反比例函数培优综合题
九年级数学 反比例函数的专项 培优练习题含答案解析
九年级数学反比例函数的专项培优练习题含答案解析一、反比例函数1.已知:如图,正比例函数y=ax的图象与反比例函数y= 的图象交于点C(3,1)(1)试确定上述比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)点D(m,n)是反比例函数图象上的一动点,其中0<m<3,过点C作直线AC⊥x 轴于点A,交OD的延长线于点B;若点D是OB的中点,DE⊥x轴于点E,交OC于点F,试求四边形DFCB的面积.【答案】(1)解:将点C(3,1)分别代入y= 和y=ax,得:k=3,a= ,∴反比例函数解析式为y= ,正比例函数解析式为y= x;(2)解:观察图象可知,在第二象限内,当0<x<3时,反比例函数值大于正比例函数值;(3)解:∵点D(m,n)是OB的中点,又在反比例函数y= 上,∴OE= OA= ,点D(,2),∴点B(3,4),又∵点F在正比例函数y= x图象上,∴F(,),∴DF= 、BC=3、EA= ,∴四边形DFCB的面积为 ×( +3)× = .【解析】【分析】(1)利用待定系数法把C坐标代入解析式即可;(2)须数形结合,先找出交点,在交点的左侧与y轴之间,反比例函数值大于正比例函数值.(3)求出DF、BC、EA,代入梯形面积公式即可.2.如图,点P( +1,﹣1)在双曲线y= (x>0)上.(1)求k的值;(2)若正方形ABCD的顶点C,D在双曲线y= (x>0)上,顶点A,B分别在x轴和y 轴的正半轴上,求点C的坐标.【答案】(1)解:点P(,)在双曲线上,将x= ,y= 代入解析式可得:k=2;(2)解:过点D作DE⊥OA于点E,过点C作CF⊥OB于点F,∵四边形ABCD是正方形,∴AB=AD=BC,∠CBA=90°,∴∠FBC+∠OBA=90°,∵∠CFB=∠BOA=90°,∴∠FCB+∠FBC=90°,∴∠FBC=∠OAB,在△CFB和△AOB中,,∴△CFB≌△AOB(AAS),同理可得:△BOA≌△AED≌△CFB,∴CF=OB=AE=b,BF=OA=DE=a,设A(a,0),B(0,b),则D(a+b,a)C(b,a+b),可得:b(a+b)=2,a(a+b)=2,解得:a=b=1.所以点C的坐标为:(1,2).【解析】【分析】(1)由待定系数法把P坐标代入解析式即可;(2)C、D均在双曲线上,它们的坐标就适合解析式,设出C坐标,再由正方形的性质可得△CFB≌△AOB△BOA≌△AED≌△CFB,代入解析式得b(a+b)=2,a(a+b)=2,即可求出C坐标.3.如图1,经过原点的抛物线y=ax2+bx+c与x轴的另一个交点为点C;与双曲线y= 相交于点A,B;直线AB与分别与x轴、y轴交于点D,E.已知点A的坐标为(﹣1,4),点B在第四象限内且到x轴、y轴的距离相等.(1)求双曲线和抛物线的解析式;(2)计算△ABC的面积;(3)如图2,将抛物线平移至顶点在原点上时,直线AB随之平移,试判断:在y轴的负半轴上是否存在点P,使△PAB的内切圆的圆心在y轴上?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)解:把点A的坐标代入双曲线的解析式得:k=﹣1×4=﹣4.所以双曲线的解析式为y=﹣.设点B的坐标为(m,﹣m).∵点B在双曲线上,∴﹣m2=﹣4,解得m=2或m=﹣2.∵点B在第四象限,∴m=2.∴B(2,﹣2).将点A、B、C的坐标代入得:,解得:.∴抛物线的解析式为y=x2﹣3x.(2)解:如图1,连接AC、BC.令y=0,则x2﹣3x=0,∴x=0或x=3,∴C(3,0),∵A(﹣1,4),B(2,﹣2),∴直线AB的解析式为y=﹣2x+2,∵点D是直线AB与x轴的交点,∴D(1,0),∴S△ABC=S△ADC+S△BDC= ×2×4+ ×2×2=6;(3)解:存在,理由:如图2,由原抛物线的解析式为y=x2﹣3x=(x﹣)2﹣,∴原抛物线的顶点坐标为(,﹣),∴抛物线向左平移个单位,再向上平移个单位,而平移前A(﹣1,4),B(2,﹣2),∴平移后点A(﹣,),B(,),∴点A关于y轴的对称点A'(,),连接A'B并延长交y轴于点P,连接AP,由对称性知,∠APE=∠BPE,∴△APB的内切圆的圆心在y轴上,∵B(,),A'(,),∴直线A'B的解析式为y=3x﹣,∴P(0,﹣).【解析】【分析】(1)首先将点A的坐标代入反比例函数的解析式求得k的值,然后再求得B的值,最后根据点A的坐标求出双曲线的解析式,进而得出点B的坐标,最后,将点A、B、O三点的坐标代入抛物线的解析式,求得a、b、c的值即可;(2)由点A和点B的坐标可求得直线AB的解析式,然后将y=0可求得点D的横坐标,最后用三角形的面积和求解即可;(3)先确定出平移后点A,B的坐标,进而求出点A关于y轴的对称点的坐标,求出直线BA'的解析式即可得出点P的坐标.4.理数学兴趣小组在探究如何求tan15°的值,经过思考、讨论、交流,得到以下思路:思路一如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC= .tanD=tan15°= = = .思路二利用科普书上的和(差)角正切公式:tan(α±β)= .假设α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)= == .思路三在顶角为30°的等腰三角形中,作腰上的高也可以…思路四…请解决下列问题(上述思路仅供参考).(1)类比:求出tan75°的值;(2)应用:如图2,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,测得A,C两点间距离为60米,从A测得电视塔的视角(∠CAD)为45°,求这座电视塔CD的高度;(3)拓展:如图3,直线与双曲线交于A,B两点,与y轴交于点C,将直线AB绕点C旋转45°后,是否仍与双曲线相交?若能,求出交点P的坐标;若不能,请说明理由.【答案】(1)解:方法一:如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC= .tan∠DAC=tan75°= = = = ;方法二:tan75°=tan(45°+30°)= = = =(2)解:如图2,在Rt△ABC中,AB= = = ,sin∠BAC= ,即∠BAC=30°.∵∠DAC=45°,∴∠DAB=45°+30°=75°.在Rt△ABD中,tan∠DAB= ,∴DB=AB•tan∠DAB= •()= ,∴DC=DB﹣BC= = .答:这座电视塔CD的高度为()米(3)解:①若直线AB绕点C逆时针旋转45°后,与双曲线相交于点P,如图3.过点C 作CD∥x轴,过点P作PE⊥CD于E,过点A作AF⊥CD于F.解方程组:,得:或,∴点A(4,1),点B(﹣2,﹣2).对于,当x=0时,y=﹣1,则C(0,﹣1),OC=1,∴CF=4,AF=1﹣(﹣1)=2,∴tan∠ACF= ,∴tan∠PCE=tan(∠ACP+∠ACF)=tan(45°+∠ACF)= = =3,即 =3.设点P的坐标为(a,b),则有:,解得:或,∴点P的坐标为(﹣1,﹣4)或(,3);②若直线AB绕点C顺时针旋转45°后,与x轴相交于点G,如图4.由①可知∠ACP=45°,P(,3),则CP⊥CG.过点P作PH⊥y轴于H,则∠GOC=∠CHP=90°,∠GCO=90°﹣∠HCP=∠CPH,∴△GOC∽△CHP,∴.∵CH=3﹣(﹣1)=4,PH= ,OC=1,∴,∴GO=3,G(﹣3,0).设直线CG的解析式为,则有:,解得:,∴直线CG的解析式为.联立:,消去y,得:,整理得:,∵△= ,∴方程没有实数根,∴点P 不存在.综上所述:直线AB绕点C旋转45°后,能与双曲线相交,交点P的坐标为(﹣1,﹣4)或(,3).【解析】【分析】tan∠DAC=tan75°,tan∠DAC用边的比值表示.在Rt△ABC中,由勾股定理求出AB,由三角函数得出∠BAC=30°,从而得到∠DAB=75°,在Rt△ABD中,可求出DB,DC=DB﹣BC.分两种情况讨论,设点P的坐标为(a,b),根据tan∠PCE和P在图像上列出含有a,b的方程组,求出a,b.利用已知证明△GOC∽△CHP,根据相似三角形的性质可求出G的坐标,设出直线CG的解析式,与反比例函数组成方程组消元,△<0 点P不存在.5.如图,在矩形OABC中,OA=6,OC=4,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?【答案】(1)解:∵在矩形OABC中,OA=6,OC=4,∴B(6,4),∵F为AB的中点,∴F(6,2),又∵点F在反比例函数(k>0)的图象上,∴k=12,∴该函数的解析式为y= (x>0)(2)解:由题意知E,F两点坐标分别为E(,4),F(6,),∴,==== ,∴当k=12时,S有最大值.S最大=3【解析】【分析】)当F为AB的中点时,点F的坐标为(3,1),由此代入求得函数解析式即可;根据图中的点的坐标表示出三角形的面积,得到关于k的二次函数,利用二次函数求出最值即可.6.如图,过原点的直线y=k1x和y=k2x与反比例函数y= 的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是________四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,a=,b= ,试判断a,b的大小关系,并说明理由.【答案】(1)平行(2)解:∵正比例函数y=k1x(k1>0)与反比例函数y= 的图象在第一象限相交于A,∴k1x= ,解得x= (因为交于第一象限,所以负根舍去,只保留正根)将x= 带入y=k1x得y= ,故A点的坐标为(,)同理则B点坐标为(,),又∵OA=OB,∴ = ,两边平方得: +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,∵k1≠k2,所以k1k2﹣1=0,即k1k2=1;(3)解:∵P(x1, y1),Q(x2, y2)(x2>x1>0)是函数y= 图象上的任意两点,∴y1= ,y2= ,∴a= = = ,∴a﹣b= ﹣ = = ,∵x2>x1>0,∴>0,x1x2>0,(x1+x2)>0,∴>0,∴a﹣b>0,∴a>b.【解析】【解答】解:(1)∵直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,∴OA=OC,OB=OD,∴四边形ABCD 是平行四边形;故答案为:平行;【分析】(1)由直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,即可得到结论.(2)联立方程求得A、B点的坐标,然后根据OA=OB,依据勾股定理得出 = ,两边平分得 +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,根据k1≠k2,则k1k2﹣1=0,即可求得;(3)由P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,得到y1= ,y2= ,求出a= = = ,得到a﹣b= ﹣ = = >0,即可得到结果.7.已知一次函数y1=x+m的图象与反比例函数y2= 的图象交于A、B两点,已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的函数表达式;(2)已知反比例函数在第一象限的图象上有一点C到x轴的距离为2,求△ABC的面积.【答案】(1)解:∵当x>1时,y1>y2;当0<x<1时,y1<y2,∴点A的横坐标为1,代入反比例函数解析式,=y,解得y=6,∴点A的坐标为(1,6),又∵点A在一次函数图象上,∴1+m=6,解得m=5,∴一次函数的解析式为y1=x+5(2)解:∵第一象限内点C到x轴的距离为2,∴点C的纵坐标为2,∴2= ,解得x=3,∴点C的坐标为(3,2),过点C作CD∥x轴交直线AB于D,则点D的纵坐标为2,∴x+5=2,解得x=﹣3,∴点D的坐标为(﹣3,2),∴CD=3﹣(﹣3)=3+3=6,点A到CD的距离为6﹣2=4,联立,解得(舍去),,∴点B的坐标为(﹣6,﹣1),∴点B到CD的距离为2﹣(﹣1)=2+1=3,S△ABC=S△ACD+S△BCD= ×6×4+ ×6×3=12+9=21.【解析】【分析】(1)首先根据x>1时,y1>y2,0<x<1时,y1<y2确定点A的横坐标,然后代入反比例函数解析式求出点A的纵坐标,从而得到点A的坐标,再利用待定系数法求直线解析式解答;(2)根据点C到x轴的距离判断出点C的纵坐标,代入反比例函数解析式求出横坐标,从而得到点C的坐标,过点C作CD∥x轴交直线AB于D,求出点D 的坐标,然后得到CD的长度,再联立一次函数与双曲线解析式求出点B的坐标,然后△ABC的面积=△ACD的面积+△BCD的面积,列式进行计算即可得解.8.已知一次函数y=− x−12的图象分别交x轴,y轴于A,C两点。
九年级数学反比例函数的专项培优练习题含答案
九年级数学反比例函数的专项培优练习题含答案一、反比例函数1.如图,在平面直角坐标系中,反比例函数y= 的图象与一次函数y=ax+b的图象交于点A(﹣2,3)和点B(m,﹣2).(1)求反比例函数和一次函数的解析式;(2)直线x=1上有一点P,反比例函数图象上有一点Q,若以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,直接写出点Q的坐标.【答案】(1)解:∵点A(﹣2,3)在反比例函数y= 的图形上,∴k=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣,∵点B在反比例函数y=﹣的图形上,∴﹣2m=﹣6,∴m=3,∴B(3,﹣2),∵点A,B在直线y=ax+b的图象上,∴,∴,∴一次函数的解析式为y=﹣x+1(2)解:∵以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,∴AB=PQ,AB∥PQ,设直线PQ的解析式为y=﹣x+c,设点Q(n,﹣),∴﹣ =﹣n+c,∴c=n﹣,∴直线PQ的解析式为y=﹣x+n﹣,∴P(1,n﹣﹣1),∴PQ2=(n﹣1)2+(n﹣﹣1+ )2=2(n﹣1)2,∵A(﹣2,3).B(3,﹣2),∴AB2=50,∵AB=PQ,∴50=2(n﹣1)2,∴n=﹣4或6,∴Q(﹣4. )或(6,﹣1)【解析】【分析】(1)先利用待定系数法求出反比例函数解析式,进而求出点B的坐标,再用待定系数法求出直线解析式;(2)先判断出AB=PQ,AB∥PQ,设出点Q的坐标,进而得出点P的坐标,即可求出PQ,最后用PQ=AB建立方程即可得出结论.2.如图,点P(x,y1)与Q(x,y2)分别是两个函数图象C1与C2上的任一点.当a≤x≤b 时,有﹣1≤y1﹣y2≤1成立,则称这两个函数在a≤x≤b上是“相邻函数”,否则称它们在a≤x≤b 上是“非相邻函数”.例如,点P(x,y1)与Q (x,y2)分别是两个函数y=3x+1与y=2x﹣1图象上的任一点,当﹣3≤x≤﹣1时,y1﹣y2=(3x+1)﹣(2x﹣1)=x+2,通过构造函数y=x+2并研究它在﹣3≤x≤﹣1上的性质,得到该函数值的范围是﹣1≤y≤1,所以﹣1≤y1﹣y2≤1成立,因此这两个函数在﹣3≤x≤﹣1上是“相邻函数”.(1)判断函数y=3x+2与y=2x+1在﹣2≤x≤0上是否为“相邻函数”,并说明理由;(2)若函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,求a的取值范围;(3)若函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,直接写出a的最大值与最小值.【答案】(1)解:是“相邻函数”,理由如下:y1﹣y2=(3x+2)﹣(2x+1)=x+1,构造函数y=x+1,∵y=x+1在﹣2≤x≤0,是随着x的增大而增大,∴当x=0时,函数有最大值1,当x=﹣2时,函数有最小值﹣1,即﹣1≤y≤1,∴﹣1≤y1﹣y2≤1,即函数y=3x+2与y=2x+1在﹣2≤x≤0上是“相邻函数”(2)解:y1﹣y2=(x2﹣x)﹣(x﹣a)=x2﹣2x+a,构造函数y=x2﹣2x+a,∵y=x2﹣2x+a=(x﹣1)2+(a﹣1),∴顶点坐标为:(1,a﹣1),又∵抛物线y=x2﹣2x+a的开口向上,∴当x=1时,函数有最小值a﹣1,当x=0或x=2时,函数有最大值a,即a﹣1≤y≤a,∵函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,∴﹣1≤y1﹣y2≤1,即,∴0≤a≤1(3)解:y1﹣y2= ﹣(﹣2x+4)= +2x﹣4,构造函数y= +2x﹣4,∵y= +2x﹣4∴当x=1时,函数有最小值a﹣2,当x=2时,函数有最大值,即a﹣2≤y≤ ,∵函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,∴﹣1≤y1﹣y2≤1,即,∴1≤a≤2;∴a的最大值是2,a的最小值1【解析】【分析】(1)y1﹣y2=(3x+2)﹣(2x+1)=x+1,构造函数y=x+1,因为y=x+1在﹣2≤x≤0,是随着x的增大而增大,所以当x=0时,函数有最大值1,当x=﹣2时,函数有最小值﹣1,即﹣1≤y≤1,所以﹣1≤y1﹣y2≤1,即函数y=3x+2与y=2x+1在﹣2≤x≤0上是“相邻函数”;(2)y1﹣y2=(x2﹣x)﹣(x﹣a)=x2﹣2x+a,构造函数y=x2﹣2x+a,因为y=x2﹣2x+a=(x﹣1)2+(a﹣1),所以顶点坐标为:(1,a﹣1),又抛物线y=x2﹣2x+a的开口向上,所以当x=1时,函数有最小值a﹣1,当x=0或x=2时,函数有最大值a,即a﹣1≤y≤a,因为函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,所以﹣1≤y1﹣y2≤1,即0≤a≤1;(3)当x=1时,函数有最小值a﹣2,当x=2时,函数有最大值,因为函数y=与y=﹣2x+4在1≤x≤2上是“相邻函数”,﹣1≤y1﹣y2≤1,即1≤a≤2,所以a的最大值是2,a 的最小值1.3.如图,P1、P2(P2在P1的右侧)是y= (k>0)在第一象限上的两点,点A1的坐标为(2,0).(1)填空:当点P1的横坐标逐渐增大时,△P1OA1的面积将________(减小、不变、增大)(2)若△P1OA1与△P2A1A2均为等边三角形,①求反比例函数的解析式;②求出点P2的坐标,并根据图象直接写在第一象限内,当x满足什么条件时,经过点P1、P2的一次函数的函数值大于反比例函数y= 的函数值.【答案】(1)减小(2)解:①如图所示,作P1B⊥OA1于点B,∵A1的坐标为(2,0),∴OA1=2,∵△P1OA1是等边三角形,∴∠P1OA1=60°,又∵P1B⊥OA1,∴OB=BA1=1,∴P1B= ,∴P1的坐标为(1,),代入反比例函数解析式可得k= ,∴反比例函数的解析式为y= ;②如图所示,过P2作P2C⊥A1A2于点C,∵△P2A1A2为等边三角形,∴∠P2A1A2=60°,设A1C=x,则P2C= x,∴点P2的坐标为(2+x, x),代入反比例函数解析式可得(2+x) x= ,解得x1= ﹣1,x2=﹣﹣1(舍去),∴OC=2+ ﹣1= +1,P2C= (﹣1)= ﹣,∴点P2的坐标为( +1,﹣),∴当1<x< +1时,经过点P1、P2的一次函数的函数值大于反比例函数y= 的函数值【解析】【解答】解:(1)当点P1的横坐标逐渐增大时,点P1离x轴的距离变小,而OA1的长度不变,故△P1OA1的面积将减小,故答案为:减小;【分析】(1)当点P1的横坐标逐渐增大时,点P1离x轴的距离变小,而OA1的长度不变,故△P1OA1的面积将减小;(2)①由A1的坐标为(2,0),△P1OA1是等边三角形,求出P1的坐标,代入反比例函数解析式即可;②由△P2A1A2为等边三角形,求出点P2的坐标,得出结论.4.如图,Rt△ABO的顶点A是双曲线y= 与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO= .(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.【答案】(1)解:设A点坐标为(x,y),且x<0,y>0,则S△ABO= •|BO|•|BA|= •(﹣x)•y= ,∴xy=﹣3,又∵y= ,即xy=k,∴k=﹣3.∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;(2)解:由y=﹣x+2,令x=0,得y=2.∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),A、C两点坐标满足∴交点A为(﹣1,3),C为(3,﹣1),∴S△AOC=S△ODA+S△ODC= OD•(|x1|+|x2|)= ×2×(3+1)=4.【解析】【分析】两解析式的k一样,根据面积计算双曲线中的k较易,由公式=2S△ABO,可求出k;(2)求交点就求两解析式联立的方程组的解,可分割△AOC为S△ODA+S△ODC,即可求出.5.已知:O是坐标原点,P(m,n)(m>0)是函数y= (k>0)上的点,过点P作直线PA⊥OP于P,直线PA与x轴的正半轴交于点A(a,0)(a>m).设△OPA的面积为s,且s=1+ .(1)当n=1时,求点A的坐标;(2)若OP=AP,求k的值;(3)设n是小于20的整数,且k≠ ,求OP2的最小值.【答案】(1)解:过点P作PQ⊥x轴于Q,则PQ=n,OQ=m,当n=1时,s= ,∴a= = .(2)解:解法一:∵OP=AP,PA⊥OP,∴△OPA是等腰直角三角形.∴m=n= .∴1+ = •an.即n4﹣4n2+4=0,∴k2﹣4k+4=0,∴k=2.解法二:∵OP=AP,PA⊥OP,∴△OPA是等腰直角三角形.∴m=n.设△OPQ的面积为s1则:s1= ∴•mn= (1+ ),即:n4﹣4n2+4=0,∴k2﹣4k+4=0,∴k=2.(3)解:解法一:∵PA⊥OP,PQ⊥OA,∴△OPQ∽△OAP.设:△OPQ的面积为s1,则 =即: = 化简得:化简得:2n4+2k2﹣kn4﹣4k=0(k﹣2)(2k﹣n4)=0,∴k=2或k= (舍去),∴当n是小于20的整数时,k=2.∵OP2=n2+m2=n2+ 又m>0,k=2,∴n是大于0且小于20的整数.当n=1时,OP2=5,当n=2时,OP2=5,当n=3时,OP2=32+ =9+ = ,当n是大于3且小于20的整数时,即当n=4、5、6…19时,OP2的值分别是:42+ 、52+ 、62+ …192+ ,∵192+ >182+ >32+ >5,∴OP2的最小值是5.【解析】【分析】(1)利用△OPA面积定义构建关于a的方程,求出A的坐标;(2)由已知OP=AP,PA⊥OP,可得△OPA是等腰直角三角形,由其面积构建关于n的方程,转化为k的方程,求出k;(3)利用相似三角形的面积比等于相似比的平方构建关于k的方程,最值问题的基本解决方法就是函数思想,利用勾股定理用m、n的代数式表达OP2,,在n的范围内求出OP2的最值.6.如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点在轴正半轴上,顶点B在第一象限,线段,的长是一元二次方程的两根,,.(1)直接写出点的坐标________点 C的坐标________;(2)若反比例函数的图象经过点,求k的值;(3)如图过点作轴于点;在轴上是否存在点,使以,,为顶点的三角形与以,,为顶点的三角形相似?若存在,直接写出满足条件的点的坐标;若不存在,请说明理由.【答案】(1);(2)解:如图,过点作,垂足为,∵,∴,设,∵ =12,∴EC=12-x,在RtΔBEC中,,∴整理得:,解得:(不合题意舍去),,∴,,∴,把代入,得(3)解:存在.如图2,若点P在OD上,若△PDB∽△AOP,则,即,解得:OP=2或OP=6,∴P(0,2)或P(0,6);如图3,若点P在OD上方,△PDB∽△AOP,则,即,解得:OP=12,∴P(0,12);如图4,若点P在OD上方,△BDP∽△AOP,则,即,解得:OP=4+2 或OP=4-2 (不合题意舍去),∴P(0,4+2 );如图5,若点P在y轴负半轴,△PDB∽△AOP,则,即,解得:OP=-4+2 或-4-2 (不合题意舍去),则P点坐标为(0,4-2 )故点的坐标为:或或或或【解析】【解答】解:(1)解一元二次方程,解得:,所以,所以,;【分析】(1)首先利用直接开平方法求出方程的两根,从而得出OA=OC=6,进而得出A,C两点的坐标;(2)如图,过点作,垂足为,根据等腰直角三角形的性质得出,设,EC=12-x,在RtΔBEC中利用勾股定理建立方程,求解并检验即可得出BE,OE 的长从而得出B点的坐标,然后利用待定系数法即可求出反比例函数的解析式;(3)存在.如图2,若点P在OD上,若△PDB∽△AOP,根据相似三角形对应边成比例得出,根据比例式列出方程,求解即可得出P点的坐标;如图3,若点P在OD上方,△PDB∽△AOP,根据相似三角形对应边成比例得出则根据比例式列出方程,求解并检验即可得出P点的坐标;如图4,若点P在OD上方,△PDB∽△AOP,根据相似三角形对应边成比例得出,根据比例式列出方程,求解并检验即可得出P 点的坐标;如图5,若点P在y轴负半轴,△PDB∽△AOP,根据相似三角形对应边成比例得出,根据比例式列出方程,求解并检验即可得出P点的坐标,综上所述即可得出答案。
初三数学反比例函数的专项培优练习题(含答案)含答案
初三数学反比例函数的专项培优练习题(含答案)含答案一、反比例函数1.如图1,已知一次函数y=ax+2与x轴、y轴分别交于点A,B,反比例函数y= 经过点M.(1)若M是线段AB上的一个动点(不与点A、B重合).当a=﹣3时,设点M的横坐标为m,求k与m之间的函数关系式.(2)当一次函数y=ax+2的图象与反比例函数y= 的图象有唯一公共点M,且OM= ,求a的值.(3)当a=﹣2时,将Rt△AOB在第一象限内沿直线y=x平移个单位长度得到Rt△A′O′B′,如图2,M是Rt△A′O′B′斜边上的一个动点,求k的取值范围.【答案】(1)解:当a=﹣3时,y=﹣3x+2,当y=0时,﹣3x+2=0,x= ,∵点M的横坐标为m,且M是线段AB上的一个动点(不与点A、B重合),∴0<m<,,DANG则,﹣3x+2= ,当x=m时,﹣3m+2= ,∴k=﹣3m2+2m(0<m<)(2)解:由题意得:,ax+2= ,ax2+2x﹣k=0,∵直线y=ax+2(a≠0)与双曲线y= 有唯一公共点M时,∴△=4+4ak=0,ak=﹣1,∴k=﹣,则,解得:,∵OM= ,∴12+(﹣)2=()2,a=±(3)解:当a=﹣2时,y=﹣2x+2,∴点A的坐标为(1,0),点B的坐标为(0,2),∵将Rt△AOB在第一象限内沿直线y=x平移个单位得到Rt△A′O′B′,∴A′(2,1),B′(1,3),点M是Rt△A′O′B′斜边上一动点,当点M′与A′重合时,k=2,当点M′与B′重合时,k=3,∴k的取值范围是2≤k≤3【解析】【分析】(1)当a=﹣3时,直线解析式为y=﹣3x+2,求出A点的横坐标,由于点M的横坐标为m,且M是线段AB上的一个动点(不与点A、B重合)从而得到m的取值范围,由﹣3x+2= ,由X=m得k=﹣3m2+2m(0<m<);(2)由ax+2= 得ax2+2x﹣k=0,直线y=ax+2(a≠0)与双曲线y= 有唯一公共点M时,△=4+4ak=0,ak=﹣1,由勾股定理即可;(3)当a=﹣2时,y=﹣2x+2,从而求出A、B两点的坐标,由平移的知识知A′,B′点的坐标,从而得到k的取值范围。
数学反比例函数的专项培优练习题(含答案)含答案解析
一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【答案】(1)解:当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)把A(﹣4,),B(﹣1,2)代入y=kx+b得,解得,所以一次函数解析式为y= x+ ,把B(﹣1,2)代入y= 得m=﹣1×2=﹣2;(3)解:如下图所示:设P点坐标为(t,t+ ),∵△PCA和△PDB面积相等,∴• •(t+4)= •1•(2﹣t﹣),即得t=﹣,∴P点坐标为(﹣,).【解析】【分析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B点坐标代入y= 可计算出m的值;(3)设P点坐标为(t, t+ ),利用三角形面积公式可得到• •(t+4)= •1•(2﹣ t﹣),解方程得到t=﹣,从而可确定P点坐标.2.如图,已知函数的图象与一次函数的图象相交不同的点A、B,过点A作AD⊥轴于点D,连接AO,其中点A的横坐标为,△AOD 的面积为2.(1)求的值及 =4时的值;(2)记表示为不超过的最大整数,例如:,,设 ,若,求值【答案】(1)解:设A(x0, y0),则OD=x0, AD=y0,∴S△AOD= OD•AD= x0y0=2,∴k=x0y0=4;当x0=4时,y0=1,∴A(4,1),代入y=mx+5中得4m+5=1,m=-1(2)解:∵,∴=mx+5,整理得,mx2+5x-4=0,∵A的横坐标为x0,∴mx02+5x0=4,当y=0时,mx+5=0,x=- ,∵OC=- ,OD=x0,∴m2•t=m2•(OD•DC),=m2•x0(- -x0),=m(-5x0-mx02),=-4m,∵- <m<- ,∴5<-4m<6,∴[m2•t]=5【解析】【分析】(1)根据反比例函数比例系数k的几何意义,即可得出k的值;根据反比例函数图像上的点的坐标特点,即可求出A点的坐标,再将A点的坐标代入直线y=mx+5中即可求出m的值;(2)解联立直线与双曲线的解析式所组成的方程组,得出mx2+5x-4=0,将A点的横坐标代入得出mx02+5x0=4,根据直线与x轴交点的坐标特点,表示出OC,OD的长,由m2•t=m2•(OD•DC)=-4m,根据m的取值范围得出5<-4m<6,从而答案。
九年级数学反比例函数的专项培优练习题(含答案)附答案解析
九年级数学反比例函数的专项培优练习题(含答案)附答案解析一、反比例函数1.如图,点A在函数y= (x>0)图象上,过点A作x轴和y轴的平行线分别交函数y= 图象于点B,C,直线BC与坐标轴的交点为D,E.(1)当点C的横坐标为1时,求点B的坐标;(2)试问:当点A在函数y= (x>0)图象上运动时,△ABC的面积是否发生变化?若不变,请求出△ABC的面积,若变化,请说明理由.(3)试说明:当点A在函数y= (x>0)图象上运动时,线段BD与CE的长始终相等.【答案】(1)解:∵点C在y= 的图象上,且C点横坐标为1,∴C(1,1),∵AC∥y轴,AB∥x轴,∴A点横坐标为1,∵A点在函数y= (x>0)图象上,∴A(1,4),∴B点纵坐标为4,∵点B在y= 的图象上,∴B点坐标为(,4);(2)解:设A(a,),则C(a,),B(,),∴AB=a﹣ = a,AC= ﹣ = ,∴S△ABC= AB•AC= × × = ,即△ABC的面积不发生变化,其面积为;(3)解:如图,设AB的延长线交y轴于点G,AC的延长线交x轴于点F,∵AB∥x轴,∴△ABC∽△EFC,∴ = ,即 = ,∴EF= a,由(2)可知BG= a,∴BG=EF,∵AE∥y轴,∴∠BDG=∠FCE,在△DBG和△CFE中∴△DBG≌△CEF(AAS),∴BD=EF.【解析】【分析】(1)由条件可先求得A点坐标,从而可求得B点纵坐标,再代入y= 可求得B点坐标;(2)可设出A点坐标,从而可表示出C、B的坐标,则可表示出AB和AC的长,可求得△ABC的面积;(3)可证明△ABC∽△EFC,利用(2)中,AB和AC的长可表示出EF,可得到BG=EF,从而可证明△DBG≌△CFE,可得到DB=CF.2.如图1,已知一次函数y=ax+2与x轴、y轴分别交于点A,B,反比例函数y= 经过点M.(1)若M是线段AB上的一个动点(不与点A、B重合).当a=﹣3时,设点M的横坐标为m,求k与m之间的函数关系式.(2)当一次函数y=ax+2的图象与反比例函数y= 的图象有唯一公共点M,且OM= ,求a的值.(3)当a=﹣2时,将Rt△AOB在第一象限内沿直线y=x平移个单位长度得到Rt△A′O′B′,如图2,M是Rt△A′O′B′斜边上的一个动点,求k的取值范围.【答案】(1)解:当a=﹣3时,y=﹣3x+2,当y=0时,﹣3x+2=0,x= ,∵点M的横坐标为m,且M是线段AB上的一个动点(不与点A、B重合),∴0<m<,,DANG则,﹣3x+2= ,当x=m时,﹣3m+2= ,∴k=﹣3m2+2m(0<m<)(2)解:由题意得:,ax+2= ,ax2+2x﹣k=0,∵直线y=ax+2(a≠0)与双曲线y= 有唯一公共点M时,∴△=4+4ak=0,ak=﹣1,∴k=﹣,则,解得:,∵OM= ,∴12+(﹣)2=()2,a=±(3)解:当a=﹣2时,y=﹣2x+2,∴点A的坐标为(1,0),点B的坐标为(0,2),∵将Rt△AOB在第一象限内沿直线y=x平移个单位得到Rt△A′O′B′,∴A′(2,1),B′(1,3),点M是Rt△A′O′B′斜边上一动点,当点M′与A′重合时,k=2,当点M′与B′重合时,k=3,∴k的取值范围是2≤k≤3【解析】【分析】(1)当a=﹣3时,直线解析式为y=﹣3x+2,求出A点的横坐标,由于点M的横坐标为m,且M是线段AB上的一个动点(不与点A、B重合)从而得到m的取值范围,由﹣3x+2= ,由X=m得k=﹣3m2+2m(0<m<);(2)由ax+2= 得ax2+2x﹣k=0,直线y=ax+2(a≠0)与双曲线y= 有唯一公共点M时,△=4+4ak=0,ak=﹣1,由勾股定理即可;(3)当a=﹣2时,y=﹣2x+2,从而求出A、B两点的坐标,由平移的知识知A′,B′点的坐标,从而得到k的取值范围。
中考数学 反比例函数 培优练习(含答案)
中考数学反比例函数培优练习(含答案)一、反比例函数1.如图,直线y=﹣x+b与反比例函数y= 的图象相交于A(1,4),B两点,延长AO交反比例函数图象于点C,连接OB.(1)求k和b的值;(2)直接写出一次函数值小于反比例函数值的自变量x的取值范围;(3)在y轴上是否存在一点P,使S△PAC= S△AOB?若存在请求出点P坐标,若不存在请说明理由.【答案】(1)解:将A(1,4)分别代入y=﹣x+b和得:4=﹣1+b,4= ,解得:b=5,k=4(2)解:一次函数值小于反比例函数值的自变量x的取值范围为:x>4或0<x<1(3)解:过A作AN⊥x轴,过B作BM⊥x轴,由(1)知,b=5,k=4,∴直线的表达式为:y=﹣x+5,反比例函数的表达式为:由,解得:x=4,或x=1,∴B(4,1),∴,∵,∴,过A作AE⊥y轴,过C作CD⊥y轴,设P(0,t),∴S△PAC= OP•CD+ OP•AE= OP(CD+AE)=|t|=3,解得:t=3,t=﹣3,∴P(0,3)或P(0,﹣3).【解析】【分析】(1)由待定系数法即可得到结论;(2)根据图象中的信息即可得到结论;(3)过A作AM⊥x轴,过B作BN⊥x轴,由(1)知,b=5,k=4,得到直线的表达式为:y=﹣x+5,反比例函数的表达式为:列方程,求得B(4,1),于是得到,由已知条件得到,过A作AE⊥y轴,过C作CD⊥y轴,设P(0,t),根据三角形的面积公式列方程即可得到结论.2.如图,平行于y轴的直尺(一部分)与双曲线y= (k≠0)(x>0)相交于点A、C,与x轴相交于点B、D,连接AC.已知点A、B的刻度分别为5,2(单位:cm),直尺的宽度为2cm,OB=2cm.(1)求k的值;(2)求经过A、C两点的直线的解析式;(3)连接OA、OC,求△OAC的面积.【答案】(1)解:∵AB=5﹣2=3cm,OB=2cm,∴A的坐标是(2,3),代入y= 得3= ,解得:k=6(2)解:OD=2+2=4,在y= 中令x=4,解得y= .则C的坐标是(4,).设AC的解析式是y=mx+n,根据题意得:,解得:,则直线AC的解析式是y=﹣ x+(3)解:直角△AOB中,OB=2,AB=3,则S△AOB= OB•AB= ×2×3=3;直角△ODC中,OD=4,CD= ,则S△OCD= OD•CD= ×4× =3.在直角梯形ABDC中,BD=2,AB=3,CD= ,则S梯形ABDC= (AB+DC)•BD= (3+ )×2= .则S△OAC=S△AOB+S梯形ABDC﹣S△OCD=3+ ﹣3=【解析】【分析】(1)首先求得A的坐标,然后利用待定系数法求得函数的解析式;(2)首先求得C的坐标,然后利用待定系数法求得直线的解析式;(3)根据S△OAC=S△AOB+S梯形ABDC﹣S△OCD利用直角三角形和梯形的面积公式求解.3.如图,已知抛物线y=﹣x2+9的顶点为A,曲线DE是双曲线y= (3≤x≤12)的一部分,记作G1,且D(3,m)、E(12,m﹣3),将抛物线y=﹣x2+9水平向右移动a个单位,得到抛物线G2.(1)求双曲线的解析式;(2)设抛物线y=﹣x2+9与x轴的交点为B、C,且B在C的左侧,则线段BD的长为________;(3)点(6,n)为G1与G2的交点坐标,求a的值.(4)解:在移动过程中,若G1与G2有两个交点,设G2的对称轴分别交线段DE和G1于M、N两点,若MN<,直接写出a的取值范围.【答案】(1)把D(3,m)、E(12,m﹣3)代入y= 得,解得,所以双曲线的解析式为y= ;(2)2(3)解:把(6,n)代入y= 得6n=12,解得n=2,即交点坐标为(6,2),抛物线G2的解析式为y=﹣(x﹣a)2+9,把(6,2)代入y=﹣(x﹣a)2+9得﹣(6﹣a)2+9=2,解得a=6± ,即a的值为6± ;(4)抛物线G2的解析式为y=﹣(x﹣a)2+9,把D(3,4)代入y=﹣(x﹣a)2+9得﹣(3﹣a)2+9=4,解得a=3﹣或a=3+ ;把E(12,1)代入y=﹣(x﹣a)2+9得﹣(12﹣a)2+9=1,解得a=12﹣2 或a=12+2;∵G1与G2有两个交点,∴3+ ≤a≤12﹣2 ,设直线DE的解析式为y=px+q,把D(3,4),E(12,1)代入得,解得,∴直线DE的解析式为y=﹣ x+5,∵G2的对称轴分别交线段DE和G1于M、N两点,∴M(a,﹣ a+5),N(a,),∵MN<,∴﹣ a+5﹣<,整理得a2﹣13a+36>0,即(a﹣4)(a﹣9)>0,∴a<4或a>9,∴a的取值范围为9<a≤12﹣2 .【解析】【解答】解:(2)当y=0时,﹣x2+9=0,解得x1=﹣3,x2=3,则B(﹣3,0),而D(3,4),所以BE= =2 .故答案为2 ;【分析】(1)把D(3,m)、E(12,m﹣3)代入y= 得关于k、m的方程组,然后解方程组求出m、k,即可得到反比例函数解析式和D、E点坐标;(2)先解方程﹣x2+9=0得到B(﹣3,0),而D(3,4),然后利用两点间的距离公式计算DE的长;(3)先利用反比例函数图象上点的坐标特征确定交点坐标为(6,2),然后把(6,2)代入y=﹣(x ﹣a)2+9得a的值;(4)分别把D点和E点坐标代入y=﹣(x﹣a)2+9得a的值,则利用图象和G1与G2有两个交点可得到3+ ≤a≤12﹣2 ,再利用待定系数法求出直线DE的解析式为y=﹣ x+5,则M(a,﹣ a+5),N(a,),于是利用MN<得到﹣ a+5﹣<,然后解此不等式得到a<4或a>9,最后确定满足条件的a的取值范围.4.如图直角坐标系中,矩形ABCD的边BC在x轴上,点B,D的坐标分别为B(1,0),D(3,3).(1)点C的坐标________;(2)若反比例函数y= (k≠0)的图象经过直线AC上的点E,且点E的坐标为(2,m),求m的值及反比例函数的解析式;(3)若(2)中的反比例函数的图象与CD相交于点F,连接EF,在直线AB上找一点P,使得S△PEF= S△CEF,求点P的坐标.【答案】(1)(3,0)(2)解:∵AB=CD=3,OB=1,∴A的坐标为(1,3),又C(3,0),设直线AC的解析式为y=ax+b,则,解得:,∴直线AC的解析式为y=﹣ x+ .∵点E(2,m)在直线AC上,∴m=﹣ ×2+ = ,∴点E(2,).∵反比例函数y= 的图象经过点E,∴k=2× =3,∴反比例函数的解析式为y=(3)解:延长FC至M,使CM= CF,连接EM,则S△EFM= S△EFC, M(3,﹣0.5).在y= 中,当x=3时,y=1,∴F(3,1).过点M作直线MP∥EF交直线AB于P,则S△PEF=S△MEF.设直线EF的解析式为y=a'x+b',∴,解得,∴y=﹣ x+ .设直线PM的解析式为y=﹣ x+c,代入M(3,﹣0.5),得:c=1,∴y=﹣ x+1.当x=1时,y=0.5,∴点P(1,0.5).同理可得点P(1,3.5).∴点P坐标为(1,0.5)或(1,3.5).【解析】【解答】解:(1)∵D(3,3),∴OC=3,∴C(3,0).故答案为(3,0);【分析】(1)由D的横坐标为3,得到线段OC=3,即可确定出C的坐标;(2)由矩形的对边相等,得到AB=CD,由D的纵坐标确定出CD的长,即为AB的长,再由B的坐标确定出OB的长,再由A为第一象限角,确定出A的坐标,由A与C的坐标确定出直线AC的解析式,将E坐标代入直线AC解析式中,求出m的值,确定出E的坐标,代入反比例解析式中求出k的值,即可确定出反比例解析式;(3)延长FC至M,使CM=CF,连接EM,则S△EFM=S△EFC, M(3,﹣0.5).求出F(3,1),过点M作直线MP∥EF交直线AB于P,利用平行线间的距离处处相等得到高相等,再利用同底等高得到S△PEF=S△MEF.此时直线EF与直线PM的斜率相同,由F的横坐标与C横坐标相同求出F 的横坐标,代入反比例解析式中,确定出F坐标,由E与F坐标确定出直线EF斜率,即为直线PM的斜率,再由M坐标,确定出直线PM解析式,由P横坐标与B横坐标相同,将B横坐标代入直线PM解析式中求出y的值,即为P的纵坐标,进而确定出此时P的坐标.5.已知点A,B分别是x轴、y轴上的动点,点C,D是某个函数图象上的点,当四边形ABCD(A,B,C,D各点依次排列)为正方形时,我们称这个正方形为此函数图象的“伴侣正方形”.例如:在图1中,正方形ABCD是一次函数y=x+1图象的其中一个“伴侣正方形”.(1)如图1,若某函数是一次函数y=x+1,求它的图象的所有“伴侣正方形”的边长;(2)如图2,若某函数是反比例函数(k>0),它的图象的“伴侣正方形”为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数的解析式;(3)如图3,若某函数是二次函数y=ax2+c(a≠0),它的图象的“伴侣正方形”为ABCD,C,D中的一个点坐标为(3,4),请你直接写出该二次函数的解析式.【答案】(1)解:(I)当点A在x轴正半轴、点B在y轴负半轴上时:正方形ABCD的边长为.(II)当点A在x轴负半轴、点B在y轴正半轴上时:设正方形边长为a,易得3a= ,解得a= ,此时正方形的边长为.∴所求“伴侣正方形”的边长为或(2)解:如图,作DE⊥x轴,CF⊥y轴,垂足分别为点E、F,易证△ADE≌△BAO≌△CBF.∵点D的坐标为(2,m),m<2,∴DE=OA=BF=m,∴OB=AE=CF=2﹣m.∴OF=BF+OB=2,∴点C的坐标为(2﹣m,2).∴2m=2(2﹣m),解得m=1.∴反比例函数的解析式为y=(3)解:实际情况是抛物线开口向上的两种情况中,另一个点都在(3,4)的左侧,而开口向下时,另一点都在(3,4)的右侧,与上述解析明显不符合a、当点A在x轴正半轴上,点B在y轴正半轴上,点C坐标为(3,4)时:另外一个顶点为(4,1),对应的函数解析式是y=﹣ x2+ ;b、当点A在x 轴正半轴上,点 B在 y轴正半轴上,点D 坐标为(3,4)时:不存在,c、当点A 在 x 轴正半轴上,点 B在 y轴负半轴上,点C 坐标为(3,4)时:不存在d、当点A在x 轴正半轴上,点B在y轴负半轴上,点D坐标为(3,4)时:另外一个顶点C为(﹣1,3),对应的函数的解析式是y= x2+ ;e、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D的坐标是(7,﹣3)时,对应的函数解析式是y=﹣ x2+ ;f、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D 的坐标是(﹣4,7)时,对应的抛物线为y= x2+ ;故二次函数的解析式分别为:y= x2+ 或y=﹣ x2+ 或y=﹣ x2+ 或y= x2+【解析】【分析】(1)先正确地画出图形,再利用正方形的性质确定相关点的坐标从而计算正方形的边长.(2)因为ABCD为正方形,所以可作垂线得到等腰直角三角形,利用点D(2,m)的坐标表示出点C的坐标,可求出m的值,即可得到反比例函数的解析式.(3)由抛物线开口既可能向上,也可能向下.当抛物线开口向上时,正方形的另一个顶点也是在抛物线上,这个点既可能在点(3,4)的左边,也可能在点(3,4)的右边,过点(3,4)向x轴作垂线,利用全等三角形确定线段的长即可确定抛物线上另一个点的坐标;当抛物线开口向下时也是一样地分为两种情况来讨论,即可得到所求的结论.6.如图,直线y=mx+n与双曲线y= 相交于A(﹣1,2)、B(2,b)两点,与y轴相交于点C.(1)求m,n的值;(2)若点D与点C关于x轴对称,求△ABD的面积;(3)在坐标轴上是否存在异于D点的点P,使得S△PAB=S△DAB?若存在,直接写出P点坐标;若不存在,说明理由.【答案】(1)解:∵点A(﹣1,2)在双曲线y= 上,∴2= ,解得,k=﹣2,∴反比例函数解析式为:y=﹣,∴b= =﹣1,则点B的坐标为(2,﹣1),∴,解得,m=﹣1,n=1(2)解:对于y=﹣x+1,当x=0时,y=1,∴点C的坐标为(0,1),∵点D与点C关于x轴对称,∴点D的坐标为(0,﹣1),∴△ABD的面积= ×2×3=3(3)解:对于y=﹣x+1,当y=0时,x=1,∴直线y=﹣x+1与x轴的交点坐标为(0,1),当点P在x轴上时,设点P的坐标为(a,0),S△PAB= ×|1﹣a|×2+ ×|1﹣a|×1=3,解得,a=﹣1或3,当点P在y轴上时,设点P的坐标为(0,b),S△PAB= ×|1﹣b|×2+ ×|1﹣b|×1=3,解得,b=﹣1或3,∴P点坐标为(﹣1,0)或(3,0)或(0,﹣1)或(0,3)【解析】【分析】(1)由点A(﹣1,2)在双曲线上,得到k=﹣2,得到反比例函数解析式为,从而求出b的值和点B的坐标,把A、B坐标代入直线y=mx+n,求出m、n的值;(2)由一次函数的解析式求出点C的坐标,由点D与点C关于x轴对称,得到点D的坐标,从而求出△ABD的面积;(3)由一次函数的解析式得到直线y=﹣x+1与x轴的交点坐标为(0,1),当点P在x轴上时,设点P的坐标为(a,0),求出S△PAB=3,求出a的值,当点P在y轴上时,设点P的坐标为(0,b),求出S△PAB=3,求出b的值,从而得到P点坐标.7.如图,在平面直角坐标系中,平行四边形的边,顶点坐标为,点坐标为 .(1)点的坐标是________,点的坐标是________(用表示);(2)若双曲线过平行四边形的顶点和,求该双曲线的表达式;(3)若平行四边形与双曲线总有公共点,求的取值范围.【答案】(1);(2)解:∵双曲线过点和点,∴,解得,∴点的坐标为,点的坐标为,把点的坐标代入,解得,∴双曲线表达式为(3)解:∵平行四边形与双曲线总有公共点,∴当点在双曲线,得到,当点在双曲线,得到,∴的取值范围 .【解析】【分析】(1)由四边形ABCD为平行四边形,得到A与B纵坐标相同,C与D纵坐标相同,横坐标相差2,得出B、C坐标即可;(2)根据B与D在反比例图象上,得到C与D横纵坐标乘积相等,求出b的值确定出B坐标,进而求出k的值,确定出双曲线解析式;(3)抓住两个关键点,将A坐标代入双曲线解析式求出b的值;将C坐标代入双曲线解析式求出b的值,即可确定出平行四边形与双曲线总有公共点时b的范围.8.如图,反比例函数的图象与一次函数y=kx+5(k为常数,且k≠0)的图象交于A (﹣2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.【答案】(1)解:把A(﹣2,b)代入,得b=﹣ =4,所以A点坐标为(﹣2,4),把A(﹣2,4)代入y=kx+5,得﹣2k+5=4,解得k= ,所以一次函数解析式为y= x+5;(2)解:将直线AB向下平移m(m>0)个单位长度得直线解析式为y= x+5﹣m,根据题意方程组只有一组解,消去y得﹣ = x+5﹣m,整理得 x2﹣(m﹣5)x+8=0,△=(m﹣5)2﹣4× ×8=0,解得m=9或m=1,即m的值为1或9.【解析】【分析】(1)先利用反比例函数解析式求出b=4,得到A点坐标为(-2,4),然后把A点坐标代入y=kx+5中求出k,从而得到一次函数解析式;(2)由于将直线AB向下平移m(m>0)个单位长度得直线解析式为y=,又与反比例函数有且只有一个公共点,可组成方程组,且只有一组解,然后消去y得到关于x的一元二次方程,再根据判别式=0得到关于m的方程,最后解方程求出m的值.9.如图,已知直线与x、y轴交于M、N,若将N向右平移个单位后的N,,恰好落在反比例函数的图像上.(1)求k的值;(2)点P为双曲线上的一个动点,过点P作直线PA⊥x轴于A点,交NM延长线于F 点,过P点作PB⊥y轴于B交MN于点E.设点P的横坐标为m.①用含有m的代数式表示点E、F的坐标②找出图中与△EOM 相似的三角形,并说明理由.【答案】(1)解:当时,,,.把代入得,(2)解:①由(1)知 ..当时, ,.当时,,,∴E(2 -, ).② , , , ,,,,由一次函数解析式得∠OME=∠ONF=45°【解析】【分析】(1)当x=0时,求出y=2,得出N(0,2) ,由平移的性质得出N'(3,2) .把 (3,2) 代入 y=得k=6.(2)①由(1)可设P(m,) .当x=m时,求出y=−m+2 ,即F(m,2-m) ;当y=时,求出x=2−,即E(2 -,).②∵ON=2 , EM=, OM=2 , NF=,从而得出OMNF=EMON.由一次函数解析式得∠OME=∠ONF=45°;推出ΔEOM∼ΔOFN.10.如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y= 相交于点A(m,3),B(﹣6,n),与x轴交于点C.(1)求直线y=kx+b(k≠0)的解析式;(2)若点P在x轴上,且S△ACP= S△BOC,求点P的坐标(直接写出结果).【答案】(1)解:)∵点A(m,3),B(﹣6,n)在双曲线y= 上,∴m=2,n=﹣1,∴A(2,3),B(﹣6,﹣1).将(2,3),B(﹣6,﹣1)带入y=kx+b,得:,解得.∴直线的解析式为y= x+2(2)解:当y= x+2=0时,x=﹣4,∴点C(﹣4,0).设点P的坐标为(x,0),∵S△ACP= S△BOC, A(2,3),B(﹣6,﹣1),∴×3|x﹣(﹣4)|= × ×|0﹣(﹣4)|×|﹣1|,即|x+4|=2,解得:x1=﹣6,x2=﹣2.∴点P的坐标为(﹣6,0)或(﹣2,0).【解析】【分析】(1)利用反比例函数图象上点的坐标特征可求出点A、B的坐标,再利用待定系数法即可求出直线AB的解析式;(2)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ACP= S△BOC,即可得出|x+4|=2,解之即可得出结论.11.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.操作探究:(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为________cm3.【答案】(1)解:A.有田字,故A不能折叠成无盖正方体;B.只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;C.可以折叠成无盖正方体;D.有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体.故答案为:C.(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)x;(20﹣2x)2;576【解析】【解答】(3)解:①如图,②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).故答案为:x,(20﹣2x)2, 576【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,即可解答.12.已知抛物线的顶点坐标为,经过点 .(1)求抛物线的解析式;(2)如图1,直线交抛物线于,两点,若,求的值;(3)如图2,将抛物线向下平移个单位长度得到抛物线,抛物线的顶点为,交轴的负半轴于点,点在抛物线上.①求点的坐标(用含的式子表示);②若,求,的值.【答案】(1)解:已知抛物线的顶点坐标为,∴设抛物线的解析式为,把代入得:6=16a-2,解得:,∴抛物线的解析式为(2)解:设直线交轴点,则点的坐标,∴ .∵,∴ .∴ .由得,∴,,∴,∴,∵,∴ .(3)解:①依题意得抛物线的解析式为 . 点在抛物线上,∴,∴顶点的坐标为,令,即 .∴,(舍去),∴点的坐标为 .②作轴于点,∵E(2-a,0),F(a,2a-2),∴,∴,又,∴,∵FH//y轴,∴∠FPO=∠PFH=22.5°,∴∠FPO=∠EFP,∴PD=FD,设交轴于点,过D作DG⊥FH于G,则DG=OH,∵∠EFH=45°,∴,∵∠FEH=45°,a>2,∴OD=OE=a-2,∴PD=a-2- = ,∵HO=a,∴,∴,(舍去),∴ .【解析】【分析】(1)观察函数图像可知抛物线关于y轴对称,可得到点A时抛物线的顶点坐标,因此设函数解析式为y=ax2-2,再将点B的坐标代入求出a的值,即可得到抛物线C的解析式。
中考数学精选反比例函数培优题(附答案)
y xOy x OyxOy xO 全国各地中考数学精选反比例函数培优题1.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数221k k y x++=的图象上.若点A 的坐标为(-2,-2),则k 的值为 A .1 B .-3C .4D .1或-32。
直线 6y x =- 交x 轴、y 轴于A 、B 两点,P 是反比例函数4(0)y x x=>图象上位于直线下方的一点,过点P 作x 轴的垂线,垂足为点M ,交AB 于点E ,过点P 作y 轴的垂线,垂足为点N ,交AB 于点F.则AF BE ⋅=A .8B .6C .4D .62 3 如图直线l 和双曲线(0)ky k x=>交于A 、B 亮点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别是C 、D 、E ,连接OA 、OB 、OP ,设△AOC 面积是S 1、△B OD 面积是S 2、△P OE 面积是S 3、则( ) A S1〈S2<S3 B S1〉S2>S3 C S1=S2〉S3 D S1=S2〈S34。
小明乘车从南充到成都,行车的平均速度y (km/h )和行车时间x (h )之间的函数图像是( )A B C D5。
如图,反比例函数xmy =的图象与一次函数b kx y -=的图象交于点M,N ,已点M 的坐标为(1,3),点N 的纵坐标为-1,根据图象信息可得关于x 的方程xm=b kx -的解为( )A 。
-3,1B 。
-3,3 C. -1,1 D.3,—1xyO ABCD6.根据图5-1所示的程序,得到了y 与x 的函数图象,过点M 作PQ ∥x 轴交图象于点P,Q ,连接OP,OQ 。
则以下结论①x <0时,x2y =,②△OPQ 的面积为定值, ③x >0时,y 随x 的增大而增大④MQ=2PM ⑤∠POQ 可以等于90°图5—2图5—1输出y 取相反数42取倒数取倒数输入非零数xPQM其中正确的结论是( )A .①②④B .②④⑤C .③④⑤D .②③⑤ 7如图,直线y=x +2与双曲线y=xm 3-在第二象限有两个交点,那么m 的取值范围在数轴上表示为( )二、填空题8。
初三数学 反比例函数的专项 培优练习题附详细答案
初三数学反比例函数的专项培优练习题附详细答案一、反比例函数1.如图,一次函数y=kx+b(k<0)与反比例函数y= 的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.【答案】(1)解:∵点A(4,1)在反比例函数y= 的图象上,∴m=4×1=4,∴反比例函数的解析式为y=(2)解:∵点B在反比例函数y= 的图象上,∴设点B的坐标为(n,).将y=kx+b代入y= 中,得:kx+b= ,整理得:kx2+bx﹣4=0,∴4n=﹣,即nk=﹣1①.令y=kx+b中x=0,则y=b,即点C的坐标为(0,b),∴S△BOC= bn=3,∴bn=6②.∵点A(4,1)在一次函数y=kx+b的图象上,∴1=4k+b③.联立①②③成方程组,即,解得:,∴该一次函数的解析式为y=﹣x+3【解析】【分析】(1)由点A的坐标结合反比例函数系数k的几何意义,即可求出m的值;(2)设点B的坐标为(n,),将一次函数解析式代入反比例函数解析式中,利用根与系数的关系可找出n、k的关系,由三角形的面积公式可表示出来b、n的关系,再由点A在一次函数图象上,可找出k、b的关系,联立3个等式为方程组,解方程组即可得出结论.2.如图,一次函数y=x+4的图象与反比例函数y= (k为常数,且k≠0)的图象交于A (﹣1,a),B(b,1)两点.(1)求反比例函数的表达式;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;(3)求△PAB的面积.【答案】(1)解:当x=﹣1时,a=x+4=3,∴点A的坐标为(﹣1,3).将点A(﹣1,3)代入y= 中,3= ,解得:k=﹣3,∴反比例函数的表达式为y=﹣(2)解:当y=b+4=1时,b=﹣3,∴点B的坐标为(﹣3,1).作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,如图所示.∵点B的坐标为(﹣3,1),∴点D的坐标为(﹣3,﹣1).设直线AD的函数表达式为y=mx+n,将点A(﹣1,3)、D(﹣3,﹣1)代入y=mx+n中,,解得:,∴直线AD的函数表达式为y=2x+5.当y=2x+5=0时,x=﹣,∴点P的坐标为(﹣,0)(3)解:S△PAB=S△ABD﹣S△BDP= ×2×2﹣ ×2× =【解析】【分析】(1)由一次函数图象上点的坐标特征可求出点A的坐标,根据点A的坐标利用待定系数法,即可求出反比例函数的表达式;(2)利用一次函数图象上点的坐标特征可求出点B的坐标,作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,由点B的坐标可得出点D的坐标,根据点A、D的坐标利用待定系数法,即可求出直线AB的函数表达式,再由一次函数图象上点的坐标特征即可求出点P的坐标;(3)根据三角形的面积公式结合S△PAB=S△ABD﹣S△BDP,即可得出结论.3.如图,已知点D在反比例函数y= 的图象上,过点D作x轴的平行线交y轴于点B (0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC= .(1)求反比例函数y= 和直线y=kx+b的解析式;(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.【答案】(1)解:∵A(5,0),∴OA=5.∵,∴,解得OC=2,∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x轴,∴D(﹣2,3),∴m=﹣2×3=﹣6,∴,设直线AC关系式为y=kx+b,∵过A(5,0),C(0,﹣2),∴,解得,∴;(2)解:∵B(0,3),C(0,﹣2),∴BC=5=OA,在△OAC和△BCD中∴△OAC≌△BCD(SAS),∴AC=CD,∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC⊥CD;(3)解:∠BMC=45°.如图,连接AD,∵AE=OC,BD=OC,AE=BD,∴BD∥x轴,∴四边形AEBD为平行四边形,∴AD∥BM,∴∠BMC=∠DAC,∵△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD为等腰直角三角形,∴∠BMC=∠DAC=45°.【解析】【分析】(1)由正切定义可求C坐标,进而由BD=OC求出D坐标,求出反比例函数解析式;由A、C求出直线解析式;(2)由条件可判定△OAC≌△BCD,得出AC=CD,∠OAC=∠BCD,进而AC⊥CD;(3)由已知可得AE=OC,BD=OC,得出AE=BD,再加平行得四边形AEBD为平行四边形,推出△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD为等腰直角三角形,∴∠BMC=∠DAC=45°.4.已知点A,B分别是x轴、y轴上的动点,点C,D是某个函数图象上的点,当四边形ABCD(A,B,C,D各点依次排列)为正方形时,我们称这个正方形为此函数图象的“伴侣正方形”.例如:在图1中,正方形ABCD是一次函数y=x+1图象的其中一个“伴侣正方形”.(1)如图1,若某函数是一次函数y=x+1,求它的图象的所有“伴侣正方形”的边长;(2)如图2,若某函数是反比例函数(k>0),它的图象的“伴侣正方形”为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数的解析式;(3)如图3,若某函数是二次函数y=ax2+c(a≠0),它的图象的“伴侣正方形”为ABCD,C,D中的一个点坐标为(3,4),请你直接写出该二次函数的解析式.【答案】(1)解:(I)当点A在x轴正半轴、点B在y轴负半轴上时:正方形ABCD的边长为.(II)当点A在x轴负半轴、点B在y轴正半轴上时:设正方形边长为a,易得3a= ,解得a= ,此时正方形的边长为.∴所求“伴侣正方形”的边长为或(2)解:如图,作DE⊥x轴,CF⊥y轴,垂足分别为点E、F,易证△ADE≌△BAO≌△CBF.∵点D的坐标为(2,m),m<2,∴DE=OA=BF=m,∴OB=AE=CF=2﹣m.∴OF=BF+OB=2,∴点C的坐标为(2﹣m,2).∴2m=2(2﹣m),解得m=1.∴反比例函数的解析式为y=(3)解:实际情况是抛物线开口向上的两种情况中,另一个点都在(3,4)的左侧,而开口向下时,另一点都在(3,4)的右侧,与上述解析明显不符合a、当点A在x轴正半轴上,点B在y轴正半轴上,点C坐标为(3,4)时:另外一个顶点为(4,1),对应的函数解析式是y=﹣ x2+ ;b、当点A在x 轴正半轴上,点 B在 y轴正半轴上,点D 坐标为(3,4)时:不存在,c、当点A 在 x 轴正半轴上,点 B在 y轴负半轴上,点C 坐标为(3,4)时:不存在d、当点A在x 轴正半轴上,点B在y轴负半轴上,点D坐标为(3,4)时:另外一个顶点C为(﹣1,3),对应的函数的解析式是y= x2+ ;e、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D的坐标是(7,﹣3)时,对应的函数解析式是y=﹣ x2+ ;f、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D 的坐标是(﹣4,7)时,对应的抛物线为y= x2+ ;故二次函数的解析式分别为:y= x2+ 或y=﹣ x2+ 或y=﹣ x2+ 或y= x2+【解析】【分析】(1)先正确地画出图形,再利用正方形的性质确定相关点的坐标从而计算正方形的边长.(2)因为ABCD为正方形,所以可作垂线得到等腰直角三角形,利用点D(2,m)的坐标表示出点C的坐标,可求出m的值,即可得到反比例函数的解析式.(3)由抛物线开口既可能向上,也可能向下.当抛物线开口向上时,正方形的另一个顶点也是在抛物线上,这个点既可能在点(3,4)的左边,也可能在点(3,4)的右边,过点(3,4)向x轴作垂线,利用全等三角形确定线段的长即可确定抛物线上另一个点的坐标;当抛物线开口向下时也是一样地分为两种情况来讨论,即可得到所求的结论.5.如图,一次函数y=kx+b的图象分别与反比例函数y= 的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y= 的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.【答案】(1)解:把点A(4,3)代入函数y= 得:a=3×4=12,∴y= .OA= =5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)解:∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).【解析】【分析】(1)先求反比例函数关系式,由OA=OB,可求出B坐标,再代入一次函数解析式中求出解析式;(2)M点的纵坐标可用x 的式子表示出来,可套两点间距离公式,表示出MB、MC,令二者相等,可求出x .6.在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣ 2,﹣ 2),(,),…,都是梦之点,显然梦之点有无数个.(1)若点P(2,b)是反比例函数 (n为常数,n≠0)的图象上的梦之点,求这个反比例函数解析式;(2)⊙O的半径是,①求出⊙O上的所有梦之点的坐标;②已知点M(m,3),点Q是(1)中反比例函数图象上异于点P的梦之点,过点Q的直线l与y轴交于点A,∠OAQ=45°.若在⊙O上存在一点N,使得直线MN∥l或MN⊥l,求出m的取值范围.【答案】(1)解:∵P(2,b)是梦之点,∴b=2∴P(2,2)将P(2,2)代入中得n=4∴反比例函数解析式是(2)解:①设⊙O上梦之点坐标是(,)∴∴=1或 =-1∴⊙O上所有梦之点坐标是(1,1)或(-1,-1)②由(1)知,异于点P的梦之点Q的坐标为(-2,-2)由已知MN∥l或MN⊥l∴直线MN为y=-x+b或y=x+b当MN为y=-x+b时,m=b-3由图可知,当直线MN平移至与⊙O相切时,且切点在第四象限时,b取得最小值,此时MN记为,其中为切点,为直线与y轴的交点∵△O 为等要直角三角形,∴O =∴O =2∴b的最小值是-2,∴m的最小值是-5当直线MN平移至与⊙O相切时,且切点在第二象限时,b取得最大值,此时MN记为,其中为切点,为直线与y轴的交点。
初三数学反比例函数的专项培优练习题(含答案)及详细答案
初三数学反比例函数的专项培优练习题(含答案)及详细答案一、反比例函数1.如图,反比例函数y= 的图象经过点A(﹣1,4),直线y=﹣x+b(b≠0)与双曲线y= 在第二、四象限分别相交于P,Q两点,与x轴、y轴分别相交于C,D两点.(1)求k的值;(2)当b=﹣2时,求△OCD的面积;(3)连接OQ,是否存在实数b,使得S△ODQ=S△OCD?若存在,请求出b的值;若不存在,请说明理由.【答案】(1)解:∵反比例函数y= 的图象经过点A(﹣1,4),∴k=﹣1×4=﹣4;(2)解:当b=﹣2时,直线解析式为y=﹣x﹣2,∵y=0时,﹣x﹣2=0,解得x=﹣2,∴C(﹣2,0),∵当x=0时,y=﹣x﹣2=﹣2,∴D(0,﹣2),∴S△OCD= ×2×2=2(3)解:存在.当y=0时,﹣x+b=0,解得x=b,则C(b,0),∵S△ODQ=S△OCD,∴点Q和点C到OD的距离相等,而Q点在第四象限,∴Q的横坐标为﹣b,当x=﹣b时,y=﹣x+b=2b,则Q(﹣b,2b),∵点Q在反比例函数y=﹣的图象上,∴﹣b•2b=﹣4,解得b=﹣或b= (舍去),∴b的值为﹣.【解析】【分析】(1)根据反比例函数的图象上点的坐标特征易得k=﹣4;(2)当b=﹣2时,直线解析式为y=﹣x﹣2,则利用坐标轴上点的坐标特征可求出C(﹣2,0),D(0,﹣2),然后根据三角形面积公式求解;(3)先表示出C(b,0),根据三角形面积公式,由于S△ODQ=S△OCD,所以点Q和点C到OD的距离相等,则Q的横坐标为(﹣b,0),利用直线解析式可得到Q(﹣b,2b),再根据反比例函数的图象上点的坐标特征得到﹣b•2b=﹣4,然后解方程即可得到满足条件的b的值.2.一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象相交于A,B两点,与y轴交于点C,与x轴交于点D,点D的坐标为(﹣1,0),点A的横坐标是1,tan∠CDO=2.过点B作BH⊥y轴交y轴于H,连接AH.(1)求一次函数和反比例函数的解析式;(2)求△ABH面积.【答案】(1)解:∵点D的坐标为(﹣1,0),tan∠CDO=2,∴CO=2,即C(0,2),把C(0,2),D(﹣1,0)代入y=ax+b可得,,解得,∴一次函数解析式为y=2x+2,∵点A的横坐标是1,∴当x=1时,y=4,即A(1,4),把A(1,4)代入反比例函数y= ,可得k=4,∴反比例函数解析式为y=(2)解:解方程组,可得或,∴B(﹣2,﹣2),又∵A(1,4),BH⊥y轴,∴△ABH面积= ×2×(4+2)=6.【解析】【分析】(1)先由tan∠CDO=2可求出C坐标,再把D点坐标代入直线解析式,可求出一次函数解析式,再由直线解析式求出A坐标,代入双曲线解析式,可求出双曲线解析式;(2)△ABH面积可以BH为底,高=y A-y B=4-(-2)=6.3.已知:O是坐标原点,P(m,n)(m>0)是函数y= (k>0)上的点,过点P作直线PA⊥OP于P,直线PA与x轴的正半轴交于点A(a,0)(a>m).设△OPA的面积为s,且s=1+ .(1)当n=1时,求点A的坐标;(2)若OP=AP,求k的值;(3)设n是小于20的整数,且k≠ ,求OP2的最小值.【答案】(1)解:过点P作PQ⊥x轴于Q,则PQ=n,OQ=m,当n=1时,s= ,∴a= = .(2)解:解法一:∵OP=AP,PA⊥OP,∴△OPA是等腰直角三角形.∴m=n= .∴1+ = •an.即n4﹣4n2+4=0,∴k2﹣4k+4=0,∴k=2.解法二:∵OP=AP,PA⊥OP,∴△OPA是等腰直角三角形.∴m=n.设△OPQ的面积为s1则:s1= ∴•mn= (1+ ),即:n4﹣4n2+4=0,∴k2﹣4k+4=0,∴k=2.(3)解:解法一:∵PA⊥OP,PQ⊥OA,∴△OPQ∽△OAP.设:△OPQ的面积为s1,则 =即: = 化简得:化简得:2n4+2k2﹣kn4﹣4k=0(k﹣2)(2k﹣n4)=0,∴k=2或k= (舍去),∴当n是小于20的整数时,k=2.∵OP2=n2+m2=n2+ 又m>0,k=2,∴n是大于0且小于20的整数.当n=1时,OP2=5,当n=2时,OP2=5,当n=3时,OP2=32+ =9+ = ,当n是大于3且小于20的整数时,即当n=4、5、6…19时,OP2的值分别是:42+ 、52+ 、62+ …192+ ,∵192+ >182+ >32+ >5,∴OP2的最小值是5.【解析】【分析】(1)利用△OPA面积定义构建关于a的方程,求出A的坐标;(2)由已知OP=AP,PA⊥OP,可得△OPA是等腰直角三角形,由其面积构建关于n的方程,转化为k的方程,求出k;(3)利用相似三角形的面积比等于相似比的平方构建关于k的方程,最值问题的基本解决方法就是函数思想,利用勾股定理用m、n的代数式表达OP2,,在n的范围内求出OP2的最值.4.如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC 的形状并证明你的结论.【答案】(1)解:设反比例函数的解析式为(k>0)∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1。
专题. 反比例函数(对称性问题)(培优篇)(专项练习)八年级数学下册基础知识专项讲练(苏科版)
专题11.25反比例函数(对称性问题)(培优篇)(专项练习)一、单选题1.如图,若双曲线(0)ky k x=>与它的一条对称轴y x =交于A 、B 两点,则线段AB 称为双曲线(0)k y k x =>的“对径”.若双曲线(0)ky k x=>的对径长是k 的值为()A .2B .4C .6D .2.如图,OABC 是平行四边形,对角线OB 在y 轴正半轴上,位于第一象限的点A 和第二象限的点C 分别在双曲线y=和y=的一支上,分别过点A 、C 作x 轴的垂线,垂足分别为M 和N ,则有以下的结论:①=;②阴影部分面积是(k 1+k 2);③当∠AOC=90°时,|k 1|=|k 2|;④若OABC 是菱形,则两双曲线既关于x 轴对称,也关于y 轴对称.其中正确的结论是()A .①②③B .②④C .①③④D .①④3.如图,点A 与点B 关于原点对称,点C 在第四象限,∠ACB=90°.点D 是x 轴正半轴上一点,AC 平分∠BAD ,E 是AD 的中点,反比例函数ky x=(0k >)的图象经过点A,E .若△ACE 的面积为6,则k 的值为()A .4B .6C .8D .124.已知某函数的图象C 与函数3y x=的图象关于直线2y =对称.下列命题:①图象C与函数3y x =的图象交于点3,22⎛⎫⎪⎝⎭;②点1,22⎛⎫- ⎪⎝⎭在图象C 上;③图象C 上的点的纵坐标都小于4,④()11,A x y ,()22,B x y 是图象C 上任意两点,若12x x >,则12y y >.其中真命题是()A .①②B .①③④C .②③④D .①②④5.如图,反比例函数y =kx(x <0)的图象经过点A (﹣2,2),过点A 作AB ⊥y 轴,垂足为B ,在y 轴的正半轴上取一点P (0,t ),过点P 作直线OA 的垂线l ,以直线l 为对称轴,点B 经轴对称变换得到的点B '在此反比例函数的图象上,则t 的值是()A .5B .2C .42-D .56.点()1,3-关于y 轴的对称点在反比例函数ky x=的图像上,下列说法不正确的是()A .y 随x 的增大而减小B .点()1,3在该函数的图像上C .当1x ≥时,03y <≤D .该函数图像与直线y x =33337.如图,矩形AOBC 的顶点坐标分别为(0,3),(0,0),(4,0),(4,3)A O B C ,动点F 在边BC 上(不与B C 、重合),过点F 的反比例函数ky x=的图象与边AC 交于点E ,直线EF 分别与y 轴和x 轴相交于点D 和G .给出下列命题:①若4k =,则OEF 的面积为163;②若218=k ,则点C 关于直线EF 的对称点在x 轴上;③满足题设的k 的取值范围是012k <<;④若2512DE EG ⋅=,则1k =.其中正确的命题个数是()A .1个B .2个C .3个D .4个8.已知某函数的图象C 与函数3y x=的图象关于直线2y =对称下列命题:①图象C 与函数3y x =的图象交于点3,22⎛⎫⎪⎝⎭;②1,22⎛⎫- ⎪⎝⎭在图象C 上;③图象C 上的点的纵坐标都小于4;④()11,A x y ,()22,B x y 是图象C 上任意两点,若12x x >,则12y y >,其中真命题是()A .①②B .①③④C .②③④D .①②③④9.如图,一次函数1y x =+和2y x =与反比例函数2y x=的交点分别为点A 、B 和C ,下列结论中,正确的个数是()①点A 与点B 关于原点对称;②OA OC =;③点A 的坐标是(1,2);④ABC ∆是直角三角形.A .1B .2C .3D .410.如图,矩形AOBC 的边3OA =,4OB =,动点F 在边BC 上(不与B 、C 重合),过点F 的反比例函数ky x=的图象与边AC 交于点E ,直线EF 分别与y 轴和x 轴相交于点D和G .给出以下命题:①若6k =,则OEF 的面积为92;②若218=k ,则点C 关于直线EF 的对称点在x 轴上;③满足题设的k 的取值范围是012k <≤;④若256DE EG ⋅=,则2k =;其中正确的命题个数是()A .1个B .2个C .3个D .4个二、填空题11.已知A 、B 两点为反比例函数()0ky k x=<的图像上的动点,他们关于y 轴的对称点恰好落在直线21y x m =++上,若点A 、B 的坐标分别为1122(,),(,)x y x y 且120x x +≠,则1212y yx x +=+________.12.如图反比例函数ky x=的图像经过点A ,点B 与点A 关于x 轴对称,点C 是y 轴上一点,若ABC ∆的面积为2,则该反比例函数的解析式为_____________13.如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOB =60°,点A 在第一象限,过点A 的双曲线为ky x=.在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ´B ´.(1)当点O ´与点A 重合时,点P 的坐标是;(2)设P (t ,0),当O ´B ´与双曲线有交点时,t 的取值范围是.14.如图,在平面直角坐标系中,正六边形ABCDEF 的对称中心P 在反比例函数(0,0)ky k x x=>>的图象上,边CD 在x 轴上,点B 在y 轴上,已知2CD =.若该反比例函数图象与DE 交于点Q ,则点的Q 横坐标是_________.15.如图,P 是反比例函数12(0)y x x=>上的一个动点,过P 作PA x ⊥轴,PB y ⊥轴.(1)若矩形的对角线10AB =,则矩形OAPB 周长为________;(2)如图,点E 在BP 上,且2BE PE =,若E 关于直线AB 的对称点F 恰好落在坐标轴上,连结,,AE AF EF ,则AEF △的面积为___________.16.如图,Rt △AOB 的顶点O 是坐标原点,点B 在x 轴上,∠OAB =90°,反比例函数7y x=(0x >)的图象关于AO 所在的直线对称,且与AO 、AB 分别交于D 、E 两点,过点A 作AH ⊥OB 交x 轴于点H ,过点E 作EF //OB 交AH 于点G ,交AO 于点F ,则四边形OHGF 的面积为_________17.如图,矩形AOBC 的顶点坐标分别为(03)A ,、00O (,)、(40)B ,、(43)C ,,动点F 在边BC 上(不与B 、C 重合),过点F 的反比例函数ky x=的图象与边AC 交于点E ,直线EF 分别与y 轴和x 轴相交于点D 和G ,给出下列命题:①若4k =,则OEF 的面积为163;②若218=k ,则点C 关于直线EF 的对称点在x 轴上;③满足题设的k 的取值范围是012k <≤;④若2512DE EG ⋅=,则2k =.其中正确的命题的序号是________.(写出所有正确命题的序号)18.如图,在平面直角坐标系xOy 中,菱形ABCD 与菱形GFED 关于点D 成中心对称,点C ,G 在x 轴的正半轴上,点A ,F 在反比例函数y =kx(k >0,x >0)的图象上,延长AB 交x 轴于点P (1,0),若∠APO =120°,则k 的值是_____________.三、解答题19.综合与探究如图1,反比例函数的图象8y x=-经过点A ,点A 的横坐标是-2,点A 关于坐标原点O 的对称点为点B ,作直线AB .(1)判断点B 是否在反比例函数8y x=-的图象上,并说明理由;(2)如图1,过坐标原点O 作直线交反比例函数8y x=-的图象于点C 和点D ,点C 的横坐标是4,顺次连接AD ,DB ,BC 和CA .求证:四边形ACBD 是矩形;(3)已知点P 在x 轴的正半轴上运动,点Q 在平面内运动,当以点O ,B ,P 和Q 为顶点的四边形为菱形时,请直接写出此时点P 的坐标.20.如图,一次函数(0)y kx b k =+>的图像与反比例函数8(0)y x x=>的图像交于点A ,与x 轴交于点B ,与y 轴交于点C ,AD x ⊥轴于点D ,CB CD =,点C 关于直线AD 的对称点为点E .(1)点E 是否在这个反比例函数的图像上?请说明理由;(2)连接AE 、DE ,若四边形ACDE 为正方形.①求k 、b 的值;②若点P 在y 轴上,当PE PB -最大时,求点P 的坐标.21.如图,在平面直角坐标系xOy 中,直线2y x =与双曲线ky x=与相交于A ,B 两点(点A 在点B 的左侧).(1)当25AB =k 的值;(2)点B 关于y 轴的对称点为C ,连接AC BC ,;①判断ABC 的形状,并说明理由;②当ABC 的面积等于16时,双曲线上是否存在一点P ,连接AP BP ,,使PAB 的面积等于ABC 面积?若存在,求出点P 的坐标,若不存在,请说明理由.22.如图,矩形ABCD 的面积为8,它的边CD 位于x 轴上.双曲线4y x=经过点A ,与矩形的边BC 交于点E ,点B 在双曲线4ky x+=上,连接AE 并延长交x 轴于点F ,点G 与点О关于点C 对称,连接BF ,BG .(1)求k 的值;(2)求BEF △的面积;(3)求证:四边形AFGB 为平行四边形.23.如图,直线y x m =-+与反比例函数ky x=的图象相交于点()2A n -,,与x 轴交于点()20B ,.(1)求m 和k 的值.(2)若点()P t t ,与点O 关于直线AB 对称,连接AP .①求点P 的坐标;②若点M在反比例函数kyx=的图象上,点N在x轴上,以点A P M N,,,为顶点的四边形能否为平行四边形?若能,直接写出点M的坐标;若不能,请说明理由.24.如图,菱形OABC的点B在y轴上,点C坐标为(12,5),双曲线kyx=的图象经过点A.(1)菱形OABC的边长为____;(2)求双曲线的函数关系式;(3)①点B关于点O的对称点为D点,过D作直线l垂直于y轴,点P是直线l上一个动点,点E在双曲线上,当P、E、A、B四点构成平行四边形时,求点E的坐标;②将点P绕点A逆时针旋转90°得点Q,当点Q落在双曲线上时,求点Q的坐标.参考答案1.B【分析】根据题中的新定义:可得出对径AB=OA+OB=2OA ,由已知的对径长求出OA 的长,过A 作AM 垂直于x 轴,设A (a ,a )且a>0,在直角三角形AOM 中,利用勾股定理列出关于a 的方程,求出方程的解得到a 的值,确定出A 的坐标,将A 的坐标代入反比例解析式中,即可求出k 的值.解:过A 作AM ⊥x 轴,交x 轴于点M,如图所示:设A (a ,a ),a >0,可得出AM =OM =a ,又∵双曲线的对径AB=,∴OA =OB=在Rt △AOM 中,根据勾股定理得:AM 2+OM 2=OA 2,则a 2+a 2=()2,解得:a =2或a =−2(舍去),则A (2,2),将x =2,y =2代入反比例解析式得:2=2k,解得:k =4故选B 2.D解:试题分析:过点C 作CD ⊥y 轴于点D ,过点A 作AE ⊥y 轴于点E .∵111··222ABCD CD OB AE OB S ==四边形,∴CD=AE .由题意,易得四边形ONCD 与四边形OMAE 均为矩形,∴CD=ON ,AE=OM ,∴ON=OM .∵,CN·ON=2k ,AM·OM=1k ∴12k AMCN k =,结论①正确.由题意1k >0,2k <0,∴阴影部分的面积为121211()()22k k k k +=-,∴结论②错误.当∠AOC=90°时,易得△CON ∽△OAM ,要使12k k =成立,则需△CON ≌△OAM ,而△CON 与△OAM 不一定全等,故结论③错误.若四边形OABC 为菱形,则OA=OC ,∵ON=OM ,∴Rt △ONC ≌Rt △OMA (HL ),∴1k =2k ,即1k =-2k ,∴两双曲线既关于x 轴对称,也关于y 轴对称,结论④正确.考点:反比例函数的性质、三角形全等.3.C【分析】过A 作,AF OD EG OD ⊥⊥,连接OC 、OE ,根据点A 与点B 关于原点对称,∠ACB=90°,AC 平分∠BAD 得出//AE OC ,从而得出三角形AEC 的面积与三角形AOE的面积相等,设,k A m m ⎛⎫⎪⎝⎭,根据E 是AD 的中点得出2,2k E m m ⎛⎫ ⎪⎝⎭得出三角形OAE 的面积等于四边形AFGE 的面积建立等量关系求解.解:过A 作,AF OD EG OD ⊥⊥,连接OC ,连接OE :∵点A 与点B 关于原点对称,∠ACB=90°∴,OA OB OC OCA OAC ==∠=∠又∵AC 平分∠BAD ∴OAC CAD =∠∠∴//AE OC ∴AEO AECS S ∆∆=设,k A m m ⎛⎫⎪⎝⎭,根据E 是AD 的中点得出:2,2k E m m ⎛⎫ ⎪⎝⎭∴1622AEO AFGE kk S S m m m ∆⎛⎫==+⨯⨯= ⎪⎝⎭四解得:8k =故答案选:C .【点拨】本题考查反比例函数与几何综合,有一定的难度.将三角形AEC 的面积转化与三角形AOE 的面积相等是解题关键.4.A【分析】根据轴对称的性质和图象点的特征可知①正确;根据点1,22⎛⎫- ⎪⎝⎭关于y=2的对称点坐标在函数3y x =图象上,即可判定②正确;由3y x =上任意一点为(),x y ,则点(),x y 与2y =对称点的纵坐标为34x-可判断③错误;由关于2y =对称点性质可判断④不正确;解: 点3(2,2)是函数3y x =的图象的点,也是对称轴直线2y =上的点,∴点3(2,2)是图象C 与函数3y x =的图象交于点;∴①正确;点1(2,2)-关于2y =对称的点为点1(2,6),1(2,6)在函数3y x =上,∴点1(2,2)-在图象C 上;∴②正确;3y x=中0y ≠,0x ≠,取3y x=上任意一点为(),x y ,则点(),x y 与2y =对称点的纵坐标为34x-;∴图象C 上的点的纵坐标不一定小于4.故③错误;1(A x ,1)y ,2(B x ,2)y 关于2y =对称点为1(x ,14)y -,2(B x ,24)y -在函数3y x=上,1134y x ∴-=,2234y x -=,若120x x >>,则12y y >;若120x x >>或120x x >>,则12y y <;∴④不正确;故选A .【点拨】本题考查反比例函数图象及性质及轴对称的性质;熟练掌握函数关于直线的对称时,对应点关于直线对称是解题的关键.5.A【分析】根据反比例函数图象上点的坐标特征由A点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-4x,且OB=AB=2,则可判断△OAB为等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y轴,则点B的坐标可表示为(-4t,t),于是利用PB=PB′得t-2=|-4t|=4t,然后解方程可得到满足条件的t的值.解:如图,∵点A坐标为(-2,2),∴k=-2×2=-4,∴反比例函数解析式为y=-4 x,∵OB=AB=2,∴△OAB为等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵点B和点B′关于直线l对称,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y轴,∴点B′的坐标为(-4t,t),∵PB=PB′,∴t-2=|-4t |=4t,整理得t 2-2t-4=0,解得t1=1,(不符合题意,舍去),∴t的值为1.故选A .【点拨】本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程.6.A【分析】先确定对称点坐标为(-1,-3),将其代入反比例函数ky x=中求得k=3,得到函数解析式,根据函数的性质解答.解:点()1,3-关于y 轴的对称点坐标为(-1,-3),将(-1,-3)代入ky x=,得k=(1)(3)3-⨯-=,∴反比例函数解析式为3y x=,∵k=3>0,∴在每个象限内y 随着x 的增大而减小,故A 错误;当x=1时,y=3,故B 正确;当1x ≥时,03y <≤,故C 正确;解方程组3y x y x =⎧⎪⎨=⎪⎩,得x y ⎧=⎪⎨=⎪⎩x y ⎧=⎪⎨=⎪⎩故函数3y x=图像与直线y x =故D 正确,故选:A.【点拨】此题考查待定系数法求反比例函数解析式,轴对称的性质,反比例函数的性质,函数图象交点问题.7.D【分析】①若4k =,则计算163OEF S ∆=,故命题①正确;②如答图所示,若218=k ,可证明直线EF 是线段CN 的垂直平分线,故命题②正确;③因为点F 不经过点(4,3)C ,所以12k ≠,即可得出k 的范围;④求出直线EF 的解析式,得到点D 、G 的坐标,然后求出线段DE 、EG 的长度;利用算式2512DE EG =,求出1k =,故命题④正确.解:命题①正确.理由如下:4k = ,4(3E ∴,3),(4,1)F ,48433CE ∴=-=,312CF =-=.1111411843341222223223OEF AOE BOF CEF AOBC AOBC S S S S S S OA AE OB BF CE CF ∆∆∆∆∴=---=-⋅-⋅-⋅=⨯-⨯⨯-⨯⨯-⨯⨯=矩形矩形,故①正确;命题②正确.理由如下:218k =,7(8E ∴,3),21(4,)32F ,725488CE ∴=-=,217533232CF =-=.如答图,过点E 作EM x ⊥轴于点M ,则3EM =,78OM =;在线段BM 上取一点N ,使得258EN CE ==,连接NF .在Rt EMN ∆中,由勾股定理得:78MN =,7794884BN OB OM MN ∴=--=--=.在Rt BFN ∆中,由勾股定理得:7532NF ==.NF CF ∴=,又EN CE = ,∴直线EF 为线段CN 的垂直平分线,即点N 与点C 关于直线EF 对称,故②正确;命题③正确.理由如下:由题意,点F 与点(4,3)C 不重合,所以4312k ≠⨯=,012k ∴<<,故③正确;命题④正确.理由如下:设12k m =,则(4,3)E m ,(4,3)F m .设直线EF 的解析式为y ax b =+,则有4343ma b a b m +=⎧⎨+=⎩,解得3433a b m ⎧=-⎪⎨⎪=+⎩,3334y x m ∴=-++.令0x =,得33y m =+,(0,33)D m ∴+;令0y =,得44x m =+,(44,0)G m ∴+.如答图,过点E 作EM x ⊥轴于点M ,则4OM AE m ==,3EM =.在Rt ADE ∆中,3AD OD OA m =-=,4AE m =,由勾股定理得:5DE m =;在Rt MEG ∆中,(44)44MG OG OM m m =-=+-=,3EM =,由勾股定理得:5EG =.25552512DE EG m m ∴=⨯==,解得112m =,121k m ∴==,故命题④正确.综上所述,正确的命题是:①②③④,共4个,故选:D.【点拨】此题是反比例函数综合题,主要考查了函数的图象与性质、反比例函数图象上点的坐标特征、比例系数k 的几何意义、待定系数法、矩形及勾股定理等多个知识点,有一定的难度.本题计算量较大,解题过程中注意认真计算.8.A【分析】根据题意画出图形,①将32x =代入3y x =得2y =,从而可判断①正确;②令12x =时,16y =,即162⎛⎫ ⎪⎝⎭,关于2y =时的对称点为122⎛⎫- ⎪⎝⎭,从而可判断②正确;③根据图形分析可得C 右侧图与x 轴间距离小于4,但y 轴左侧与x 轴距离大于4,从而可判断③错误;④由图像即可判断④错误.解:由图像C与反比例函数3yx=关于2y=对称可得如下图,①当32x=时,2y=,故①正确;②当12x=时,16y=,即162⎛⎫⎪⎝⎭,关于2y=时的对称点为122⎛⎫-⎪⎝⎭,,故②正确;③如图:3yx=与2y=之间距离小于2,即C与x轴间距离小于4(C右侧图),但y 轴左侧与x轴距离大于4,故③错误;④当0x>时,12x x>,则124y y>>;当0x<时,12x x>,则124y y>>;∴当x1>0>x2时,y2>y1故④错误.故答案为:A.【点拨】本题考查了反比例函数图象及性质;熟练掌握函数关于直线对称时,对应点关于直线对称是解题的关键.9.D【分析】根据题意,由反比例函数的性质和一次函数的性质分别求出点A、B、C的坐标,然后通过计算,分别进行判断,即可得到答案.解:根据题意,由22yxy x⎧=⎪⎨⎪=⎩,解得:12xy=⎧⎨=⎩或12xy=-⎧⎨=-⎩,∴点A为(1,2),点B为(1-,2-),∴点A与点B关于原点对称;故①③正确;由21y x y x ⎧=⎪⎨⎪=+⎩,解得:12x y =⎧⎨=⎩或21x y =-⎧⎨=-⎩,∴点C 为(2-,1-);∴OA ==OC ==∴OA OC =,故②正确;∵AC ==,AB ==,BC =∵222=+,∴222AB AC BC =+,∴ABC ∆是直角三角形,故④正确;故选:D .【点拨】本题考查了反比例函数的性质,一次函数的性质,勾股定理求两点间的长度,以及两直线的交点问题,解题的关键是熟练掌握所学的性质进行解题.10.B【分析】①若6k =,则计算92OEF S = ,故命题①正确;②如答图所示,若218=k ,可证明直线EF 是线段CN 的垂直平分线,故命题②正确;③因为点F 不经过点()4,3C ,所以12k ≠,即可得出k 的范围;④求出直线EF 的解析式,得到点D 、G 的坐标,然后求出线段DE 、EG 的长度;利用算式256DE EG ⋅=,求出1k =,故命题④错误.解:命题①正确.理由如下:6k =Q ,()2,3E ∴,34,2F ⎛⎫⎪⎝⎭,422CE ∴=-=,33322CF =-=,111222OEF AOE BOF CEF AOBC AOBC S S S S S S OA AE OB BF CE CF∴=---=-⋅-⋅-⋅矩形矩形 113139433242222222=⨯-⨯⨯-⨯⨯-⨯⨯=,故①正确;命题②正确.理由如下:218k =,7,38E ⎛⎫∴ ⎪⎝⎭,214,32F ⎛⎫ ⎪⎝⎭,725488CE ∴=-=,217533232CF =-=.如答图,过点E 作EM x ⊥轴于点M ,则3EM =,78OM =;在线段BM 上取一点N ,使得258EN CE ==,连接NF .在Rt EMN △中,由勾股定理得:78MN ==,7794884BN OB OM MN ∴=--=--=.在Rt BFN △中,由勾股定理得:7532NF =.NF CF ∴=,又EN CE = ,∴直线EF 为线段CN 的垂直平分线,即点N 与点C 关于直线EF 对称,故②正确;命题③错误.理由如下:由题意,点F 与点()4,3C 不重合,所以4312k ≠⨯=,012k ∴<<,故③错误;命题④错误.理由如下:设12k m =,则()4,3E m ,()4,3F m .设直线EF 的解析式为y ax b =+,则有4343ma b a b m +=⎧⎨+=⎩,解得3433a b m ⎧=-⎪⎨⎪=+⎩,3334y x m ∴=-++.令0x =,得33y m =+,()0,33D m ∴+;令0y =,得44x m =+,()44,0G m ∴+.如答图,过点E 作EM x ⊥轴于点M ,则4OM AE m ==,3EM =.在Rt ADE △中,3AD OD OA m =-=,4AE m =,由勾股定理得:5DE m =;在Rt MEG 中,()4444MG OG OM m m =-=+-=,3EM =,由勾股定理得:5EG =.25552512DE EG m m ∴⋅=⨯==,解得112m =,121k m ∴==,故命题④错误.综上所述,正确的命题是:①②,共2个,故选:B.【点拨】本题属于反比例函数综合题,考查勾股定理,待定系数法求一次函数解析式,反比例函数图象上点的坐标特征等,综合性比较强,难度较大.11.1【分析】设点11k A x x ⎛⎫⎪⎝⎭,,关于y 轴得对称点11'(,)k A x x -,设点22(,)k B x x ,关于y 轴得对称点22’,k B x x ⎛⎫- ⎪⎝⎭,代入21y x m =++,求出k ,再求1212y y x x ++即可.解:A 、B 两点为反比例函数()0ky k x=<的图像上,点A 、B 的坐标分别为1122(,),(,)x y x y ,则点11k A x x ⎛⎫⎪⎝⎭,,关于y 轴得对称点11'(,)k A x x -,设点22(,)k B x x ,关于y 轴得对称点22,k B x x '⎛⎫- ⎪⎝⎭,把A ′、B ′坐标分别代入21y x m =++得,1121k x m x =-++和2221kx m x =-++,两式相减得,1212k kx x x x -=-+,解得12k x x =,则12y x =,21y x =122112121y y x x x x x x ++==++,故答案为1.【点拨】本题考查了一次函数和反比例函数的综合,解题关键是熟练运用一次函数和反比例函数知识,通过设坐标建立等量关系,表示出比例系数.12.2y x=-【分析】根据题意,设点A 为(x ,y ),则AB=2y ,由点C 在y 轴上,则△ABC 的AB 边上的高为x ,结合面积公式,即可求出k 的值.解:∵反比例函数ky x=的图像经过点A ,∴设点A 为(x ,y ),且点A 在第二象限,∵点B 与点A 关于x 轴对称,∴AB=2y ,∵点C 在y 轴上,∴△ABC 的AB 边上的高为x ,∴1222S y x =⨯⨯=,∴2x y =g ,∵点A 在第二象限,则0x <,∴2x y xy =-=g ,∴2xy =-,即2k =-,∴反比例函数的解析式为:2y x =-.故答案为:2y x=-.【点拨】本题考查了反比例函数图象上点的坐标特征和反比例函数的几何意义,能根据三角形的面积求出xy 的值是解此题的关键.13.(1)(4,0);(2)4≤t ≤-t ≤-4【分析】(1)当点O′与点A 重合时,即点O 与点A 重合,进一步解直角三角形AOB ,利用轴对称的现在解答即可;(2)分别求出O′和B′在双曲线上时,P 的坐标即可.解:(1)当点O´与点A 重合时,∵∠AOB=60°,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O´B´.AP′=OP′,∴△AOP′是等边三角形,∵B (2,0),∴BO=BP′=2,∴点P 的坐标是(4,0),(2)∵∠AOB=60°,∠P′MO=90°,∴∠MP′O=30°,∴OM=12t ,OO′=t ,过O′作O′N ⊥X 轴于N ,∠OO′N=30°,∴ON=12t ,,∴O′(12tt ),根据对称性可知点P 在直线O′B′上,设直线O′B′的解析式是y=kx+b,代入得1220tk b tk b ⎧+=⎪⎨⎪+=⎩,解得:k b ⎧=⎪⎨=⎪⎩∴y=①,∵∠ABO=90°,∠AOB=60°,OB=2,∴OA=4,∴A (2,∴2,即x 2﹣tx+4=0③,b 2﹣4ac=t 2﹣4×1×4≥0,解得:t≥4,t≤﹣4.又O′B′=2,根据对称性得B′点横坐标是1+12 t,当点B′为直线与双曲线的交点时,由③得,(x﹣12t)2﹣24t+4=0,代入,得(1+12t﹣12t)2﹣24t+4=0,解得而当线段O′B′与双曲线有交点时,t≥﹣综上所述,t的取值范围是﹣4.【点拨】本题主要考查对用待定系数法求一次函数、反比例函数的解析式,勾股定理,解二元一次方程组,解不等式,含30度角的直角三角形的性质,三角形的内角和定理,根的判别式等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键,此题是一个拔高的题目,有一定的难度.14【分析】过点P作x轴垂线PG,连接BP,可得BP=2,G是CD的中点,所以P(2,D(3,0),E,待定系数法求出DE的解析式为y-,联立反比例函数与一次函数即可求点Q的坐标.解:过点P作x轴垂线PG,连接BP,∵P是正六边形ABCDEF的对称中心,CD=2,∴BP=2,G是CD的中点,∴CG=1,CP=2,∴PG∴P (2∵P 在反比例函数ky x=上,∴k =∴y =∵OD=OC+CD=3,BE=2BP=4,∴D (3,0),E (4设DE 的解析式为y =mx +b ,∴304m b m b +=⎧⎪⎨+=⎪⎩∴m b ⎧=⎪⎨=-⎪⎩,∴y -,联立方程y y x ⎧=-⎪⎨=⎪⎩解得x =∵Q 点在第一象限,∴Q【点拨】本题考查反比例函数的图象及性质,正六边形的性质;将正六边形的边角关系与反比例函数上点的坐标将结合是解题的关系.15.4或163【分析】(1)设矩形OAPB 的两边为m 、n ,利用反比例函数k 的几何意义得到6mn =,再根据勾股定理得到22210m n +=,根据完全平分公式变形得到2()2100m n mn +-=,则可计算出m n +=OAPB 的周长;(2)当E 关于直线AB 的对称点F 恰好落在x 轴上,如图2,AB 与EF 相交于点Q ,利用三角形面积公式得到4ABE S ∆=,再根据对称轴的性质得AB 垂直平分EF ,EQ FQ =,接着证明FQ 垂直平分AB 得到BQ AQ =,所以122AQE ABE S S ∆∆==,则24AEF AQE S S ∆∆==;当E 关于直线AB 的对称点F 恰好落在y 轴上,如图3,证明四边形OAPB 为正方形得到P ,则可计算出83BEF S ∆=,而2AOE APE S S ∆∆==,于是得到163AEF S ∆=.解:(1)设矩形OAPB 的两边为m 、n ,则12mn =,矩形的对角线10AB =,22210m n ∴+=,2()2100m n mn ∴+-=,2()100212m n ∴+=+⨯,m n ∴+=,∴矩形OAPB 的周长为,故答案为;(2)当E 关于直线AB 的对称点F 恰好落在x 轴上,如图2,AB 与EF 相交于点Q ,矩形OAPB 的面积12=,而2BE PE =,4ABE S ∆∴=,点E 与点F 关于AB 对称,AB ∴垂直平分EF ,EQ FQ =,AE AF ∴=,AEF AFE ∴∠=∠,//PB OA ,AFE BEF ∴∠=∠,BEF AEF ∴∠=∠,FQ ∴垂直平分AB ,BQ AQ ∴=,122AQE ABE S S ∆∆∴==,24AEF AQE S S ∆∆∴==;当E 关于直线AB 的对称点F 恰好落在y 轴上,如图3,点E 与点F 关于AB 对称,BE BF ∴=,AB EF ⊥,BEF ∴∆为等腰直角三角形,AB ∴平分OBP ∠,∴四边形OAPB 为正方形,P ∴,BE BF ∴=1823BEF S ∆∴==,而2AOF APE S S ∆∆==,816122233AEF S ∆∴=---=,综上所述,AEF ∆的面积为4或163,故答案为4或163.【点拨】本题考查了反比例函数的综合题:熟练掌握反比例函数图象上点的坐标特征、反比例函数k 的几何意义和轴对称的性质;灵活运用矩形的性质进行几何计算;理解坐标与图形性质.16.72【分析】先根据反比例函数的性质可得直线AO 的解析式为y x =,从而可得45AOB ∠=︒,再根据等腰直角三角形的判定可得Rt AEF △是等腰直角三角形,从而可得AG EG FG ==,然后设点A 的坐标为(,)(0)A a a a >,点E 的坐标为7(,)(0)E b b b>,由此可得AG FG EG b a ===-,AH OH a ==,7AG AH GH a b =-=-,从而可得72a b b-=,最后利用Rt AOH 面积减去Rt AFG 面积即可得.解: 反比例函数7y x=的图象关于AO 所在的直线对称,∴直线AO 的解析式为y x =,45AOB ∴∠=︒,AH OB ⊥ ,//EF OB ,,45AH EF AFE AOB ∴⊥∠=∠=︒,Rt AEF ∴ 是等腰直角三角形,AG EG FG ∴==(等腰三角形的三线合一),设点A 的坐标为(,)(0)A a a a >,点E 的坐标为7(,0)E b b b>,AG FG EG b a ∴===-,AH OH a ==,7AG AH GH a b=-=-,7b a a b ∴-=-,即72a b b-=,则四边形OHGF 的面积为1122Rt AOH Rt AFG S S AH OH FG AG -=⋅-⋅ ,2211()22a b a =--,1(2)2b a b =-,72=,故答案为:72.【点拨】本题考查了反比例函数与几何综合、等腰直角三角形的三线合一等知识点,熟练掌握反比例函数的性质是解题关键.17.①②【分析】①若k =4,则计算S △OEF =163,故命题①正确;②若218=k ,可证明直线EF 是线段CN 的垂直平分线,故命题②正确;③因为点F 不经过点C (4,3),所以k ≠12,故命题③错误;④求出直线EF 的解析式,得到点D 、G 的坐标,然后求出线段DE 、EG 的长度;利用算式2512DE EG ⋅=,求出k =1,故命题④错误.解:命题①正确.理由如下:∵k =4,∴E (43,3),F (4,1),∴CE =4−43=83,CF =3−1=2.∴S △OEF =S 矩形AOBC −S △AOE −S △BOF −S △CEF=S 矩形AOBC −12OA •AE −12OB •BF −12CE •CF =4×3−12×3×43−12×4×1−12×83×2=12−2−2−83=163,故命题①正确;命题②正确.理由如下:∵218=k ,∴E (78,3),F (4,2132),∴CE =4−78=258,CF =3−2132=7532.如图,过点E 作EM ⊥x 轴于点M ,则EM =3,OM =78;在线段BM 上取一点N ,使得EN =CE =258,连接NF .在Rt △EMN 中,由勾股定理得:MN 2=EN 2−EM 2=2225()38-,∴MN =78,∴BN =OB −OM −MN =4−78−78=94.在Rt △BFN 中,由勾股定理得:NF 2=BN 2+BF 2=22921432⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,∴NF =7532.∴NF =CF ,又EN =CE ,∴直线EF 为线段CN 的垂直平分线,即点N 与点C 关于直线EF对称,故命题②正确;命题③错误.理由如下:由题意,得点F 与点C (4,3)不重合,所以k ≠4×3=12,故命题③错误;命题④正确.理由如下:设k =12m ,则E (4m ,3),F (4,3m ).设直线EF 的解析式为y =ax +b ,则4343ma b a b m ⎧⎨⎩+=+=,解得3433a b m ⎧-⎪⎨⎪+⎩==,∴y =34-x +3m +3.令x =0,得y =3m +3,令y =0,得x =4m +4,∴D (0,3m +3),G (4m +4,0).如图,过点E 作EM ⊥x 轴于点M ,则OM =AE =4m ,EM =3.在Rt △ADE 中,AD =OD −OA =3m ,AE =4m ,由勾股定理得:DE =5m ;在Rt △MEG 中,MG =OG −OM =(4m +4)−4m =4,EM =3,由勾股定理得:EG =5.∴DE •EG =5m ×5=25m =2512,解得m =112,∴k =12m =1,故命题④错误.综上所述,正确的命题是:①②,故答案为:①②.【点拨】本题综合考查函数的图象与性质,反比例函数图象上点的坐标特征、比例系数k 的几何意义、待定系数法求解析式、矩形的性质及勾股定理等知识点,本题计算量较大,正确的计算能力是解决问题的关键.18.【分析】连接AB 、BD 交于点N ,作BM x ⊥轴于点M ,设线段PM a =,得BM ,由菱形ABCD 和菱形GFED 关于点D 成中心对称结合120APO ∠=︒可得点A 和点F 的坐标,再结合反比例函数图象上点的坐标特征列出方程,求a ,最后求得k .解:连接AB 、BD 交于点N ,作BM x ⊥轴于点M ,设PM a =,120APO ∠=︒ ,BM ∴,2PB a =,菱形ABCD 和菱形GFED 关于点D 成中心对称,点C ,G 在x 轴的正半轴上,AC x ∴⊥轴,AB BC =,30PAC ∴∠=︒,60BAD =∴∠︒,60BCP ∴∠=︒,CM BN ND PM a ∴====,2AC BM ==,∴点(12A a +,),(15)F a +,点A 和点F 在反比例函数图象上,(12)(15)a a ∴+=+,解得:0a =(舍)或1a =,(3A ∴,,3k ∴=⨯=故答案为:【点拨】本题考查了菱形的性质、含30︒角的直角三角形三边关系、反比例函数图象上点的坐标特征,解题的关键是利用菱形的性质表达出点A 和点F 的坐标.19.(1)点B 在反比例函数8y x=-的图象上,理由见分析;(2)见分析;(3)()4,0,()和()5,0【分析】(1)求出点B 的坐标,判断即可;(2)证明OA =OB ,OC =OD ,推出四边形ADBC 是平行四边形,再证明AB =CD ,可得结论;(3)当四边形OBPQ 是菱形时,对图形进行分类讨论,设点P 的坐标为(,0)m ,然后根据邻边相,用两点间距离公式表示线段长度列方程即可.解:(1)结论:点B 在反比例函数8y x=-的图象上,理由如下:∵反比例函数8y x=-的图象经过点A ,点A 的横坐标是-2,∴把2x =-代入8y x=-中,得842y =-=-,∴点A 的坐标是()2,4-,∵点A 关于坐标原点O 的对称点为点B ,∴点B 的坐标是()2,4-,把2x =代入8y x=-中,得842y =-=-,∴点B 在反比例函数8y x=-的图象上;(2)证明:在反比例函数8y x=-中令x =4则y =-2,∵过坐标原点O 作直线交反比例函数8y x=-的图象于点C 和点D ,∴C ,D 关于原点对称,∴C (4,-2),D (-4,2),OC =OD ,∵A ,B 关于原点对称,∴OA =OB ,∴四边形ACBD 是平行四边形,∵∴AB =CD ,∴四边形ACBD 是矩形;(3)设点P 的坐标为(,0)m ,如图,当四边形OBP 1Q 1是菱形时,可得1OB OP =,∴22m +=,解得4m =,∴P 1()4,0;当四边形OBQ 2P 2是菱形时,可得2OB OP =,∴2OB OP =∴P 2();当四边形OP 3BQ 3是菱形时,可得33OP BP =,∴m =,解得5m =,∴P 3()5,0,综上所述,满足条件的点P 的坐标分别为()4,0,()和()5,0.【点拨】本题属于反比例函数综合题,考查了反比例函数的性质,一次函数的性质,矩形的判定和性质,菱形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.20.(1)点E 在这个反比例函数的图像上,理由见分析;(2)①1k =,2b =;②点P 的坐标为(0,2)-【分析】(1)设点A 的坐标为8(,)m m,根据轴对称的性质得到AD CE ⊥,AD 平分CE ,如图,连接CE 交AD 于H ,得到CH EH =,再结合等腰三角形三线合一得到CH 为ACD ∆边AD 上的中线,即AH HD =,求出4,H m m ⎛⎫⎪⎝⎭,进而求得4(2,E m m ,于是得到点E 在这个反比例函数的图像上;(2)①根据正方形的性质得到AD CE =,AD 垂直平分CE ,求得12CH AD =,设点A 的坐标为8(,m m,得到2m =(负值舍去),求得(2,4)A ,(0,2)C ,把(2,4)A ,(0,2)C 代入y kx b =+得,解方程组即可得到结论;②延长ED 交y 轴于P ,根据已知条件得到点B 与点D 关于y 轴对称,求得PE PD PE PB -=-,则点P 即为符合条件的点,求得直线DE 的解析式为2y x =-,于是得到结论.(1)解:点E 在这个反比例函数的图像上.理由如下:一次函数(0)y kx b k =+>的图像与反比例函数8(0)y x x=>的图像交于点A ,∴设点A 的坐标为8(,m m, 点C 关于直线AD 的对称点为点E ,AD CE ∴⊥,AD 平分CE ,连接CE 交AD 于H ,如图所示:CH EH ∴=,AD x ⊥ 轴于D ,CE x ∴∥轴,90ADB ∠=︒,90CDO ADC ∴∠+∠=︒,CB CD = ,CBO CDO ∴∠=∠,在Rt ABD ∆中,90ABD BAD ∠+∠=︒,CAD CDA ∴∠=∠,CH ∴为ACD ∆边AD 上的中线,即AH HD =,4,H m m ⎛⎫∴ ⎪⎝⎭,4(2,)E m m∴,428m m⨯= ,∴点E 在这个反比例函数的图像上;(2)解:① 四边形ACDE 为正方形,AD CE ∴=,AD 垂直平分CE ,12CH AD ∴=,设点A 的坐标为8(,)m m,CH m ∴=,8AD m=,182m m∴=⨯,2m ∴=(负值舍去),(2,4)A ∴,(0,2)C ,把(2,4)A ,(0,2)C 代入y kx b =+得242k b b +==⎧⎨⎩,∴12k b =⎧⎨=⎩;②延长ED 交y 轴于P ,如图所示:CB CD = ,OC BD ⊥,∴点B 与点D 关于y 轴对称,PE PD PE PB ∴-=-,则点P 即为符合条件的点,由①知,(2,4)A ,(0,2)C ,(2,0)D ∴,(4,2)E ,设直线DE 的解析式为y ax n =+,∴2042a n a n +=+=⎧⎨⎩,解得12a n ==-⎧⎨⎩,∴直线DE 的解析式为2y x =-,当0x =时,=2y -,即()0,2-,故当PE PB -最大时,点P 的坐标为(0,2)-.【点拨】本题考查了反比例函数的综合题,正方形的性质,轴对称的性质,待定系数法求一次函数的解析式,正确地作出辅助线是解题的关键.21.(1)2k =;(2)①ABC 为直角三角形,理由见分析;②点P 的坐标为(2-++或(2---或()24+-或()24---.【分析】(1)设点B 的坐标为(2)m m ,,则点(2)A m m --,,则22AB =,即可求解;(2)①点A 、C 的横坐标相同,AC y 轴,点B 关于y 轴的对称点为C ,故BC y ⊥轴,即可求解;②过点C 作直线m AB ,交反比例函数于点P ,则点P 符合题设要求,同样在AB。
2025年中考数学总复习培优训第12课时 反比例函数及其应用
课时对应练
14. [2024 葫芦岛绥中县二模]如图,在平面直角坐标系中,△AOB 的边 OB 在 y 轴上,边 AB 与 x 轴交于点 D,且 BD=AD,反比 例函数 y=kx(x>0)的图象经过点 A,若 S△OAB=1,则 k 的值为 ____2____.
课时对应练
15. [2024 深圳]如图,在平面直角坐标系中,四边形 AOCB 为菱形, tan∠AOC=43,且点 A 落在反比例函数 y=3x的图象上,点 B 落 在反比例函数 y=kx(k≠0)的图象上,则 k=____8____.
C. x3<x2<x1
D. x2<x1<x3
课时对应练
4. 在同一平面直角坐标系中,函数 y=kx-k(k≠0)与 y=kx(k≠0)的 大致图象可能是( D )
课时对应练
5. [2024抚顺新抚区三检]某市举行中学生党史知识竞赛,如图,
用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀
率(该校优秀人数与该校参加竞赛人数的比值)y与该校参加竞
课时对应练
16. [2024 大连五区联考最后一卷]如图,点 A,C 在反比例函数 y=xk(k>0,x>0)的图象上,点 C 在点 A 下方,且点 C 的坐标为 (3,4),连接 OA,OC,过点 A 作 AB∥y 轴交 OC 于点 B,点 B 的纵坐标为83.
课时对应练
(1)求反比例函数 y=xkk>0,x>0的解析式; 反比例函数的解析式为 y=1x2x>0.
课时对应练
13. [2024 浙江]反比例函数 y=4x的图象上有 P(t,y1),Q(t+4,y2) 两点. 下列正确的选项是( A ) A. 当 t<-4 时,y2<y1<0 B. 当-4<t<0 时,y2<y1<0 C. 当-4<t<0 时,0<y1<y2 D. 当 t>0 时,0<y1<y2
中考数学 反比例函数 培优练习(含答案)含答案
中考数学反比例函数培优练习(含答案)含答案一、反比例函数1.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y= (k>0,x>0)的图象上,点D的坐标为(,2).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数y= (k>0,x >0)的图象上时,求菱形ABCD平移的距离.【答案】(1)解:作DE⊥BO,DF⊥x轴于点F,∵点D的坐标为(,2),∴DO=AD=3,∴A点坐标为:(,5),∴k=5 ;(2)解:∵将菱形ABCD向右平移,使点D落在反比例函数y= (x>0)的图象上D′,∴DF=D′F′=2,∴D′点的纵坐标为2,设点D′(x,2)∴2= ,解得x= ,∴FF′=OF′﹣OF= ﹣ = ,∴菱形ABCD平移的距离为,同理,将菱形ABCD向右平移,使点B落在反比例函数y= (x>0)的图象上,菱形ABCD平移的距离为,综上,当菱形ABCD平移的距离为或时,菱形的一个顶点恰好落在函数图象上.【解析】【分析】(1)根据菱形的性质和D的坐标即可求出A的坐标,代入求出即可;(2)B和D可能落在反比例函数的图象上,根据平移求出即可.2.如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反比例函数y2= (c≠0)的图象相交于点B(3,2)、C(﹣1,n).(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出y1>y2时x的取值范围;(3)在y轴上是否存在点P,使△PAB为直角三角形?如果存在,请求点P的坐标;若不存在,请说明理由.【答案】(1)解:把B(3,2)代入得:k=6∴反比例函数解析式为:把C(﹣1,n)代入,得:n=﹣6∴C(﹣1,﹣6)把B(3,2)、C(﹣1,﹣6)分别代入y1=ax+b,得:,解得:所以一次函数解析式为y1=2x﹣4(2)解:由图可知,当写出y1>y2时x的取值范围是﹣1<x<0或者x>3.(3)解:y轴上存在点P,使△PAB为直角三角形如图,过B作BP1⊥y轴于P1,∠B P1 A=0,△P1AB为直角三角形此时,P1(0,2)过B作BP2⊥AB交y轴于P2∠P2BA=90,△P2AB为直角三角形在Rt△P1AB中,在Rt△P1 AB和Rt△P2 AB∴∴P2(0,)综上所述,P1(0,2)、P2(0,).【解析】【分析】(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分三种情况,利用勾股定理或锐角三角函数的定义建立方程求解即可得出结论.3.给出如下规定:两个图形G1和G2,点P为G1上任一点,点Q为G2上任一点,如果线段PQ的长度存在最小值,就称该最小值为两个图形G1和G2之间的距离.在平面直角坐标系xOy中,O为坐标原点.(1)点A的坐标为A(1,0),则点B(2,3)和射线OA之间的距离为________,点C (﹣2,3)和射线OA之间的距离为________;(2)如果直线y=x+1和双曲线y= 之间的距离为,那么k=________;(可在图1中进行研究)(3)点E的坐标为(1,),将射线OE绕原点O顺时针旋转120°,得到射线OF,在坐标平面内所有和射线OE,OF之间的距离相等的点所组成的图形记为图形M.①请在图2中画出图形M,并描述图形M的组成部分;(若涉及平面中某个区域时可以用阴影表示).②将射线OE,OF组成的图形记为图形W,直线y=﹣2x﹣4与图形M的公共部分记为图形N,请求出图形W和图形N之间的距离.【答案】(1)3;(2)﹣4(3)解:①如图,x轴正半轴,∠GOH的边及其内部的所有点(OH、OG分别与OE、OF 垂直),;②由①知OH所在直线解析式为y=﹣ x,OG所在直线解析式为y= x,由得,即点M(﹣,),由得:,即点N(﹣,),则﹣≤x≤﹣,图形N(即线段MN)上点的坐标可设为(x,﹣2x﹣4),即图形W与图形N之间的距离为d,d===∴当x=﹣时,d的最小值为 = ,即图形W和图形N之间的距离.【解析】【解答】解:(1)点(2,3)和射线OA之间的距离为3,点(﹣2,3)和射线OA之间的距离为 = ,故答案分别为:3,;(2)直线y=x+1和双曲线y= k x 之间的距离为,∴k<0(否则直线y=x+1和双曲线y= 相交,它们之间的距离为0).过点O作直线y=x+1的垂线y=﹣x,与双曲线y= 交于点E、F,过点E作EG⊥x轴,如图1,由得,即点F(﹣,),则OF= = ,∴OE=OF+EF=2 ,在Rt△OEG中,∠EOG=∠OEG=45°,OE=2 ,则有OG=EG= OE=2,∴点E的坐标为(﹣2,2),∴k=﹣2×2=﹣4,故答案为:﹣4;【分析】(1)由题意可得出点B(2,3)到射线OA之间的距离为B点纵坐标,根据新定义得点C(﹣2,3)和射线OA之间的距离;(2)根据题意即可得k<0(否则直线y=x+1和双曲线y= k x 相交,它们之间的距离为0).过点O作直线y=x+1的垂线y=﹣x,与双曲线y= k x 交于点E、F,过点E作EG⊥x 轴,如图1,将其联立即可得点F坐标,根据两点间距离公式可得OF长,再由OE=OF+EF 求出OE长,在Rt△OEG中,根据等腰直角三角形的性质可得点E的坐标为(﹣2,2),将E点代入反比例函数解析式即可得出k值.(3)①如图,x轴正半轴,∠GOH的边及其内部的所有点(OH、OG分别与OE、OF垂直);②由①知OH所在直线解析式为y=﹣ x,OG所在直线解析式为y= x,分别联立即可得出点M、N坐标,从而得出x取值范围,根据题意图形N(即线段MN)上点的坐标可设为(x,﹣2x﹣4),从而求出图形W与图形N之间的距离为d,由二次函数性质知d 最小值.4.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.5.如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC 的形状并证明你的结论.【答案】(1)解:设反比例函数的解析式为(k>0)∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1。
初三数学反比例函数的专项培优练习题(含答案)附详细答案
初三数学反比例函数的专项培优练习题(含答案)附详细答案一、反比例函数1.平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点(1)已知点A的坐标是(2,3),求k的值及C点的坐标;(2)在(1)的条件下,若△APO的面积为2,求点D到直线AC的距离.【答案】(1)解:∵点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,∴3= ,点C与点A关于原点O对称,∴k=6,C(﹣2,﹣3),即k的值是6,C点的坐标是(﹣2,﹣3);(2)解:过点A作AN⊥y轴于点N,过点D作DM⊥AC,如图,∵点A(2,3),k=6,∴AN=2,∵△APO的面积为2,∴,即,得OP=2,∴点P(0,2),设过点A(2,3),P(0,2)的直线解析式为y=kx+b,,得,∴过点A(2,3),P(0,2)的直线解析式为y=0.5x+2,当y=0时,0=0.5x+2,得x=﹣4,∴点D的坐标为(﹣4,0),设过点A(2,3),B(﹣2,﹣3)的直线解析式为y=mx+b,则,得,∴过点A(2,3),C(﹣2,﹣3)的直线解析式为y=1.5x,∴点D到直线AC的直线得距离为:= .【解析】【分析】(1)根据点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,可以求得k的值和点C的坐标;(2)根据△APO的面积为2,可以求得OP的长,从而可以求得点P的坐标,进而可以求得直线AP的解析式,从而可以求得点D的坐标,再根据点到直线的距离公式可以求得点D到直线AC的距离.2.如图,点P(x,y1)与Q(x,y2)分别是两个函数图象C1与C2上的任一点.当a≤x≤b 时,有﹣1≤y1﹣y2≤1成立,则称这两个函数在a≤x≤b上是“相邻函数”,否则称它们在a≤x≤b 上是“非相邻函数”.例如,点P(x,y1)与Q (x,y2)分别是两个函数y=3x+1与y=2x﹣1图象上的任一点,当﹣3≤x≤﹣1时,y1﹣y2=(3x+1)﹣(2x﹣1)=x+2,通过构造函数y=x+2并研究它在﹣3≤x≤﹣1上的性质,得到该函数值的范围是﹣1≤y≤1,所以﹣1≤y1﹣y2≤1成立,因此这两个函数在﹣3≤x≤﹣1上是“相邻函数”.(1)判断函数y=3x+2与y=2x+1在﹣2≤x≤0上是否为“相邻函数”,并说明理由;(2)若函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,求a的取值范围;(3)若函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,直接写出a的最大值与最小值.【答案】(1)解:是“相邻函数”,理由如下:y1﹣y2=(3x+2)﹣(2x+1)=x+1,构造函数y=x+1,∵y=x+1在﹣2≤x≤0,是随着x的增大而增大,∴当x=0时,函数有最大值1,当x=﹣2时,函数有最小值﹣1,即﹣1≤y≤1,∴﹣1≤y1﹣y2≤1,即函数y=3x+2与y=2x+1在﹣2≤x≤0上是“相邻函数”(2)解:y1﹣y2=(x2﹣x)﹣(x﹣a)=x2﹣2x+a,构造函数y=x2﹣2x+a,∵y=x2﹣2x+a=(x﹣1)2+(a﹣1),∴顶点坐标为:(1,a﹣1),又∵抛物线y=x2﹣2x+a的开口向上,∴当x=1时,函数有最小值a﹣1,当x=0或x=2时,函数有最大值a,即a﹣1≤y≤a,∵函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,∴﹣1≤y1﹣y2≤1,即,∴0≤a≤1(3)解:y1﹣y2= ﹣(﹣2x+4)= +2x﹣4,构造函数y= +2x﹣4,∵y= +2x﹣4∴当x=1时,函数有最小值a﹣2,当x=2时,函数有最大值,即a﹣2≤y≤ ,∵函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,∴﹣1≤y1﹣y2≤1,即,∴1≤a≤2;∴a的最大值是2,a的最小值1【解析】【分析】(1)y1﹣y2=(3x+2)﹣(2x+1)=x+1,构造函数y=x+1,因为y=x+1在﹣2≤x≤0,是随着x的增大而增大,所以当x=0时,函数有最大值1,当x=﹣2时,函数有最小值﹣1,即﹣1≤y≤1,所以﹣1≤y1﹣y2≤1,即函数y=3x+2与y=2x+1在﹣2≤x≤0上是“相邻函数”;(2)y1﹣y2=(x2﹣x)﹣(x﹣a)=x2﹣2x+a,构造函数y=x2﹣2x+a,因为y=x2﹣2x+a=(x﹣1)2+(a﹣1),所以顶点坐标为:(1,a﹣1),又抛物线y=x2﹣2x+a的开口向上,所以当x=1时,函数有最小值a﹣1,当x=0或x=2时,函数有最大值a,即a﹣1≤y≤a,因为函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,所以﹣1≤y1﹣y2≤1,即0≤a≤1;(3)当x=1时,函数有最小值a﹣2,当x=2时,函数有最大值,因为函数y=与y=﹣2x+4在1≤x≤2上是“相邻函数”,﹣1≤y1﹣y2≤1,即1≤a≤2,所以a的最大值是2,a 的最小值1.3.如图,反比例函数y= 的图象与一次函数y=kx+b的图象交于A、B两点,点A的坐标为(2,3n),点B的坐标为(5n+2,1).(1)求反比例函数与一次函数的表达式;(2)将一次函数y=kx+b的图象沿y轴向下平移a个单位,使平移后的图象与反比例函数y= 的图象有且只有一个交点,求a的值;(3)点E为y轴上一个动点,若S△AEB=5,则点E的坐标为________.【答案】(1)解:∵A、B在反比例函数的图象上,∴2×3n=(5n+2)×1=m,∴n=2,m=12,∴A(2,6),B(12,1),∵一次函数y=kx+b的图象经过A、B两点,∴,解得,∴反比例函数与一次函数的表达式分别为y= ,y=﹣ x+7.(2)解:设平移后的一次函数的解析式为y=﹣ x+7﹣a,由,消去y得到x2+(2a﹣14)x+24=0,由题意,△=0,(21a﹣14)2﹣4×24=0,解得a=7±2 .(3)(0,6)或(0,8)【解析】【解答】(3)设直线AB交y轴于K,则K(0,7),设E(0,m),由题意,PE=|m﹣7|.∵S△AEB=S△BEP﹣S△AEP=5,∴ ×|m﹣7|×(12﹣2)=5.∴|m﹣7|=1.∴m1=6,m2=8.∴点E的坐标为(0,6)或(0,8).故答案为(0,6)或(0,8).【分析】(1)由A、B在反比例函数的图象上,得到n,m的值和A、B的坐标,用待定系数法求出反比例函数与一次函数的表达式;(2)由将一次函数y=kx+b的图象沿y轴向下平移a个单位,得到平移后的一次函数的解析式,由平移后的图象与反比例函数的图象有且只有一个交点,得到方程组求出a的值;(3)由点E为y轴上一个动点和S△AEB=5,求出点E的坐标.4.如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点在轴正半轴上,顶点B在第一象限,线段,的长是一元二次方程的两根,,.(1)直接写出点的坐标________点 C的坐标________;(2)若反比例函数的图象经过点,求k的值;(3)如图过点作轴于点;在轴上是否存在点,使以,,为顶点的三角形与以,,为顶点的三角形相似?若存在,直接写出满足条件的点的坐标;若不存在,请说明理由.【答案】(1);(2)解:如图,过点作,垂足为,∵,∴,设,∵ =12,∴EC=12-x,在RtΔBEC中,,∴整理得:,解得:(不合题意舍去),,∴,,∴,把代入,得(3)解:存在.如图2,若点P在OD上,若△PDB∽△AOP,则,即,解得:OP=2或OP=6,∴P(0,2)或P(0,6);如图3,若点P在OD上方,△PDB∽△AOP,则,即,解得:OP=12,∴P(0,12);如图4,若点P在OD上方,△BDP∽△AOP,则,即,解得:OP=4+2 或OP=4-2 (不合题意舍去),∴P(0,4+2 );如图5,若点P在y轴负半轴,△PDB∽△AOP,则,即,解得:OP=-4+2 或-4-2 (不合题意舍去),则P点坐标为(0,4-2 )故点的坐标为:或或或或【解析】【解答】解:(1)解一元二次方程,解得:,所以,所以,;【分析】(1)首先利用直接开平方法求出方程的两根,从而得出OA=OC=6,进而得出A,C两点的坐标;(2)如图,过点作,垂足为,根据等腰直角三角形的性质得出,设,EC=12-x,在RtΔBEC中利用勾股定理建立方程,求解并检验即可得出BE,OE 的长从而得出B点的坐标,然后利用待定系数法即可求出反比例函数的解析式;(3)存在.如图2,若点P在OD上,若△PDB∽△AOP,根据相似三角形对应边成比例得出,根据比例式列出方程,求解即可得出P点的坐标;如图3,若点P在OD上方,△PDB∽△AOP,根据相似三角形对应边成比例得出则根据比例式列出方程,求解并检验即可得出P点的坐标;如图4,若点P在OD上方,△PDB∽△AOP,根据相似三角形对应边成比例得出,根据比例式列出方程,求解并检验即可得出P 点的坐标;如图5,若点P在y轴负半轴,△PDB∽△AOP,根据相似三角形对应边成比例得出,根据比例式列出方程,求解并检验即可得出P点的坐标,综上所述即可得出答案。
2023年中考数学一轮综合培优测试卷:反比例函数的图象与性质【含答案】
2023年中考数学一轮综合培优测试卷:反比例函数的图象与性质一、单选题1.下列3个图形中,阴影部分的面积为1的个数为( )A .3个B .2个C .1个D .0个2.如图,在平面直角坐标系中,直角梯形AOBC 的边OB 在x 轴的负半轴上,AC ∥OB ,∠OBC=90°,过A 点的双曲线y= 的一支在第二象限交梯形的对角线OC 于点D ,交边BC 于点E ,且k x ODCD =2,S △AOC =15,则图中阴影部分(S △EBO +S △ACD )的面积为( )A .18B .17C .16D .153.反比例函数图象的两个分支分别位于第一、三象限,则一次函数的图象大y =kx (k ≠0)y =kx−k 致是( )A .B .C .D .4.已知反比例函数y=﹣,下列结论不正确的是( )3x A .图象必经过点(﹣1,3)B .若x >1,则﹣3<y <0C .图象在第二、四象限内D .y 随x 的增大而增大5.已知两点(x 1,y 1),(x 2,y 2) 在函数y= - 的图象上,当x 1>x 2>0时,下列结论正确的是( 5x )A .y 1>y 2>0B .y 1<y 2<0C .y 2>y 1>0D .y 2<y 1<06.已知点,,都在反比例函数的图象上,则( )A (1,y 1)B (2,y 2)C (−2,y 3)y =k x (k >0)A .B .C .D .y 1>y 2>y 3y 3>y 2>y 1y 2>y 3>y 1y 2>y 1>y 37.在反比例函数图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是( y =k−3x ) A .k >3B .k >0C .k <3D .k <08.如图,是等边三角形,且与x 轴重合,反比例函数的图象经过点B ,则△OAB OA y =−43x 的面积为( )△OABA .B .12C .D .12243839.设点A (x 1,y 1)和点B (x 2,y 2)是反比例函数y= 图象上的两点,当x 1<x 2<0时,y 1>y 2,kx 则一次函数y=﹣2x+k 的图象不经过的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限10.已知点在反比例函数的图象上,则下列说法正确的是( )A(3,−4)y =kx A .图象位于第一、三象限B .点(2,6)在该函数图象上C .当时,y 随x 的增大而增大D .当时,x <0y ≥−4x ≥311.如图,直线AB 经过原点O ,且交反比例函数的图象于点B ,A ,点C 在x 轴上,且y =kx .若,则k 的值为( )BC =12BA S△BCA =12A .12B .C .D .6−12−612.根据图1所示的程序,得到了y 与x 的函数图象,如图2.若点M 是y 轴正半轴上任意一点,过点M 作PQ ∥x 轴交图象于点P ,Q ,连接OP ,OQ .则以下结论:①x <0 时,②△OPQ 的面积为定值.y =2x ③x >0时,y 随x 的增大而增大.④ MQ=2PM .⑤∠POQ 可以等于90°.其中正确结论是( )A .①②④B .②④⑤C .③④⑤D .②③⑤二、填空题13.如图,在平面直角坐标系xOy 中,点A ,B 在双曲线y= (k 是常数,且k≠0)上,过点A 作kx AD ⊥x 轴于点D ,过点B 作BC ⊥y 轴于点C ,已知点A 的坐标为(4, ),四边形ABCD 的面积32为4,则点B 的坐标为 .14.已知反比例函数y= ,当x >3时,y 的取值范围是 .6x 15.如图,直线AB 交双曲线于A 、B 两点,交x 轴于点C ,且B 恰为线段AC 的中点,连y =kx 结OA.若,则k 的值为 .S △OAC =7216.如图,已知直线y=-2x+4与x 轴交于点A ,与y 轴交于点B ,将△AOB 沿直线AB 翻折后,设点O 的对应点为点C ,双曲线y=(x>0)经过点C ,则k 的值为 .kx17.反比例函数y= 的图象经过点(1,6)和(m+1,﹣3),则m= .kx 18.如图,在直角坐标系中,O 为坐标原点与 (a >b >0)在第一象限的图象分别为y =a x y =bx 曲线C 1,C 2,点P 为曲线C 1上的任意一点,过点P 作y 轴的垂线交C 2于点A ,作x 轴的垂线交C 2于点B ,则阴影部分的面积S △AOB = .(结果用a ,b 表示)三、综合题19.已知点A(x 1,y 1),B(x 2,y 2)是反比例函数y= (k≠0)图象上两点。
反比例函数培优试题
反⽐例函数培优试题反⽐例函数培优试题1、如图1,点P 是x 轴正半轴上的⼀个动点,过点P 作x 轴的垂线PA 交双曲线x1y =于点A ,连结OA 。
(1)如图1,当点P 在x 轴的正⽅向上运动时,R t △AOP 的⾯积⼤⼩是否变化?若不变,请求出R t △AOP 的⾯积;若改变,请说明理由。
(2)如图2,在x 轴上的点P 的右侧有⼀点D ,过点D 作x 轴的垂线交双曲线x1y =于点B ,连结BO 交AP 于点C ,设△AOP 的⾯积为S 1,梯形BCPD 的⾯积为S 2,则S 1与S 2的⼤⼩关系是。
(3)如图3,AO 的延长线与双曲线x1y =的另⼀个交点是F ,F H ⊥x 轴,垂⾜为H ,连接AH ,PE ,试证明四边形APFH 的⾯积是⼀个常数。
2、如图2,已知正⽅形OABC 的⾯积为9,点O 为坐标原点,点A 在x 轴上,点c 在y 轴上,点B 在函数x k y =(k ﹥0,x ﹥0)的图象上,点P(m,n)是函数xky =(k﹥0,x ﹥0)的图象上的任意⼀点,过点P 分别作x 轴、y 轴的垂线,垂中⾜分别是E 、F ,并设矩形OEPF 和正⽅形OABC 不重合部份的⾯积为S 。
(1)求B 点的坐标和k 的值。
(2)当S=29时,求点P 的坐标。
(3)写出S 关于m 的函数关系式。
3、如图3,直线2x 21+分别交x 、y 轴于点A 、C ,P 是该直线上在第⼀象限内的⼀点,P B ⊥x 轴,B 为垂⾜,S △ABP =9。
(1)求点P 的坐标。
(2)设点R 与点P 在同⼀反⽐例函数的图象上,且点R 在直线PB 的右侧,作RT ⊥x 轴,T 为垂⾜,当△BRT 和△AOC 相似时,求点R 的坐标。
4、如图4,⼀次函数y=kx+b 的图象与反⽐例函数xmy =的图象交于A 、B 两点。
(1)利⽤图中条件,求反⽐例函数和⼀次函数的解析式;(2)根据图象写出使⼀次函数的值⼤于反⽐例函数的值的x 的取值范围。
专题01 反比例函数的图像和性质(专项培优训练)教师版
专题01 反比例函数的图像和性质(专项培优训练)满分:100分考试时间:120分钟难度系数:0.46试卷说明:本套试卷结合人教版数学九年级下册同步章节知识点,精选易错,常考,压轴类问题进行专题汇编!题目经典,题型全面,解题模型主要选取热点难点类型!同步复习,考前强化必备!适合成绩中等及偏上的学生拔高冲刺。
一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2分)(2023秋•香坊区校级期中)在反比例函数的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是( )A.k>3B.k>0C.k≥3D.k<3解:∵在反比例函数的图象的每一条曲线上,y都随x的增大而减小,∴3﹣k>0,∴k<3.故选:D.2.(2分)(2023秋•九龙坡区校级月考)反比例函数的图象经过点A(2,﹣4),则当x=﹣2时,y的值为( )A.﹣4B.C.D.4解:因为反比例函数的图象是双曲线,且关于坐标原点成中心对称,又点A(2,﹣4)在反比例函数的图象上,所以点A关于坐标原点的对称点也在该反比例函数的图象上.又点A关于坐标原点的对称点的坐标为(﹣2,4),即x=﹣2时,y=4.故选:D.3.(2分)(2023•任丘市二模)如图,把函数和函数的图象画在同一平面直角坐标系中,则坐标系的原点可能是( )A.点M B.点N C.点P D.点Q解:在函数和函数的中,∵1>0,﹣2<0,∴函数的图象在第三象限,函数的图象在第二象限,∵|﹣2|>|1|,∴当x取相同的值时,的图象更靠近坐标轴,∴坐标系的原点可能是Q.故选:D.4.(2分)(2023春•德化县期中)对于反比例函数,下列说法不正确的是( )A.点(﹣2,1)在它的图象上B.它的图象在第二,第四象限C.图象关于原点对称D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2解:反比例函数的关系式为:y=﹣,即xy=﹣2,点(﹣2,1)坐标满足关系式,因此A选项不符合题意;由于k=﹣2,因此图象位于第二,第四象限,因此B不符合题意;根据反比例函数的对称性,图象关于原点对称,因此C选项不符合题意;若点A(x1,y1),B(x2,y2)不在同一象限,由x1<x2,得出y1>y2,因此D选项符合题意.故选:D.5.(2分)(2023•长兴县二模)运用你学习函数的经验,判断下列哪个函数的图象如图所示( )A.B.y=C.D.解:选项A中的函数y=的x不能等于﹣1,与题干中的图象不符,故选项A不符合题意;选项B中的函数y=的x不能等于﹣1,与题干中的图象不符,故选项B不符合题意;选项C中的函数y=的图象与题干中的图象相符,故选项C符合题意;选项D中的函数y=的x不能等于﹣1,与题干中的图象不符,故选项D不符合题意;故选:C.6.(2分)(2023•武汉)关于反比例函数,下列结论正确的是( )A.图象位于第二、四象限B.图象与坐标轴有公共点C.图象所在的每一个象限内,y随x的增大而减小D.图象经过点(a,a+2),则a=1解:反比例函数,图象在第一、三象限,与坐标轴没有交点,故A选项错误,B选项错误;反比例函数,在每一个象限内,y随着x的增大而减小,故C选项正确;反比例函数图象经过点(a,a+2),∴a(a+2)=3,解得a=1或a=﹣3,故D选项错误,故选:C.7.(2分)(2023•奉贤区二模)下列函数图象中,可能是反比例函数的图象的是( )A.B.C .D .解:∵中,k =6>0,∴该函数图象在第一、第三象限,故选:C .8.(2分)(2022秋•梁山县期末)如图,A (0,1),B (1,5)曲线BC 是双曲线的一部分.曲线AB 与BC 组成图形G .由点C 开始不断重复图形G 形成一条“波浪线“.若点P (2025,m ),Q (x ,n )在该“波浪线上,则m 的值及n 的最大值为( )A .m =1,n =1B .m =5,n =1C .m =1,n =5D .m =1,n =4解:∵B (1,5)在y =的图象上.∴k =1×5=5.当x =5时,y ==1.∴C (5,1).又因为2025÷5=405.∴m =1.∵Q (x ,n )在该“波浪线”上.∴n 的最大值是5.故选:C .9.(2分)(2023秋•洪江市校级月考)下列反比例函数图象一定在二、四象限的是( )A .B .C .D .解:A.反比例函数中﹣k不一定小于零,故A选项不符合题意;B.反比例函数中﹣(k+1)不一定小于零,故B选项不符合题意;C.反比例函数中﹣(k2+1)一定小于零,故C选项符合题意;D.反比例函数中﹣(k﹣1)不一定小于零,故D选项不符合题意;故选:C.10.(2分)(2021秋•房县期末)如图,点P(﹣2a,a)是反比例函数y=的图象与⊙O的一个交点,图中阴影部分的面积为10π,则该反比例函数的表达式为( )A.y=﹣B.y=﹣C.y=﹣D.y=﹣解:设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:πr2=10π.解得:r=2.∵点P(﹣2a,a)是反比例函数y=(k<0)与⊙O的一个交点.∴﹣2a2=k且=r.∴a2=8.∴k=﹣2×8=﹣16,则反比例函数的解析式是:y=﹣.故选:D.二、填空题:本大题共10小题,每小题2分,共20分.11.(2分)(2023•北京二模)反比例函数y=(k≠0)在第一象限的图象如图所示,已知点A的坐标为(3,1),写出一个满足条件的k的值 2(答案不唯一) .解:假设点A(3,1)在反比例函数第一象限的图象上,则,∴k=3,但是点A在反比例函数(k≠0)第一象限的图象上方,∴0<k<3,∴满足条件的k的值可以是2.故答案为:2(答案不唯一).12.(2分)(2023春•姑苏区校级期末)若反比例函数y=(m+1)的图象在每个象限内随着x的增大而增大,则m的值为 ﹣2 .解:∵反比例函数y=(m+1)的图象在每个象限内随着x的增大而增大,∴m+1<0且3﹣m2=﹣1,解得m=﹣2.故答案为:﹣2.13.(2分)(2023•武功县模拟)已知反比例函数的图象在每个象限内y随x的增大而增大,且当1≤x≤3时,函数y的最大值和最小值之差为4,则k的值为 ﹣6 .解:∵反比例函数的图象在每个象限内y随x的增大而增大,∴k<0,∵当1≤x≤3时,函数y的最大值和最小值之差为4,∴,解得:k=﹣6.故答案为:﹣6.14.(2分)(2023秋•洪江市校级月考)若反比例函数y=的图象不经过第一象限,则k的取值范围是 k> .解:∵反比例函数y=的图象不经过第一象限,∴反比例函数y=的图象经过第二、四象限,∴1﹣3k<0,∴k>,故答案为:k>.15.(2分)(2023春•广陵区月考)已知反比例函数y=图象位于一、三象限,则m的取值范围是 m>﹣6 .解:∵反比例函数图象位于一、三象限,∴m+6>0,解得:m>﹣6.故答案为:m>﹣6.16.(2分)(2023•开阳县模拟)反比例函数y=的图象分布情况如图所示,则k的值可以是 0(答案不唯一) .(写出一个符合条件的k值即可)解:由反比例函数y=的图象位于第二,四象限可知,k﹣1<0,∴k<1,∴k的值可以是0,故答案为:0(答案不唯一).17.(2分)(2022秋•鹤山市期末)已知反比例函数y=的图象在第二、第四象限,则m的取值范围是 m <﹣7 .解:∵反比例函数y=的图象在第二、第四象限,∴m+7<0,即m<﹣7.故答案为:m<﹣7.18.(2分)(2022秋•永丰县期末)反比例函数y=(x>0)的图象中,函数值y随着x的增大而减小,则m的取值范围是 m>1 .解:∵反比例函数y=(x>0)的图象中,函数值y随着x的增大而减小,∴m﹣1>0,∴m>1,故答案为m>1.19.(2分)(2023春•灌云县期末)若反比例函数的图象在第一、三象限,则m的取值范围是 m > .解:∵反比例函数y=的图象在第一、第三象限,∴2m﹣3>0,解得m>.故答案为:m>.20.(2分)(2022•衢州二模)如图,点B在x轴正半轴上,点A在第一象限,AO=AB,函数y=(x>0)的图象分别交AO,AB于点C,D,若OC=3,BD=1,则OA的长为 5 ;当OD⊥AB时,k的值为 .解:如图,过点C作CE⊥OB于E,过点D作DF⊥OB于F,过点A作AG⊥OB于点G,设OB=m,∴CE ∥DF ∥AG ,OG =BG =m .∴∠OEC =∠BFD =90°,∵AO =AB ,∴∠AOB =∠ABO ,∴△COE ∽△DBF ,∴===3.设C (a ,b ),∴OE =a ,CE =b ,∴BF =a ,DF =b ,∴D (m ﹣a ,b ),∵反比例函数y =(x >0)的图象分别交边AO ,AB 于点C ,D ,∴k =ab =(m ﹣a )•b ,解得a =m ,∴EG =m ﹣m =m ,BF =a =m ,∴OF =m ﹣m =m .∵CE ∥AG ,∴OC :OA =CE :AG =OE :OG ,即3:OA =m :m ,∴OA =5.若OD ⊥AB ,则∠ODB =90°.由射影定理可得DF 2=OF •BF .∴b 2=m •m =m 2,即b =m ,在Rt△OCE中,由勾股定理可得,OE2+CE2=OC2,∴(m)2+(m)2=32,整理得m2=10.∴k=ab=m2=.故答案为:5;.三、解答题:本大题共8小题,21-22题每小题6分,23-28题每小题8分,共60分.21.(6分)(2022秋•顺德区期末)反比例函数.(1)画出反比例函数的图象;(2)观察图象,当y≥﹣1时,写出x的取值范围.解:(1)反比例函数.列表:x⋯﹣4﹣2﹣1124⋯y⋯﹣1﹣2﹣4421描点、连线,反比例函数的图象如图,;(2)由图象可知,当y≥﹣1时,自变量x的取值范围是x≤﹣4或x>0.22.(6分)(2023秋•利津县月考)已知反比例函数y=(m为常数)(1)若函数图象经过点A(﹣1,6),求m的值;(2)若函数图象在二、四象限,求m的取值范围;(3)若x>0时,y随x的增大而减小,求m的取值范围.解:(1)∵函数图象经过点A(﹣1,6),∴m﹣8=xy=﹣1×6=﹣6,解得:m=2,∴m的值是2;(2)∵函数图象在二、四象限,∴m﹣8<0,解得:m<8,∴m的取值范围是m<8;(3)∵若x>0时,y随x的增大而减小,∴m﹣8>0,解得:m>8,∴m的取值范围是m>8;23.(8分)(2020春•江都区期末)在函数的学习中,我们经历了“确定函数表达式﹣﹣画函数图象﹣﹣利用函数图象研究函数性质﹣﹣利用图象解决问题”的学习过程.我们可以借鉴这种方法探究函数y=的图象性质.(1)补充表格,并画出函数的图象.①列表:x…﹣3﹣10235…y…﹣1﹣2﹣441…②描点并连线,画图.(2)观察图象,写出该函数图象的一个增减性特征: 当x>1时,y随x的增大而减小,当x<1时,y随x的增大而减小 ;(3)函数y=的图象是由函数y=的图象如何平移得到的?其对称中心的坐标为 (1,0) ;(4)根据上述经验,猜一猜函数y=+2的图象大致位置,结合图象直接写出y≥3时,x的取值范围 1<x≤5 .解:(1)①x=3时,y==2.②图象如图所示:(2)当x>1时,y随x的增大而减小,当x<1时,y随x的增大而减小.故答案为:当x>1时,y随x的增大而减小,当x<1时,y随x的增大而减小.(3)函数y=的图象是由函数y=的图象向右平移1个单位得到.y=的对称中心为(1,0).故答案为(1,0)(4)数y=+2的图象是由y=的图象向上平移2个得到,y≥3时,1<x≤5.故答案为1<x≤5.24.(8分)(2019春•长春期中)已知反比例函数y=,(k为常数,k≠1).(1)若点A(1,2)在这个函数的图象上,求k的值;(2)若在这个函数图象的每一分支上,y随x的增大而增大,求k的取值范围;(3)若k=13,试判断点B(3,4),C(2,5)是否在这个函数的图象上,并说明理由.解:(1)∵点A(1,2)在这个函数的图象上,∴k﹣1=1×2,解得k=3;(2)∵在函数y=图象的每一支上,y随x的增大而增大,∴k﹣1<0,解得k<1;(3)点C不在这个函数的图象上,理由如下:∵k=13,有k﹣1=12,∴反比例函数的解析式为y=.将点B的坐标代入y=,可知点B的坐标满足函数关系式,∴点B在函数y=的图象上,将点C的坐标代入y=,由5≠,可知点C的坐标不满足函数关系式,∴点C不在函数y=的图象上.25.(8分)(2017•商水县二模)数学李老师给学生出了这样一个问题:探究函数y=的图象与性质,小斌根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小斌的探究过程,请您补充完成:(1)函数y=的自变量x的取值范围是: x≠﹣1 (2)列出y与x的几组对应值,请直接写出m的值,m= 3 .x…﹣5﹣4﹣3﹣2﹣﹣012m45…y… 2 3﹣10…(3)请在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;(4)结合函数的图象,写出函数y=的一条性质.解:(1)∵x+1≠0,∴x≠﹣1.故答案为:x≠﹣1.(2)当y==时,x=3.故答案为:3.(3)描点、连线画出图象如图所示.(4)观察函数图象,发现:函数y=在x<﹣1和x>﹣1上均单调递增.26.(8分)(2016春•怀柔区期末)有这样一个问题,探究函数y=的图象和性质.小强根据学习一次函数的经验,对函数y=的图象和性质进行了探究.下面是小强的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是 x≠2 ;(2)如图,在平面直角坐标系xOy中,他通过列表描点画出了函数y=图象的一部分,请结合自变量的取值范围,补出函数图象的另一部分;(3)进一步探究发现,该函数图象有一条性质是:在第一象限的部分,y随x的增大而 减小 ;(4)结合函数图象,写出该函数图象的另外一条性质.解:(1)由已知得:x﹣2≠0,解得:x≠2.故答案为:x≠2.(2)补出函数图象的另一部分,如图.(3)∵在y=中k=3>0,∴该函数在第一象限的部分,y随x的增大而减小.故答案为:减小.(4)在第三、四象限的部分,y随x的增大而减小.27.(8分)(2016春•延庆县期末)有这样一个问题:探究函数y=+x的图象与性质.小东根据学习函数的经验,对函数y=+x的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=+x的自变量x的取值范围是 x≠1 ;(2)下表是y与x的几组对应值.x…﹣3﹣2﹣102345…y…﹣﹣﹣﹣1﹣﹣3m…求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(2,3),结合函数的图象,写出该函数的其它性质(一条即可): 该函数没有最大值,也没有最小值 .解:(1)x≠1,故答案为x≠1;(2)令x=4,∴y=+4=;∴m=;(3)如图(4)该函数的其它性质:该函数没有最大值,也没有最小值;故答案为该函数没有最大值,也没有最小值.28.(8分)(2022春•镇平县期中)已知反比例函数y=的图象经过A(2,﹣4).①求k的值.②这个函数的图象在哪几个象限?y随x的增大怎样变化?③画出函数的图象.④点B(﹣2,4),C(﹣1,5)在这个函数的图象上吗?解:①∵反比例函数y=的图象经过点A(2,﹣4),∴1﹣k=2×(﹣4)=﹣8;解得:k=9;②∵k=﹣8<0,∴图象位于二、四象限,在每个象限内y随x的增大而增大;③图象为:④∵﹣2×4=﹣8、﹣1×5=﹣5≠﹣8,∴B(﹣2,4)在反比例函数的图象上,C(﹣1,5)不在反比例函数的图象上。
中考数学 反比例函数 培优练习(含答案)及答案解析
中考数学反比例函数培优练习(含答案)及答案解析一、反比例函数1.如图,反比例函数y= 的图象与一次函数y= x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.(1)若点P的坐标是(1,4),直接写出k的值和△PAB的面积;(2)设直线PA、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ的大小,并说明理由.【答案】(1)解:k=4,S△PAB=15.提示:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图1,把x=4代入y= x,得到点B的坐标为(4,1),把点B(4,1)代入y= ,得k=4.解方程组,得到点A的坐标为(﹣4,﹣1),则点A与点B关于原点对称,∴OA=OB,∴S△AOP=S△BOP,∴S△PAB=2S△AOP.设直线AP的解析式为y=mx+n,把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,求得直线AP的解析式为y=x+3,则点C的坐标(0,3),OC=3,∴S△AOP=S△AOC+S△POC= OC•AR+ OC•PS= ×3×4+ ×3×1= ,∴S△PAB=2S△AOP=15;(2)解:过点P作PH⊥x轴于H,如图2.B(4,1),则反比例函数解析式为y= ,设P(m,),直线PA的方程为y=ax+b,直线PB的方程为y=px+q,联立,解得直线PA的方程为y= x+ ﹣1,联立,解得直线PB的方程为y=﹣ x+ +1,∴M(m﹣4,0),N(m+4,0),∴H(m,0),∴MH=m﹣(m﹣4)=4,NH=m+4﹣m=4,∴MH=NH,∴PH垂直平分MN,∴PM=PN,∴△PMN是等腰三角形;(3)解:∠PAQ=∠PBQ.理由如下:过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),直线AQ的解析式为y=px+q,则有,解得:,∴直线AQ的解析式为y= x+ ﹣1.当y=0时, x+ ﹣1=0,解得:x=c﹣4,∴D(c﹣4,0).同理可得E(c+4,0),∴DT=c﹣(c﹣4)=4,ET=c+4﹣c=4,∴DT=ET,∴QT垂直平分DE,∴QD=QE,∴∠QDE=∠QED.∵∠MDA=∠QDE,∴∠MDA=∠QED.∵PM=PN,∴∠PMN=∠PNM.∵∠PAQ=∠PMN﹣∠MDA,∠PBQ=∠NBE=∠PNM﹣∠QED,∴∠PAQ=∠PBQ.【解析】【分析】(1)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP 与y轴交于点C,如图1,可根据条件先求出点B的坐标,然后把点B的坐标代入反比例函数的解析式,即可求出k,然后求出直线AB与反比例函数的交点A的坐标,从而得到OA=OB,由此可得S△PAB=2S△AOP,要求△PAB的面积,只需求△PAO的面积,只需用割补法就可解决问题;(2)过点P作PH⊥x轴于H,如图2.可用待定系数法求出直线PB的解析式,从而得到点N的坐标,同理可得到点M的坐标,进而得到MH=NH,根据垂直平分线的性质可得PM=PN,即△PMN是等腰三角形;(3)过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),运用待定系数法求出直线AQ的解析式,即可得到点D的坐标为(c﹣4,0),同理可得E(c+4,0),从而得到DT=ET,根据垂直平分线的性质可得QD=QE,则有∠QDE=∠QED.然后根据对顶角相等及三角形外角的性质,就可得到∠PAQ=∠PBQ.2.已知点A,B分别是x轴、y轴上的动点,点C,D是某个函数图象上的点,当四边形ABCD(A,B,C,D各点依次排列)为正方形时,我们称这个正方形为此函数图象的“伴侣正方形”.例如:在图1中,正方形ABCD是一次函数y=x+1图象的其中一个“伴侣正方形”.(1)如图1,若某函数是一次函数y=x+1,求它的图象的所有“伴侣正方形”的边长;(2)如图2,若某函数是反比例函数(k>0),它的图象的“伴侣正方形”为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数的解析式;(3)如图3,若某函数是二次函数y=ax2+c(a≠0),它的图象的“伴侣正方形”为ABCD,C,D中的一个点坐标为(3,4),请你直接写出该二次函数的解析式.【答案】(1)解:(I)当点A在x轴正半轴、点B在y轴负半轴上时:正方形ABCD的边长为.(II)当点A在x轴负半轴、点B在y轴正半轴上时:设正方形边长为a,易得3a= ,解得a= ,此时正方形的边长为.∴所求“伴侣正方形”的边长为或(2)解:如图,作DE⊥x轴,CF⊥y轴,垂足分别为点E、F,易证△ADE≌△BAO≌△CBF.∵点D的坐标为(2,m),m<2,∴DE=OA=BF=m,∴OB=AE=CF=2﹣m.∴OF=BF+OB=2,∴点C的坐标为(2﹣m,2).∴2m=2(2﹣m),解得m=1.∴反比例函数的解析式为y=(3)解:实际情况是抛物线开口向上的两种情况中,另一个点都在(3,4)的左侧,而开口向下时,另一点都在(3,4)的右侧,与上述解析明显不符合a、当点A在x轴正半轴上,点B在y轴正半轴上,点C坐标为(3,4)时:另外一个顶点为(4,1),对应的函数解析式是y=﹣ x2+ ;b、当点A在x 轴正半轴上,点 B在 y轴正半轴上,点D 坐标为(3,4)时:不存在,c、当点A 在 x 轴正半轴上,点 B在 y轴负半轴上,点C 坐标为(3,4)时:不存在d、当点A在x 轴正半轴上,点B在y轴负半轴上,点D坐标为(3,4)时:另外一个顶点C为(﹣1,3),对应的函数的解析式是y= x2+ ;e、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D的坐标是(7,﹣3)时,对应的函数解析式是y=﹣ x2+ ;f、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D的坐标是(﹣4,7)时,对应的抛物线为y= x2+ ;故二次函数的解析式分别为:y= x2+ 或y=﹣ x2+ 或y=﹣ x2+ 或y= x2+【解析】【分析】(1)先正确地画出图形,再利用正方形的性质确定相关点的坐标从而计算正方形的边长.(2)因为ABCD为正方形,所以可作垂线得到等腰直角三角形,利用点D(2,m)的坐标表示出点C的坐标,可求出m的值,即可得到反比例函数的解析式.(3)由抛物线开口既可能向上,也可能向下.当抛物线开口向上时,正方形的另一个顶点也是在抛物线上,这个点既可能在点(3,4)的左边,也可能在点(3,4)的右边,过点(3,4)向x轴作垂线,利用全等三角形确定线段的长即可确定抛物线上另一个点的坐标;当抛物线开口向下时也是一样地分为两种情况来讨论,即可得到所求的结论.3.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于二四象限内的A、B 两点,与x轴交于C点,点B的坐标为(6,n),线段OA=5,E为x轴负半轴上一点,且sin∠AOE=.(1)求该反比例函数和一次函数的解析式;(2)求△AOC的面积;(3)直接写出一次函数值大于反比例函数值时自变量x的取值范围.【答案】(1)解:作AD⊥x轴于D,如图,在Rt△OAD中,∵sin∠AOD= = ,∴AD= OA=4,∴OD= =3,∴A(﹣3,4),把A(﹣3,4)代入y= 得m=﹣4×3=﹣12,所以反比例函数解析式为y=﹣;把B(6,n)代入y=﹣得6n=﹣12,解得n=﹣2,把A(﹣3,4)、B(6,﹣2)分别代入y=kx+b得,解得,所以一次函数解析式为y=﹣x+2(2)解:当y=0时,﹣x+2=0,解得x=3,则C(3,0),所以S△AOC= ×4×3=6(3)解:当x<﹣3或0<x<6时,一次函数的值大于反比例函数的值【解析】【分析】(1)作AD⊥x轴于D,如图,先利用解直角三角形确定A(﹣3,4),再把A点坐标代入y= 可求得m=﹣12,则可得到反比例函数解析式;接着把B(6,n)代入反比例函数解析式求出n,然后把A和B点坐标分别代入y=kx+b得到关于a、b的方程组,再解方程组求出a和b的值,从而可确定一次函数解析式;(2)先确定C点坐标,然后根据三角形面积公式求解;(3)观察函数图象,找出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.4.如图,一次函数y=kx+b的图象交反比例函数y= (x>0)的图象于A(4,-8)、B (m,-2)两点,交x轴于点C.(1)求反比例函数与一次函数的关系式;(2)根据图象回答:当x为何值时,一次函数的值大于反比例函数的值?(3)以O、A、B、P为顶点作平行四边形,请直接写出点P的坐标.【答案】(1)解:∵反比例函数y= (x>0)的图象于A(4,-8),∴k=4×(-8)=-32.∵双曲线y= 过点B(m,-2),∴m=16.由直线y=kx+b过点A,B得:,解得,,∴反比例函数关系式为,一次函数关系式为(2)解:观察图象可知,当0<x<4或x>16时,一次函数的值大于反比例函数的值(3)解:∵O(0,0),A(4,-8)、B(16,-2),分三种情况:①若OB∥AP,OA∥BP,∵O(0,0),A(4,-8),∴由平移规律,点B(16,-2)向右平移4个单位,向下平移8个单位得到P点坐标为(20,-10);②若OP∥AB,OA∥BP,∵A(4,-8),B(16,-2),∴由平移规律,点O(0,0)向右平移12个单位,向上平移6个单位得到P点坐标为(12,6);③若OB∥AP,OP∥AB,∵B(16,-2),A(4,-8),∴由平移规律,点O(0,0)向左平移12个单位,向下平移6个单位得到P点坐标为(-12,-6);∴以O,A,B,P为顶点作平行四边形,第四个顶点P的坐标为(12,6)或(-12,-6)或(20,-10)【解析】【分析】(1)将点A(4,-8),B(m,-2)代入反比例函数y= (x>0)中,可求k、a;再将点A(4,-8),B(m,-2)代入y=kx+b中,列方程组求k、b即可;(2)根据两函数图象的交点,图象的位置可确定一次函数的值大于反比例函数的值时x的范围;(3)根据平行四边形的性质,即可直接写出.5.如图,已知直线y= x与双曲线y=交于A、B两点,且点A的横坐标为 .(1)求k的值;(2)若双曲线y=上点C的纵坐标为3,求△AOC的面积;(3)在坐标轴上有一点M,在直线AB上有一点P,在双曲线y=上有一点N,若以O、M、P、N为顶点的四边形是有一组对角为60°的菱形,请写出所有满足条件的点P的坐标.【答案】(1)解:把x= 代入,得y= ,∴A(,1),把点代入,解得:;(2)解:∵把y=3代入函数,得x= ,∴C ,设过,两点的直线方程为:,把点,,代入得:,解得:,∴,设与轴交点为,则点坐标为,∴;(3)解:设点坐标,由直线解析式可知,直线与轴正半轴夹角为,∵以、、、为顶点的四边形是有一组对角为的菱形,在直线上,∴点只能在轴上,∴点的横坐标为,代入,解得纵坐标为:,根据,即得:,解得: .故点坐标为:或 .【解析】【分析】(1)先求的A点纵坐标,然后用待定系数法求解即可;(2)先求出C 点坐标,再用待定系数法求的直线AC的解析式,然后求得直线AC与x的交点坐标,再根据求解即可;(3)设点坐标,根据题意用关于a的式子表示出N的坐标,再根据菱形的性质得,求出a的值即可.6.如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【答案】(1)①当x=4时,∴点B的坐标是(4,1)当y=2时,由得得x=2∴点A的坐标是(2,2)设直线AB的函数表达式为∴解得∴直线AB的函数表达式为②四边形ABCD为菱形,理由如下:如图,由①得点B(4,1),点D(4,5)∵点P为线段BD的中点∴点P的坐标为(4,3)当y=3时,由得,由得,∴PA= ,PC=∴PA=PC而PB=PD∴四边形ABCD为平行四边形又∵BD⊥AC∴四边形ABCD是菱形(2)四边形ABCD能成为正方形当四边形ABCD时正方形时,PA=PB=PC=PD(设为t,t≠0),当x=4时,∴点B的坐标是(4,)则点A的坐标是(4-t,)∴,化简得t=∴点D的纵坐标为则点D的坐标为(4,)所以,整理得m+n=32【解析】【分析】(1)①分别求出点A,B的坐标,运用待定系数法即可求出直线AB的表达示;②由特殊的四边形可知,对角线互相垂直的是菱形和正方形,则可猜测这个四边形是菱形或是正方形,先证明其为菱形先,则需要证明四边形ABCD是平行四边形,运用“对角线互相平分的四边形是平行四边形”的判定定理证明会更好些;再判断对角线是否相等,若不相等则不是正方形;(2)要使m,n有具体联系,根据A,B,C,D分别在两个函数图象,且由正方形的性质,可用只含m的代数式表示出点D或点C的坐标代入y= ,即可得到只关于m和n的等式.7.如图,在平面直角坐标系中,直线与双曲线相交于点A(,6)和点B(-3,),直线AB与轴交于点C.(1)求直线AB的表达式;(2)求的值.【答案】(1)解:∵点A(,6)和点B(-3,)在双曲线,∴m=1,n=-2,∴点A(1,6),点B(-3,-2),将点A、B代入直线,得,解得,∴直线AB的表达式为:(2)解:分别过点A、B作AM⊥y轴,BN⊥y轴,垂足分别为点M、N,则∠AMO=∠BNO=90°,AM=1,BN=3,∴AM//BN,∴△ACM∽△BCN,∴【解析】【分析】根据反比例函数的解析式可得m和n的值,利用待定系数法求一次函数的表达式;作辅助线,构建平行线,根据平行线分线段成比例定理可得结论.8.如图,一次函数y=kx+b(k≠0)与反比例函数y= (m≠0)的图象有公共点A(1,a)、D(﹣2,﹣1).直线l与x轴垂直于点N(3,0),与一次函数和反比例函数的图象分别交于点B、C.(1)求一次函数与反比例函数的解析式;(2)根据图象回答,x在什么范围内,一次函数的值大于反比例函数的值;(3)求△ABC的面积.【答案】(1)解:∵反比例函数经过点D(﹣2,﹣1),∴把点D代入y= (m≠0),∴﹣1= ,∴m=2,∴反比例函数的解析式为:y= ,∵点A(1,a)在反比例函数上,∴把A代入y= ,得到a= =2,∴A(1,2),∵一次函数经过A(1,2)、D(﹣2,﹣1),∴把A、D代入y=kx+b (k≠0),得到:,解得:,∴一次函数的解析式为:y=x+1(2)解:如图:当﹣2<x<0或x>1时,一次函数的值大于反比例函数的值(3)解:过点A作AE⊥x轴交x轴于点E,∵直线l⊥x轴,N(3,0),∴设B(3,p),C(3,q),∵点B在一次函数上,∴p=3+1=4,∵点C在反比例函数上,∴q= ,∴S△ABC= BC•EN= ×(4﹣)×(3﹣1)= .【解析】【分析】由反比例函数经过点D(-2,-1),即可求得反比例函数的解析式;然后求得点A的坐标,再利用待定系数法求得一次函数的解析式;结合图象求解即可求得x在什么范围内,一次函数的值大于反比例函数的值;首先过点A作AE⊥x轴交x轴于点E,由直线l与x轴垂直于点N(3,0),可求得点E,B,C的坐标,继而求得答案.9.对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q 称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3)记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为________.【答案】(1)解:函数y=x-1没有不变值;∵函数有-1和1两个不变值,∴其不变长度为2;∵函数有0和1两个不变值,∴其不变长度为1;(2)解:① 函数y=2x2-bx的不变长度为0,方程2x2-bx=x有两个相等的实数根,∴△=(b+1)2=0,b=-1,②∵2x2-bx=x,∴,1≤b≤3,1≤≤2,函数y=2x2-bx的不变长度的取值范围为1≤q≤2.(3)1≤m≤3或m<-【解析】【解答】解(3)依题可得:函数G的图像关于x=m对称,∴函数G:y=,当x2-2x=x时,即x(x-3)=0,∴x3=0,x4=3,当(2m-x)2-2(2m-x)=x时,即x2+(1-4m)x+(4m2-4m)=0,∴△=(1-4m)2-4×(4m2-4m)=1+8m,当△=1+8m0时,即m-,此方程无解,∴q=x4-x3=3-0=3;当△=1+8m 0时,即m -,此方程有解,∴x5=, x6=,①当-m0时,∵x3=0,x4=3,∴x60,∴x4-x63(不符合题意,舍去),②∵当x5=x4时,∴m=1,当x6=x3时,∴m=3,当0m1时,x3=0(舍去),x4=3,此时0x5x4, x60,∴q=x4-x63(舍去);当1m3时,x3=0(舍去),x4=3,此时0x5x4, x60,∴q=x4-x63(舍去);当m3时,x3=0(舍去),x4=3(舍去),此时x53,x60,∴q=x5-x63(舍去);综上所述:m的取值范围为:1m3或m < -,【分析】(1)根据题目定义即可得出函数y=x-1没有不变值;再分别求出函数、函数的不变值,从而求出其不变长度.(2)① 由已知条件得方程2x2-bx=x有两个相等的实数根,即根的判别式△=(b+1)2=0,从而求出 b=-1;②由题意得2x2-bx=x,求出方程的根,再根据1≤b≤3,即可求出函数y=2x2-bx的不变长度的取值范围.(3)依题可得:函数G的图像关于x=m对称,分情况讨论写出函数G的解析式,根据定义和一元二次方程求出值,再分情况讨论即可得出答案.10.如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y= 相交于点A(m,3),B(﹣6,n),与x轴交于点C.(1)求直线y=kx+b(k≠0)的解析式;(2)若点P在x轴上,且S△ACP= S△BOC,求点P的坐标(直接写出结果).【答案】(1)解:)∵点A(m,3),B(﹣6,n)在双曲线y= 上,∴m=2,n=﹣1,∴A(2,3),B(﹣6,﹣1).将(2,3),B(﹣6,﹣1)带入y=kx+b,得:,解得.∴直线的解析式为y= x+2(2)解:当y= x+2=0时,x=﹣4,∴点C(﹣4,0).设点P的坐标为(x,0),∵S△ACP= S△BOC, A(2,3),B(﹣6,﹣1),∴×3|x﹣(﹣4)|= × ×|0﹣(﹣4)|×|﹣1|,即|x+4|=2,解得:x1=﹣6,x2=﹣2.∴点P的坐标为(﹣6,0)或(﹣2,0).【解析】【分析】(1)利用反比例函数图象上点的坐标特征可求出点A、B的坐标,再利用待定系数法即可求出直线AB的解析式;(2)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ACP= S△BOC,即可得出|x+4|=2,解之即可得出结论.11.已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC=3.(1)求抛物线的解析式及顶点D的坐标;(2)点P为抛物线在直线BC下方图形上的一动点,当△PBC面积最大时,求点P的坐标;(3)若点Q为线段OC上的一动点,问:AQ+ QC是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.【答案】(1)解:函数的表达式为:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),即:3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3,则顶点D(2,﹣1);(2)解:将点B、C的坐标代入一次函数表达式:y=mx+n并解得:直线BC的表达式为:y=﹣x+3,过点P作y轴的平行线交BC于点H,设点P(x,x2﹣4x+3),则点H(x,﹣x+3),则S△PBC=PH×OB=(﹣x+3﹣x2+4x﹣3)=(﹣x2+3x),∵﹣<0,故S△PBC有最大值,此时x=,故点P(,﹣);(3)解:存在,理由:如上图,过点C作与y轴夹角为30°的直线CH,过点A作AH⊥CH,垂足为H,则HQ=CQ,Q+ QC最小值=AQ+HQ=AH,直线HC所在表达式中的k值为,直线HC的表达式为:y=x+3…①则直线AH所在表达式中的k值为﹣,则直线AH的表达式为:y=﹣x+s,将点A的坐标代入上式并解得:则直线AH的表达式为:y=﹣x+ …②,联立①②并解得:x=,故点H(,),而点A(1,0),则AH=,即:AQ+ QC的最小值为 .【解析】【分析】(1)将坐标(1,0),B(3,0)代入计算即可得出抛物线的解析式,即可计算出D的坐标.(2)将点B、C的坐标代入一次函数表达式计算,设点P(x,x2﹣4x+3),则点H(x,﹣x+3),求出x的值即可.(3)存在,过点C作与y轴夹角为30°的直线CH,过点A作AH⊥CH,垂足为H,则HQ=CQ,Q+ QC最小值=AQ+HQ=AH,求出k值,再将A的坐标代入计算即可解答.12.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(2)在(1)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.【答案】(1)解:如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ACB=∠ABD=90°,∴△ABC∽△ADB,∴∠ABC=∠ADB,且∠ACB=∠BCD=90°,∴△ABC∽△BDC,∴∵A(﹣3,0),C(1,0),∴AC=4,∵BC=AC.∴BC=3,∴AB===5,∵,∴,∴CD=,∴AD=AC+CD=4+ =,∴OD=AD﹣AO=,∴点D的坐标为:(,0);(2)解:如图2,当∠APC=∠ABD=90°时,∵∠APC=∠ABD=90°,∠BAD=∠PAQ,∴△APQ∽△ABD,∴,∴∴m=,如图3,当∠AQP=∠ABD=90°时,∵∠AQP=∠ABD=90°,∠PAQ=∠BAD,∴△APQ∽△ADB,∴,∴∴m=;综上所述:当m=或时,△APQ与△ADB相似.【解析】【分析】(1)如图1,过点B作BD⊥AB,交x轴于点D,可证△ABC∽△ADB,可得∠ABC=∠ADB,可证△ABC∽△BDC,可得,可求CD 的长,即可求点D坐标;(2)分两种情况讨论,由相似三角形的性质可求解.。
九年级数学反比例函数的专项培优练习题(含答案)含答案
九年级数学反比例函数的专项培优练习题(含答案)含答案一、反比例函数1.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【答案】(1)解:当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)把A(﹣4,),B(﹣1,2)代入y=kx+b得,解得,所以一次函数解析式为y= x+ ,把B(﹣1,2)代入y= 得m=﹣1×2=﹣2;(3)解:如下图所示:设P点坐标为(t,t+ ),∵△PCA和△PDB面积相等,∴• •(t+4)= •1•(2﹣t﹣),即得t=﹣,∴P点坐标为(﹣,).【解析】【分析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B点坐标代入y= 可计算出m的值;(3)设P点坐标为(t, t+ ),利用三角形面积公式可得到• •(t+4)= •1•(2﹣ t﹣),解方程得到t=﹣,从而可确定P点坐标.2.如图,已知点D在反比例函数y= 的图象上,过点D作x轴的平行线交y轴于点B (0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC= .(1)求反比例函数y= 和直线y=kx+b的解析式;(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.【答案】(1)解:∵A(5,0),∴OA=5.∵,∴,解得OC=2,∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x轴,∴D(﹣2,3),∴m=﹣2×3=﹣6,∴,设直线AC关系式为y=kx+b,∵过A(5,0),C(0,﹣2),∴,解得,∴;(2)解:∵B(0,3),C(0,﹣2),∴BC=5=OA,在△OAC和△BCD中∴△OAC≌△BCD(SAS),∴AC=CD,∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC⊥CD;(3)解:∠BMC=45°.如图,连接AD,∵AE=OC,BD=OC,AE=BD,∴BD∥x轴,∴四边形AEBD为平行四边形,∴AD∥BM,∴∠BMC=∠DAC,∵△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD为等腰直角三角形,∴∠BMC=∠DAC=45°.【解析】【分析】(1)由正切定义可求C坐标,进而由BD=OC求出D坐标,求出反比例函数解析式;由A、C求出直线解析式;(2)由条件可判定△OAC≌△BCD,得出AC=CD,∠OAC=∠BCD,进而AC⊥CD;(3)由已知可得AE=OC,BD=OC,得出AE=BD,再加平行得四边形AEBD为平行四边形,推出△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD为等腰直角三角形,∴∠BMC=∠DAC=45°.3.平面直角坐标系xOy中,已知函数y1= (x>0)与y2=﹣(x<0)的图象如图所示,点A、B是函数y1= (x>0)图象上的两点,点P是y2=﹣(x<0)的图象上的一点,且AP∥x轴,点Q是x轴上一点,设点A、B的横坐标分别为m、n(m≠n).(1)求△APQ的面积;(2)若△APQ是等腰直角三角形,求点Q的坐标;(3)若△OAB是以AB为底的等腰三角形,求mn的值.【答案】(1)解:过点P、A、Q分别作PM x轴交x轴于点M,PN x轴交x轴于点N,QR AP轴交AP轴于点R,则四边形APMN、四边形PMQR、四边形ARQN是矩形,如图所示:∵点A的横坐标为m,且在函数上,AP∥x轴,且点P在函数上,∴点A(m, ),点P(-m, ),∴MN=m-(-m)=2m,PM= ,∴S矩形PMNA=2m╳ =8,∵四边形PMQR、四边形ARQN是矩形,∴S△PQM=S△PRQ, S△ANQ=S△ARQ,∴S△APQ=S△PRQ+ S△ARQ= S矩形PMNA=4(2)解:当PQ x轴时,则PQ=,,AP=2m,∵PQ=AP∴2m= ,∴m=∴ ,当PQ=AQ时,则(3)解:∵△OAB是以AB为底的等腰三角形,∴OA=OB,∵A(m, ),B(n, ),∴∴mn=4.【解析】【分析】(1)过点P、A、Q分别作PM ⊥ x轴交x轴于点M,PN ⊥ x轴交x轴于点N,QR ⊥ AP轴交AP轴于点R,则四边形APMN、四边形PMQR、四边形ARQN是矩形,根据点A的横坐标为m,利用函数解析式表示出点A的坐标和点P的坐标,最后用三角形的面积公式即可得出结论。
九年级数学反比例函数的专项培优练习题(含答案)及详细答案
九年级数学反比例函数的专项培优练习题(含答案)及详细答案一、反比例函数1.如图直角坐标系中,矩形ABCD的边BC在x轴上,点B,D的坐标分别为B(1,0),D(3,3).(1)点C的坐标________;(2)若反比例函数y= (k≠0)的图象经过直线AC上的点E,且点E的坐标为(2,m),求m的值及反比例函数的解析式;(3)若(2)中的反比例函数的图象与CD相交于点F,连接EF,在直线AB上找一点P,使得S△PEF= S△CEF,求点P的坐标.【答案】(1)(3,0)(2)解:∵AB=CD=3,OB=1,∴A的坐标为(1,3),又C(3,0),设直线AC的解析式为y=ax+b,则,解得:,∴直线AC的解析式为y=﹣ x+ .∵点E(2,m)在直线AC上,∴m=﹣ ×2+ = ,∴点E(2,).∵反比例函数y= 的图象经过点E,∴k=2× =3,∴反比例函数的解析式为y=(3)解:延长FC至M,使CM= CF,连接EM,则S△EFM= S△EFC, M(3,﹣0.5).在y= 中,当x=3时,y=1,∴F(3,1).过点M作直线MP∥EF交直线AB于P,则S△PEF=S△MEF.设直线EF的解析式为y=a'x+b',∴,解得,∴y=﹣ x+ .设直线PM的解析式为y=﹣ x+c,代入M(3,﹣0.5),得:c=1,∴y=﹣ x+1.当x=1时,y=0.5,∴点P(1,0.5).同理可得点P(1,3.5).∴点P坐标为(1,0.5)或(1,3.5).【解析】【解答】解:(1)∵D(3,3),∴OC=3,∴C(3,0).故答案为(3,0);【分析】(1)由D的横坐标为3,得到线段OC=3,即可确定出C的坐标;(2)由矩形的对边相等,得到AB=CD,由D的纵坐标确定出CD的长,即为AB的长,再由B的坐标确定出OB的长,再由A为第一象限角,确定出A的坐标,由A与C的坐标确定出直线AC的解析式,将E坐标代入直线AC解析式中,求出m的值,确定出E的坐标,代入反比例解析式中求出k的值,即可确定出反比例解析式;(3)延长FC至M,使CM=CF,连接EM,则S△EFM=S△EFC, M(3,﹣0.5).求出F(3,1),过点M作直线MP∥EF交直线AB于P,利用平行线间的距离处处相等得到高相等,再利用同底等高得到S△PEF=S△MEF.此时直线EF与直线PM的斜率相同,由F的横坐标与C横坐标相同求出F 的横坐标,代入反比例解析式中,确定出F坐标,由E与F坐标确定出直线EF斜率,即为直线PM的斜率,再由M坐标,确定出直线PM解析式,由P横坐标与B横坐标相同,将B横坐标代入直线PM解析式中求出y的值,即为P的纵坐标,进而确定出此时P的坐标.2.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【答案】(1)解:设线段AB所在的直线的解析式为y1=k1x+20,把B(10,40)代入得,k1=2,∴y1=2x+20.设C、D所在双曲线的解析式为y2= ,把C(25,40)代入得,k2=1000,∴当x1=5时,y1=2×5+20=30,当,∴y1<y2∴第30分钟注意力更集中.(2)解:令y1=36,∴36=2x+20,∴x1=8令y2=36,∴,∴∵27.8﹣8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.【解析】【分析】(1)根据一次函数和反比例函数的应用,用待定系数法求出线段AB所在的直线的解析式,和C、D所在双曲线的解析式;把x1=5时和进行比较得到y1<y2,得出第30分钟注意力更集中;(2)当y1=36时,得到x1=8,当y2=36,得到,由27.8﹣8=19.8>19,所以经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.3.如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC 的形状并证明你的结论.【答案】(1)解:设反比例函数的解析式为(k>0)∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数一、例题分析例1、如图,已知(4)A n -,,(24)B -,是一次函数y kx b =+的图象和反比例函数my x=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)求方程xmb kx =+的解(请直接写出答案); (4)求不等式0<-+xmb kx 的解集(请直接写出答案).例2、在平面直角坐标系xOy 中,已知反比例函数2(0)ky k x=≠满足:当0x <时,y 随x 的增大而减小.若该反比例函数的图象与直线y x =-都经过点P ,且OP =,则实数k=________ _.例3、直线y =a 分别与直线x y 21=和双曲线x y 1=交于A 、D 两点,过点A 、D 分别作x 轴的垂线段,垂足为点B ,C . 若四边形ABCD 是正方形,则a 的值为 .例4、如图,已知△OP 1A 1、△A 1P 2A 2、△A 2P 3A 3、……均为等腰直角三角形,直角顶点P 1、P 2、 P 3、……在函数4y x=(x >0)图象上,点A 1、A 2、 A 3、……在x 轴的正半轴上,则点P 2012的横坐标为 .例5、已知:如图,矩形OABC 的边OA 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且OA=2OC ,直线 y=x+b 过点C ,并且交对角线OB 于点E ,交x 轴于 点D ,反比例函数xay =过点E 且交AB 于点M , 交BC 于点N ,连接MN 、OM 、ON,若△OMN 的面积 是980,则a 、b 的值分别为例6如图,Rt ABO ∆中,90,3,ABO AC BC D OA ∠==为中点,反比例函数经过C 、D 两点,若ACD ∆的面积为3,则反比例函数 的解析式为( ) A 、2y x= B 、2y x =-C 、4y x =D 、4y x=-例7如图,在直角坐标系中,点P 为菱形OACB 的对角线AB 、OC 的交点,其中点B 、P 在双曲线(x 0)ky x=>上。
若点P 的坐标为(1,2), 则点A 的坐标是( )A 、10(1,)3-B 、7(2,)2-C 、1314(,)99-D 、18(3,)5-二、课堂练习1、如图,函数y =k (x +k )与xky =在同一坐标系中,图象只能是下图中的( )2、如右图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数221k k y x++=的图象上。
若点A 的坐标为(-2,-2),则k 的值为( )A .1B .-3C .4D .1或-33、如右图,是反比例函数1=k y x和2=ky x (k 1<k 2)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,若S △AOB =2,则k 2-k 1的值是_________.4、已知反比例函数xy 2-=,下列结论正确..的是 ①.y 随x 的增大而增大 ②.图象必经过点(-1,2) ③.图象在第二、四象限内 ④.若x >1,则02<<-y 5、过反比例函数y=xk(k≠0)图象上一点A ,分别作x 轴,y 轴的垂线,垂足分别为B,C ,如果⊿ABC 的面积为3.则k 的值为 .6、已知函数y m m x m m =+-+-()21222是一次函数,它的图象与反比例函数y k x=的图象交于一点,交点的横坐标是13,则此反比例函数的解析式是 7、对于反比例函数4y x=,当函数值y ≥-2时,自变量x 的取值范围是___________8、如图,反比例函数y 1=k 1x 和正比例函数y 2=k 2x 的图象交于A (-1,-3)、B (1,3)两点,若k 1x >k 2x ,则x 的取值范围是9、如图,在直角坐标系中,直线x y -=6与双曲线x xy (4=>0)的图象相交于点A,B,设点A 的坐标为(1,1y x ),那么长为1x ,宽为1y 的矩形面积和周长为 .巩固练习一、基础练习 (一)、填空题:1、形如)0(≠=k xky 的函数称为反比例函数,基中自变量x 的取值范围是 ; 2、反比例函数xy 23-=中,相应的k= ;3、三角形面积为6,它的底边a 与这条底边上的高h 的函数关系式是 ;4、反比例函数经过点(2,-3),则这个反比例函数关系式是 ;5、下列函数中:①xy 2=,②11+=x y ,③2x y =④x y 23-=⑤11+=x y其中是y 关于x 的反比例函数有: ;(填写序号)6、已知变量y 、x 成反比例,且当x =2时y=6,则这个函数关系式是 ;7、已知反比例函数经过点A (2,1)和B (m ,-1),则m = ;8、正比例函数x y 3=与反比例函数xy 2=有 个交点; 9、如图(1):则这个函数的表达式是 ;如图(2):则这个函数的表达式是 ;10、若反比例函数x ky =图像的一支在第二象限,则k 的取值范围是 ; 11、若反比例函数x k y 1-=图像的一支在第三象限,则k 的取值范围是 ;12、若反比例函数xky -=2的图像在第一、三象限,则k 的取值范围是 ;13、两点),1(),,1(21y Q y P -在函数xy 2-=图像上,则1y 2y (选填“<””>”) 14、函数xy 32=图像上的点)3,(),1,(),2,(321x C x B x A --,则321,,x x x 之间的大小关系是 ;(用大于号连接)(二)、选择题: 1、下列各点中,在函数xy 2-=的图像上的是( ) A 、(2,1) B 、(-2,1) C 、(2,-2) D 、(1,2) 2 、函数xy 1-=与x y =的图像在同一直角坐标系中交点的个数是( ) A 、0个 B 、1个 C 、2个 D 、3个3、某村的粮食总产量为a (a 为常数)吨,设该村的人均粮食产量为y 吨,人口数为x ,则y 与x 之间的函数关系式的大致图像应为( )4、如图(3):点A 为双曲线上一点A B ⊥x 轴,2=∆aABO S ,则双曲线的解析式是( )A 、x y 2=B 、4x y -=C 、xy 4= D 、x y 4-=5、在同一直角坐标系中,函数y=kx-k 与(0)ky k x=≠的图像大致是( )6、在同一直角坐标平面内,若直线1y x k =与双曲线2k y x=无交点,则( ) (A) 1k 、2k 异号 (B) 1k 、2k 同号 (C) 1k >0, 2k <0 (D) 1k <0, 2k >0二、培优练习1、已知一次函数b kx y +=与反比例函数xky =的图像有两个交点,一个交点坐标为(2,1),那么另一个交点的坐标是( ) A.(4,21--) B. ( -2 , -1 ) C. (-1 , -2 ) D.(-1,-5 ) 2、反比例函数x a a y 12+-=(其中a 为常数)图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中3210x x x <<<,则1y ,2y ,3y 的大小关系是_________。
3、如图,已知双曲线()110y x x =>,()240y x x =>,点P 为双曲线24y x =上的一点,且PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,PA 、PB 分别交双曲线11y x =于D 、C 两点,则△PCD 的面积为_____.4、如图所示,点A 1,A 2,A 3在x 轴上,且OA 1=A 1A 2=A 2A 3,分别过点A 1,A 2,A 3作y 轴的平行线,与反比例函数y =8x(x >0)的图象分别交于点B 1,B 2,B 3,分别过点B 1,B 2,B 3作x 轴的平行线,分别交y 轴于点C 1,C 2,C 3,连接OB 1,OB 2,OB 3,那么图中阴影部分的面积之和为 .x1xx 5、如图,双曲线)0(2x xy =经过四边形OABC 的顶点A 、C ,∠ABC =90°,OC 平分OA 与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得到△AB 'C ,B '点落在OA 上,则四边形OABC 的面积是 .第5题图 6、两个反比例子函数y =x 3,y =x6在第一象限内的图象如图所示,点P 1,P 2,P 3,……,P 2010在反比例函数y =x6图象上,它们的横坐标分别是x 1,x 2,x 3,……,x 2010,纵坐标分别是1,3,5,……,共2010个连续奇数,过点P 1,P 2,P 3,……,P 2010分别作y 轴的平行线,与y =x3的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),……,Q 2010(x 2010,y 2010),则y 2010=_______________。
7、如图,在函数12y x=(x >0)的图象上,有点1P ,2P ,3P ,…,n P ,1n P +,若1P 的横坐标为2,且以后每点的横坐标与它前面一个点的横坐标的差都为2,过点1P ,2P ,3P ,…,n P ,1n P +分别作x 轴、 y 轴的垂线段,构成若干个矩形如图所示,将图中阴影部分的面积从左到右依次记为1S ,2S ,3S ,…,n S ,则1S = , 1S +2S +3S +…+n S = .(用n 的代数式表示)8、如图,△AOB 为等边三角形,点B 的坐标为(-2,0),过点C (2,0)作直线l 交AO 于D ,交AB 于E,点E 在某反比例函数图象上,当△ADE 和△DCO 的面积相等时,那么该反比例函数解析式为 。