由sin B=,可得cos B=.由已知及余弦定理,有=13,∴b=.由正弦定理,得sin A=.∴b=,sin A=;(Ⅱ)由(Ⅰ)及a<c,得cos A=,∴sin2A=2sin A cos A=,cos2A=1﹣2sin2A=﹣.故sin(2A+)==.9.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC=ac sin B=,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C=;(2)∵6cos B cos C=1,∴cos B cos C=,∴cos B cos C﹣sin B sin C=﹣=﹣,∴cos(B+C)=﹣,∴cos A=,∵0<A<π,∴A=,∵===2R==2,∴sin B sin C=•===,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.10.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sin B=4(1﹣cos B),∵sin2B+cos2B=1,∴16(1﹣cos B)2+cos2B=1,∴16(1﹣cos B)2+cos2B﹣1=0,∴16(cos B﹣1)2+(cos B﹣1)(cos B+1)=0,∴(17cos B﹣15)(cos B﹣1)=0,∴cos B=;(2)由(1)可知sin B=,∵S△ABC=ac•sin B=2,∴ac=,∴b2=a2+c2﹣2ac cos B=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sin x cos x,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣12.已知向量=(cos x,sin x),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【解答】解:(1)∵=(cos x,sin x),=(3,﹣),∥,∴﹣cos x=3sin x,当cos x=0时,sin x=1,不合题意,当cos x≠0时,tan x=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cos x﹣sin x=2(cos x﹣sin x)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最小值﹣2.13.在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sin C=sin A=×=,(2)a=7,则c=3,∴C<A,∵sin2C+cos2C=1,又由(1)可得cos C=,∴sin B=sin(A+C)=sin A cos C+cos A sin C=×+×=,∴S△ABC=ac sin B=×7×3×=6.14.已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【解答】解:f(x)=2sinωx cosωx+cos2ωx,=sin2ωx+cos2ωx,=,由于函数的最小正周期为π,则:T=,解得:ω=1.(2)由(1)得:函数f(x)=,令(k∈Z),解得:(k∈Z),所以函数的单调递增区间为:[](k∈Z).15.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B;(2)若cos B=,求cos C的值.【解答】(1)证明:∵b+c=2a cos B,∴sin B+sin C=2sin A cos B,∵sin C=sin(A+B)=sin A cos B+cos A sin B,∴sin B=sin A cos B﹣cos A sin B=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cos B=,∴sin B==.cos A=cos2B=2cos2B﹣1=,sin A==.∴cos C=﹣cos(A+B)=﹣cos A cos B+sin A sin B=+×=.16.设f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2 =2sin2x﹣1+sin2x =2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sin x+﹣1的图象,∴g()=2sin+﹣1=.17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a sin2B=b sin A.(1)求B;(2)已知cos A=,求sin C的值.【解答】解:(1)∵a sin2B=b sin A,∴2sin A sin B cos B=sin B sin A,∴cos B=,∴B=.(2)∵cos A=,∴sin A=,∴sin C=sin(A+B)=sin A cos B+cos A sin B==.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.【解答】(Ⅰ)证明:∵b+c=2a cos B,∴sin B+sin C=2sin A cos B,∴sin B+sin(A+B)=2sin A cos B∴sin B+sin A cos B+cos A sin B=2sin A cos B∴sin B=sin A cos B﹣cos A sin B=sin(A﹣B)∵A,B是三角形中的角,∴B=A﹣B,∴A=2B;(Ⅱ)解:∵△ABC的面积S=,∴bc sin A=,∴2bc sin A=a2,∴2sin B sin C=sin A=sin2B,∴sin C=cos B,∴B+C=90°,或C=B+90°,∴A=90°或A=45°.19.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sin A sin B=sin C;(Ⅱ)若b2+c2﹣a2=bc,求tan B.【解答】(Ⅰ)证明:在△ABC中,∵+=,∴由正弦定理得:,∴=,∵sin(A+B)=sin C.∴整理可得:sin A sin B=sin C,(Ⅱ)解:b2+c2﹣a2=bc,由余弦定理可得cos A=.sin A=,=+==1,=,tan B=4.20.在△ABC中,AC=6,cos B=,C=.(1)求AB的长;(2)求cos(A﹣)的值.【解答】解:(1)∵△ABC中,cos B=,B∈(0,π),∴sin B=,∵,∴AB==5;(2)cos A═﹣cos(π﹣A)=﹣cos(C+B)=sin B sin C﹣cos B cos C=﹣.∵A为三角形的内角,∴sin A=,∴cos(A﹣)=cos A+sin A=.21.已知函数f(x)=4tan x sin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.【解答】解:(1)∵f(x)=4tan x sin(﹣x)cos(x﹣)﹣.∴x≠kπ+,即函数的定义域为{x|x≠kπ+,k∈Z},则f(x)=4tan x cos x•(cos x+sin x)﹣=4sin x(cos x+sin x)﹣=2sin x cos x+2sin2x﹣=sin2x+(1﹣cos2x)﹣=sin2x﹣cos2x=2sin(2x﹣),则函数的周期T=;(2)由2kπ﹣<2x﹣<2kπ+,k∈Z,得kπ﹣<x<kπ+,k∈Z,即函数的增区间为(kπ﹣,kπ+),k∈Z,当k=0时,增区间为(﹣,),k∈Z,∵x∈[﹣,],∴此时x∈(﹣,],由2kπ+<2x﹣<2kπ+,k∈Z,得kπ+<x<kπ+,k∈Z,即函数的减区间为(kπ+,kπ+),k∈Z,当k=﹣1时,减区间为(﹣,﹣),k∈Z,∵x∈[﹣,],∴此时x∈[﹣,﹣),即在区间[﹣,]上,函数的减区间为∈[﹣,﹣),增区间为(﹣,].22.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=ab sin C=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.。

三角函数的应用专项训练

三角函数的应用专项训练

三角函数的应用专项训练姓名:__________班级:__________评价:__________一、单选题(共8小题)1. 已知α是第四象限角,且3sin2α=8cosα,则cos等于( )A. -B. -C.D.2. 已知α∈,sinα=,则tanα等于( )A. -B. 2C.D. -23. 若α∈(0,π),sin(π-α)+cosα=,则sinα-cosα的值为( )A. B. - C. D. -4. 函数f(x)=(0<x<π)的大致图象是( )A. B. C. D.5. 为了得到函数y=sin的图象,可以将函数y=sin的图象( )A. 向右平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向左平移个单位长度6. 下列函数中,以为周期且在区间上单调递增的是( )A. f(x)=|cos 2x|B. f(x)=|sin 2x|C. f(x)=cos|x|D. f(x)=sin|x|7. 已知函数f(x)=cosωx+sinωx,ω>0,x∈R.若曲线y=f(x)与直线y=1的交点中,相邻交点的距离的最小值为,则y=f(x)的最小正周期为( )A. B. π C. 2π D. 3π8. 已知函数f(x)=sin(ωx+φ),x=-为f(x)的零点,x=为y=f(x)的图象的对称轴,且f(x)在上单调,则ω的最大值为( )A. 11B. 9C. 7D. 5二、多选题(共5小题)9. 函数f(x)=A sin(ωx+φ)(A>0,ω>0,0≤φ≤2π)的部分图象如图所示,则下列说法正确的是( )A. ω=B. ω=C. φ=D. A=510. 已知函数f(x)=A sin(ωx+φ)的部分图象如图所示,则下列说法错误的是( )A. 函数y=f(x)的图象关于直线x=-对称B. 函数y=f(x)的图象关于点对称C. 函数y=f(x)在上单调递减D. 该图象对应的函数解析式为f(x)=2sin11. 将曲线y=sin2x-sin(π-x)sin上每个点的横坐标伸长为原来的2倍(纵坐标不变),得到g(x)的图象,则下列说法正确的是( )A. g(x)的图象关于直线x=对称B. g(x)在[0,π]上的值域为C. g(x)的图象关于点对称D. g(x)的图象可由y=cos x+的图象向右平移个单位长度得到12. 函数y=sin的图象向右平移个单位长度后与函数f(x)的图象重合,则下列结论中正确的是( )A. f(x)的一个周期为-2πB. y=f(x)的图象关于直线x=-对称C. x=是f(x)的一个零点D. f(x)在上单调递减13. 对于函数f(x)=给出下列四个命题,其中为真命题的是( )A. 该函数是以π为最小正周期的周期函数B. 当且仅当x=π+kπ(k∈Z)时,该函数取得最小值-1C. 该函数的图象关于直线x=π+2kπ(k∈Z)对称D. 当且仅当2kπ<x<+2kπ(k∈Z)时,0<f(x)≤三、填空题(共4小题)14. y=tan(2x+θ)图象的一个对称中心为,若-<θ<,则θ=________.15. 设函数f(x)=A sin(ωx+φ),A>0,ω>0,-<φ<,x∈R的部分图象如图所示,则A+ω+φ=________.16. 要得到函数y=sin的图象,只需将函数y=cos 2x的图象向________平移________个单位长度.17. 在如图所示的矩形ABCD中,点E,P分别在边AB,BC上,以PE为折痕将△PEB翻折为△PEB′,点B′恰好落在边AD上,若sin∠EPB=,AB=2,则折痕PE的长为________.四、解答题(共4小题)18. 已知函数f(x)=2sin·cos-sin(x+π).(1)求f(x)的最小正周期;(2)将f(x)的图象向右平移个单位长度,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.19. 已知f(x)=(sin x+cos x)2-cos2x.(1)求函数f(x)的最小正周期及单调递增区间;(2)若θ∈,f=,求sin的值.20. 如图为电流强度I与时间t的关系式I=A sin(ωt+φ)的图象.(1)试根据图象写出I=A sin(ωt+φ)的解析式;(2)为了使I=A sin(ωx+φ)中t在任意一段秒的时间内电流强度I能同时取得最大值|A|与最小值-|A|,那么正整数ω的最小值是多少?21. 如图,某城市拟在矩形区域ABCD内修建儿童乐园,已知AB=200米,BC=400米,点E,N分别在AD,BC上,梯形DENC为水上乐园;将梯形EABN分成三个活动区域,M在AB上,且点B,E关于MN对称.现需要修建两道栅栏ME,MN将三个活动区域隔开.设∠BNM=θ,两道栅栏的总长度L(θ)=ME+MN.(1)求L(θ)的函数表达式,并求出函数L(θ)的定义域;(2)求L(θ)的最小值及此时θ的值.1. 【答案】A【解析】∵3sin2α=8cosα,∴sin2α+2=1,整理可得9sin4α+64sin2α-64=0,解得sin2α=或sin2α=-8(舍去).∵α是第四象限角,∴sinα=-,∴cos=cos=-cos=sinα=-.2. 【答案】A【解析】因为α∈,sinα=,所以cosα=-1-sin2α=-=-,所以tanα==-.3. 【答案】C【解析】由诱导公式得sin(π-α)+cosα=sinα+cosα=,平方得(sinα+cosα)2=1+2sinαcosα=,则2sinαcosα=-<0,所以(sinα-cosα)2=1-2sinαcosα=,又因为α∈(0,π),所以sinα-cosα>0,所以sinα-cosα=.4. 【答案】B【解析】因为f(x)=,====|cos x|,所以,其在(0,π)上的大致图象为B选项中的图象.5. 【答案】B【解析】将函数y=sin的图象向右平移个单位长度,得y=sin=sin 的图象.6. 【答案】A【解析】选项A中,函数f(x)=|cos 2x|的周期为,当x∈时,2x∈,函数f(x)单调递增,故选项A正确;选项B中,函数f(x)=|sin 2x|的周期为,当x∈时,2x∈,函数f(x)单调递减,故选项B不正确;选项C中,函数f(x)=cos|x|=cos x的周期为2π,故选项C不正确;选项D中,f(x)=sin|x|=由正弦函数图象知,在x≥0和x<0时,f(x)均以2π为周期,但在整个定义域上f(x)不是周期函数,故选项D不正确.7. 【答案】D【解析】将函数f(x)=cosωx+sinωx,ω>0,x∈R化简,可得f(x)=sin.曲线y=f(x)与直线y=1相交,令f(x)=1,则ωx+=+2kπ或ωx+=+2kπ,k∈Z.设距离最小的相邻交点的横坐标分别为x1,x2,∴-=ω(x2-x1),∴x2-x1==,解得ω=,∴y=f(x)的最小正周期T==3π.8. 【答案】B【解析】因为x=-为f(x)的零点,x=为f(x)的图象的对称轴,所以-=+kT,即=T=·,所以ω=4k+1(k∈N*),又因为f(x)在上单调,所以-=≤=,即ω≤12,由此得ω的最大值为9.9. 【答案】ACD【解析】由函数的图象可得A=5,周期T==11-(-1)=12,∴ω=.再由“五点法”作图可得×(-1)+φ=2kπ,k∈Z,∴φ=2kπ+,k∈Z,∵0≤φ≤2π,∴φ=.故选ACD.10. 【答案】ABC【解析】由函数的图象可得A=2,由·=-,得ω=2.再由最值得2×+φ=2kπ+,k∈Z,又|φ|<,得φ=,得函数f(x)=2sin,故选项D正确;当x=-时,f(x)=0,不是最值,故选项A错误;当x=-时,f(x)=-2,不等于零,故选项B错误;由+2kπ≤2x+≤+2kπ,k∈Z,得+kπ≤x≤+kπ,k∈Z,故选项C错误.11. 【答案】ABD【解析】y=sin2x-sin(π-x)sin=+sin x cos x=sin 2x-cos 2x+=sin+,∴g(x)=sin+,对于选项A,当x=时,x-=,∴g(x)关于直线x=对称,故选项A正确;对于选项B,当x∈[0,π]时,x-∈,∴sin∈,∴g(x)∈,故选项B正确;对于选项C,当x=时,x-=0,g=,∴g(x)关于点对称,故选项C错误;对于选项D,y=cos x+的图象向右平移个单位长度得到y=cos+=cos +=sin+=g(x)的图象,故选项D正确.12. 【答案】ABC【解析】∵函数y=sin的图象向右平移个单位长度后与函数f(x)的图象重合,∴f(x)=sin=sin,∴f(x)的一个周期为-2π,故选项A正确;∵y=f(x)=sin,∴y=f(x)的图象的对称轴方程满足2x-=kπ+(k∈Z),∴当k=-2时,y=f(x)的图象关于直线x=-对称,故选项B正确;由f(x)=sin=0,得2x-=kπ(k∈Z),得x=+(k∈Z),∴x=是f(x)的一个零点,故选项C正确;当x∈时,2x-∈,∴f(x)在上单调递增,故选项D错误.13. 【答案】CD【解析】由题意知函数f(x)=画出f(x)在x∈[0,2π]上的图象,如图所示,由图象知,函数f(x)的最小正周期为2π,故A选项错误;在x=π+2kπ(k∈Z)和x=+2kπ(k∈Z)时,该函数都取得最小值-1,故B选项错误;由图象知,函数图象关于直线x=+2kπ(k∈Z)对称,故C选项正确;在2kπ<x<+2kπ(k∈Z)时,0<f(x)≤,故D选项正确.14. 【答案】-或【解析】函数y=tan x图象的对称中心是,其中k∈Z,则令2x+θ=,k∈Z,其中x=,即θ=-,k∈Z.又-<θ<,所以当k=1时,θ=-.当k=2时,θ=,所以θ=-或.15. 【答案】3+【解析】由图可知A=2,=-=,所以T=2π,所以ω=1.再根据f=2得sin =1,所以+φ=+2kπ(k∈Z),即φ=+2kπ(k∈Z).又因为-<φ<,所以φ=,因此A+ω+φ=3+.16. 【答案】左【解析】方法一:y=sin=cos=cos=cos.因此要得到函数y=sin的图象,只需将函数y=cos 2x的图象向左平移个单位长度.方法二:y=cos 2x=sin=-sin=-sin2,y=sin=-sin2.因此要得到函数y=sin的图象,只需将函数y=cos 2x的图象向左平移个单位长度.17. 【答案】【解析】根据题意,设BE=m,由sin∠EPB=,得PE=3m,cos∠PEB=,从而得到cos∠B′EA=cos(π-2∠PEB)=-cos 2∠PEB=1-2cos2∠PEB=,由翻折特点可得B′E=BE=m.又AE=2-m,在Rt△B′AE中,cos∠B′EA==,解得m=,所以PE=3m=.18. 【答案】解(1)f(x)=2sin·cos-sin(x+π)=cos x+sin x=232cosx+12sinx=2sin,∴f(x)的最小正周期T==2π.(2)由已知得g(x)=f=2sin.∵x∈[0,π],∴x+∈,∴sin∈,∴g(x)=2sin∈[-1,2],∴函数g(x)在区间[0,π]上的最大值为2,最小值为-1.19. 【答案】解(1)f(x)=(sin x+cos x)2-cos2x=(1+2sin x cos x)-cos2x=sin 2x-+=sin+.所以函数f(x)的最小正周期T==π.由2kπ-≤2x-≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z,所以函数f(x)的单调递增区间为(k∈Z).(2)由(1)得f=sin+=sin+=cosθ+=,所以cosθ=,因为θ∈,所以sinθ=-√1−cos2θ1-cos2θ=-,所以sin 2θ=2sinθcosθ=-,cos 2θ=2cos2θ-1=-,所以sin=sin 2θcos-cos 2θsin=-.20. 【答案】解(1)由题图知,A=300,T=-=,∴ω==100π.∵-=-,∴φ==,∴I=300sin(t≥0).(2)问题等价于T≤,即≤,∴ω≥200π,∴正整数ω的最小值为629.21. 【答案】解(1)在矩形ABCD中,∵B,E关于MN对称,∠BNM=θ,∴∠AME =2θ,∠MEN=,且BM=ME.在Rt△AEM中,AM=ME cos 2θ=BM cos 2θ.又∵AM+BM=200(米),∴BM cos 2θ+BM=200,∴BM=ME==,∴Rt△EMN中,MN==.∴L(θ)=ME+MN=+在Rt△BMN中,BN=MN cosθ=,∵0<BM<200,0<BN<400,∴函数L(θ)的定义域为.(2)L(θ)=ME+MN=+==.令t=sinθ,∵θ∈,∴t∈,令φ(t)=-t2+t=-2+,当t=时,φ(t)取最大值,最大值为,此时θ=,L(θ)取最小值.∴L(θ)的最小值为400 米,此时θ=.第11页共11页。

三角函数的图像与性质专项训练(解析版)

三角函数的图像与性质专项训练(解析版)

三角函数的图像与性质专项训练一、单选题1.(23-24高一上·浙江宁波·期末)为了得到πsin 53y x ⎛⎫=+ ⎪⎝⎭的图象,只要将函数sin 5y x =的图象()A .向左平移π15个单位长度B .向右平移π15个单位长度C .向右平移π3个单位长度D .向左平移π3个单位长度2.(23-24高一上·浙江丽水·期末)已知函数()()2sin f x x ωϕ=+的图象向左平移π6个单位长度后得到函数π2sin 23y x ⎛⎫=+ ⎪⎝⎭的图象,则ϕ的一个可能值是()A .0B .π12C .π6D .π33.(23-24高一下·浙江杭州·期末)为了得到函数()sin2f x x =的图象,可以把()cos2g x x =的图象()A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度4.(23-24高一上·浙江宁波·期末)已知函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭.若π8f x ⎛⎫- ⎪⎝⎭为奇函数,π8f x ⎛⎫+ ⎪⎝⎭为偶函数,且()f x 在π0,6⎛⎫⎪⎝⎭上没有最小值,则ω的最大值是()A .2B .6C .10D .145.(23-24高一上·浙江湖州·期末)我们知道,每一个音都是由纯音合成的,纯音的数学模型是sin y A x ω=.已知某音是由3个不同的纯音合成,其函数为()11sin sin 2sin 323f x x x x =++,则()A .π3f ⎛⎫=⎪⎝⎭B .()f x 的最大值为116C .()f x 的最小正周期为2π3D .()f x 在π0,6⎛⎫⎪上是增函数6.(23-24高一上·浙江杭州·期末)已知函数()*2sin 6f x x ωω⎛⎫=+∈ ⎪⎝⎭N 有一条对称轴为23x =,当ω取最小值时,关于x 的方程()f x a =在区间,63ππ⎡⎤-⎢⎥⎣⎦上恰有两个不相等的实根,则实数a 的取值范围是()A .(2,1)--B .[1,1)-6⎣7.(23-24高一下·浙江丽水·期末)已知函数1()2sin(32f x x x π=ω-ω>∈,R),若()f x 的图象的任意一条对称轴与x 轴交点的横坐标均不属于区间(3π,4π),则ω的取值范围是()A .1287(,[]2396B .1171729(,][,]2241824C .52811[,][,]93912D .11171723[,][]182418248.(23-24高一下·浙江杭州·期末)已知函数()()sin ,0f x x ωω=>,将()f x 图象上所有点向左平移π6个单位长度得到函数()y g x =的图象,若函数()g x 在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,则ω的取值范围为()A .(]0,4B .(]0,2C .30,2⎛⎤⎥⎝⎦D .(]0,1【答案】C【详解】因为函数()()sin ,0f x x ωω=>,二、多选题9.(23-24高一上·浙江台州·期末)已知函数()ππsin cos sin cos 44f x x x x x ⎛⎫⎛⎫=+++ ⎪ ⎝⎭⎝⎭,则()A .函数()f x 的最小正周期为2πB .点π,08⎛⎫- ⎪⎝⎭是函数()f x 图象的一个对称中心C .函数()f x 在区间π5π,88⎡⎤⎢⎥上单调递减D .函数()f x 的最大值为110.(23-24高一上·浙江湖州·期末)筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,现有一个筒车按逆时针方向匀速转动.每分钟转动5圈,如图,将该筒车抽象为圆O ,筒车上的盛水桶抽象为圆O 上的点P ,已知圆O 的半径为4m ,圆心O 距离水面2m ,且当圆O 上点P 从水中浮现时(图中点0P )开始计算时间,点P 的高度()h t 随时间t (单位秒)变化时满足函数模型()()sin h t A t b ωϕ=++,则下列说法正确的是()A .函数()h t 的初相为π6B .1秒时,函数()h t 的相位为0故选:BC .11.(23-24高一上·浙江丽水·期末)已知函数π()tan(2)6f x x =-,则()A .()f x 的最小正周期是π2B .()f x 的定义域是π{|π,Z}3x x k k ≠+∈C .()f x 的图象关于点π(,0)12对称D .()f x 在ππ(,)32上单调递增三、填空题12.(23-24高一上·浙江金华·期末)函数()π2π200cos 30063f n n ⎛⎫=++ ⎪⎝⎭({}1,2,3,,12n ∈⋅⋅⋅为月份),近似表示某地每年各个月份从事旅游服务工作的人数,游客流量越大所需服务工作的人数越多,则可以推断,当n =时,游客流量最大.13.(23-24高一上·浙江湖州·期末)已知()3sin 4f x x ϕ⎛⎫=+ ⎪⎝⎭,其中0,2ϕ⎛⎫∈ ⎪⎝⎭,且ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,若函数()f x 在区间2π,3θ⎛⎫⎪上有且只有三个零点,则θ的范围为.14.(23-24高一上·浙江温州·期末)已知函数()π2sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭,对x ∀∈R 都有()π3f x f ⎛⎫⎪⎝⎭≤,且在,163⎛⎫ ⎪⎝⎭上单调,则ω的取值集合为四、解答题15.(23-24高一下·浙江丽水·期末)已知函数22()sin2f x x x x =.(1)求函数()f x 的最小正周期及单调递减区间;(2)将函数()f x 的图象上每个点的纵坐标缩短到原来的12,横坐标也缩短到原来的12,得到函数()g x 的图象,若函数()y g x m =-在区间π0,4⎡⎤⎢⎥内有两个零点,求实数m 的取值范围.16.(23-24高一下·浙江衢州·期末)已知函数()cos2f x x x =+.(1)求函数()f x 的最小正周期和对称中心;(2)求函数()f x 在π0,2⎡⎤⎢⎥上的值域.17.(23-24高一上·浙江杭州·期末)已知函数22()sin 2sin cos 3cos ,R f x x x x x x =++∈.求:(1)函数()f x 的最小值及取得最小值的自变量x 的集合;(2)函数()f x 的单调增区间.18.(23-24高一下·浙江杭州·期末)已知实数0a <,设函数22()cos sin2f x x a x a =+-,且()64f =-.(1)求实数a ,并写出()f x 的单调递减区间;(2)若0x 为函数()f x 的一个零点,求0cos2x .19.(23-24高一上·浙江嘉兴·期末)已知函数()24cos 2f x x x a x =--.(1)若1a =-,求函数()f x 在[]0,2上的值域;(2)若关于x 的方程()4f x a =-恰有三个不等实根123,,x x x ,且123x x x <<,求()()131278f x f x x --的最大值,并求出此时实数a 的值.,。

高中数学三角函数训练卷

高中数学三角函数训练卷

高中数学三角函数训练卷一、选择题1、已知角α的终边经过点(3, -4),则sinα的值为()A 3/5B -3/5C 4/5D -4/5解析:因为角α的终边经过点(3, -4),所以 r =√(3²+(-4)²) = 5,sinα = y/r =-4/5,故选 D。

2、若sinθ = 1/3,且θ是第二象限角,则cosθ的值为()A -2√2/3B 2√2/3C √10/3D √10/3解析:因为θ是第二象限角,所以cosθ < 0。

又因为sin²θ +cos²θ = 1,所以cosθ =√(1 sin²θ) =√(1 (1/3)²) =-2√2/3,故选 A。

3、下列函数中,周期为π的奇函数是()A y = sin2xB y = cos2xC y = sin(x +π/2)D y = cos(x +π/2)解析:A 选项,y = sin2x,周期 T =2π/2 =π,且 sin(-2x) =sin2x,为奇函数,A 正确;B 选项,y = cos2x 是偶函数,B 错误;C 选项,y = sin(x +π/2) = cosx 是偶函数,C 错误;D 选项,y = cos(x +π/2) = sinx 是奇函数,但周期 T =2π,D 错误。

故选 A。

4、已知tanα = 2,则sin2α的值为()A 4/5B 3/5C 2/5D 1/5解析:sin2α =2sinαcosα =2sinαcosα/(sin²α +cos²α) =2tanα/(tan²α + 1) = 2×2/(2²+ 1) = 4/5,故选 A。

5、函数 y = sin(2x +π/6)的图象可以由函数 y = sin2x 的图象()A 向左平移π/6 个单位长度得到B 向右平移π/6 个单位长度得到C 向左平移π/12 个单位长度得到D 向右平移π/12 个单位长度得到解析:对于函数 y = sin(2x +π/6) = sin2(x +π/12),所以函数 y= sin(2x +π/6)的图象可以由函数 y = sin2x 的图象向左平移π/12 个单位长度得到,故选 C。

高中数学三角函数专项训练(含答案)

高中数学三角函数专项训练(含答案)

高中数学三角函数专项训练(含答案)一、填空题1.如图,在棱长均为23的正四面体ABCD 中,M 为AC 中点,E 为AB 中点,P 是DM 上的动点,Q 是平面ECD 上的动点,则AP PQ +的最小值是______.2.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .角B 为钝角.设△ABC 的面积为S ,若()2224bS a b c a =+-,则sin A +sin C 的最大值是____________.3.法国著名的军事家拿破仑.波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.在三角形ABC 中,角60A =,以,,AB BC AC 为边向外作三个等边三角形,其外接圆圆心依次为123,,O O O ,若三角形123O O O 的面积为3,则三角形ABC 的周长最小值为___________4.如图,某城市准备在由ABC 和以C 为直角顶点的等腰直角三角形ACD 区域内修建公园,其中BD 是一条观赏道路,已知1AB =,3BC =,则观赏道路BD 长度的最大值为______.5.三棱锥P ABC -中,PA ⊥平面ABC ,直线PB 与平面ABC 所成角的大小为30,23AB =60ACB ∠=︒,则三棱锥P ABC -的外接球的表面积为________.6.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()y f x =的图象向右平移4π个单位,得到()y g x =的图象,则下列有关()f x 与()g x 的描述正确的有___________(填序号).①()2sin 23g x x π⎛⎫=- ⎪⎝⎭;②方程()()360,2f x g x x π⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭所有根的和为712π; ③函数()y f x =与函数()y g x =图象关于724x π=对称. 7.在三棱锥P ABC -中,4AB BC ==,8PC =,异面直线PA ,BC 所成角为π3,AB PA ⊥,AB BC ⊥,则该三棱锥外接球的表面积为______.8.已知函数()cos()(0,0,0)f x A x A ωϕωϕπ=->><<的部分图像如图所示,设函数()266g x f x f x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()g x 的值域为___________.9.已知向量a 与b 的夹角为θ,27sin θ=||4a b -=,向量,c a c b --的夹角为2π,||23c a -=,则a c ⋅的最大值是___________.10.函数ππ5sin (1510)55y x x ⎛⎫=+-≤≤ ⎪⎝⎭的图象与函数25(1)22x y x x +=++图象的所有交点的横坐标之和为___________.二、单选题11.已知ABC 中,角,,A B C 的对边分别为,,a b c .若2222224cos 4sin 33a B b A b c +=-,则cos A 的最小值为( )A 2B 7C 7D .3412.已知函数()21ln e 1xf x x -⎛⎫=+ ⎪+⎝⎭,a ,b ,c 分别为ABC 的内角A ,B ,C 所对的边,且222446,a b c ab +-=则下列不等式一定成立的是( ) A .()()sin cos f A f B ≤ B .f (cos A )≤f (cos B ) C .f (sin A )≥f (sin B )D .f (sin A )≥f (cos B )13.已知函数()|sin |(0)f x x ωω=>在区间,53ππ⎡⎤⎢⎥⎣⎦上单调递减,则实数ω的取值范围为( ) A .5,32⎡⎤⎢⎥⎣⎦B .30,2⎛⎤ ⎥⎝⎦C .8,33⎡⎤⎢⎥⎣⎦D .50,4⎛⎤ ⎥⎝⎦14.已知(){}|sin ,A y y n n Z ωϕ==+∈,若存在ϕ使得集合A 中恰有3个元素,则ω的取值不可能是( ) A .27π B .25π C .2π D .23π15.已知函数2()log f x x =,函数()g x 满足以下三点条件:①定义域为R ;②对任意x ∈R ,有()2()g x g x π+=;③当[0,]x π∈时,()sin g x x =.则函数()()y f x g x =-在区间[0,4]π上的零点个数为( )A .5B .6C .7D .816.已知函数()2sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭,且有()0f ()()1g x f x =-的图象在()0,2π内有5个不同的零点,则ω的取值范围为( )A .5571,2424⎛⎤⎥⎝⎦B .5571,2424⎛⎫ ⎪⎝⎭C .4755,2424⎛⎫ ⎪⎝⎭D .4755,2424⎛⎤ ⎥⎝⎦17.已知函数()()sin f x x ωφ=+π0,02ωφ⎛⎫><< ⎪⎝⎭在π5π,88⎛⎫ ⎪⎝⎭上单调,且π3π088f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,则π2f ⎛⎫⎪⎝⎭的值为( )A B .1 C .1- D .18.设锐角ABC 的内角,,A B C 所对的边分别为,,a b c ,若,3A a π=2b 2c bc ++的取值范围为( ) A .(1,9] B .(3,9] C .(5,9]D .(7,9]19.函数()sin()(0)6f x x πωω=+>在区间52[,]63ππ-上单调递增,且存在唯一05[0,]6x π∈,使得0()1f x =,则ω的取值范围为( ) A .11[,]52B .21[,]52C .14[,]55D .24[,]5520.函数()2sin(2)()2f x x πφφ=+<的图像向左平移6π个单位长度后对应的函数是奇函数,函数()()23cos 2g x x =+.若关于x 的方程()()2f x g x +=-在[)0,π内有两个不同的解αβ,,则()cos αβ-的值为( )A .55-B .55C .255-D .255三、解答题21.函数()sin y x ωϕ=+与()cos y x ωϕ=+(其中0>ω,2πϕ<)在520,2x ⎡⎤∈⎢⎥⎣⎦的图象恰有三个不同的交点,,P M N ,PMN ∆为直角三角形,求ϕ的取值范围.22.将函数2sin 3y x =+的图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再将所得的图象向右平移3π个单位长度后得到函数()f x 的图象. (1)写出函数()f x 的解析式;(2)若,36x ππ⎡⎤∈-⎢⎥⎣⎦时,22()2()()1g x f x mf x m =-+-,求()g x 的最小值min ()g x .23.已知函数 f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1,a ∈R . (1)写出函数 f (x )的最小正周期(不必写出过程); (2)求函数 f (x )的最大值;(3)当a =1时,若函数 f (x )在区间(0,k π)(k ∈N*)上恰有2015个零点,求k 的值.24.如图所示,在平面四边形ABCD 中,1,2,AB BC ACD ==∆为正三角形.(1)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若sin(2)3sin A C C +=,求角B 的大小; (2)求BCD ∆面积的最大值.25.已知ABC ∆的三个内角、、A B C 的对边分别为a b c 、、,且22b c ac =+, (1)求证:2B C =;(2)若ABC ∆是锐角三角形,求ac的取值范围.26.如图,某景区内有一半圆形花圃,其直径AB 为6,O 是圆心,且OC ⊥AB .在OC 上有一座观赏亭Q ,其中∠AQC =23π,.计划在BC 上再建一座观赏亭P ,记∠POB =θ(0)2πθ<<.(1)当θ=3π时,求∠OPQ 的大小; (2)当∠OPQ 越大时,游客在观赏亭P 处的观赏效果越佳,求游客在观赏亭P 处的观赏效果最佳时,角θ的正弦值.27.某公司欲生产一款迎春工艺品回馈消费者,工艺品的平面设计如图所示,该工艺品由直角ΔABC 和以BC 为直径的半圆拼接而成,点P 为半圈上一点(异于B ,C ),点H 在线段BC 上,且满足CH AB ⊥.已知90ACB ∠=︒,1dm AB =,设ABC θ∠=.(1)为了使工艺礼品达到最佳观赏效果,需满足ABC PCB ∠=∠,且CA CP +达到最大.当θ为何值时,工艺礼品达到最佳观赏效果;(2)为了工艺礼品达到最佳稳定性便于收藏,需满足60PBA ∠=︒,且CH CP +达到最大.当θ为何值时,CH CP +取得最大值,并求该最大值.28.对于函数()f x ,若存在定义域中的实数a ,b 满足0b a >>且()()2()02a bf a f b f +==≠,则称函数()f x 为“M 类” 函数. (1)试判断()sin f x x =,x ∈R 是否是“M 类” 函数,并说明理由;(2)若函数()2|log 1|f x x =-,()0,x n ∈,*n N ∈为“M 类” 函数,求n 的最小值. 29.已知函数 2()sin 2cos 1f x x m x =--- [0,]2x π∈()1若()f x 的最小值为 - 3,求m 的值; ()2当2m =时,若对任意 12,[0,]2x x π∈ 都有()()12124f x f x a -≤-恒成立,求实数a 的取值范围.30.已知函数()sin 24a a x x b f π⎛⎫=+++ ⎪⎝⎭,当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 的值域是2,2⎡⎤-⎣⎦. (1)求常数a ,b 的值;(2)当0a <时,设()2g x f x π⎛⎫=+ ⎪⎝⎭,判断函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的单调性.【参考答案】一、填空题12.983.641 5.20π6.①③7.80π 8.9[,4]4-9.25 10.-7二、单选题 11.C 12.D 13.A 14.A 15.A 16.A 17.D 18.D 19.B 20.D 三、解答题21.,44ππϕ⎡⎤∈-⎢⎥⎣⎦【解析】且为等腰三角形,由此可确定周期,进而得到ω的知;采用整体对应的方式可知若为三个交点只需95,,442πππϕϕ⎡⎤⎡⎤⊂+⎢⎥⎢⎥⎣⎦⎣⎦,由此可构造不等式求得结果. 【详解】令t x ωϕ=+,结合sin y t =与cos y t =图象可知:sin y t =与cos y t =,其交点坐标分别为4π⎛ ⎝⎭,5,4π⎛ ⎝⎭,94π⎛ ⎝⎭,13,4π⎛ ⎝⎭,...,PMN ∆为等腰三角形.PMN ∆∴斜边长为2T πω==,解得,ω=;52553244T T =⋅<,∴两图象不可能四个交点; 由x ⎡∈⎢⎣⎦,有5,2t πϕϕ⎡⎤∈+⎢⎥⎣⎦,两图象有三个交点只需95,,442πππϕϕ⎡⎤⎡⎤⊂+⎢⎥⎢⎥⎣⎦⎣⎦, 由45924πϕπϕπ⎧≤⎪⎪⎨⎪+≥⎪⎩得:,44ππϕ⎡⎤∈-⎢⎥⎣⎦.【点睛】本题考查根据三角函数的交点与性质求解解析式中的参数范围的问题,关键是能够利用正余弦函数的性质类比得到正弦型和余弦型函数的交点所满足的关系,从而根据两函数交点个数确定不等关系.22.(1)2()2sin 233f x x π⎛⎫=-+⎪⎝⎭;(2)22min21,47()1,4128(32312m m m g x m m m m m ⎧-+≤⎪⎪=-<<+⎨⎪⎪-++≥+⎩ 【解析】(1)根据函数图象的变换规律即可求得()f x的解析式;(2)令()t f x =可求得则()[1,3f x ∈+,设22()21M t t mt m =-+-,[1,3t ∈,通过定区间讨论对称轴4mt =的三种情况()M t 的单调性,进而可确定最小值的情况. 【详解】(1)将函数2sin 3y x =+的图象上所有点的横坐标缩短到原来的12倍,可得2sin 23y x =+得图象,再向右平移3π个单位长度得2()2sin 232sin 2333f x x x ππ⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭.(2)∵,36x ππ⎡⎤∈-⎢⎥⎣⎦,242,333x πππ⎡⎤-∈--⎢⎥⎣⎦,则()[1,3f x ∈+, 令()t f x =,则设22()21M t t mt m =-+-,[1,3t ∈+, ①当14m≤,即4m ≤时,函数()M t在[1,3上单调递增, ∴22min ()(1)211M t M m m m m ==-+-=-+;②当134m<<412m <<+ 函数()M t 在1,4m ⎛⎫ ⎪⎝⎭上单调递减,在,34m ⎛ ⎝上单调递增,∴2min 7()148m M t M m ⎛⎫==- ⎪⎝⎭;③当34m≥+12m ≥+()M t在[1,3+上单调递减,∴2min ()(3(323M t M m m ==-++∴综上有22min21,47()1,4128(32312m m m g x m m m m m ⎧-+≤⎪⎪=-<<+⎨⎪⎪-++≥+⎩. 【点睛】本题考查三角函数图象的变换,考查二次函数在三角函数中的应用,考查定区间动轴的最值取值情况,难度较难.23.(1)最小正周期为π.(2)见解析(3)k =1008. 【解析】(1)由题意结合周期函数的定义直接求解即可;(2)令t ,t ∈[1,则当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()2f x t at t μ==-,当,2x π⎛⎤∈π ⎥⎝⎦时,()()22f x v t t at ==+-,易知()()t v t μ≤,分类比较()1v、v的大小即可得解;(3)转化条件得当且仅当sin2x =0时,f (x )=0,则x ∈(0,π]时,f (x )有且仅有两个零点,结合函数的周期即可得解. 【详解】(1)函数 f (x )的最小正周期为π. (2)∵f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1 =sin2x ﹣1=(sin2x +1), 令t =t ∈[1],当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()(21f x t at t t μ==-≤≤,当,2x π⎛⎤∈π ⎥⎝⎦时,()()(221f x v t t at t ==+-≤≤,∵()()()2222220t v t at t t at t μ-=--+-=-+≤即()()t v t μ≤.∴()()(){}max max max 1,f x v t v v ==,∵()11v a =-,v,∴当1a ≤-()f x 最大值为1a -;当1a >-()f x .(3)当a =1时,f (x )sin 21x -,若f (x )=0sin 21x =+即22sin 22sin 2sin x x x =+,∴当且仅当sin2x =0时,f (x )=0,∴x ∈(0,π]时,f (x )有且仅有两个零点分别为2π,π, ∴2015=2×1007+1, ∴k =1008. 【点睛】本题考查了三角函数的综合问题,考查了分类讨论思想和转化化归思想,属于难题.24.(1)23B π=;(21. 【解析】 【分析】(1)由正弦和角公式,化简三角函数表达式,结合正弦定理即可求得角B 的大小;(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理及正弦定理用,αβ表示出CD .再根据三角形面积公式表示出∆BCD S ,即可结合正弦函数的图像与性质求得最大值. 【详解】 (1)由题意可得:sin2cos cos2sin 3sin A C A C C +=∴()22sin cos cos 12sin sin 3sin A A C A C C +-=整理得sin (cos cos sin sin )sin A A C A C C -= ∴sin cos()sin A A C C += ∴sin cos sin A B C -= ∴sin 1cos sin 2C c B A a =-=-=- 又(0,)B π∈ ∴23B π=(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理得:22212212cos 54cos AC αα=+-⨯⨯=-, ∵ACD ∆为正三角形,∴2254cos CD C A α=-=, 在ABC ∆中,由正弦定理得:1sin sin ACβα=, ∴sin sin AC βα=, ∴sin sin CD βα=,∵()222222(cos )1sin sin 54cos sin CD CD CD ββααα=-=-=--2(2cos )α=-,∵BAC β<∠,∴β为锐角,cos 2cos CD βα=-, 12sin sin 233BCD S CD CD ππββ∆⎛⎫⎛⎫=⨯⨯⨯+=+ ⎪ ⎪⎝⎭⎝⎭1cos sin 2CD ββ=+,1cos )sin sin 23πααα⎛⎫=-+=- ⎪⎝⎭, ∵(0,)απ∈∴当56πα=时,()max 1BCD S ∆=. 【点睛】本题考查了三角函数式的化简变形,正弦定理与余弦定理在解三角形中的应用,三角形面积的表示方法,正弦函数的图像与性质的综合应用,属于中档题. 25.(1)证明见解析;(2)(1,2) 【解析】 【分析】(1)由22b c ac =+,联立2222cos b a c ac B =+-⋅,得2cos a c c B =+⋅,然后边角转化,利用和差公式化简,即可得到本题答案; (2)利用正弦定理和2B C =,得2cos 21aC c=+,再确定角C 的范围,即可得到本题答案. 【详解】解:(1)锐角ABC ∆中,22b c ac =+,故由余弦定理可得:2222cos b a c ac B =+-⋅,2222cos c ac a c ac B ∴+=+-⋅,22cos a ac ac B ∴=+⋅,即2cos a c c B =+⋅,∴利用正弦定理可得:sin sin 2sin cos A C C B =+, 即sin()sin cos sin cos sin 2sin cos B C B C C B C C B +=+=+,sin cos sin sin cos B C C C B ∴=+,可得:sin()sin B C C -=,∴可得:B C C -=,或B C C π-+=(舍去),2B C ∴=.(2)2sin sin()sin(2)2cos cos22cos21sin sin sin a A B C C C C C C c C C C++====+=+A B C π++=,,,A B C 均为锐角,由于:3C A π+=,022C π∴<<,04C π<<.再根据32C π<,可得6C π<,64C ππ∴<<,(1,2)ac∴∈ 【点睛】本题主要考查正余弦定理的综合应用,其中涉及到利用三角函数求取值范围的问题.26.(1)6π.(2)sin θ=. 【解析】(1)设∠OPQ =α,在△POQ 中,用正弦定理sin sin OQ OPOPQ OQP=∠∠可得含α,θ的关系式,将其展开化简并整理后得tanαθ=3π代入得答案;(2)令f (θ)f (θ)的最大值,即此时的sin θ,由(1)可知tan α.【详解】(1)设∠OPQ =α,在△POQ 中,用正弦定理可得含α,θ的关系式. 因为∠AQC =23π,所以∠AQO =3π.又OA =OB =3,所以OQ在△OPQ 中,OQ OP =3,∠POQ =2π-θ,设∠OPQ =α,则∠PQO =2π-α+θ.由正弦定理,得3sin 2παθ⎛⎫-+ ⎪⎝⎭=cos (α-θ).展开并整理,得tanαθ∈0,2π⎛⎫⎪⎝⎭.此时当θ=3π时,tanα因为α∈(0,π),所以α=6π. 故当θ=3π时,∠OPQ =6π.(2)设f (θ)θ∈0,2π⎛⎫ ⎪⎝⎭.则f′(θ)令f′(θ)=0,得sinθθ0满足sinθ则cosθ=,即()fθ===列表如下:2由(1)可知tanα=f(θ)>0,则0,2πα⎛⎫∈ ⎪⎝⎭,tanα单调递增则当tanαα也取得最大值.故游客在观赏亭P处的观赏效果最佳时,sinθ【点睛】本题考查三角函数和解三角形的实际应用,应优先建模,将实际问题转化为熟悉的数学问题,进而由正弦定理构建对应关系,还考查了利用导数求函数的最值,属于难题. 27.(1)π6θ=(2)当π12θ=,CH CP+【解析】(1)设ABC PCBθ∠=∠=,则在直角ΔABC中,sinACθ=,cosBCθ=,计算得到2sin sin1AC CPθθ+=-++,计算最值得到答案.(2)计算sin cosCHθθ=⋅,得到πsin23CH CPθ⎛⎫+=+⎪⎝⎭.【详解】(1)设ABC PCBθ∠=∠=,则在直角ΔABC中,sinACθ=,cosBCθ=.在直角ΔPBC中,2cos cos cos cosPC BCθθθθ=⋅=⋅=,sin sin cos sin cosPB BCθθθθθ=⋅=⋅=.22sin cos sin1sinAC CPθθθθ+=+=+-2sin sin1θθ=-++,π0,3θ⎛⎫∈ ⎪⎝⎭,所以当1sin 2θ=,即π6θ=,AC CP +的最大值为54. (2)在直角ΔABC 中,由1122ABC S CA CB AB CH ∆=⋅=⋅,可得sin cos sin cos 1CH θθθθ⋅==⋅. 在直角ΔPBC 中,πsin 3PC BC θ⎛⎫=⋅- ⎪⎝⎭ππcos sin cos cos sin 33θθθ⎛⎫=⋅- ⎪⎝⎭,所以1sin cos cos sin 2CH CP θθθθθ⎫+=+-⎪⎪⎝⎭,π0,3θ⎛⎫∈ ⎪⎝⎭,所以211sin 2sin cos 22CH CP θθθθ+=-11πsin 22sin 2423θθθ⎛⎫==+ ⎪⎝⎭ 所以当π12θ=,CH CP +【点睛】本题考查了利用三角函数求最值,意在考查学生对于三角函数知识的应用能力. 28.(1)不是.见解析(2)最小值为7. 【解析】(1)不是,假设()f x 为M 类函数,得到2b a k π=+或者2b a k ππ+=+,代入验证不成立.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,得到函数的单调区间,根据题意得到326480b b b ---=,得到()6,7b ∈,得到答案.【详解】 (1)不是.假设()f x 为M 类函数,则存在0b a >>,使得sin sin a b =, 则2b a k π=+,k Z ∈或者2b a k ππ+=+,k Z ∈, 由sin 2sin2a ba +=, 当2b a k π=+,k Z ∈时,有()sin 2sin a a k π=+,k Z ∈, 所以sin 2sin a a =±,可得sin 0a =,不成立;当2b a k ππ+=+,k Z ∈时,有sin 2sin()2a k ππ=+,k Z ∈,所以sin 2a =±,不成立, 所以()f x 不为M 类函数.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,则()f x 在()0,2单调递减,在()2,+∞单调递增,又因为()f x 是M 类函数,所以存在02a b <<<,满足2221log log 12|log 1|2a ba b +-=-=-, 由等式可得:()2log 2ab =,则4ab =,所以()22142(4)0222a a b a a a -+-=+-=>,则2log 102a b +->,所以得22log 12log 12a b b +⎛⎫-=- ⎪⎝⎭, 从而有222log 1log 2a b b +⎛⎫+= ⎪⎝⎭,则有()224a b b +=,即248b b b ⎛⎫+= ⎪⎝⎭, 所以43288160b b b -++=,则()()3226480b b b b ----=,由2b >,则326480b b b ---=,令()32648g x x x x =---,当26x <<时,()()26480g x x x x =---<,且()6320g =-<,()7130g =>,且()g x 连续不断,由零点存在性定理可得存在()6,7b ∈, 使得()0g b =,此时()0,2a ∈,因此n 的最小值为7. 【点睛】本题考查了函数的新定义问题,意在考查学生对于函数的理解能力和应用能力. 29.(1)1m =;(2)13[,)8a ∈+∞【解析】 【分析】(1)将函数化为2()cos 2cos 2f x x m x =--,设cos [0,1]t x =∈,将函数转化为二次函数,利用二次函数在给定的闭区间上的最值问题的解法求解.(2) 对任意 12,[0,]2x x π∈ 都有()()12124f x f x a -≤-恒成立, 等价于12max1()()24f x f x a -≤-,然后求出函数()f x 的最值即可解决.【详解】(1)2()cos 2cos 2f x x m x =--,[0,]2x π∈令 cos [0,1]t x =∈, 设222()22()2g t t mt t m m =--=---, ①0m <,则min g(0)2()3g t ==-≠-,②01m ≤≤,则2min )3(2t m g =--=-,∴1m =± ∴1m =③1m ,则min g(1)21()3g m t ==--=-,∴1m =.(舍) 综上所述:1m =.(2)对任意12,[0,]2x x π∈都有()()12124f x f x a -≤-恒成立,等价于12max1()()24f x f x a -≤-,2m=,∴2g()(2)6t t=--,[0,1]t∈max()g(0)2f x==-,min()g(1)5f x==-12max()(25)()3f x f x=---=-∴1234a-≥,∴138a≥,综上所述:13[,)8a∈+∞.【点睛】本题考查三角函数中的二次“型”的最值问题,和双参恒成立问题,属于中档题. 30.(1)2a=,2b=-或2a=-,4b=函数()g x在0,8π⎡⎤⎢⎥⎣⎦上单调递增.函数()g x在,82ππ⎡⎤⎢⎥⎣⎦上单调递减.【解析】【分析】(1)先求得sin242xπ⎡⎤⎛⎫+∈-⎢⎥⎪⎝⎭⎣⎦,再讨论0a>和0a<的情况,进而求解即可;(2)由(1)()2sin224f x xπ⎛⎫=-++⎪⎝⎭则()2sin224g x xπ⎛⎫=++⎪⎝⎭进而判断单调性即可【详解】解:(1)当0,2xπ⎡⎤∈⎢⎥⎣⎦时,52,444xπππ⎡⎤+∈⎢⎥⎣⎦,所以sin24xπ⎡⎤⎛⎫+∈⎢⎥⎪⎝⎭⎣⎦,①当0a>时,由题意可得12a a ba a b⎧⎛⨯++=⎪⎨⎝⎭⎪⨯++=⎩即22a ba b⎧++=⎪⎨⎪+=⎩解得2a=,2b=-;②当0a<时,由题意可得21a a ba a b⎧⎛⨯++=⎪⎨⎝⎭⎪⨯++=⎩,即22a ba b⎧++=⎪⎨⎪+=⎩,解得2a=-,4b=(2)由(1)当0a<时,2a=-,4b=所以()2sin224f x xπ⎛⎫=-++⎪⎝⎭所以()2sin 22224f x x g x πππ⎡⎤⎛⎫⎛⎫=+=-+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦2sin 224x π⎛⎫=++ ⎪⎝⎭令222242k x k πππππ-+≤+≤+,k Z ∈,解得388k x k ππππ-+≤≤+,k Z ∈, 当0k =时,388x ππ-≤≤,则3,0,0,8828ππππ⎡⎤⎡⎤⎡⎤-⋂=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以函数()g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递增,同理,函数()g x 在,82ππ⎡⎤⎢⎥⎣⎦上单调递减【点睛】本题考查由三角函数性质求解析式,考查正弦型函数的单调区间,考查运算能力。

第五章 三角函数【压轴题专项训练】(解析版)

第五章 三角函数【压轴题专项训练】(解析版)

第五章三角函数【压轴题专项训练】一、单选题1.下列命题中正确的是()A .终边和始边都相同的角一定相等B .始边相同而终边不同的角一定不相等C .小于90︒的角一定是锐角D .大于或等于0︒且小于90︒的角一定是锐角【答案】B 【分析】根据任意角的定义判断.【详解】终边和始边都相同的角不一定相等,可以是终边相同角,故A 错误;始边相同而终边不同的角一定不相等,B 正确;小于90︒的角包括锐角、零角和负角,故C 错误;零角不是锐角,故D 错误;只有B 正确.故选:B .【点睛】本题考查任意角的定义,终边相同角的定义,掌握任意角的定义是解题关键.2.在直径为20cm 的圆中,165°圆心角所对应的弧长为()A .253πcm B .556πcm C .403πcm D .553πcm 【答案】B 【分析】由角度制和弧度制的转化、弧长与圆心角的关系,即可求得结果.【详解】165°=180π×165rad =1112πrad ,所以l =1112π×10=556π(cm).故选:B 【点睛】本题考查了角度制和弧度制的转化和求弧长,考查了运算求解能力和逻辑推理能力,属于一般题目.3.已知tan 2α=,则2222sin cos 12sin cos αααα-++等于()A .89B .119C .67D .47【答案】A 【分析】对齐次式,先弦化切,再代入求值.【详解】tan 2α=,22sin cos 1αα+=,∴22222222222sin cos 12sin α2tan α2282sin cos 2sin αcos α2tan α12219αααα-+⨯====+++⨯+.故选:A.【点睛】利用三角公式求三角函数值的关键:(1)角的范围的判断;(2)选择合适的公式进行化简求值.4.若点P 在角23π的终边上,且||4OP =,则点P 的坐标是()A.(2,-B.C.(2--,D.(2)--【答案】A 【分析】设出坐标,根据三角函数的定义建立关系即可求出.【详解】点P 在角23π的终边上,设(),P x y ,0,0x y <>,则可得42tan3yx π===⎪⎩,解得2x y =-⎧⎪⎨=⎪⎩2x y =⎧⎪⎨=-⎪⎩,所以点P的坐标是(2,-.故选:A.5.已知3cos cos()2παπα⎛⎫-++=⎪⎝⎭则1tan tan αα+=()A .2B .-2C .13D .3【答案】A 【分析】用诱导公式化简,平方后求得sin cos αα,求值式切化弦后易得结论.【详解】3cos cos()sin cos 2παπααα⎛⎫-++=-= ⎪⎝⎭即21sin cos (sin cos )2,sin cos ,2αααααα+=∴+=∴=1sin cos 1tan 2tan cos sin sin cos αααααααα∴+=+==,故选:A .6.已知tan()3α-=-,则22sin sin()cos 3cos αααα--+的值为()A .B .1C .32D .32【答案】D 【分析】由题可得tan 3α=,再将所求式化为齐次式即可求出.【详解】由题可得tan 3α=,222222sin sin cos 3cos sin sin()cos 3cos sin cos αααααααααα++--+=+22tan tan 39333tan 1912ααα++++===++.故选:D .7.已知角α的终边上一点P 的坐标为(sin 2,cos 2)-,则角α的一个弧度数为()A .π2+B .π22+C .3π22-D .π22-【答案】D 【分析】利用三角函数的定义和诱导公式可求α.【详解】因为P 的坐标为(sin 2,cos 2)-且P 在角α的终边上,故cos sin 2α==,同理sin cos 2α==-,而cos sin 22πα⎛⎫=- ⎪⎝⎭,sin sin 22πα⎛⎫=- ⎪⎝⎭,故α与22π-的终边重合,又0222ππ<-<,α锐角,故22πα=-,故选:D.8.已知函数()()sin f x A x =+ωϕ(0A >,0>ω,π2ϕ<),若()f x 的图象经过点2π,03⎛⎫ ⎪⎝⎭,相邻对称轴的距离为π2,则()f x 的解析式可能为()A .()πcos 26f x x ⎛⎫=-+ ⎪⎝⎭B .()π2sin 3f x x ⎛⎫=+ ⎪⎝⎭C .()π3cos 23f x x ⎛⎫=- ⎪⎝⎭D .()π4cos 6f x x ⎛⎫=- ⎪⎝⎭【答案】A 【分析】先求得2ω=,排除B 、D ,然后把点2π,03⎛⎫⎪⎝⎭代入选项A ,C ,排除C.【详解】因为相邻对称轴的距离为周期的一半,所以函数()f x 的最小正周期22T ππ=⨯=,又2T ππω==,所以2ω=,故选项B ,D 错误;把点2π,03⎛⎫⎪⎝⎭代入选项A ,2π43cos cos 03362f πππ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭,选项A 成立,而把点2π,03⎛⎫⎪⎝⎭代入选项C ,2π43cos 3cos 30333f πππ⎛⎫⎛⎫=-==-≠ ⎪ ⎪⎝⎭⎝⎭,选项C 不成立.故选:A.9.1tan15tan15︒-=︒()A.B.C.-D .4【答案】C 【分析】切化弦,然后利用倍角公式求解即可.【详解】221sin15cos1515cos 15cos30tan1521tan15cos15sin15cos15sin15sin 302sin ︒︒︒-︒-︒︒-=-==-︒︒︒︒︒︒故选:C10.将函数()y f x =的图象向右平移3π个单位后得到一个奇函数的图象,则该函数的解析式可能为()A .()sin 23f x x π⎛⎫=+ ⎪⎝⎭B .()sin 6f x x π⎛⎫=- ⎪⎝⎭C .()cos 23f x x π⎛⎫=- ⎪⎝⎭D .()cos 26f x x π⎛⎫=+ ⎪⎝⎭【答案】D 【分析】将各选项所给函数按条件平移,判断平移后的函数奇偶性,即得出结果.【详解】A 选项,将函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移3π个单位后得到2sin 2sin 2333y x x πππ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭的图象,函数sin 23y x π⎛⎫=- ⎪⎝⎭显然不是奇函数,故A 错;B 选项,将函数()sin 6f x x π⎛⎫=- ⎪⎝⎭的图象向右平移3π个单位后得到sin cos 36y x x ππ⎛⎫=--=- ⎪⎝⎭的图象,函数cos y x =-显然是偶函数,故B 错;C 选项,将函数()cos 23f x x π⎛⎫=- ⎪⎝⎭的图象向右平移3π个单位后得到2cos 2cos233y x x ππ⎛⎫=--=- ⎪⎝⎭的图象,函数cos 2x y =-显然是偶函数,故C 错;D 选项,将函数()cos 26f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移3π个单位后得到2cos 2sin 236y x x ππ⎛⎫=-+= ⎪⎝⎭的图象,函数sin 2y x =显然是奇函数,故D 正确.故选:D.二、多选题11.(多选)若函数()cos()3f x x π=+,则下列结论正确的是()A .()f x 的一个周期为2πB .()f x 的图象关于直线83x π=对称C .()f x π+的一个零点为6x π=D .()f x 在区间(,)2ππ上单调递减【答案】ABC 【分析】由三角函数周期的计算公式,可判定A 正确;由三角函数对称轴的性质,可判定B 正确;求得()cos(3f x x ππ+=-+,令()0f x π+=,得到,6x k k Z ππ=+∈,可判定C 正确;由三角函数单调性的判定方法,可判定D 不正确.【详解】由题意,函数()cos(3f x x π=+,可得()f x 的最小正周期为221T ππ==,所以A 正确;当83x π=时,可得88()cos(cos31333f ππππ=+==-,所以83x π=是函数()f x 的其中一条对称轴,所以B 正确;由()cos()3f x x π=+,可得()cos()cos(33f x x x ππππ+=++=-+,令()0f x π+=,即cos()03x π+=,解得,6x k k Z ππ=+∈,当0k =时,可得6x π=,即6x π=是函数()f x π+的一个零点,所以C 正确;由(,)2x ππ∈,可得54(,)363x πππ+∈,当5(,]36x πππ+∈时,即2(,)23x ππ∈时,函数()f x 单调递减;当4(,)33x πππ+∈时,即2(,)3x ππ∈时,函数()f x 单调递增,所以D 不正确.故选:ABC.12.下列四个选项正确的有()A .75-︒角是第四象限角B .225︒角是第三象限角C .475︒角是第二象限角D .315-︒是第一象限角【答案】ABCD 【分析】直接找出各对应角的终边所在象限得答案.【详解】对于A 如图1所示,75-︒角是第四象限角;对于B 如图2所示,225︒角是第三象限角;对于C 如图3所示,475︒角是第二象限角;对于D 如图4所示,315-︒角是第一象限角.故选:ABCD .【点睛】本题考查对象限角的掌握,是对角的定义的考查,属于基础题.13.下列化简正确的是A .()tan π1tan1+=B .()()sin cos tan 360ααα-=-C .()()sin πtan cos πααα-=+D .()()()cos πtan π1sin 2πααα---=-【答案】AB 【分析】利用诱导公式,及sin tan cos ααα=,依次分析即得解【详解】利用诱导公式,及sin tan cos ααα=A 选项:tan(1)tan1π+=,故A 正确;B 选项:sin()sin sin cos sin tan(360)tan cos oαααααααα--===--,故B 正确;C 选项:sin()sin tan cos()cos παααπαα-==-+-,故C 不正确;D 选项:sin cos cos()tan()cos (tan )cos 1sin(2)sin sin ααπαπααααπααα⋅----⋅-==-=---,故D 不正确故选:AB 【点睛】本题考查了诱导公式和同角三角函数关系的应用,考查了学生概念理解,转化划归,数学运算能力,属于基础题.14.已知函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,则下列关于函数()f x 说法中不正确...的是()A .最小正周期为T π=B .图象关于点,03π⎛⎫⎪⎝⎭对称C .在区间0,6π⎛⎫⎪⎝⎭上为减函数D .图象关于直线6x π=对称【答案】CD 【分析】根据正弦函数的周期性求出()f x 的周期判断A ;代入法判断B 、D ;根据正弦函数的周期性求出函数()f x 的单调区间判断C.【详解】最小正周期为22T ππ==,A 正确;因为22sin 0333f πππ⎛⎫⎛⎫=+= ⎪⎪⎝⎭⎝⎭,所以函数()f x 的图象关于点,03π⎛⎫⎪⎝⎭对称,B 正确;令222,232k x k k πππ-+π≤+≤+π∈Z ,解得5,1212k x k k Z ππππ-+≤≤+∈,所以函数()f x 在5[,],1212k k k Z ππππ-++∈上单调递增,所以函数()f x 在0,12π⎛⎫⎪⎝⎭上单调递增,在,126ππ⎛⎫ ⎪⎝⎭上单调递减,故C 错;2sin 633f πππ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭()f x 的图象不关于直线6x π=对称,D错误.故选:CD 三、填空题15.函数y =sin x 的定义域为[a ,b ],值域为11,2⎡⎤-⎢⎥⎣⎦,则b -a 的最大值是________.【答案】43π【分析】由于正弦函数的周期性,可以在一个周期区间内确定函数值为1-和12的x 值,结合周期性性可得结论.【详解】因为函数y =sin x ,x ∈[a ,b ]的最小值和最大值分别为-1和12.不妨在一个区间[0,2π]内研究,可知51sin sin662ππ==,3sin 12π=-,由正弦函数的周期性可知(b -a )min =352263πππ-=,(b -a )max =1354=663πππ-.故答案为:43π.16.sin15cos75︒︒=__________.【分析】由诱导公式和二倍角公式求解.【详解】211cos3022sin15cos75sin15sin15sin 15224-︒︒︒=︒⋅︒=︒===.故答案为:24.17.应用五点法作函数y =32sin 1(33x π-的图象时,图象的最高点的坐标是________.【答案】53(,)22π【分析】由正弦型三角函数图像性质求解即可.【详解】由sin 1()33x π-=1可得x =52π,所以图象的最高点的坐标是53(,)22π.故答案为:53(,)22π【点睛】本题主要考查正弦型三角函数图像的性质,属于简单题.18.有下列命题:①若α是第二象限角,且sin =,cos m n αα=,则tan mnα=-;②无论α为何值,都有22sin cos 1αα+=;③一定存在角α,使得22sin cos 1αα+=;④总存在一个角α,使得1sin cos 2αα==.其中正确的有_____.【答案】②③【分析】由同角三角函数的平方关系,商数关系,可判断①、②、③的真假,根据三角函数的性质判断④的真假.【详解】①由sin tan cos mnααα==,错误;②对任意角α,都有22sin cos 1αα+=,正确;同理,③正确;④不存在一个角α,使得1sin cos 2αα==成立,错误;故答案为:②③.四、解答题19.已知角α=2010°.(1)将α改写成β+2k π(k ∈Z ,0≤β<2π)的形式,并指出α是第几象限的角;(2)在区间[-5π,0)上找出与α终边相同的角.【答案】(1)752+6ππ⨯,第三象限的角;(2)答案见解析.【分析】(1)根据角度制与弧度制的互化公式进行求解即可;(2)利用代入法进行求解即可.【详解】(1)6772010=2010rad==(52+)rad 18066rad ππππ︒⨯⨯,又73<62πππ<,∴α与76π终边相同,是第三象限的角.(2)与α终边相同的角可以写成72()6k k Z πγπ=+∈,又50πγ-≤<,∴当k =-3时,296πγ=-;当k =-2时,176πγ=-;当k =-1时,56πγ=-.20.若cos130a ︒=,则tan 50︒=__________.【答案】a【分析】利用诱导公式求出cos50︒,然后求出sin 50︒,再求tan 50︒的值.【详解】解:cos130a ︒=即:cos50a ︒=-,所以sin 50︒所以sin 50tan 50cos50︒︒==︒故答案为:a.21.已知3cos 5α=-,,2παπ⎛⎫∈ ⎪⎝⎭.(1)求cos 4πα⎛⎫- ⎪⎝⎭的值;(2)求tan 24απ⎛⎫- ⎪⎝⎭的值.【答案】(1)210;(2)13.【分析】(1)由3cos 5α=-,(,)2παπ∈,求得4sin 5α=,结合两角差的余弦公式,即可求解;(2)由三角函数的基本关系式和诱导公式,求得3tan()24πα-=,再结合二倍角的正切公式,即可求解.【详解】(1)由题意知,3cos 5α=-,(,)2παπ∈,所以4sin 5α=,则34cos()cos cos sin sin 444525210πππααα-=+=-⨯+⨯=(2)由三角函数的基本关系式,可得sin tan s 43co ααα==-,则3tan()cot 24παα-=-=又由22tan()324tan()tan 2()22441tan ()24αππαπααπ-⎡⎤-=-==⎢⎥⎣⎦--,解得1tan(243απ-=或tan()324απ-=-,又因为(,)2παπ∈,可得(0,)244a ππ-∈,所以1tan(243απ-=.【点睛】利用诱导公式、两角和(差)的正弦、余弦、正切公式以及三角函数的基本关系求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形,并且注意角的范围对三角函数符号的影响.22.已知3cos 5α=,,02πα⎛⎫∈- ⎪⎝⎭.(1)求tan α,sin 2α的值;(2)求sin 3πα⎛⎫- ⎪⎝⎭的值.【答案】(1)43-,2425-;(2)410【分析】(1)首先利用同角三角函数关系求出4sin 5α=-,从而得到4tan 3α=-,再利用正弦二倍角公式计算sin2α即可.(2)利用正弦两角差公式展开计算即可得到答案.【详解】(1)因为3cos5α=,,02πα⎛⎫∈-⎪⎝⎭,所以4sin5α=-,所以4sin45tan3cos35ααα-===-,24sin22sin cos25ααα==-.(2)314 sin sin cos cos sin333525πππααα⎛⎫⎛⎫-=-=-⨯-= ⎪ ⎪⎝⎭⎝⎭【点睛】本题主要考查三角函数的恒等变换,同时考查同角三角函数关系,属于简单题.。

(浙江)高考三角函数解答题专项训练含答案

(浙江)高考三角函数解答题专项训练含答案

三角函数【1】1、 已知函数x x x f cos sin )(-=,R x ∈.(1)求函数)(x f 的最小正周期;(2)若函数)(x f 在0x x =处取得最大值,求)3()2()(000x f x f x f ++ 的值.解:(1))4sin(2cos sin )(π-=-=x x x x f ,()f x ∴的最小正周期为2π(2)依题意,4320ππ+=k x (Z k ∈),由周期性,)3()2()(000x f x f x f ++12)49cos 49(sin )23cos 23(sin )43cos 43(sin-=-+-+-=ππππππ 2、△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,a sin A +c sin C -2a sin C =b sin B .(1)求B ;(2)若A =75°,b =2,求a ,c .解:(1) 由正弦定理得a 2+c 2-2ac =b 2.由余弦定理得b 2=a 2+c 2-2ac cos B .故cos B =22,因此B =45°. (2)sin A =sin(30°+45°)=sin30°cos45°+cos30°sin45°=2+64. 故a =b ×sinA sinB =2+62=1+3,c =b ×sinC sinB =2×sin60°sin45°= 6.3、设ABC ∆的内角,,A B C 所对的边长分别为,,,a b c且()2cos cos b A C =(1) 求角A 的大小。

(2) 若角6B π=,BC 边上的中线AM ,求ABC ∆的面积。

解:1)6π=A (7)2)3=S (7)4、如图,在ABC ∆中,点D 在BC 边上,33AD =,5sin 13BAD ∠=,3cos 5ADC ∠=.(Ⅰ)求sin ABD ∠的值; (Ⅱ)求ABD ∆的面积.解:(I )由3cos 5ADC ∠=,得24sin 1cos 5ADC ADC ∠=-∠=……………2分又5sin 13BAD ∠=,则212cos 1sin 13BAD BAD ∠=-∠=…………4分故()sin sin ABD ADC BAD ∠=∠-∠sin cos cos sin ADC BAD ADC BAD =∠∠-∠∠412353351351365=⨯-⨯=……………………7分(Ⅱ)在△ABD 中,由正弦定理知,sin sin BD ADBAD ABD =∠∠,则533sin 132533sin 65AD BADBD ABD⨯⨯∠===∠……………………………………11分故ABD ∆的面积为1sin 3302S AD BD ADB =⋅∠=……………………14分5、设函数0)R,(x )4 x sin((x) f >∈+=ωπω的部分图象如右图所示。

特殊角的三角函数值(专项培优训练)—2023-2024学年九年级数学上册培优题型(沪教新版)(解析)

特殊角的三角函数值(专项培优训练)—2023-2024学年九年级数学上册培优题型(沪教新版)(解析)

特殊角的三角函数值(专项培优训练)试卷满分:100分考试时间:120分钟难度系数:0.57一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022秋•薛城区期末)已知α为锐角,且sin(α﹣10°)=,则α等于()A.70°B.60°C.50°D.30°解:∵sin(α﹣10°)=,∴α﹣10°=60°,∴α=70°.故选:A.2.(2分)(2022秋•云州区期末)已知∠α为锐角,且sinα=,则∠α=()A.30°B.45°C.60°D.90°解:∵∠α为锐角,且sinα=,∴∠α=60°,故选:C.3.(2分)(2022秋•裕华区校级期末)已知α为锐角,且,则α等于()A.70°B.60°C.40°D.30°解:∵sin(α﹣10°)=,∴α﹣10°=60°,∴α=70°.故选:A.4.(2分)(2023•迎泽区校级二模)在Rt△ABC中,∠C=90°,BC=1,AC=,那么∠B的度数是()A.15°B.45°C.30°D.60°解:在Rt△ABC中,∠C=90°,∵tanB===,∴∠B=60°,故选:D.5.(2分)(2023•南开区二模)下列三角函数中,结果为的是()A.cos30°B.tan30°C.sin60°D.cos60°解:A.cos30°=,不符合题意;B.tan30°=,不符合题意;C.sin60°=,不符合题意;D.cos60°=sin30°=,符合题意.故选:D.6.(2分)(2022秋•香坊区校级月考)已知α为锐角,,则α的度数为()A.30°B.45°C.60°D.75°解:∵α为锐角,tan(90°﹣α)=,∴90°﹣α=30°,∴α=60°.故选:C.7.(2分)(2015•杭州模拟)在△ABC中,a、b、c分别为角A、B、C的对边,若∠B=60°,则的值为()A.B.C.1 D.解:过A点作AD⊥BC于D,在Rt△BDA中,由于∠B=60°,∴DB=,AD=c,在Rt△ADC中,DC2=AC2﹣AD2,∴(a﹣)2=b2﹣c2,即a2+c2=b2+ac,∴.故选:C.8.(2分)(2022秋•沛县月考)在△ABC中,∠A、∠B都是锐角,sin A=,cos B=,此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定解:∵sinA=,cosB=,∴∠A=30°,∠B=30°,∴∠C=180°﹣∠A﹣∠B=120°,∴△ABC是钝角三角形,故选:C.9.(2分)(2021秋•潍坊期末)sin45°的倒数是()A.B.C.D.1解:∵sin45°=,而的倒数为,∴sin45°的倒数是.故选:B.10.(2分)(2022•和平区三模)已知∠A为锐角,且sin A=,那么∠A等于()A.15°B.30°C.45°D.60°解:∵sinA=,∴∠A=60°.故选:D.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•船营区校级期末)已知α是锐角,,则α=°.解:∵,∴tan(90°﹣α)=,∴90°﹣α=60°,∴α=30°,故答案为:30.12.(2分)(2022秋•郑州期末)若sin(x+15°)=,则锐角x=°.解:∵sin(x+15°)=,∴x+15°=60°,解得:x=45°,故答案为:45.13.(2分)(2022秋•镇海区期末)已知α为锐角,且tan(α﹣10°)=,则锐角α的度数是.解:∵α为锐角,且tan(α﹣10°)=,∴α﹣10°=30°,则α=40°.故答案为:40°.14.(2分)(2022秋•永定区期末)△ABC中,∠A,∠B都是锐角,若cos A=,tan B=1,则∠C=.解:∵cosA=,tanB=1,∴∠A=30°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=105°,故答案为:105°.15.(2分)(2022秋•泰山区期末)若cos(α﹣10°)=,则∠α的角度数为.解:∵cos(α﹣10°)=,∴α﹣10°=60°,则α=70°.故答案为:70°.16.(2分)(2023•东阿县校级开学)△ABC中,∠A、∠B都是锐角,且sin A=sin B=,则△ABC是三角形.解:由△ABC中,∠A、∠B都是锐角,且sinA=sinB=,得∠A=∠B=30°,故答案为:钝角.17.(2分)(2022秋•浦东新区校级月考)已知α为锐角,tanα=2cos60°,那么α=度.解:∵,∴,∵α为锐角,∴α=45°,故答案为:45.18.(2分)(2021秋•道外区校级月考)在Rt△ABC中,∠C=90°,若c=2,tan A=,则a=.解:∵∠C=90°,tanA==,设BC=a=x,则AC=b=2x,∴AB===2,∴x=,∴a=.故答案为:.19.(2分)(2018•新乡二模)计算:(﹣)2﹣2cos60°=;解:(﹣)2﹣2cos60°=﹣2×=﹣1=﹣.故答案为:﹣.20.(2017•奉化市自主招生)已知△ABC的内角满足|tan A﹣3|+=0,则∠C=度.(2分)解:由题意,得,解得∠A=60°,∠B=45°,∠C=180°﹣∠A﹣∠B=75°,故答案为与:75.三.解答题(共8小题,满分60分)21.(6分)(2023春•未央区校级月考)cos60°﹣2sin245°+3tan230°﹣sin30°.解:cos60°﹣2sin245°+3tan230°﹣sin30°====0.22.(6分)(2023•涡阳县模拟)(1)计算:2cos245°﹣1+tan30°tan60°;(2).解:(1)2cos245°﹣1+tan30°tan60°==1﹣1+1=1.(2),去分母,得x+1>6(x﹣1)﹣8.去括号,得x+1>6x﹣6﹣8.移项,得x﹣6x>﹣6﹣8﹣1.合并同类项,得﹣5x>﹣15.x的系数化为1,得x<3.∴这个不等式的解为x<3.23.(8分)(2022秋•镇海区期末)(1)计算:.(2)已知,求的值.解:(1)原式=×﹣×+1=1.5﹣1+1=1.5;(2)∵,∴5(x﹣2y)=2(x+y),5x﹣10y=2x+2y,3x=12y,∴==4.24.(8分)(2022秋•广陵区校级期末)计算:(1)tan60°cos30°﹣3sin245°;(2).解:(1)tan60°cos30°﹣3sin245°=×﹣3×()2=﹣3×=﹣=0;(2)2cos45°﹣tan30°cos30°+sin260°===.25.(8分)(2022秋•鄞州区期末)(1)计算:sin60°•tan60°﹣2tan245°;(2)实数x,y满足(x+1):3=(y+2):6,求的值.解:(1)原式=×﹣2×12=﹣2=﹣;(2)∵(x+1):3=(y+2):6,∴3(y+2)=6(x+1),即y=2x,∴=2.26.(8分)(2022•绍兴)(1)计算:6tan30°+(π+1)0﹣.(2)解方程组:.解:(1)原式=6×+1﹣2==1;(2),①+②得:3x=6,解得x=2,把x=2代入②,得:y=0,∴原方程组的解是.27.(8分)(2021•顺城区一模)求下列各式的值.(1)sin45°•cos45°+tan60°•sin60°(2).解:(1)原式=×+×=+=2;(2)原式=﹣12+×()2﹣=﹣1+﹣=﹣.28.(8分)(2022秋•长安区月考)计算:.解:===。

压轴题03 三角函数压轴题(原卷版)--2023年高考数学压轴题专项训练(全国通用)

压轴题03 三角函数压轴题(原卷版)--2023年高考数学压轴题专项训练(全国通用)

压轴题03三角函数压轴题题型/考向一:三角函数的图像与性质题型/考向二:三角恒等变换题型/考向三:三角函数综合应用一、三角函数的图像与性质热点一三角函数图象的变换1.沿x轴平移:由y=f(x)变为y=f(x+φ)时,“左加右减”,即φ>0,左移;φ<0,右移.沿y轴平移:由y=f(x)变为y=f(x)+k时,“上加下减”,即k>0,上移;k<0,下移.2.沿x轴伸缩:若ω>0,A>0,由y=f(x)变为y=f(ωx)时,点的纵坐标不变,横坐标变为原来的1ω倍.沿y轴伸缩:由y=f(x)变为y=Af(x)时,点的横坐标不变,纵坐标变为原来的A 倍.热点二三角函数的图象与解析式已知图象求函数y=A sin(ωx+φ)+B(A>0,ω>0)的解析式时,常用的方法是待定系数法.由图中的最高点、最低点或特殊点求A,B;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.热点三三角函数的性质1.单调性:由-π2+2kπ≤ωx+φ≤π2+2kπ(k∈Z)可得单调递增区间;由π2+2kπ≤ωx+φ≤3π2+2k π(k ∈Z )可得单调递减区间.2.对称性:由ωx +φ=k π(k ∈Z )可得对称中心;由ωx +φ=k π+π2(k ∈Z )可得对称轴.3.奇偶性:φ=k π(k ∈Z )时,函数y =A sin(ωx +φ)为奇函数;φ=k π+π2(k ∈Z )时,函数y =A sin(ωx +φ)为偶函数.二、三角恒等变换热点一化简与求值(角)1.同角三角函数的基本关系:sin 2α+cos 2α=1,sin αcos α=tan ≠π2+k π,k ∈2.诱导公式的记忆口诀:在k π2+α,k ∈Z 的诱导公式中“奇变偶不变,符号看象限”.3.熟记三角函数公式的两类变形:(1)和差角公式的变形;(2)倍角公式的变形.热点二三角函数恒等式的证明三角恒等式常从复杂一边向简单的一边转化,或者两边同时推出一个相同式子,有时要证等式先进行等价交换,进而证明其等价命题.○热○点○题○型一三角函数的图像与性质一、单选题1.将函数()sin cos f x x x =-的图象向左平移7π12个单位长度,得到函数()y g x =的图象,关于函数()y g x =的下列说法中错误的是()A .周期是2πB .非奇非偶函数C .图象关于点5π,03⎛⎫⎪⎝⎭中心对称D .在π0,2⎛⎫ ⎪⎝⎭内单调递增2.数学与音乐有着紧密的关联,我们平时听到的乐音一般来说并不是纯音,而是由多种波叠加而成的复合音.如图为某段乐音的图象,则该段乐音对应的函数解析式可以为()A .11sin sin 2sin 323=++y x x xB .11sin sin 2sin 323y x x x=--C .11sin cos 2cos323y x x x=++D .11cos cos 2cos323y x x x=++3.将函数()2sin 21f x x =-图象上所有点的纵坐标伸长到原来的2倍,并沿x 轴向左平移()0ϕϕ>个单位长度,再向下平移1个单位长度得到函数()g x 的图象.若对于任意的1π0,4x ⎡⎤∈⎢⎥⎣⎦,总存在2π,04x ⎡⎤∈-⎢⎥⎣⎦,使得()()12f x g x =,则ϕ的值可能是()A .π6B .5π24C .π4D .2π34.函数e sin xy x =在区间[]2,2ππ-上的图象大致是()A.B.C.D.5.已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则满足()()5π605π12f x f f x f ⎛⎫- ⎪⎝⎭>⎛⎫- ⎪⎝⎭的正整数x 的最小值为()A .1B .2C .3D .4二、多选题6.已知函数2π()cos (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在ππ,2⎡⎤-⎢⎥⎣⎦上单调,且曲线()y f x =关于点π,03⎛⎫- ⎪⎝⎭对称,则()A .()f x 以2π为周期B .()f x 的图象关于直线2π3x =对称C .将()f x 的图象向右平移π3个单位长度后对应的函数为偶函数D .函数9()10y f x =+在[0,π]上有两个零点7.已知函数()()()sin 0,0π,f x A x b A b ωϕϕ=++><<∈R 的部分图像如图,则()A .5πb ωϕ=B .π23f ⎛⎫= ⎪⎝⎭C .将曲线()y f x =向右平移π9个单位长度得到曲线4cos 32y x =-+D .点11π,218⎛⎫- ⎪⎝⎭为曲线()y f x =的一个对称中心8.已知函数()f x 的定义域为()1,1-,对任意的(),1,1x y ∈-,都有()()1x y f x f y f xy ⎛⎫--= ⎪-⎝⎭,且112f ⎛⎫= ⎪⎝⎭,当()0,1x ∈时,()0f x >,则()A .()f x 是偶函数B .()00f =C .当A ,B 是锐角ABC 的内角时,()()cos sin f B f A <D .当0n x >,且21112n n n x x x ++=,112x =时,()12n n f x -=9.已知某游乐场循环观光车路线近似为一个半径为1km 的圆,观光车从起始站点P 出发,沿图中顺时针方向行驶,记观光者从某次出发开始,行驶的时间为t 小时.A ,B 是沿途两个站点,C 是终点站,D 是该游乐场的观景点之一.已知该观光车绕行一圈的时间是固定的,且π,,6BOA OA OC OA OD ∠=⊥⊥.若要求起始站点P 无论位于站台B ,C 之间的任何位置(异于B ,C ),观光车在ππ,124t ⎛⎫∈ ⎪⎝⎭的时间内,都要至少经过两次终点站C ,则下列说法正确的是()A .该观光车绕行一周的时间小于π6B .该观光车在π0,12t ⎛⎫∈ ⎪⎝⎭内不一定会经过终点站CC .该观光车的行驶速度一定大于52km /h 3D .该观光车在π0,12t ⎛⎫∈ ⎪⎝⎭内一定会经过一次观景点D10.如图,弹簧下端悬挂着的小球做上下运动(忽略小球的大小),它在()s t 时刻相对于平衡位置的高度()cm h 可以田ππ2sin 24h t ⎛⎫=+ ⎪⎝⎭确定,则下列说法正确的是()A.小球运动的最高点与最低点的距离为2cm B.小球经过4s往复运动一次C.()3,5t∈时小球是自下往上运动D.当 6.5t=时,小球到达最低点○热○点○题○型二三角恒等变换一、单选题1.已知π0,2α⎛⎫∈ ⎪⎝⎭,cos22sin21αα+=,则sinα=()A.15B C.45D2.古希腊数学家特埃特图斯(Theaetetus,大约公元前417年—公元前369年)通过下图来…,记BACα∠=,DACβ∠=,则()cosαβ+=()A.46B.36-C.36+D.463.若π2α<<,π02β-<<,π1cos43α⎛⎫+=⎪⎝⎭,π3cos423β⎛⎫-=⎪⎝⎭,则sin2βα⎛⎫+=⎪⎝⎭()A.9-B.9C.539D.94.人脸识别技术应用在各行各业,改变着人类的生活,而所谓人脸识别,就是利用计算机分析人脸视频或者图像,并从中提取出有效的识别信息,最终判别人脸对象的身份.在人脸识别中为了检测样本之间的相似度主要应用距离的测试,常用的测量距离的方式有曼哈顿距离和余弦距离.假设二维空间中有两个点()()1122,,,A x yB x y,O为坐标原点,余弦相似度similarity为向量,OA OB夹角的余弦值,记作()cos,A B,余弦距离为()1cos,A B-.已知()sin,cosPαα,()sin,cosQββ,()sin,cosRαα-,若P,Q的余弦距离为13,Q,R的余弦距离为12,则tan tanαβ⋅=()A .7B .17C .4D .145.已知函数()()*sin cos n n n f x x x n =+∈N ,函数()4324y f x =-在3π0,8⎡⎤⎢⎣⎦上的零点的个数为()A .2B .3C .4D .56.已知函数())2sin 02f x x x ωωω⎛⎫=->⎪⎝⎭的图像如图所示,则ω的值为()A .13B .43C .16D .76二、多选题7.已知函数2()sin cos 2f x x x x =-+,则下列说法正确的是()A .π()sin(2)3f x x =-B .函数()f x 的最小正周期为πC .函数()f x 的对称轴方程为()5ππZ 12x k k =+∈D .函数()f x 的图象可由sin 2y x =的图象向右平移π6个单位长度得到8.黄金三角形被称为最美等腰三角形,因此它经常被应用于许多经典建筑中,例如图中所示的建筑对应的黄金三角形,它的底角正好是顶角的两倍,且它的底与腰之比为黄金分割比(黄金分割比12=).在顶角为BAC ∠的黄金ABC 中,D 为BC 边上的中点,则()A .cos 342AD AC︒=B .cos 27sin 27cos 27sin 27AD CD ︒+︒=︒-︒C .AB 在AC 251AC+D .cos BAC ∠是方程324231x x x +-=的一个实根9.已知()cos 4cos3f θθθ=+,且1θ,2θ,3θ是()f θ在()0,π内的三个不同零点,则()A .{}123π,,7∈θθθB .123π++=θθθC .1231cos cos cos 8θθθ=-D .1231cos cos cos 2θθθ++=10.重庆荣昌折扇是中国四大名扇之一,其精雅宜士人,其华灿宜艳女,深受各阶层人民喜爱.古人曾有诗赞曰:“开合清风纸半张,随机舒卷岂寻常;金环并束龙腰细,玉栅齐编凤翅长”.荣昌折扇平面图为下图的扇形COD ,其中2π3COD ∠=,33OC OA ==,动点P 在 CD 上(含端点),连结OP 交扇形OAB 的弧 AB于点Q ,且OQ xOC yOD =+,则下列说法正确的是()A .若y x =,则23x y +=B .若2y x =,则0OA OP ⋅=C .2AB PQ ⋅≥-D .112PA PB ⋅≥○热○点○题○型三三角函数综合应用一、解答题1.已知函数2()23cos 2cos 1f x x x x =-+.(1)求函数()f x 的最小正周期及单调递增区间;(2)求函数()f x 在区间5ππ[,]126-的值域;2.已知)213,1,cos ,cos 2m x n x x ⎛⎫=-=+ ⎪⎝⎭,设函数()f x m n =⋅ .(1)当π5π,1212x ⎡⎤∈-⎢⎥⎣⎦时,分别求函数()f x 取得最大值和最小值时x 的值;(2)设ABC 的内角,,A B C 的对应边分别是,,,a b c 且23a =,6,12A b f ⎛⎫==- ⎪⎝⎭,求c 的值.3.已知函数()()213cos cos 02f x x x x ωωωω=+->.(1)若1ω=,求函数()f x 的最小正周期;(2)若()y f x =图象在0,4π⎛⎫⎪⎝⎭内有且仅有一条对称轴,求8f π⎛⎫⎪⎝⎭的取值范围.4.已知函数()()2sin f x x ωϕ=+(0ω>,π2ϕ<)的部分图象如图所示.(1)求()f x 的解析式,并求()f x 的单调递增区间;(2)若对任意π,3x t ⎡⎤∈⎢⎥⎣⎦,都有()π116f x fx ⎛⎫--≤ ⎪⎝⎭,求实数t 的取值范围.5.若实数x ,[0,2]y π∈,且满足cos()cos cos x y x y +=+,则称x 、y 是“余弦相关”的.(1)若2x π=,求出所有与之“余弦相关”的实数y ;(2)若实数x 、y 是“余弦相关”的,求x 的取值范围;(3)若不相等的两个实数x 、y 是“余弦相关”的,求证:存在实数z ,使得x 、z 为“余弦相关”的,y 、z 也为“余弦相关”的.。

三角函数专项练习60题(有答案)

三角函数专项练习60题(有答案)

三角函数专项练习60题(有答案)题目1:已知三角形ABC,角A的补角是30度,角B的补角是60度,求角C的度数。

答案:90度。

题目2:已知sin(60°)的值等于√3/2,求cos(30°)的值。

答案:√3/2。

题目3:已知cos(30°)的值等于0.866,求sin(60°)的值。

答案:0.866。

题目4:已知tan(45°)的值等于1,求cot(45°)的值。

答案:1。

题目5:已知cot(60°)的值等于√3/3,求tan(30°)的值。

答案:√3。

题目6:已知cos(45°)的值等于0.707,求sin(45°)的值。

答案:0.707。

题目7:已知sin(45°)的值等于0.707,求cot(45°)的值。

答案:1.题目8:已知sin(30°)的值等于0.5,求cos(60°)的值。

答案:0.5.题目9:已知cot(30°)的值等于√3,求tan(60°)的值。

答案:√3.题目10:已知cos(60°)的值等于0.5,求sin(30°)的值。

答案:0.5.题目11:已知sin(90°)的值等于1,求cos(0°)的值。

答案:1.题目12:已知sin(0°)的值等于0,求cos(90°)的值。

答案:0.题目13:已知cos(90°)的值等于0,求sin(0°)的值。

答案:1.题目14:已知cos(0°)的值等于1,求sin(90°)的值。

答案:0.题目15:已知cot(45°)的值等于1,求tan(45°)的值。

答案:1.题目16:已知tan(60°)的值等于√3,求cot(60°)的值。

答案:√3.题目17:已知cot(30°)的值等于√3/3,求tan(30°)的值。

三角函数大题专项(含答案解析)

三角函数大题专项(含答案解析)

三角函数专项训练1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a﹣b)sin B.(1)证明a2+b2﹣c2=ab;(2)求角C和边c.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.3.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.5.已知函数f(x)=sin2x+sin x cos x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2)(Ⅰ)求cos A的值;(Ⅱ)求sin(2B﹣A)的值7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.8.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B =.(Ⅰ)求b和sin A的值;(Ⅱ)求sin(2A+)的值.9.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.10.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.12.已知向量=(cos x,sin x),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.13.在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.14.已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.15.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B;(2)若cos B=,求cos C的值.16.设f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a sin2B=b sin A.(1)求B;(2)已知cos A=,求sin C的值.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.19.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sin A sin B=sin C;(Ⅱ)若b2+c2﹣a2=bc,求tan B.20.在△ABC中,AC=6,cos B=,C=.(1)求AB的长;(2)求cos(A﹣)的值.21.已知函数f(x)=4tan x sin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.22.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.参考答案1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a﹣b)sin B.(1)证明a2+b2﹣c2=ab;(2)求角C和边c.【解答】证明:(1)∵在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,∴由正弦定理得:=2R=2,∴sin A=,sin B=,sin C=,∵2(sin2A﹣sin2C)=(a﹣b)sin B,∴2()=(a﹣b)•,化简,得:a2+b2﹣c2=ab,故a2+b2﹣c2=ab.解:(2)∵a2+b2﹣c2=ab,∴cos C===,解得C=,∴c=2sin C=2•=.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得b sin A=a sin B,又b sin A=a cos(B﹣).∴a sin B=a cos(B﹣),即sin B=cos(B﹣)=cos B cos+sin B sin=cos B+,∴tan B=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由b sin A=a cos(B﹣),得sin A=,∵a<c,∴cos A=,∴sin2A=2sin A cos A=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2A cos B﹣cos2A sin B==.3.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.【解答】解:(1)由,解得,∴cos2α=;(2)由(1)得,sin2,则tan2α=.∵α,β∈(0,),∴α+β∈(0,π),∴sin(α+β)==.则tan(α+β)=.∴tan(α﹣β)=tan[2α﹣(α+β)]==.4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.5.已知函数f(x)=sin2x+sin x cos x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.【解答】解:(I)函数f(x)=sin2x+sin x cos x=+sin2x =sin(2x﹣)+,f(x)的最小正周期为T==π;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,可得2x﹣∈[﹣,2m﹣],即有2m﹣≥,解得m≥,则m的最小值为.6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2)(Ⅰ)求cos A的值;(Ⅱ)求sin(2B﹣A)的值【解答】(Ⅰ)解:由,得a sin B=b sin A,又a sin A=4b sin B,得4b sin B=a sin A,两式作比得:,∴a=2b.由,得,由余弦定理,得;(Ⅱ)解:由(Ⅰ),可得,代入a sin A=4b sin B,得.由(Ⅰ)知,A为钝角,则B为锐角,∴.于是,,故.7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.【解答】解:(Ⅰ)函数f(x)=sin(ωx﹣)+sin(ωx﹣)=sinωx cos﹣cosωx sin﹣sin(﹣ωx)=sinωx﹣cosωx=sin(ωx﹣),又f()=sin(ω﹣)=0,∴ω﹣=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f(x)=sin(2x﹣),将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y =sin(x﹣)的图象;再将得到的图象向左平移个单位,得到y=sin(x+﹣)的图象,∴函数y=g(x)=sin(x﹣);当x∈[﹣,]时,x﹣∈[﹣,],∴sin(x﹣)∈[﹣,1],∴当x=﹣时,g(x)取得最小值是﹣×=﹣.8.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B =.(Ⅰ)求b和sin A的值;(Ⅱ)求sin(2A+)的值.【解答】解:(Ⅰ)在△ABC中,∵a>b,故由sin B=,可得cos B=.由已知及余弦定理,有=13,∴b=.由正弦定理,得sin A=.∴b=,sin A=;(Ⅱ)由(Ⅰ)及a<c,得cos A=,∴sin2A=2sin A cos A=,cos2A=1﹣2sin2A=﹣.故sin(2A+)==.9.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC=ac sin B=,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C=;(2)∵6cos B cos C=1,∴cos B cos C=,∴cos B cos C﹣sin B sin C=﹣=﹣,∴cos(B+C)=﹣,∴cos A=,∵0<A<π,∴A=,∵===2R==2,∴sin B sin C=•===,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.10.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sin B=4(1﹣cos B),∵sin2B+cos2B=1,∴16(1﹣cos B)2+cos2B=1,∴16(1﹣cos B)2+cos2B﹣1=0,∴16(cos B﹣1)2+(cos B﹣1)(cos B+1)=0,∴(17cos B﹣15)(cos B﹣1)=0,∴cos B=;(2)由(1)可知sin B=,∵S△ABC=ac•sin B=2,∴ac=,∴b2=a2+c2﹣2ac cos B=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sin x cos x,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣12.已知向量=(cos x,sin x),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【解答】解:(1)∵=(cos x,sin x),=(3,﹣),∥,∴﹣cos x=3sin x,当cos x=0时,sin x=1,不合题意,当cos x≠0时,tan x=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cos x﹣sin x=2(cos x﹣sin x)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最小值﹣2.13.在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sin C=sin A=×=,(2)a=7,则c=3,∴C<A,∵sin2C+cos2C=1,又由(1)可得cos C=,∴sin B=sin(A+C)=sin A cos C+cos A sin C=×+×=,∴S△ABC=ac sin B=×7×3×=6.14.已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【解答】解:f(x)=2sinωx cosωx+cos2ωx,=sin2ωx+cos2ωx,=,由于函数的最小正周期为π,则:T=,解得:ω=1.(2)由(1)得:函数f(x)=,令(k∈Z),解得:(k∈Z),所以函数的单调递增区间为:[](k∈Z).15.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B;(2)若cos B=,求cos C的值.【解答】(1)证明:∵b+c=2a cos B,∴sin B+sin C=2sin A cos B,∵sin C=sin(A+B)=sin A cos B+cos A sin B,∴sin B=sin A cos B﹣cos A sin B=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cos B=,∴sin B==.cos A=cos2B=2cos2B﹣1=,sin A==.∴cos C=﹣cos(A+B)=﹣cos A cos B+sin A sin B=+×=.16.设f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2 =2sin2x﹣1+sin2x=2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sin x+﹣1的图象,∴g()=2sin+﹣1=.17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a sin2B=b sin A.(1)求B;(2)已知cos A=,求sin C的值.【解答】解:(1)∵a sin2B=b sin A,∴2sin A sin B cos B=sin B sin A,∴cos B=,∴B=.(2)∵cos A=,∴sin A=,∴sin C=sin(A+B)=sin A cos B+cos A sin B==.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.【解答】(Ⅰ)证明:∵b+c=2a cos B,∴sin B+sin C=2sin A cos B,∴sin B+sin(A+B)=2sin A cos B∴sin B+sin A cos B+cos A sin B=2sin A cos B∴sin B=sin A cos B﹣cos A sin B=sin(A﹣B)∵A,B是三角形中的角,∴B=A﹣B,∴A=2B;(Ⅱ)解:∵△ABC的面积S=,∴bc sin A=,∴2bc sin A=a2,∴2sin B sin C=sin A=sin2B,∴sin C=cos B,∴B+C=90°,或C=B+90°,∴A=90°或A=45°.19.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sin A sin B=sin C;(Ⅱ)若b2+c2﹣a2=bc,求tan B.【解答】(Ⅰ)证明:在△ABC中,∵+=,∴由正弦定理得:,∴=,∵sin(A+B)=sin C.∴整理可得:sin A sin B=sin C,(Ⅱ)解:b2+c2﹣a2=bc,由余弦定理可得cos A=.sin A=,=+==1,=,tan B=4.20.在△ABC中,AC=6,cos B=,C=.(1)求AB的长;(2)求cos(A﹣)的值.【解答】解:(1)∵△ABC中,cos B=,B∈(0,π),∴sin B=,∵,∴AB==5;(2)cos A═﹣cos(π﹣A)=﹣cos(C+B)=sin B sin C﹣cos B cos C=﹣.∵A为三角形的内角,∴sin A=,∴cos(A﹣)=cos A+sin A=.21.已知函数f(x)=4tan x sin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.【解答】解:(1)∵f(x)=4tan x sin(﹣x)cos(x﹣)﹣.∴x≠kπ+,即函数的定义域为{x|x≠kπ+,k∈Z},则f(x)=4tan x cos x•(cos x+sin x)﹣=4sin x(cos x+sin x)﹣=2sin x cos x+2sin2x﹣=sin2x+(1﹣cos2x)﹣=sin2x﹣cos2x=2sin(2x﹣),则函数的周期T=;(2)由2kπ﹣<2x﹣<2kπ+,k∈Z,得kπ﹣<x<kπ+,k∈Z,即函数的增区间为(kπ﹣,kπ+),k∈Z,当k=0时,增区间为(﹣,),k∈Z,∵x∈[﹣,],∴此时x∈(﹣,],由2kπ+<2x﹣<2kπ+,k∈Z,得kπ+<x<kπ+,k∈Z,即函数的减区间为(kπ+,kπ+),k∈Z,当k=﹣1时,减区间为(﹣,﹣),k∈Z,∵x∈[﹣,],∴此时x∈[﹣,﹣),即在区间[﹣,]上,函数的减区间为∈[﹣,﹣),增区间为(﹣,].22.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=ab sin C=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.。

三角函数解析式求法专项训练

三角函数解析式求法专项训练

三角函数解析式求法专项训练一、单选题1.已知函数()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,将()f x 的图象向左平移4π个单位长度,得到函数()g x 的图象,则()A .()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭B .()π2sin 23⎛⎫=+ ⎪⎝⎭g x x C .()g x 在区间ππ,36⎡⎤-⎢⎥⎣⎦上单调递增D .()g x 图象的对称中心为()π,0Z 2π1k k ⎛⎫-+∈ ⎪⎝⎭2.已知函数()()cos 04f x x b πωω⎛⎫=-+> ⎪⎝⎭的最小正周期为T ,23T ππ<<,且()y f x =的图像关于点3,12π⎛⎫⎪⎝⎭中心对称,若将()y f x =的图像向右平移()0m m >个单位长度后图像关于y 轴对称,则实数m 的最小值为()A .10πB .310πC .710πD .1110π二、多选题3.函数()()sin f x A x =+ωϕ(其中A ,ω,ϕ是常数,0A >,0ω>,ππ22ϕ-<<)的部分图象如图所示,则下列说法正确的是()A .()f x 的值域为⎡⎣B .()f x 的最小正周期为πC .π6ϕ=D .将函数f (x )的图象向左平移π6个单位,得到函数()2g x x =的图象三、填空题4.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()y f x =的图象向右平移4π个单位,得到()y g x =的图象,则下列有关()f x 与()g x 的描述正确的有___________(填序号).①()2sin 23g x x π⎛⎫=- ⎪⎝⎭;②方程()()30,2f x g x x π⎫⎛⎫+=∈ ⎪⎪⎝⎭⎭所有根的和为712π;③函数()y f x =与函数()y g x =图象关于724x π=对称.四、双空题5.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭与函数()y g x =的部分图像如图所示,且函数()f x 的图像可由函数()y g x =的图像向右平移4π个单位长度得到,则ϕ=____________,()0g =____________.五、解答题6.函数()()sin f x A x =+ωϕ(0,0A ω>>,0πϕ<<)在一个周期内的图象如图所示.(1)求()f x 的解析式;(2)将()f x 的图象向右平移2π3个单位长度后得到函数()g x 的图象,设()()()h x f x g x =-,证明:()h x 为偶函数.7.已知函数()()sin f x A x ωϕ=+(0,0,π)A ωϕ>><的部分图象如图所示.(1)求()f x 的解析式;(2)先将()f x 的图象纵坐标缩短到原来的12倍,再向右平移π12个单位后得到()g x 的图象,求函数()y g x =的对称轴.8.已知函数()sin()f x A x ωϕ=+(其中π0,0,||2A ωϕ>><)的图象如图所示.(1)求函数()f x 的解析式;(2)若将函数()y f x =的图象上的所有点的纵坐标不变,横坐标伸长到原来的2倍,得到函数()g x 的图象,当ππ,26α⎡⎤∈-⎢⎥⎣⎦时,3()5g α=,求sin α的值.9.已知函数()()sin 0,0,2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()y f x =图象上所有的点向右平移4π个单位长度,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象.当130,6x π⎡⎤∈⎢⎥⎣⎦时,方程()0g x a -=恰有三个不相等的实数根,求实数a 的取值范围.10.已知函数())f x x =ω+ϕ,0,22ππωϕ⎛⎫>-<< ⎪⎝⎭的图象关于直线56x π=对称,若实数12x x ,满足()()12f x f x -=时,12||x x -的最小值为2π.(1)求()f x 的解析式;(2)将函数()y f x =的图象向右平移6π个单位后,得到()y g x =的图象,求()g x 的单调递减区间.11.已知函数()()cos 2(0,0,0π)f x A x A ωϕωϕ=++>><<的最小值为1,最小正周期为π,且()f x 的图象关于直线π3x =对称.(1)求()f x 的解析式;(2)将函数()y f x =的图象向左平移π12个单位长度,得到函数()y g x =,求函数()y g x =的单调递减区间.12.某同学将“五点法”画函数()()πsin (0,)2f x A x ωϕωϕ=+><在某一个时期内的图象时,列表并填入部分数据,如下表:x ωϕ+0π2π3π22πx π35π6sin()A x ωϕ+055-0(1)请将上述数据补充完整,填写在答题卡上相应位置,并直接写出函数()f x 的解析式;(2)将()y f x =图象上所有点向左平移π6个单位长度,得到()g y x =图象,求()y g x =的图象离原点O 最近的对称中心.13.已知函数()π2sin 216f x x ω⎛⎫=++ ⎪⎝⎭,()0ω>.(1)若()()12()f x f x f x ≤≤,12min π2x x -=,求()f x 的对称中心;(2)已知05ω<<,函数()f x 图象向右平移π6个单位,得到函数()g x 的图象,π3x =是()g x 的一个零点,若函数()g x 在[],m n (,R m n ∈且m n <)上恰好有10个零点,求n m-的最小值.14.已知函数()()()2sin 0,f x x ωϕωϕπ=+><,其图像一条对称轴与相邻对称中心的横坐标相差4π,将函数()f x 向左平移6π个单位得到的图像关于y 轴对称且()00f >.(1)求函数()f x 的解析式:(2)若110,12x π⎡⎤∈⎢⎥⎣⎦,方程()()()2230f x a f x a +-+-=存在4个不相等的实数根,求实数a 的取值范围.15.已知函数()2sin 216f x x πω⎛⎫=++ ⎪⎝⎭.(1)若()()()12f x f x f x ≤≤,12min 2x x π-=,求()f x 的对称中心;(2)已知05ω<<,函数()f x 图象向右平移6π个单位得到函数()g x 的图象,3x π=是()g x 的一个零点,若函数()g x 在[],m n (m ,n R ∈且m n <)上恰好有10个零点,求n m-的最小值;参考答案:1.C【分析】确定2A =,根据周期得到2π2πω==,代入点计算π3ϕ=-,得到()π2sin 23f x x ⎛⎫=- ⎪⎝⎭,A 错误,通过平移法则得到()26π2sin g x x ⎛⎫=+ ⎪⎝⎭,B 错误,确定πππ2,622x ⎡⎤+∈-⎢⎣⎦,C 正确,对称中心为()ππ,0Z 122k k ⎛⎫-+∈ ⎪⎝⎭,D 错误,得到答案.【详解】由函数图象可知,2A =,设()f x 的最小正周期为T ,则37π3π46124πT =+=,故πT =,所以2π2πω==,7π212f ⎛⎫-= ⎪⎝⎭,所以7π2sin 2212ϕ⎡⎤⎛⎫⨯-+= ⎪⎢⎥⎝⎭⎣⎦,故()7π2πZ 62πk k ϕ-+=+∈,所以()5π2πZ 3k k ϕ=+∈,又π2ϕ<,所以π3ϕ=-,故()π2sin 23f x x ⎛⎫=- ⎪⎝⎭,对选项A :()π2sin 23f x x ⎛⎫=- ⎪⎝⎭,错误;对选项B :()3π2sin 22sin 246ππg x x x ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,B 错误;对选项C :当ππ,36x ⎡⎤∈-⎢⎥⎣⎦时,πππ2622x ⎡⎤+∈-⎢⎥⎣⎦,由于sin y x =在ππ,22⎡⎤-⎢⎥⎣⎦上递增,故()g x 在区间ππ,36⎡⎤-⎢⎥⎣⎦上单调递增,正确;对选项D :令()π2πZ 6x k k +=∈,所以()ππZ 122k x k =-+∈,即()g x 图象的对称中心为()ππ,0Z 122k k ⎛⎫-+∈ ⎪⎝⎭,错误.故选:C.2.B【分析】根据周期范围得出ω范围,根据对称中心得出b 的值,并结合ω范围得出ω的值,即可得出()f x 的解析式,根据函数图像平移后的解析式变化得出()f x m -,即可根据图像关于y 轴对称,得出()524m k k ππ--=∈Z ,再根据m 的范围得出实数m 的最小值.【详解】2T πω= ,0ω>,且23T ππ<<,223πππω<∴<,即23ω<<,()y f x = 的图像关于点3,12π⎛⎫⎪⎝⎭中心对称,1b ∴=,且3cos 024ππω⎛⎫-= ⎪⎝⎭,即()3242k k πππωπ-=+∈Z ,解得()1223k k ω=+∈Z ,23ω<< ,∴取3k =,52ω=,()5cos 124f x x π⎛⎫=-+ ⎪⎝⎭∴,将()y f x =的图像向右平移()0m m >个单位长度后得到()55cos 1224x m f x m π-=⎛⎫--+ ⎪⎝⎭的图像,()f x m - 的图像关于y 轴对称,()524m k k ππ--=∴∈Z ,解得()2105k m k ππ=--∈Z ,0m > ,m ∴的最小值,令1k =-,得min 2310510m πππ=-+=,故选:B.3.AB【分析】对A 、B 、C :根据函数图象求,,A ωϕ,即可分析判断;对D :根据图象变换结合诱导公式求解析式,即可得结果.【详解】对A :由图可知:A =()()x f x ωϕ=+,∵()[]sin 1,1x ωϕ+∈-,则()()f x x ωϕ⎡=+∈⎣,故()f x 的值域为⎡⎣,A 正确;对B :由图可得:7πππ41234T =-=,则πT =,B 正确;对C :∵2π=πT ω=,且0ω>,可得2ω=,∴()()2f x x ϕ=+,由图可得:()f x 的图象过点7π,12⎛ ⎝,7π212ϕ⎛⎫⨯+= ⎪⎝⎭,则7πsin 16ϕ⎛⎫+=- ⎪⎝⎭,且ππ22ϕ-<<,可得2π7π5π363ϕ<+<,可得7π3π62ϕ+=,则π3ϕ=,C 错误;对D :可得:()π23f x x ⎛⎫=+ ⎪⎝⎭,将函数f (x )的图象向左平移π6个单位,得到()ππππππ222663626g x f x x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+=++=++=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,D 错误;故选:AB.4.①③【分析】根据图象分别确定,A T ,结合五点作图法可最终求得()f x 解析式;利用三角函数平移变换可知①正确;利用三角恒等变换知识化简方程为sin 2122x π⎛⎫-= ⎪⎝⎭,结合x 范围求得方程的根,可得②错误;利用诱导公式化简可得()712f x g x π⎛⎫-= ⎪⎝⎭,知③正确.【详解】由图象可知:2A =,111212T πππ⎛⎫=--= ⎪⎝⎭,2ω∴=;又2sin 0126f ππϕ⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭,由五点法可知:06πϕ-+=,解得:6πϕ=;()2sin 26f x x π⎛⎫∴=+ ⎪⎝⎭;对于①,()2sin 22sin 24463g x f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,①正确;对于②,()()2sin 22sin 22sin 2cos 2cos 2sin6366f x g x x x x x ππππ⎛⎫⎛⎫+=++-=+ ⎪ ⎪⎝⎭⎝⎭2sin 2cos2cos 2sin33x x ππ+-)(1sin 21cos 22212x x x π⎛⎫=+-=-= ⎪⎝⎭sin 2122x π⎛⎫-= ⎪⎝⎭;302x π<<,352121212x πππ∴-<-<,524x π∴=或38π或2924π或118π,∴所有根的和为196π,②错误;对于③,7742sin 22sin 22sin2126633f x x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-=+-= ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()2sin 22sin 233x x g x ππ⎛⎫⎛⎫--=-= ⎪ ⎪⎝⎭⎝⎭,()y f x ∴=与()y g x =图象关于724x π=对称,③正确.故答案为:①③【点睛】思路点睛:本题考查三角函数性质的综合应用问题,涉及到已知图象求解析式、整体法求解方程的根、图象对称性问题;已知图象求解解析式的基本思路是通过五点作图法的方式,将图象与正弦函数图象进行对应,从而确定参数的取值.5.6π2【分析】结合函数图象可得012512πωϕπωϕπ⎧-+=⎪⎪⎨⎪+=⎪⎩,解方程组即可求出,ωϕ的值,结合平移求出()g x 的解析式,进而求出()0g .【详解】由题意可知将函数()g x 图像上的点,03π⎛-⎫⎪⎝⎭向右平移4π个单位长度,可得()f x 的图像与x 轴负半轴的第一个交点,坐标为,012π⎛⎫- ⎪⎝⎭,因为()f x 的图像与x 轴正半轴的第一个交点为5,012π⎛⎫⎪⎝⎭,所以012512πωϕπωϕπ⎧-+=⎪⎪⎨⎪+=⎪⎩,解得26ωπϕ=⎧⎪⎨=⎪⎩,所以()sin 26f x x π⎛⎫+ ⎝=⎪⎭,()sin 2cos 2466πππg x x x ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故()0g =.故答案为:6π;2.6.(1)()2π2sin 23f x x ⎛⎫=+ ⎪⎝⎭(2)证明见解析【分析】(1)由图得到2,πA T ==,求得2ω=,代入点π,212⎛⎫- ⎪⎝⎭,求得()ππ2π62k k ϕ-+=+∈Z ,结合题意得到23ϕπ=,即可求得函数的解析式;(2)由三角函数的图象变换求得()2π2sin 23g x x ⎛⎫=- ⎝⎭,根据偶函数的定义证明即可.【详解】(1)由最值得2A =,由相邻两条对称轴距离得5πππ212122T ⎛⎫=--= ⎪⎝⎭,则2ππT ω==,即2ω=,此时()()2sin 2f x x ϕ=+,代入点π,212⎛⎫- ⎪⎝⎭得:πsin 16ϕ⎛⎫-+= ⎪⎝⎭,则()ππ2π62k k ϕ-+=+∈Z ,即()2π2π3k k ϕ=+∈Z ,又因为0πϕ<<,所以230,k πϕ==,故()2π2sin 23f x x ⎛⎫=+ ⎪⎝⎭.(2)由题意得()2π2π2π2sin 22sin 2333g x x x ⎛⎫⎛⎫⎛⎫=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()2π2π2sin 22sin 233h x x x ⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭,因为()()2π2π2π2π2sin 22sin 22sin 22sin 23333h x x x x x h x ⎛⎫⎛⎫⎛⎫⎛⎫-=-+---=--++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以()h x 为偶函数.7.(1)()π2sin 23f x x ⎛⎫=- ⎪⎝⎭;(2)π2k x =,k ∈Z .【分析】(1)由图象可求出2A =,πT =,2ω=.然后根据五点法,结合ϕ的范围,即可求出ϕ的值;(2)由题意可推得()cos2g x x =-.由2π,x k k =∈Z ,即可得出函数()y g x =的对称轴.【详解】(1)由图象可知,2A =,35ππ3π41234T ⎛⎫=--= ⎪⎝⎭,所以πT =,2π2πω==.又点5π,212⎛⎫⎪⎝⎭为函数图象最高点,所以有5ππ22π,122k k ϕ⨯+=+∈Z ,所以,π2π,3k k ϕ=-+∈Z .又π<ϕ,所以π3ϕ=-,所以()π2sin 23f x x ⎛⎫=- ⎪⎝⎭.(2)先将()f x 的图象纵坐标缩短到原来的12,可得πsin 23y x ⎛⎫=- ⎪⎝⎭的图象,再向右平移π12个单位,得到ππsin 2123y x ⎡⎤⎛⎫=-- ⎪⎢⎥⎝⎭⎣⎦πsin 2cos22x x ⎛⎫=-=- ⎪⎝⎭的图象,所以()cos2g x x =-.由2π,x k k =∈Z ,可得π,2k x k =∈Z .所以,函数()y g x =的对称轴为π,2k x k =∈Z .8.(1)()πsin 23f x x ⎛⎫=+ ⎪⎝⎭【分析】(1)根据图象依次求得,,A ωϕ的值,从而求得()f x 的解析式.(2)先根据图象变换的知识求得()g x ,然后结合三角恒等变换、同角三角函数的基本关系式的知识求得sin α.【详解】(1)由图可知7πππ2π1,,π,241234T A T ωω==-====,则()()sin 2f x x ϕ=+,7π7πsin 1126f ϕ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭,ππ2π7π5π,22363ϕϕ-<<<+<,所以7π3ππ,623ϕϕ+==,所以()πsin 23f x x ⎛⎫=+ ⎪⎝⎭(2)由(1)得()πsin 23f x x ⎛⎫=+ ⎪⎝⎭,将函数()y f x =的图象上的所有点的纵坐标不变,横坐标伸长到原来的2倍,得到函数()πsin 3g x x ⎛⎫=+ ⎪⎝⎭,ππ,26α⎡⎤∈-⎢⎣⎦,()π3sin 35g αα⎛⎫=+= ⎪⎝⎭,ππππ4,,cos 36235αα⎡⎤⎛⎫+∈-+= ⎪⎢⎥⎣⎦⎝⎭,所以ππsin sin 33αα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦ππππsin cos cos sin3333αα⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭3143525210-=⨯-⨯.9.(1)()2sin 233f x x π⎛⎫=++ ⎪⎝⎭(2)[]2,3a ∈【分析】(1)由函数图像求出A 、B ,再根据周期求出ω,最后根据函数过点,512π⎛⎫⎪⎝⎭,求出ϕ,即可得到函数解析式;(2)根据三角函数的变换规则求出()g x 的解析式,再根据x 的取值范围求出6x π-的取值范围,结合正弦函数的图象,即可求出参数m 的取值范围.【详解】(1)由图示得:51A B A B +=⎧⎨-+=⎩,解得51512,322A B -+====,又函数()f x 的周期T 有:71212122T πππ=-=,所以T π=,所以22T πω==,所以()()2sin 23f x x ϕ=++.又因为()f x 过点,512π⎛⎫ ⎪⎝⎭,所以52sin 2312πϕ⎛⎫=⨯++ ⎪⎝⎭,即sin 16πϕ⎛⎫+= ⎪⎝⎭,所以2,62k k ππϕπ+=+∈Z ,解得2,3k k πϕπ=+∈Z ,又2πϕ<,所以3πϕ=,所以()2sin 233f x x π⎛⎫=++ ⎪⎝⎭.(2)()y f x =图象上所有的点向右平移4π个单位长度,得到2sin 232sin 23436y x x πππ⎡⎤⎛⎫⎛⎫=-++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到()2sin 36g x x π⎛⎫=-+ ⎪⎝⎭,当130,6x π⎡⎤∈⎢⎥⎣⎦时,,266x πππ⎡⎤-∈-⎢⎥⎣⎦,令,266t x πππ⎡⎤=-∈-⎢⎥⎣⎦,则2sin 32sin 36x t π⎛⎫-+=+ ⎪⎝⎭,令()2sin 3h t t =+,则()h t 在,62t ππ⎡⎤∈-⎢⎥⎣⎦上单调递增,在3,22t ππ⎛⎤∈ ⎥⎝⎦上单调递减,在3,22t ππ⎛⎤∈⎥⎝⎦上单调递增,且2sin 32,66h ππ⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭2sin 35,22h ππ⎛⎫=+= ⎪⎝⎭332sin31,22h ππ⎛⎫=+= ⎪⎝⎭()22sin233h ππ=+=所以[]2,3a ∈时,当130,6x π⎡⎤∈⎢⎥⎣⎦时,方程()0g x a -=恰有三个不相等的实数根.10.(1)π())6f x x =-(2)ππ,π,2k k k 轾-Î犏犏臌Z【分析】(1)由()()12f x f x -=时,12||x x -的最小值为2π得周期,求得ω,由整体法得对称轴,列方程求得ϕ;(2)先平移得()y g x =的解析式,再由整体法求单调递减区间.【详解】(1)由()()12f x f x -=时,12||x x -的最小值为2π得πT =,∴2π2T ω==.∵()f x 的图象关于直线56x π=对称,∴5ππ2π,62φk k ´+=+ÎZ ,又22ππϕ-<<,∴π6ϕ=-.∴π())6f x x =-;(2)πππ()222662g x x x x ⎛⎫⎛⎫⎛⎫=--=-=- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,由[]22ππ,2π,x k k k Î-ÎZ 得ππ,π,2x k k k 轾Î-Î犏犏臌Z ,∴()g x 的单调递减区间为ππ,π,2k k k 轾-Î犏犏臌Z .11.(1)()πcos 223f x x ⎛⎫=++ ⎪⎝⎭(2)ππππZ 44k k ,k 轾-++Î犏犏臌,【分析】(1)根据最值可求1A =,根据周期可求2ω=,根据对称可得π3ϕ=,即可求解解析式,(2)根据平移和诱导公式得()sin 22g x x =-+,进而根据整体法即可求解单调区间.【详解】(1)有题意可知21A -+=,所以1A =,又2ππ2ωω=⇒=,此时()()cos 22f x x ϕ=++,由()f x 的图象关于直线π3x =对称可知π2φπ,Z 3k k ´+=Î,所以2πφπ,Z 3k k =-Î,由于0πϕ<<,故取1k =,则π3ϕ=,故()πcos 223f x x ⎛⎫=++ ⎪⎝⎭(2)将函数()y f x =的图象向左平移π12个单位长度,得到函数()ππ=cos 22=sin 22122y g x f x x x ⎛⎫⎛⎫==+++-+ ⎪ ⎪⎝⎭⎝⎭,令ππ2π22π,Z 22k x k k -+≤≤+∈,解得ππππ,Z 44k x k k -+≤≤+∈,故()y g x =的单调递减区间为ππππZ 44k k ,k 轾-++Î犏犏臌,12.(1)表格见解析,()5sin 26f x x π⎛⎫=- ⎪⎝⎭(2),0.12π⎛⎫- ⎪⎝⎭【分析】(1)由“五点法”作图补充完整数表,再根据表中数据写出解析式;(2)利用平移变换,得到()5sin 26g x x π⎛⎫=+ ⎪⎝⎭,再令2,6x k k Z ππ+=∈求解;【详解】(1)解:数据补充完整如下表:x ωϕ+02ππ32π2πx12π3π712π56π1312πsin()A x ωϕ+050-50函数f (x )的解析式为;()5sin 26f x x π⎛⎫=- ⎪⎝⎭.(2)将()y f x =图象上所有点向左平移6π个单位长度,得到()5sin 25sin 2.666y g x x x πππ⎡⎤⎛⎫⎛⎫==+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦由2,6x k k Z ππ+=∈,可解得:,,212k x k Z ππ=-∈当0k =时,可得:12x π=-.从而可得离原点O 最近的对称中心为:,0.12π⎛⎫- ⎪⎝⎭13.(1)ππ,1(Z)122k k ⎛⎫-+∈ ⎪⎝⎭;(2)139π.【分析】(1)由题意利用正弦函数的性质可求出()f x 的最小正周期为π,从而可求出ω,则可求得()f x 解析式,然后可求出其对称中心;(2)先利用三角函数图象变换规律求出()ππ2sin 2163g x x ωω⎛⎫=+-+ ⎪⎝⎭,再根据3x π=是()g x 的一个零点和05ω<<可求出ω,从而可求出()g x 的解析式,则可求出()g x 的最小正周期,再利用正弦函数的零点和周期性可求得结果.【详解】(1)因为()()12()f x f x f x ≤≤,12min π2x x -=,所以()f x 的最小正周期为π,因为()π2sin 216f x x ω⎛⎫=++ ⎪⎝⎭,()0ω>的最小正周期为2π2ω,所以22ππω=,得1ω=,所以()π2sin 216f x x ⎛⎫=++ ⎪⎝⎭,由2,Z 6x k k ππ+=∈,得ππ,Z 122k x k =-+∈,所以()f x 的对称中心为ππ,1(Z)122k k ⎛⎫-+∈ ⎪⎝⎭;(2)由函数()f x 图象向右平移π6个单位,得到函数()g x 的图象,可得()2sin 2(12sin 216663g x x x ππππωωω⎡⎤⎛⎫=-++=+-+ ⎪⎢⎥⎣⎦⎝⎭,因为π3x =是()g x 的一个零点,所以ππππ2sin 2103363g ω⎛⎫⎛⎫=⋅+-+= ⎪ ⎪⎝⎭⎝⎭,所以ππ1sin 362ω⎛⎫+=- ⎪⎝⎭,所以ππ7π2π,Z 366k k ω+=+∈,或ππ11π2π,Z 366k k ω+=+∈,解得36,Z k k ω=+∈或56,Z k k ω=+∈,因为05ω<<,所以3ω=,所以()5π2sin 616g x x ⎛⎫=-+ ⎝⎭,所以()g x 的最小正周期为263ππ=,令()52sin 6106g x x π⎛⎫=-+= ⎪⎝⎭,则51sin 662x π⎛⎫-=- ⎪⎝⎭,解得115ππ62π,Z 66x k k -=-+∈,或115π5π62π,Z 66x k k -=-+∈,所以11ππ,Z 39k x k =+∈,或11π,Z 3k x k =∈,因为函数()g x 在[],m n (,R m n ∈且m n <)上恰好有10个零点,且要使n m -最小,必须使,m n 恰好为()g x 的零点,前两个零点相距π9,所以n m -的最小值为ππ13π4399⨯+=.14.(1)()2sin(2)6f x x π=+;(2)13a <£或45a <<.【分析】(1)根据给定函数的性质,求出ω,再由平移后的图象特征求出ϕ并判断作答.(2)由给定方程可得()1f x =或()3f x a =-,根据()3f x a =-根的情况结合图形求解作答.(1)因函数()f x 图像一条对称轴与相邻对称中心的横坐标相差4π,则()f x 的周期2T ππω==,解得2ω=,有()2sin(2)f x x ϕ=+,依题意()2sin(2)63f x x ππϕ+=++的图像关于y 轴对称,则有,Z 32k k ππϕπ+=+∈,即,Z 6k k πϕπ=+∈,而ϕπ<,即有56π=-ϕ或6πϕ=,当56π=-ϕ时,5(0)2sin()06f π=-<,不符合要求,当6πϕ=时,(0)2sin 06f π=>,所以函数()f x 的解析式是()2sin(26f x x π=+.(2)由(1)知,()2sin(2)6f x x π=+,当11[0,]12x π∈时,(2[,2]66x πππ+∈,()[2,2]f x ∈-,由()()()2230f x a f x a +-+-=得:[()1][()(3)]0f x f x a ---=,即()1f x =或()3f x a =-,由()1f x =,即1sin(2)62x π+=,而11[0,12x π∈,解得0x =或3x π=,即()1f x =在11[0,]12π上有两个根,方程()()()2230f x a f x a +-+-=在11[0,]12π上存在4个不相等的实数根,当且仅当()3f x a =-且31a -≠在11[0,]12π上有两个不等实根,在同一坐标系内作出函数()y f x =在11[0,12x π∈上的图象和直线3y a =-,如图,方程()3(4)f x a a =-≠在11[0,]12π上有两个不等实根,当且仅当函数()y f x =在11[0,]12x π∈上的图象和直线3(4)y a a =-≠有两个公共点,观察图象知:230a -<-≤或132a <-<,解得13a <£或45a <<,所以实数a 的取值范围是13a <£或45a <<.【点睛】思路点睛:涉及给定函数零点个数求参数范围问题,可以通过分离参数,等价转化为直线与函数图象交点个数,数形结合推理作答.15.(1)(),1122k k ππ⎛⎫-+∈ ⎪⎝⎭Z 或(),1122k k ππ⎛⎫-∈ ⎪⎝⎭Z(2)139π【分析】(1)分析已知可得周期,然后可得ω,然后由正弦函数对称性可得;(2)由平移变换和零点可得()g x 解析式,考察()g x 的零点可得n m -的最小值.(1)∵()2sin 216f x x πω⎛⎫=++ ⎪⎝⎭的最小正周期为22T πω=,又∵()()()12f x f x f x ≤≤,12min 2x x π-=,∴()f x 的最小正周期是π,故22T ππω==,解得1ω=±,当1ω=时,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭,由()()26122k x k k x k ππππ+=∈⇒=-+∈Z Z ,()f x 的对称中心为(),1122k k ππ⎛⎫-+∈ ⎪⎝⎭Z ;当1ω=-时,()2sin 216f x x π⎛⎫=-++ ⎪⎝⎭,由()()26122k x k k x k ππππ-+=∈⇒=-∈Z Z ,()f x 的对称中心为(),1122k k ππ⎛⎫-∈ ⎪⎝⎭Z ;综上所述,()f x 的对称中心为(),1122k k ππ⎛⎫-+∈ ⎪⎝⎭Z 或(),1122k k ππ⎛⎫-∈ ⎪⎝⎭Z .(2)∵函数()f x 图象向右平移6π个单位,得到函数()g x 的图象,∴()2sin 2163g x x ππω⎛⎫=+-+ ⎪⎝⎭.又∵3x π=是()g x 的一个零点,22sin 103363g ππππω⎛⎫⎛⎫=+-+= ⎪ ⎪⎝⎭⎝⎭,即1sin 362ππω⎛⎫+=- ⎪⎝⎭,∴72366k πππωπ+=+或112366k πππωπ+=+,k ∈Z ,解得()36k k ω=+∈Z 或()56k k ω=+∈Z ,由05ω<<可得3ω=∴()52sin 616g x x π⎛⎫=-+ ⎪⎝⎭,最小正周期3T π=.令()0g x =,则51sin 662x π⎛⎫-=-⎪⎝⎭即156266x k πππ-=-+或2556266x k πππ-=-+,k ∈Z ,解得139k x ππ=+或23k x π=,12,k k ∈Z ;若函数()g x 在[],m n (,m n m n ∈<R 且)上恰好有10个零点,故46T n m T <-<要使n m -最小,须m 、n 恰好为()g x 的零点,故()min 134399n m πππ-=⨯+=.。

高中数学三角函数专项训练(含答案)

高中数学三角函数专项训练(含答案)

高中数学三角函数专项训练(含答案)一、填空题1.已知函数()1sin sin 34f x x x π⎛⎫=⋅+- ⎪⎝⎭定义域为[](),m n m n <,值域为11,24⎡⎤-⎢⎥⎣⎦,则n m-的最小值是________.2.赵爽是我国古代数学家,大约在公元222年,他为《周髀算经》一书作序时,介绍了"勾股圆方图",亦称"赵爽弦图"(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成).类比"赵爽弦图",可构造如图所示的图形,它是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形,设 ,AD AB AC λμ=+若4AD AF =,则λ-μ的值为___________3.如图,在矩形ABCD 中,AB a ,2BC a =,点E 为AD 的中点,将△ABE 沿BE 翻折到△A BE '的位置,在翻折过程中,A '不在平面BCDE 内时,记二面角A DC B '--的平面角为α,则当α最大时,cos α的值为______.4.已知球O 的表面积为16π,点,,,A B C D 均在球O 的表面上,且,64ACB AB π∠=则四面体ABCD 体积的最大值为___________.5.平行六面体1111ABCD A B C D -的各棱长均相等,1160BAD DAA A AB ∠=∠=∠=,直线1AC ⋂平面1A BD E =,则异面直线1D E 与AD 所成角的余弦值为_________.6.在直角坐标系中,ABC 的顶点()cos ,sin A αα,()cos ,sin B ββ,432C ⎝,且ABC 的重心G 的坐标为232⎝,()cos αβ-=__________. 7.在ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,D 为边BC 上的一点,若6c =,32b =7sin BAD ∠=,2cos 4BAC ∠=,则AD =__________.8.已知函数()2sin 16f x x πω⎛⎫=-- ⎪⎝⎭,其中0>ω,若()f x 在区间(4π,23π)上恰有2个零点,则ω的取值范围是____________.9.已知正四棱柱1111ABCD A B C D -中,2AB =,1AA =若M 是侧面11BCC B 内的动点,且AM MC ⊥,则1A M 的最小值为__________.10.在三棱锥P ABC -中,4AB BC ==,8PC =,异面直线PA ,BC 所成角为π3,AB PA ⊥,AB BC ⊥,则该三棱锥外接球的表面积为______.二、单选题11.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6B .-8C .-9D .-1212.已知函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在π,π3⎡⎤⎢⎥⎣⎦上恰有3个零点,则ω的取值范围是( )A .81114,4,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭B .111417,4,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭C .111417,5,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭D .141720,5,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭13.在三棱锥P ABC -中,顶点P 在底面的射影为ABC 的垂心O (O 在ABC 内部),且PO 中点为M ,过AM 作平行于BC 的截面α,过BM 作平行于AC 的截面β,记α,β与底面ABC 所成的锐二面角分别为1θ,2θ,若PAM PBM θ∠=∠=,则下列说法错误的是( )A .若12θθ=,则AC BC =B .若12θθ≠,则121tan tan 2θθ⋅= C .θ可能值为6πD .当θ取值最大时,12θθ= 14.已知02πθ<<,()()cos 1sin 110sin cos f m m m θθθθθ--⎛⎫=+++> ⎪⎝⎭,则使得()f θ有最大值时的m 的取值范围是( )A .1,22⎛⎫⎪⎝⎭B .1,33⎛⎫ ⎪⎝⎭C .[]1,3D .1,14⎡⎤⎢⎥⎣⎦15.如图,设1F ,2F 是双曲线()22210xy a a -=>的左、右焦点,过点2F 作渐近线的平行线交另外一条渐近线于点A ,若12AF F △的面积为54,离心率满足1e <<为( )A .2215x y -=B .2214x y -=C .2213x y -=D .2212x y -=16.在ABC 中,60BAC ∠=,3BC =,且有2CD DB =,则线段AD 长的最大值为( ) A 13B .2 C 31 D .317.已知函数()3sin()(0,||)f x x ωϕωϕπ=+><,(4)(2)6f f =-,且()f x 在[2,4]上单调.设函数()()1g x f x =-,且()g x 的定义域为[5,8]-,则()g x 的所有零点之和等于( ) A .0B .4C .12D .1618.设点()11,P x y 在椭圆22182x y +=上,点()22,Q x y 在直线280x y +-=上,则2121x x y y -+-的最小值是( )A .21B 3C .31D .219.已知1F 、2F 是椭椭圆和双曲线共有焦点,P 为两曲线的一个公共点,且126F PF π∠=,记椭圆和双曲线的离心率分别1e ,2e ,则1212e e e e +⋅的最大值为 A .4B .2C .83D .16320.设函数()3xf x mπ,函数()f x 的对称轴为0x x =,若存在0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围为( )A .(,6)(6,)-∞-+∞B .(,4)(4,)-∞-⋃+∞C .(,2)(2,)-∞-+∞D .(,1)(1,)-∞-+∞三、解答题21.函数()()303f x x πωω⎛⎫=+> ⎪⎝⎭在一个周期内的图象如图所示,A 为图象的最高点,B ,C 为图象与x 轴的交点,ABC ∆为等边三角形.将函数()f x 的图象上各点的横坐标变为原来的π倍后,再向右平移23π个单位,得到函数()y g x =的图象.(Ⅰ)求函数()g x 的解析式;(Ⅱ)若不等式()23sin 324x m g x m π⋅-≤+对任意x ∈R 恒成立,求实数m 的取值范围.22.已知函数()cos f x x x =,()sin g x x =,0,2x π⎡⎤∈⎢⎥⎣⎦.(1)求证:()()f x g x ≤;(2)若()ax g x bx <<在0,2π⎛⎫⎪⎝⎭上恒成立,求a 的最大值与b 的最小值.23.在直角ABC ∆中,2BAC π∠=,延长CB 至点D ,使得2CB BD =,连接AD .(1)若AC AD =,求CAD ∠的值; (2)求角D 的最大值.24.已知函数()()()()223cos +2cos 02f x x x x πϕϕϕϕ⎛⎫=+++<< ⎪⎝⎭.(1)求()f x 的最小正周期;(2)若13f π⎛⎫= ⎪⎝⎭,求当()2f x =时自变量x 的取值集合.25.已知函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的图象向左平移2π个单位长度后与函数()()cos 22g x x πϕϕ⎛⎫=+< ⎪⎝⎭图象重合.(1)求ω和ϕ的值;(2)若函数()88h x f x g x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,求函数()h x 的单调递减区间及图象的对称轴方程.26.已知函数22cos 3sin 2f xxx a 的最小值为0.(1)求a 的值及函数()y f x =图象的对称中心;(2)若关于x 的方程()0f x m -=在区间70,6π⎡⎤⎢⎥⎣⎦上有三个不相等的实数根1x ,2x ,3x ,求m的取值范围及()123tan 2x x x ++的值.27.已知向量a ,b 满足2sin 4a x x π⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,cos 4b x x π⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,函数()()f x a b x R =⋅∈.(1)求()f x 的单调区间;(2)已知数列()2*11224n n a n f n N ππ⎛⎫=-∈ ⎪⎝⎭,求{}n a 的前2n 项和2n S . 28.已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足sin()n n b a =,集合*{|,}n S x x b n ==∈N .(1)若10a =,23d π=,求集合S ; (2)若12a π=,求d 使得集合S 恰有两个元素;(3)若集合S 恰有三个元素,n T n b b +=,T 是不超过5的正整数,求T 的所有可能值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S .29.已知函数21()sin 24f x x x =+(1)求()f x 的最小正周期T 和[0,]π上的单调增区间:(2)若2()(1)0n f x m +-⋅>对任意的,34x ππ⎡⎤∈-⎢⎥⎣⎦和*n N ∈恒成立,求实数m 的取值范围.30.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c ,已知sin tan 1cos BC B=-.(Ⅰ)求证:ABC ∆为等腰三角形;(Ⅱ)若ABC ∆是钝角三角形,且面积为24a ,求2b ac的值.【参考答案】一、填空题1.3π 2.4734 5.566.237.48.742ω<<或91322ω<≤.910.80π 二、单选题 11.A 12.C 13.C 14.A 15.B 16.C 17.C 18.D 19.A 20.C 三、解答题21.(Ⅰ)()12g x x =(Ⅱ)2,23⎡⎤-⎢⎥⎣⎦【解析】 【分析】(Ⅰ)利用等边三角形的性质,根据已知,可以求出函数的周期,利用正弦型函数的最小正周期公式求出ω,最后根据正弦型函数图象的变换性质求出()y g x =的解析式; (Ⅱ)根据函数()y g x =的解析式,原不等式等价于23cos 3cos 10x m x m +++≥在x ∈R 恒成立,利用换元法,构造二次函数,分类讨论进行求解即可. 【详解】(Ⅰ)点A ABC ∆为等边三角形,所以三角形边长为2,所以24T πω==,解得2πω=,所以()23f x x ππ⎛⎫+ ⎪⎝⎭,将函数()f x 的图象上各点的横坐标变为原来的π倍后,得到()123h x x π⎛⎫=+ ⎪⎝⎭,再向右平移23π个单位,得到()12g x x =.(Ⅱ)()22g x x x ππ⎛⎫-=-= ⎪⎝⎭,所以()223sin 233cos 3cos x g x x m x π⋅-=--,原不等式等价于23cos 3cos 10x m x m +++≥在x ∈R 恒成立. 令cos x t =,[]1,1t ∈-,即23310t mt m +++≥在[]1,1t ∈-上恒成立.设()2331t t mt m ϕ=+++,对称轴2m t =-, 当12m-≤-时,即2m ≥时,()1240m ϕ-=-+≥,解得2m ≤,所以2m =; 当12m-≥时,即2m ≤-时,()1440m ϕ=+≥,解得1m ≥-(舍); 当112m -<-<时,即22m -<<时,231024m m m ϕ⎛⎫-=-++≥ ⎪⎝⎭,解得223m -≤<.综上,实数m 的取值范围为2,23⎡⎤-⎢⎥⎣⎦.【点睛】本题考查了正弦型函数的图象变换和性质,考查了利用换元法、构造法解决不等式恒成立问题,考查了数学运算能力.22.(1)答案见解析;(2)a 最大值为2π,b 的最小值为1. 【解析】 【分析】(1)构建函数()cos sin h x x x x =-,通过导数研究函数()h x 在0,2π⎡⎤⎢⎥⎣⎦单调性并计算最值,可得结果.(2)构造函数()sin M x x cx =-,通过分类讨论的方法,0c ≤,1c ≥和01c <<,利用导数判断函数()M x 的单调性,并计算最值比较,可得结果. 【详解】(1)由()()()cos sin h x f x g x x x x =-=- 所以()'cos sin cos sin h x x x x x x x =--=-. 又0,2x π⎡⎤∈⎢⎥⎣⎦,()'sin 0h x x x =-≤,所以()h x 在区间上0,2π⎡⎤⎢⎥⎣⎦单调递减.从而()()00h x h ≤=,()()f x g x ≤. (2)当0x >时,“()ax g x <”等价于“sin 0x ax ->” “()g x bx <”等价于“sin 0x bx -<”.令()sin M x x cx =-,则()'cos M x x c =-,当0c ≤时,()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.当1c ≥时,因为对任意0,2x π⎛⎫∈ ⎪⎝⎭,()'cos 0M x x c =-<,所以()M x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减.从而()()00M x M <=对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.当01c <<时,存在唯一的00,2x π⎛⎫∈ ⎪⎝⎭,使得()'cos 0M x x c =-=.()M x 与()'M x 在区间0,2π⎛⎫⎪⎝⎭上的情况如下:因为M x 在区间00,x 上是增函数, 所以()()000M x M >=.进一步,“()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立”当且仅当1022M c ππ⎛⎫=-≥ ⎪⎝⎭,即20c π<≤,综上所述: 当且仅当2c π≤时,()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立; 当且仅当1c ≥时,()0M x <对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.所以,若()ax g x bx <<对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立,则a 最大值为2π,b 的最小值为1. 【点睛】本题考查导数的综合应用,关键在于构建函数,化繁为简,同时掌握分类讨论的思想,考验分析问题的能力以及计算能力,属中档题.23.(1)23CAD π∠=;(2)6π.【解析】 【分析】(1)在ABD ∆中,由正弦定理得,sin sin BD ABDα=,再结合在直角ABC ∆中,sin AB BC C =,然后求解即可;(2)由正弦定理及两角和的余弦可得()2tan tan cos 2sin 22D D αααϕ=+=+,然后结合三角函数的有界性求解即可. 【详解】解:(1)设BAD ∠=α,在ABD ∆中,由正弦定理得,sin sin BD ABDα=, 而在直角ABC ∆中,sin AB BC C =,所以sin sin sin BD BC CDα=, 因为AC AD =,所以C D =, 又因为2CB BD =,所以1sin 2α=,所以6πα=,所以23CAD π∠=;(2)设BAD ∠=α, 在ABD ∆中,由正弦定理得,sin sin BD ABDα=, 而在直角ABC ∆中,()cos cos AB BC ABC BC D α=∠=+, 所以()()cos cos cos sin sin sin sin sin BC D BC D D BD D Dαααα+-==, 因为2CB BD =,所以2sin 2sin cos cos 2sin sin D D D ααα=-, 即22sin cos sin 2tan 12sin 2cos 2D ααααα==+-,即()2tan tan cos 2sin 22D D αααϕ=++,1≤及0,2D π⎛⎫∈ ⎪⎝⎭,解得0tan D <≤ 所以角D 的最大值为6π. 【点睛】本题考查了正弦定理,重点考查了三角函数的有界性,属中档题.24.(1)π;(2)12x x k ππ⎧=-+⎨⎩或()4x k k Z ππ⎫=+∈⎬⎭【解析】 【分析】(1)由辅助角公式可得()f x 2sin 2216x πϕ⎛⎫=+++ ⎪⎝⎭,再求周期即可;(2)由13f π⎛⎫= ⎪⎝⎭求出12πϕ=,再解方程2sin 2123x π⎛⎫++= ⎪⎝⎭即可.【详解】解:(1)()()()()2cos 2cos f x x x x ϕϕϕ=++++()()2cos21x x ϕϕ=++++2sin 2216x πϕ⎛⎫=+++ ⎪⎝⎭,则()f x 的最小正周期为2T ππω==.(2)因为13f π⎛⎫= ⎪⎝⎭,所以2sin 221136ππϕ⎛⎫⨯+++= ⎪⎝⎭,即()526k k Z πϕπ+=∈, 解得()5212k k Z ππϕ=-∈. 因为02πϕ<<,所以12πϕ=.因为()2f x =,所以2sin 2123x π⎛⎫++= ⎪⎝⎭,即1sin 232x π⎛⎫+= ⎪⎝⎭,则2236x k πππ+=+或()52236x k k Z πππ+=+∈, 解得12x k ππ=-+或()4x k k Z ππ=+∈.故当()2f x =时,自变量x 的取值集合为12x x k ππ⎧=-+⎨⎩或()4x k k Z ππ⎫=+∈⎬⎭.【点睛】本题考查了三角恒等变换,重点考查了解三角方程,属中档题. 25.(1)2ω=,3πϕ=;(2)减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,对称轴方程为()212k x k Z ππ=+∈ 【解析】 【分析】(1)先根据平移后周期不变求得2ω=,再根据三角函数的平移方法求得3πϕ=即可.(2)根据(1)中()sin 26f x x π⎛⎫=- ⎪⎝⎭,()cos 23g x x π⎛⎫=+ ⎪⎝⎭代入可得()h x ,利用辅助角公式求得()23h x x π⎛⎫=+ ⎪⎝⎭,再代入调递减区间及图象的对称轴方程求解即可.【详解】(1)因为函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的图象向左平移2π个单位长度后与函数()()cos 22g x x πϕϕ⎛⎫=+< ⎪⎝⎭图象重合,所以2ω=.5sin 2sin 2cos 222663f x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 所以()cos 2cos 23x x πϕ⎛⎫+=+ ⎪⎝⎭,因为2πϕ<,所以3πϕ=.(2)由(1)()sin 26f x x π⎛⎫=- ⎪⎝⎭,()cos 23g x x π⎛⎫=+ ⎪⎝⎭,所以()88h x f x g x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,sin 2cos 2212123x x x πππ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()3222232k x k k Z πππππ+≤+≤+∈,解得()71212k x k k Z ππππ+≤≤+∈ 所以函数的单调递减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 令()232x k k Z πππ+=+∈,可得图象的对称轴方程为()212k x k Z ππ=+∈. 【点睛】本题主要考查了三角函数的平移运用以及辅助角公式.同时也考查了根据三角函数的解析式求解单调区间以及对称轴等方法.属于中档题.26.(1)1,,2212k ππ⎛⎫-⎪⎝⎭,k Z ∈;(2)[)3,4, 【解析】(1)由题得()2sin 216f x x a π⎛⎫=+++ ⎪⎝⎭,求出a 的值即得函数()y f x =图象的对称中心;(2)作出函数()y f x =在70,6x π⎡⎤∈⎢⎥⎣⎦上的大致图象,求出123523x x x π++=即得解.【详解】(1)()cos 2212sin 216x x a x a f x π⎛⎫=++=+++ ⎪⎝⎭,由已知可得()2110a ⨯-++=,∴1a =,()2sin 226f x x π⎛⎫=++ ⎪⎝⎭,令26x k ππ+=可得()y f x =图象的对称中心为,2212k ππ⎛⎫-⎪⎝⎭,k Z ∈. (2)()y f x =在70,6x π⎡⎤∈⎢⎥⎣⎦上的大致图象如图所示,由图可得[)3,4m ∈,所以123x x π+=,2343x x π+=,所以123523x x x π++=,所以()1235tan 2tan33x x x π++==-.【点睛】本题主要考查三角恒等变换和三角函数的图象和性质,考查三角函数图象的综合应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.27.(1)单调增区间为7,1212k k ππππ⎡⎤--⎢⎥⎣⎦,k Z ∈,单调减区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;(2))222n n -+【解析】 【分析】(1)由向量数量积的坐标运算可得()2sin 2322sin 23f x a b x x x π⎛⎫=⋅=-=+⎪⎝⎭, 再利用三角函数单调区间的求法即可得解;(2)由题意可得()()222222221234212n S n n ⎤=-+-+⋅⋅⋅+--⎦,又()()2221241n n n --=-+,则)22442434n S n n =--⨯-⨯-⋅⋅⋅-+,再利用等差数列求和公式即可得解.【详解】解:(1)向量a ,b 满足2sin 64a x x π⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,cos 24b x x π⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,函数()2sin 2322sin 23f x a b x x x π⎛⎫=⋅=-=+⎪⎝⎭, 由2222232k x k πππππ-≤+≤+,可得71212k x k ππππ-≤≤-,k Z ∈, 解得()f x 的单调增区间为7,1212k k ππππ⎡⎤--⎢⎥⎣⎦,k Z ∈; 单调减区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈.(2)因为22112sin 2244n n a n f n n ππππ⎛⎫⎛⎫=-=-⎪ ⎪⎝⎭⎝⎭, 所以()()222222221234212n S n n ⎤=-+-+⋅⋅⋅+--⎦,又()()2221241n n n --=-+,)2442434n S n n --⨯-⨯-⋅⋅⋅-+,所以())2234122n n n S n n --+==+.【点睛】本题考查了三角函数单调区间的求法及数列中捆绑求和,属中档题.28.(1)⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭;(2)23π或π;(3)3T =或4,3T =时,23n a n π=,S ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭;4T =时,2n a n π=,{}0,1,1S =-【解析】 【分析】(1)根据等差数列的通项公式写出n a ,进而求出n b ,再根据周期性求解;(2)由集合S 的元素个数,分析数列{}n b 的周期,进而可求得答案;(3)分别令1T =,2,3,4,5进行验证,判断T 的可能取值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S 【详解】(1)等差数列{}n a 的公差(0d ∈,]π,数列{}n b 满足sin()n n b a =, 集合{}*|,n S x x b n N ==∈. ∴当120,3a d π==,所以集合{S =0. (2)12a π=,数列{}n b 满足sin()n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=, ②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=, 综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合1{S b =,2b ,3}b ,符合题意. 与之相应的一个等差数列{}n a 的通项公式为23n a n π=,此时33,,022S ⎧⎫⎪⎪=-⎨⎬⎪⎪⎩⎭. ②当4T =时,4n n b b +=,sin(4)sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0d ∈,]π,故42n n a d a k π+=+,2k d π=,又1k ∴=,2 当1k =时满足条件,此时{0S =,1,1}-. 与之相应的一个等差数列{}n a 的通项公式为2n a n π=,此时{}0,1,1S =-【点睛】本题考查等差数列的通项公式、集合元素的性质以及三角函数的周期性,是一道综合题. 29.(1) T=π,单调增区间为50,12π⎡⎤⎢⎥⎣⎦,11,12ππ⎡⎤⎢⎥⎣⎦(2) ∅ 【解析】 【分析】(1)化简函数得到1()sin 223f x x π⎛⎫=- ⎪⎝⎭,再计算周期和单调区间.(2)分情况n 的不同奇偶性讨论,根据函数的最值得到答案. 【详解】解:(1)函数21()sin 24f x x x =11cos 2sin 242x x +=11sin 22sin 2423x x x π⎛⎫==- ⎪⎝⎭ 故()f x 的最小正周期22T ππ==. 由题意可知:222232k x k πππππ-+≤-≤+,k Z ∈解得:51212k x k ππππ-+≤≤+,k Z ∈ 因为[0,]x π∈,所以()g x 的单调增区间为50,12π⎡⎤⎢⎥⎣⎦,11,12ππ⎡⎤⎢⎥⎣⎦ (2)由(1)得1()sin 223f x x π⎛⎫=- ⎪⎝⎭∵,34x ππ⎡⎤∈-⎢⎥⎣⎦∴2,36x πππ⎡⎤-∈-⎢⎥⎣⎦,∴1sin 21,32x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,12()1,2f x ⎡⎤∈-⎢⎥⎣⎦若2()(1)0n f x m +-⋅>对任意的,34x ππ⎡⎤∈-⎢⎥⎣⎦和*n N ∈恒成立,则2()(1)n f x m +-⋅的最小值大于零. 当n 为偶数时,10m -+>,所以,1m 当n 为奇数时,10m -->,所以,1m <- 综上所述,m 的范围为∅. 【点睛】本题考查了三角函数化简,周期,单调性,恒成立问题,综合性强,意在考查学生的计算能力和综合应用能力.30.(Ⅰ)证明见解析;(Ⅱ)2 【解析】 【分析】(Ⅰ)将正切化弦,结合两角和差正弦公式可求得()sin sin C B C =+,根据三角形内角和可整理为sin sin C A =,则由正弦定理可得到结论;(Ⅱ)利用三角形面积公式可求得1sin 2B =;根据三角形为钝角三角形且(Ⅰ)中的c a =,可知B 为钝角,求得cos B ;利用余弦定理可构造方程求得,a b 之间关系,从而得到所求结果. 【详解】 (Ⅰ)由sin tan 1cos B C B =-得:sin sin cos 1cos C BC B=-则:()sin sin cos cos sin sin C B C B C B C =+=+A B C π++= ()()sin sin sin B C A A π∴+=-= sin sin C A ∴=由正弦定理可知:c a =ABC ∆∴为等腰三角形(Ⅱ)由题意得:2211sin sin 224a S ac B a B ===,解得:1sin 2B =ABC ∆为钝角三角形,且a c = B ∴为钝角 cos B ∴=由余弦定理得:(2222222cos 22b a c ac B a a =+-==+2222b b ac a ∴==【点睛】本题考查三角形形状的求解、利用余弦定理、三角形面积公式求解三角形边之间的关系问题,涉及到两角和差正弦公式、三角形内角和、诱导公式、同角三角函数值的求解等知识.。

三角函数的图像与性质专项训练(原卷版)

三角函数的图像与性质专项训练(原卷版)

三角函数的图像与性质专项训练一、单选题1.(23-24高一上·浙江宁波·期末)为了得到πsin 53y x ⎛⎫=+ ⎪⎝⎭的图象,只要将函数sin 5y x =的图象()A .向左平移π15个单位长度B .向右平移π15个单位长度C .向右平移π3个单位长度D .向左平移π3个单位长度2.(23-24高一上·浙江丽水·期末)已知函数()()2sin f x x ωϕ=+的图象向左平移π6个单位长度后得到函数π2sin 23y x ⎛⎫=+ ⎪⎝⎭的图象,则ϕ的一个可能值是()A .0B .π12C .π6D .π33.(23-24高一下·浙江杭州·期末)为了得到函数()sin2f x x =的图象,可以把()cos2g x x =的图象()A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度4.(23-24高一上·浙江宁波·期末)已知函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭.若π8f x ⎛⎫- ⎪⎝⎭为奇函数,π8f x ⎛⎫+ ⎪⎝⎭为偶函数,且()f x 在π0,6⎛⎫⎪⎝⎭上没有最小值,则ω的最大值是()A .2B .6C .10D .145.(23-24高一上·浙江湖州·期末)我们知道,每一个音都是由纯音合成的,纯音的数学模型是sin y A x ω=.已知某音是由3个不同的纯音合成,其函数为()11sin sin 2sin 323f x x x x =++,则()A .π334f ⎛⎫=⎪⎝⎭B .()f x 的最大值为116C .()f x 的最小正周期为2π3D .()f x 在π0,6⎛⎫⎪⎝⎭上是增函数6.(23-24高一上·浙江杭州·期末)已知函数()()*2sin 6f x x πωω⎛⎫=+∈ ⎪⎝⎭N 有一条对称轴为23x π=,当ω取最小值时,关于x 的方程()f x a =在区间,63ππ⎡⎤-⎢⎥⎣⎦上恰有两个不相等的实根,则实数a 的取值范围是()A .(2,1)--B .[1,1)-C .[1,2)-D .[1,2)7.(23-24高一下·浙江丽水·期末)已知函数1()2sin(32f x x x π=ω-ω>∈,R),若()f x 的图象的任意一条对称轴与x 轴交点的横坐标均不属于区间(3π,4π),则ω的取值范围是()A .1287(,[]2396B .1171729(,][,]2241824C .52811[,][,]93912D .11171723[,][]182418248.(23-24高一下·浙江杭州·期末)已知函数()()sin ,0f x x ωω=>,将()f x 图象上所有点向左平移π6个单位长度得到函数()y g x =的图象,若函数()g x 在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,则ω的取值范围为()A .(]0,4B .(]0,2C .30,2⎛⎤⎥⎝⎦D .(]0,1二、多选题9.(23-24高一上·浙江台州·期末)已知函数()ππsin cos sin cos 44f x x x x x ⎛⎫⎛⎫=+++ ⎪ ⎝⎭⎝⎭,则()A .函数()f x 的最小正周期为2πB .点π,08⎛⎫- ⎪⎝⎭是函数()f x 图象的一个对称中心C .函数()f x 在区间π5π,88⎡⎤⎢⎥⎣⎦上单调递减D .函数()f x 的最大值为110.(23-24高一上·浙江湖州·期末)筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,现有一个筒车按逆时针方向匀速转动.每分钟转动5圈,如图,将该筒车抽象为圆O ,筒车上的盛水桶抽象为圆O 上的点P ,已知圆O 的半径为4m ,圆心O 距离水面2m ,且当圆O 上点P 从水中浮现时(图中点0P )开始计算时间,点P 的高度()h t 随时间t (单位秒)变化时满足函数模型()()sin h t A t b ωϕ=++,则下列说法正确的是()A .函数()h t 的初相为π6B .1秒时,函数()h t 的相位为0C .4秒后,点P 第一次到达最高点D .7秒和15秒时,点P 高度相同11.(23-24高一上·浙江丽水·期末)已知函数π()tan(2)6f x x =-,则()A .()f x 的最小正周期是π2B .()f x 的定义域是π{|π,Z}3x x k k ≠+∈C .()f x 的图象关于点π(,0)12对称D .()f x 在ππ(,)32上单调递增三、填空题12.(23-24高一上·浙江金华·期末)函数()π2π200cos 30063f n n ⎛⎫=++ ⎪⎝⎭({}1,2,3,,12n ∈⋅⋅⋅为月份),近似表示某地每年各个月份从事旅游服务工作的人数,游客流量越大所需服务工作的人数越多,则可以推断,当n =时,游客流量最大.13.(23-24高一上·浙江湖州·期末)已知()3sin 4f x x ϕ⎛⎫=+ ⎪⎝⎭,其中π0,2ϕ⎛⎫∈ ⎪⎝⎭,且ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,若函数()f x 在区间2π,3θ⎛⎫⎪⎝⎭上有且只有三个零点,则θ的范围为.14.(23-24高一上·浙江温州·期末)已知函数()π2sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭,对x ∀∈R 都有()π3f x f ⎛⎫⎪⎝⎭≤,且在3ππ,163⎛⎫ ⎪⎝⎭上单调,则ω的取值集合为四、解答题15.(23-24高一下·浙江丽水·期末)已知函数22()sin23cos 3sin f x x x x =.(1)求函数()f x 的最小正周期及单调递减区间;(2)将函数()f x 的图象上每个点的纵坐标缩短到原来的12,横坐标也缩短到原来的12,得到函数()g x 的图象,若函数()y g x m =-在区间π0,4⎡⎤⎢⎥⎣⎦内有两个零点,求实数m 的取值范围.16.(23-24高一下·浙江衢州·期末)已知函数()3sin2cos2f x x x =+.(1)求函数()f x 的最小正周期和对称中心;(2)求函数()f x 在π0,2⎡⎤⎢⎥⎣⎦上的值域.17.(23-24高一上·浙江杭州·期末)已知函数22()sin 2sin cos 3cos ,R f x x x x x x =++∈.求:(1)函数()f x 的最小值及取得最小值的自变量x 的集合;(2)函数()f x 的单调增区间.18.(23-24高一下·浙江杭州·期末)已知实数0a <,设函数22()cos sin2f x x a x a =+-,且π3()64f =-.(1)求实数a ,并写出()f x 的单调递减区间;(2)若0x 为函数()f x 的一个零点,求0cos2x .19.(23-24高一上·浙江嘉兴·期末)已知函数()2π4cos 2f x x x a x =--.(1)若1a =-,求函数()f x 在[]0,2上的值域;(2)若关于x 的方程()4f x a =-恰有三个不等实根123,,x x x ,且123x x x <<,求()()131278f x f x x --的最大值,并求出此时实数a 的值.。

2023高考数学复习专项训练《三角函数的应用》(含答案)

2023高考数学复习专项训练《三角函数的应用》(含答案)

2023高考数学复习专项训练《三角函数的应用》一、单选题(本大题共12小题,共60分)1.(5分)设函数f(x)=Acos(ωx+φ)(其中A>0,|ω|<;4,0<;φ<;π)的大致图象如图所示,则f(x)的最小正周期为()A. π2B. πC. 2πD. 4π2.(5分)数学必修二介绍了海伦−秦九韶公式:我国南宋时期著名的数学家秦九韶在其著作《数书九章》中,提出了已知三角形三边长求三角形的面积的公式,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.若把以上这段文字写成公式,即S=√14[a2c2−(a2+c2−b22)2],其中a、b、c分别为△ABC内角A、B、C的对边.若√3cosB√3sinB =1tanC,b=2,则△ABC面积S的最大值为()A. √3B. √5C. 3D. √23.(5分)某干燥塔的底面是半径为1的圆面O,圆面有一个内接正方形ABCD框架,在圆O的劣弧BC上有一点P,现在从点P出发,安装PA,PB,PC三根热管,则三根热管的长度和的最大值为()A、4B、2√3C、3√3D、2√6A. 4B. 2√3C. 3√3D. 2√64.(5分)现只有一把长为2m的尺子,为了求得某小区草坪坛边缘A,B两点的距离AB(AB大于2m),在草坪坛边缘找到点C与D,已知∠ACD=90∘,且tan∠ADB=−2√2,测得AC=1.2m,CD=0.9m,BD=1m,则AB=()A. √373m B. √5m C. √172m D. 3√22m5.(5分)已知函数f(x)=Asin(ωx+φ)(A>;0,ω>;0,|φ|<;π2)在一个周期内的图象如图所示.若方程f(x)=m在区间[0,π]上有两个不同的实数解x1,x2,则x1+x2的值为()A. π3B. 23π或43π C. 43π D. π3或43π6.(5分)设y=f(t)是某港口水的深度y(米)关于时间t(时)的函数,其中0⩽t⩽24.下表是该港口某一天从0时至24时记录的时间t与水深y的关系:经长期观观察,函数y=f(t)的图象可以近似地看成函数y=k+Asin(ωt+φ)的图象.在下面的函数中,最能近似表示表中数据间对应关系的函数是()A、y=12+3sinπ6t,t∈[0,24]B、y=12+3sin(π6t+π),t∈[0,24]C、y=12+3sinπ12t,t∈[0,24]D、y=12+3sin(π12t+π2),t∈[0,24]A. y=12+3sinπ6t,t∈[0,24]B. y=12+3sin(π6t+π),t∈[0,24]C. y=12+3sinπ12t,t∈[0,24]D. y=12+3sin(π12t+π2),t∈[0,24]7.(5分)泰山于1987年12月12日被列为世界文化与自然双重遗产,泰山及其周边坐落着许多古塔.某兴趣小组为了测量某古塔的高度,如图所示,在地面上一点A处测得塔顶B的仰角为60∘,在塔底C处测得A处的俯角为45∘.已知山岭高CD为256米,则塔高BC为()A. 256(√2−1)米B. 256(√3−1)米C. 256(√6−1)米D. 256(2√3−1)米8.(5分)为迎接校运动会的到来,学校决定在半径为20√2m,圆心角为π的扇形空地4OPQ内部修建一平行四边形观赛场地ABCD,如图所示,则观赛场地面积的最大值为( )A. 200m2B. 400(2−√2)m2C. 400(√3−1)m2D. 400(√2−1)m29.(5分)如图所示,单摆从某点开始来回摆动,离开平衡位置O的距离s(cm)和时),那么单摆摆动一个周期所需的时间为间t(s)的函数关系式为s=6sin(2πt+π6()A. 2πsB. πsC. 0.5sD. 1s10.(5分)小明在学完《解直角三角形》一章后,利用测角仪和校园旗杆的拉绳测量校园旗杆的高度,如图,旗杆PA的高度与拉绳PB的长度相等,小明先将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为()A. 11+sin α米 B. 11−cos α米 C. 11−sin α米D. 11+cos α米11.(5分)瀑布是庐山的一大奇观,为了测量某个瀑布的实际高度,某同学设计了如下测量方案:有一段水平山道,且山道与瀑布不在同一平面内,瀑布底端与山道在同一平面内,可粗略认为瀑布与该水平山道所在平面垂直,在水平山道上A 点位置测得瀑布顶端仰角的正切值为32,沿山道继续走20m ,抵达B 点位置测得瀑布顶端的仰角为π3.已知该同学沿山道行进的方向与他第一次望向瀑布底端的方向所成角为π3,则该瀑布的高度约为()A. 60mB. 90mC. 108mD. 120m12.(5分)设y =f(t)是某港口水的深度y (米)关于时间t (时)的函数,其中0⩽t ⩽24,表格中是该港口某一天从0时至24时记录的时间t 与水深y 的关系:经长期观察,函数y =f(t)的图象可以近似地看成函数y =k +Asin(ωt +φ)的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( )A. y =12+3sin π6t,t ∈[0,24] B. y =12+3sin(π6t +π2),t ∈[0,24] C. y =12+3sin π12t,t ∈[0,24] D. y =12+3sin(π12t +π2),t ∈[0,24] 二 、填空题(本大题共5小题,共25分)13.(5分)振动量函数y =√2sin(ωx +φ)(ω>;0)的初相和频率分别为-π和32,则它的运动周期为_______________,相位是_______________.14.(5分)如图,在平面直角坐标系中,点P 以每秒π2的角速度从点A 出发,沿半径为2的上半圆逆时针移动到B ,再以每秒π3的角速度从点B 沿半径为1的下半圆逆时针移动到坐标原点O,则上述过程中动点P的纵坐标y关于时间t的函数表达式为__________.15.(5分)函数f(x)=sin(ωx+φ)(其中ω>;0,|φ|<;π2)的图象如图所示,则函数f(x)=sin(ωx+φ)的最小正周期为_______________;为了得到g(x)=sinωx的图象,只需把y=f(x)的图象上所有的点向右平移_______________个单位长度.16.(5分)已知海湾内海浪的高度y(米)是时间t(0⩽t⩽24,单位:小时)的函数,记作y=f(t).某日各时刻记录的浪高数据如下表:经长期观测,y=f(t)可近似地看成是函数y=Acosωt+b.根据以上数据,可得函数y=Acosωt+b的表达式为__________.17.(5分)一个匀速旋转的摩天轮每12分钟转一周,最低点距地面2米,最高点距地面18米,P是摩天轮轮周上一定点,从P在最低点时开始计时,则16分钟后P点距地面的高度是____.三、解答题(本大题共6小题,共72分)18.(12分)某地为发展旅游业,在旅游手册中给出了当地一年每个月的月平均气温表,根据图中提供的数据,试用y=Asin(ωt+φ)+b近似地拟合出月平均气温y(单位:℃)与时间t(单位:月)的函数关系,并求出其周期和振幅,以及气温达到最大值和最小值的时间.(答案不唯一)19.(12分)某地种植大棚蔬菜,已知大棚内一天的温度(单位:℃)随时间t(单位:ℎ)的变化近似满足函数关系:f(t)=12−3sin(π12t+π3),t∈[0,24).(1)求实验室这一天的最大温差;(2)若某种蔬菜的生长要求温度不高于10.5℃,若种植这种蔬菜,则在哪段时间大棚需要降温?20.(12分)如图,有一块以点O为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD开辟为绿地,使其一边AD落在半圆的直径上,另两点B,C落在半圆的圆周上.已知半圆的半径长为20m.(1)如何选择关于点O对称的点A,D的位置,可以使矩形ABCD的面积最大,最大值是多少?(2)沿着AB,BC,CD修一条步行小路从A到D,如何选择A,D位置,使步行小路的距离最远?21.(12分)健康成年人的收缩压和舒张压一般为120~140mmHg和60~90mmHg.心脏跳动时,血压在增加或减小.血压的最大值、最小值分别称为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数120/80mmHg为标准值.记某人的血压满足函数式p(t)=25sin160πt+115,其中p(t)为血压(mmHg),t为时间(min),试回答下列问题:(1)求函数p(t)的周期;(2)求此人每分钟心跳的次数;(3)求出此人的血压在血压计上的读数,并与正常值比较.22.(12分)如果α为小于360°的正角,且这个角的7倍角的终边与这个角的终边重合,则这样的角α是否存在?23.(12分)某港口的水深y(米)是时间t(0≤t≤24,单位:小时)的函数,下面是每天时间与水深的关系表:(A>0,ω>0).(1)根据以上数据,求出y=f(t)的解析式;(2)若船舶航行时,水深至少要11.5米才是安全的,则船舶在一天中有几个小时可以安全进出该港?答案和解析1.【答案】C;【解析】略2.【答案】A;【解析】此题主要考查正弦定理在解三角形中的应用,两角和与差公式,考查二次函数求最值问题,考查转化思想,属于较难题.先利用两角和的正弦公式、三角形的内角和、诱导公式化简已知条件可得sinC=√3sinA,由正弦定理可得c=√3a代入面积公式结合二次函数的性质即可求解.解:因为√3cosB√3sinB =1tanC=cosCsinC,所以sinC=√3sinCcosB+√3cosCsinB=√3sin(B+C)=√3sinA,由正弦定理可得:c=√3a,代入面积公式可得:S=√14[a2⋅3a2−(a2+3a2−222)2]=√14[3a4−(2a2−2)2]=√14(−a4+8a2−4)=√14[−(a2−4)2+12]=√−14(a2−4)2+3,所以当a=2时,−14(a2−4)2+3取得最大值3,所以△ABC面积S的最大值为√3,故选:A.3.【答案】null;【解析】此题主要考查三角函数的实际应用,属于基础题.求出|PA|+|PB|+|PC|=2√3sin(θ+φ),利用三角函数的性质即可求解.解:如图,设∠PAC=θ,θ∈[0,π4],可得|PA|+|PB|+|PC|=2[cosθ+sin(π4−θ)+sinθ]=(2+√2)cosθ+(2−√2)sinθ=2√3sin(θ+φ),其中tanφ=3+2√2,φ∈(π4,π2 ),所以(|PA|+|PB|+|PC|)max=2√3,由的范围可以取到最大值.故选B.4.【答案】C;【解析】此题主要考查解三角形的实际应用,考查数学运算的核心素养与应用意识,属于中档题.由题意可得AD=1.5m,利用tan∠ADB,求出cos∠ADB,进一步进行求解即可.解:因为∠ACD=90∘,AC=1.2m,CD=0.9m,所以AD=√AC2+CD2=1.5m.因为tan∠ADB=−2√2,所以cos∠ADB=−13,所以AB=√1.52+12−2×1.5×1×(−13)=√172m.5.【答案】D;【解析】略6.【答案】null;【解析】此题主要考查由y=Asin(ωx+φ)的部分图象确定其解析式以及应用,通过对实际问题的分析,转化为解决三角函数问题,属基础题.通过排除法进行求解,由y=f(t)可以近似看成y=k+Asin(ωx+φ)的图象,故可以把已知数据代入y=k+Asin(ωx+φ)中,分别按照周期和函数值排除,即可求出答案.解:排除法:∵y=f(t)可以近似看成y=k+Asin(ωx+φ)的图象,∴由T=12可排除C、D,将(3,15)代入,排除B.故选A.7.【答案】B;此题主要考查了三角形的边角关系应用问题,也考查了数形结合思想和运算求解能力,属于基础题.根据题意结合图形,利用三角形的边角关系,即可求出塔高BC 的值.解:如图所示,在Rt △ACD 中,∠CAD =45°,CD =256, 所以AD =256,在Rt △ABD 中,∠BAD =60°, 所以BD =ADtan∠BAD =256√3, 所以BC =BD −CD =256√3−256, 即塔高BC 为256(√3−1)米. 故选:B.8.【答案】D;【解析】如图所示,连接OC ,设∠COA =θ,作DF ⊥OP ,CE ⊥OP ,垂足分别为F ,E .根据平面几何知识可知,AB =CD =EF ,DF =OF =CE ,∴CE =20√2sinθ,EF =OE −OF =20√2cosθ−20√2sinθ.故四边形ABCD 的面积S 等于四边形DFEC 的面积,即有S =20√2sinθ×20√2(cosθ−sinθ)=400(sin2θ+cos2θ−1)=400√2sin(2θ+π4)−400,其中θ∈(0,π4).所以当sin(2θ+π4)=1,即θ=π8时,S max =400(√2−1),即观赛场地面积的最大值为400(√2−1)m 2.故选D .9.【答案】D;10.【答案】C; 【解析】此题主要考查三角函数在实际生活中的应用. 由题设可得PA −1=PAsinα,即可得结果. 解:由题设,PC =PB′sinα=PAsinα,而PC =PA −1,所以PA −1=PAsinα,可得PA =11−sinα米.故选:C11.【答案】A; 【解析】此题主要考查解三角形的应用,根据题意作出示意图是解答该题的关键,考查空间立体感、学科素养和运算能力,属于中档题.作出示意图,过点B 作BC ⊥OA 于C ,结合三角函数和勾股定理,转化为平面几何中的简单计算,即可得解.解:根据题意作出如下示意图,其中tanα=32,β=θ=π3,AB =20m ,过点B 作BC ⊥OA 于C , 设OH =3x ,则OA =OH tanα=2x ,OB =OH tanβ=√3x ,在Rt △ABC 中,因为AB =20,θ=π3,所以AC =AB ×cos π3=10,BC =AB ×sin π3=10√3,所以OC =OA −AC =2x −10,在Rt △OBC 中,由勾股定理知,(2x −10)2+(10√3)2=(√3x)2, 化简得x 2−40x +400=0,解得x =20, 所以瀑布的高度OH =3x =60m.故答案选:A.12.【答案】A;【解析】略13.【答案】23;3πx−π; 【解析】略14.【答案】f(t)={2sinπt2,0<t⩽2sin[π3(t−2)+π],2<t⩽5;【解析】此题主要考查利用三角函数的定义解决实际问题,在做题过程中点的坐标与角度之间的关系,属于综合题.解:由三角函数的定义可得:当动点P在半径为2的上半圆上运动时,t∈(0,2],终边OP对应的角度为π2t,所以P点坐标为(2cosπ2t,2sinπ2t),当动点P在半径为1的下半圆上运动时,t∈(2,5],终边OP对应的角度为π3(t−2)+π,所以P点坐标为(cos[π3(t−2)+π],sin[π3(t−2)+π]),综上:动点P的纵坐标y关于时间t的函数表达式为y={2sinπ2t,t∈(0,2]sin[π3(t−2)+π],t∈(2,5]15.【答案】π;π6+kπ,k∈Z;【解析】略16.【答案】y=12cosπ6t+1;【解析】此题主要考查了三角函数模型的应用的相关知识,试题难度一般. 解题时先计算出周期和振幅,然后求解解析式即可.解:由表中数据,知周期T=12,∴ω=2πT =2π12=π6,由t=0,y=1.5,得A+b=1.5;由t=3,y=1.0,得b=1.0,∴A=0.5,b=1,∴y=12cosπ6t+1.17.【答案】14;【解析】解:设P 与地面高度与时间t 的关系,f (t )=Asin (ωt+φ)+B (A >0,ω>0,φ∈[0,2π)),由题意可知:A=8,B=10,T=12,所以ω=,又因为f (0)=2,故ϕ=-πt所以f (16)=8sin(π- . 故答案为:14.18.【答案】解:根据图象可知,当t =1时,y 有最小值15;当t =8时,y 有最大值27. ∴{−A +b =15ω+φ=−π28ω+φ=π2A +b =27解得{A =6b =21ω=π7φ=−9π14, ∴y =6sin(π7t −9π14)+21,周期T =2πω=2ππ7=14,振幅A =6.气温在1月份时达到最低, 在8月份时达到最高.;【解析】此题主要考查由y =Asin(ωt +φ)的部分图象确定其解析式,属于中档题. 当t =8月份时平均气温达到最大值25℃,当t =1月份时,平均气温达到最小值15℃,列出方程组,结合周期与振幅,从而可得函数解析式.19.【答案】解:(1)由题意,函数f(t)=12−3sin(π12t +π3),t ∈[0,24), 根据正弦型函数的性质可得−1⩽sin(π12t +π3)⩽1,所以f(t)max=15,f(t)min=9,可得f(t)max−f(t)min=6,则实验室这一天的最大温差为6℃.(2)由题意,令f(t)>10.5,即12−3sin(π12t+π3)>10.5,即sin(π12t+π3)<12,因为t∈[0,24),可得π12t+π3∈[π3,7π3),所以5π6<π12t+π3<13π6,解得6<t<22,即在6时至22时这段时间内大棚需要降温.;【解析】此题主要考查了函数y=Asin(ωx+φ)的图象与性质,三角函数模型的应用,属于中档题.(1)根据正弦型函数的性质可得−1⩽sin(π12t+π3)⩽1,求得f(t)max=15,f(t)min=9,进而求得这一天的最大温差;(2)根据题意,令f(t)>10.5,得到sin(π12t+π3)<12,利用正弦型函数的性质,求得t的范围即可求解.20.【答案】解(1)连接OB,如图所示,设∠AOB=θ,则AB=OBsinθ=20sinθ,OA=OBcosθ=20cosθ,且θ∈(0,π2).因为A,D关于点O对称,所以AD=2OA=40cosθ.设矩形ABCD的面积为S,则S=AD·AB=40cosθ·20sinθ=400sin2θ.因为θ∈(0,π2),所以2θ∈(0,π),所以当sin2θ=1,即θ=π4时,S max=400(m2).此时AO=DO=10√2(m).故当A,D距离圆心O为10√2m时,矩形ABCD的面积最大,其最大面积是400m2.(2)由(1)知AB=20sinθ,AD=40cosθ,所以AB+BC+CD=40sinθ+40cosθ=40√2sin(θ+π4),又θ∈(0,π2),所以θ+π4∈(π4,3π4),当θ+π4=π2,即θ=π4时,(AB+BC+CD)max=40√2(m),此时AO=DO=10√2(m),即当A,D距离圆心O为10√2m时,步行小路的距离最远.;【解析】此题主要考查三角函数在实际生活中的应用,考查正弦函数的最值,是中档题21.【答案】解(1)T =2π|ω|=2π160π =180(min).(2)f =1T=80. 即此人每分钟心跳的次数为80.(3)p(t)max =115+25=140(mmHg),p(t)min =115−25=90(mmHg), 即收缩压为140mmHg ,舒张压为90mmHg.此人的血压在血压计上的读数为140/90mmHg ,在正常值范围内.;【解析】此题主要考查三角函数在实际生活中的应用,考查正弦函数的周期与频率之间的关系以及求正弦函数的的值域相关问题,属于一般题.22.【答案】解:由题意,有7α=k·360°+α(k ∈Z),即α=k·60°. 又由于0°<α<360°,即0°<k·60°<360°(k ∈Z),则k 取1,2,3,4,5,所以α的值可取60°,120°,180°240°,300°.; 【解析】略.23.【答案】【解析】(1)由题表中数据可得:水深的最大值为13,最小值为7,所以{A +B =13,−A +B =7B =13+72=10,A =13−72=3,且相隔12小时达到一次最大值,说明周期为12,因此T=2πω=12,ω=π6,故f(t)=3sin π6t +10(0≤t ≤24)(2)要想船舶安全,必须f (t )≥11.5,即3sin π6t +10≥11.5, 所以sin π6t ≥12,所以2kπ+π6≤π6t ≤5π6+2kπ,k ∈Z ,解得12k+1≤t≤5+12k ,k ∈Z ,当k=0时,1≤t≤5;当k=1时,13≤t≤17.故船舶能安全进出该港的时间段为1:00至5:00,13:00至17:00,共8个小时.; 【解析】略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数 专项训练一、选择、填空题1、α是第四象限角,4tan 3α=-,则sin α=( ) A .45 B .45- C. 35 D .35-2、若点(3,4)P -是角α的终边上一点,则sin2α=( ) A . 2425-B .725-C .1625D . 853、函数y = )A .[,)4π+∞ B . 5[,]44ππC. 5[2,2]()44k k k Z ππππ++∈ D .5[,]()44k k k Z ππππ++∈4、已知角α的终边与单位圆122=+y x 交于点)21,(x P ,则sin(2)2πα+的值为( )A .23-B .21-C .21 D .23 5、若),2(,ππβα∈,且552sin =α,1010)-(sin -=βα,则=βsin ( ) A .1027 B .22 C .21 D .1016、已知函数)0,0)(sin(>>+=ωϕωA x A y 的最大值为4,最小值为4-,最小正周期为2π,直线3π=x 是其图象的一条对称轴,则符合条件的函数解析式是( ) (A ))64sin(4π+=x y (B ))34sin(4π+=x y (C ))34sin(2π+=x y (D ))64sin(4π-=x y7、函数22()sin 2sin )f x x x x =-的图象为C ,如下结论正确的是( )①f (x )的最小正周期为π; ②对任意的x ∈R ,都有()()66f x f x ππ++-=0; ③f (x )在(-5,1212ππ)上是增函数;④由2sin 2y x =的图象向右平移3π个单位长度可以得到图象C 。

(A )①② (B )③④(C )①②③(D )①②③④8、已知tan α=12,则tan2α=( ) A .-43 B .43 C .-34 D .349、已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,其面积为S ,且()22b c a +-=,则角=A ( )(A )6π (B )4π (C )3π (D )32π10、已知函数f (x )=A sin (ωx +φ)(A >0,ω>0)在x =6π处取得最小值,则( ) A .f (x +6π)一定是奇函数 B .f (x +6π)一定是偶函数C .f (x -6π)一定是奇函数D .f (x -6π)一定是偶函数11、函数()sin()(010,0)2f x x πωϕωϕ=+<<<<和的图象经过点(02),它的一条对称轴是8x π=,则ω=( )A .12B .1C .2D .812、若当x θ=时,函数()3sin 4cos f x x x =+取得最大值,则cos θ=()A .35B .45C .35-D .45-13、已知角α在第二象限,若322cos -=α,则=⎪⎭⎫ ⎝⎛+42cos 2πα( ) A .32 B .21 C .31D .0 14、在ABC ∆中,030=A ,2=AC ,且ABC ∆的面积为3,则=BC ( )A. 2B.3C.2D. 115 )C. 向右平移π12个单位 D. 向左平移π12个单位 16、将函数x x f 2sin )(=向右平移4π个单位后得到函数)(x g ,则)(x g 具有性质( ) A .在)4,0(π上单调递增,为偶函数 B .最大值为1,图象关于直线43π=x 对称C .在)8,83(ππ-上单调递增,为奇函数 D .周期为π,图象关于点)0,83(π对称 17、已知点,,A B C 在函数()3sin()(0)3f x x πωω=+>的图像上,如图,若AB BC ⊥,则ω=( )A .1B .π C.12 D .2π 18、要得到函数sin 2y x =的图象,只需将函数cos(2)6y x π=+的图象( ) A .向左平移3π个单位长度 B .向右平3π移个单位长度C .向左平移23π个单位长度D .向右平移23π个单位长度19、求值:=- 15sin 150cos 15cos 30sin ▲20、将函数f (x )的图像上的所有点向右平移π4个单位长度,得到函数g (x )的图像,若函数g (x )=A sin )(ϕω+x (A>0,ω>0,ϕ<π2)的部分图像如图所示,则函数f (x )的解析式为( )A .f (x )=sin(x +5π12)B .f (x )=-cos(2x+2π3)C .f (x )=cos(2x+π3)D .f (x )=sin(2x+7π12)21、若函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =6π对称,则函数g (x )=sin x +a cos x的图象( ) A .关于直线x =-3π对称 B .关于直线x =6π对称 C .关于点(3π,0)对称 D .关于点(56π,0)对称二、解答题1、在△ABC 中,内角A,B,C 所对的边分别为a ,b,c,已知3π=A ,22233a abc cb =-+. (1)求a 的值;(2)若b =1,求△ABC 的面积.2、在斜三角形ABC 中,角A 、B 、C 的对边分别是a 、b 、c .cos2cos cos A B C + 1sin sin B C +=. (1)求角A ;(2)若a = 2c =,求b .3、已知函数2())4cos 3f x x x π=-+,将函数()f x 的图像向右平移6π个单位,再向下平移2个单位,得到函数()g x 的图像. (1)求()g x 的解析式; (2)求()g x 在2[,]63ππ上的单调递减区间及值域.4、设函数232cos 3cos sin )(2-++=x x x x f (1)求函数)(x f 的单调递增区间和对称中心;(2)在锐角ABC ∆中,若1)(=A f ,且能盖住ABC ∆的最小圆的面积为π4,求ABC ∆周长的取值范围.5、在ABC ∆中,,,a b c 分别是角,,A B C 所对的边,且2sin 3tan c B a A =.(1)求222b c a +的值;(2)若2a =,求ABC ∆面积的最大值.6、在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足 cos2C ﹣cos2A =2sin (3π+C )•sin (3π﹣C ). (1)求角A 的值;(2)若a =3且b ≥a ,求2b ﹣c 的取值范围.7、△ABC 的内角A. B. C 的对边分别为a ,b ,c ,己知3AB AC =b (c -a sinC )。

(1)求角A 的大小;(2)设b=c ,N 是△ABC 所在平面上一点,且与A 点分别位于直线 BC 的两侧,如图,若BN=4,CN=2,求四边形ABNC 面积的最大值.8、△ABC 的内角A ,B ,C 的对边分别为a ,b ,c . 已知B =45°,b 10cos C 25(1)求a ;(2)设D 为AB 边的中点,求CD 的长.9、ABC △的内角A B C 、、所对的边分别为a b c 、、,且满足cos 230cos 2C c bA a++=. (Ⅰ)求cos A 的值;(Ⅱ)若ABC △外接圆半径为3,b c +=求ABC △的面积.10105=︒2,3BC AC ==. .DBA11、已知函数()cos 22x x f x =21cos 22x -+. (1)求函数()f x 的单调递减区间;(2)若ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,1()2f A =,a =sin 2sin B C =,求c.12、设函数22()cos(2)2cos 3f x x x π=++ . (1)求()f x 的最大值,并写出使()f x 取最大值时x 的集合;(2)已知ABC ∆中,角,,A B C 的对边分别为,,a b c ,若3()2f A =,2b c +=,求a 的最小值.参考答案一、选填题1、B2、A3、C4、C5、B6、A7、C8、B9、C 10、B 11、C 12、B 13、C 14、A 15、A 16、A 17、D 18、B 19、2220、C 21、D二、解答题 1、2、3、.解:(I )2())4cos 3π=-+f x x xcos cos 2sin )2(1cos 2)33ππ=-++x x x32cos 22cos 222=-++x x x12cos 222=++x x sin(2)26π=++x ,由题意得()sin 2()2266ππ⎡⎤=-++-⎢⎥⎣⎦g x x ,化简得()sin(2)6π=-g x x .(II )由263ππ≤≤x ,可得72666πππ≤-≤x .当72266πππ≤-≤x 即233ππ≤≤x 时,函数()g x 单调递减. ∴()g x 在2,63ππ⎡⎤⎢⎥⎣⎦上单调递减区间为2,33ππ⎡⎤⎢⎥⎣⎦. ∵()g x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增,在2,33ππ⎡⎤⎢⎥⎣⎦上单调递减, ∴max ()()sin132ππ===g x g . 又2711()sin sin()sin ()sin 36662662πππππππ==+=-=-<==g g ,∴1()12-≤≤g x ,即()g x 在2,63ππ⎡⎤⎢⎥⎣⎦上的值域为1,12⎡⎤-⎢⎥⎣⎦. 4、解析:(1)232cos 3cos sin )(2-++=x x x x f 12322cos 132sin 21+-+⨯+=x x 12cos 232sin 21++=x x 1)32sin(++=πx ……2分由223222πππππ+≤+≤-k x k ,解得12125ππππ+≤≤-k x k ,Z k ∈ ∴)(x f 的单调递增区间为)](12,125[Z k k k ∈+-ππππ ……4分 由ππk x =+32(Z k ∈),解得)(62Z k k x ∈-=ππ∴)(x f 的对称中心为))(1,62(Z k k ∈-ππ综上,函数)(x f 的单调递增区间为)](12,125[Z k k k ∈+-ππππ,对称中心为))(1,62(Z k k ∈-ππ ……6分(2)∵1)(=A f ,∴0)32sin(=+πA ,∵ ABC ∆为锐角三角形,∴ 20π<<A∴)34,3(32πππ∈+A ,∴ππ=+32A ,∴3π=A ……7分 ∵能盖住ABC ∆的最小圆为ABC ∆的外接圆,而其面积为π4,∴ππ42=外R ,解得2=外R , ……8分设ABC ∆的角C B A ,,所对的边分别为c b a ,,, 则由正弦定理42sin sin sin ====外R CcB b A a , ∴323sin4==πa ,Bb sin 4=,Cc sin 4=,∴)6sin(34)32sin(4sin 4sin 4sin 4ππ+=-+=+=+B B B C B c b ∵ ABC ∆为锐角三角形,∴26ππ<<B , ……10分∴3263πππ<+<B ,则1)6sin(23≤+<πB ∴346≤+<c b ,……11分 ∴36326≤++<+c b a ,∴ABC ∆的周长的取值范围为]36,326(+。

相关文档
最新文档