几何的五大模型ppt课件

合集下载

几何的五大模型

几何的五大模型

几何的五大模型一、等积变换模型(1)等底等高的两个三角形面积相等(2)两个三角形高相等,面积比等于它们的底之比(3)两个三角形底相等,面积比等于它们的高之比如左图S1:S2=a:b(4)夹在一组平行线之间的等积变形,如右上图,S△ABC= S△BAD反之,如果S△ABC= S△BCD,则可知直线AB平行于CD (AB∥CD)二、鸟头定理(共角定理)模型(1)两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

(2)共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

如图在△ABC中,D,E分别是AB,AC上的点如图.(或D在BA的延长线上,E在AC上),则S△ABC:S△ADE=(AB×AC):(AD×AE)推理过程连接BE,再利用等积变换模型即可。

证明:图(1)中设:过顶点D做底边AE的高为H1;过顶点B做底边AC的高为H2△ABE中S△ADE:S△ABE=AD:AB同理S△ADE:S△ABE=H1:H2 AD:AB= H1:H2又因S△ADE=AE*H1*1/2S△ABC=AC*H2*1/2 得出S△ADE:S△ABC=AE*H1:AC*H2 所以S△ADE:S△ABC=(AB×AC):(AD×AE)图(2)中设过顶点D作底边AE的高为H1,过顶点B做底边AC的高为H2△DBE中,S△ADE:S△ABE=AD:ABS△ADE:S△ABE= H1:H2 AD:AB= H1:H2又因S△ADE=AE*H1*1/2S△ABC=AC*H2*1/2 得出S△ADE:S△ABC=AE*H1:AC*H2所以S△ADE:S△ABC=(AB×AC):(AD×AE)三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”)①S1:S2=S4:S3 或者 S1×S3=S2×S4②AO:OC=(S1+S2):(S4+S3)证明(1):在△ABD中,S1:S2=DO:OB在△DCB中,S4:S3=DO:OB 得到S1:S2=S4:S3或者 S1×S3=S2×S4(十字相乘法)证明(2):设过D点作底边AC的高为H1,过B点作底边AC的高为H2(S1+S2):(S4+S3)=(AO*H1*1/2+AO*H2*1/2):(OC*H1*1/2+ OC*H2*1/2)约分得到:(S1+S2):(S4+S3)=AO:OC蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。

几何五大模型

几何五大模型

1.共边模型(等积变形)
·两个三角形,如果底边相等,高也相等,那么它们的面积相等。

·拓展:夹在一组平行线间的同底三角形面积相等。

·两个三角形,如果底相等,一个的高是另一个的n倍,那么它的面积也是另一个的n倍
·两个三角形,如果高相等,一个的底是另一个的n倍,那么它的面积也是另一个的n倍
小结:边比=面积比,找等高最常见
2.共角模型(鸟头模型)
两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角
三角
形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

如图,S?abc:S?ade=(AB×AC):(AD×AE)
A.牢记公式
3.
蝴蝶模型(风筝模型)重点!!!
(②理解记忆(羊肉串1))
4.梯形蝴蝶模型
梯形中的比例关系:
①S?=S?
②S?:S?:S?:S?=a2+b2:ab:ab
5.燕尾模型
在三角形ABC中,AD,BE,CF相交同一点O,那么S?abo:
S ?aco
= BD:DC
A.牢记公式。

几何的五大模型课件

几何的五大模型课件

特性 平行线永不相交。
欧几里得几何的应用
01
02
03
建筑学
欧几里得几何在建筑设计 中广泛应用,如确定建筑 物的位置、方向和尺寸等。
工程学
在机械工程、航空航天和 交通运输等领域,欧几里 得几何用于指导实际物体 的设计和制造。
日常生活
在日常生活中,人们常常 利用欧几里得几何知识解 决实际问题,如测量距离、 计算角度等。
定义
连续性
等价关系
不变性
拓扑几何是研究图形在 连续变形下保持不变的 性质和不变量的几何分支。
拓扑变换是连续的,不 改变图形的基本性质。
同胚的图形被视为等价, 具有相同的拓扑性质。
某些拓扑性质在连续变 形下保持不变。
拓扑几何的应用
网络分析
拓扑几何用于分析网络结构,如 社交网络、互联网等。
数据可视化
通过拓扑结构表示复杂数据,帮 助理解数据内在关系。
欧几里得几何的局限性
现实世界的复杂性
欧几里得几何在描述现实世界的一些 现象时存在局限性,如弯曲的空间、 微观粒子的运动等。
非绝对性
无法解释某些自然现象
在解释一些自然现象,如地壳运动、 电磁波传播等方面,欧几里得几何显 得力不从心。
欧几里得几何基于一些假设和公理, 其绝对性和客观性存在争议。
CHAPTER
对初学者的挑战
解析几何需要较高的数学基础和思 维能力,对于初学者来说可能存在 学习难度。CHAPTER定来自与特性微分几何模型的定 义
微分几何模型是一种使用微积分和线 性代数工具来研究形状、曲线和曲面 几何特性的数学模型。
微分几何模型的特性
微分几何模型强调局部性质,通过研 究曲线和曲面的切线、法线、曲率等 局部几何量来描述物体的形状和运动 规律。

平面几何五种模型

平面几何五种模型

② AO : OC S1 S2 : S4 S3
【上下比】
=
=
=
【上上比】
=
=
=
由上述比例可以按数学运算原则推出很多规则:如
面积交叉相乘的乘积相等
=
= S1 S3 S2 S4
梯形蝴蝶定理( 梯蝴蝶 )
① S1 : S3 a2 : b2 →上:下 = a2 : b2
② S1 : S3 : S2 : S4 a2 : b2 : ab : ab →上:下:左:右 = a2 : b2 : ab : ab
+
+
=1
2
③ S 的对应份数为 a b →a2+2ab+b2=a2+b2+ab+ab 有木有↑
4 相似三角形 形状相同,大小不同的三角形,只要形状不变,无论大小怎么改变,他们都相似。 1 相似三角形的一切对应线段的长度成比例,并且 =它们的相似比 2 相似三角形的面积比 =相似比的平方
3 连接三角形两边中点的线段叫做三角形的中位线 三角形中位线定理:三角形的中位线长 =它所对应的底边长的一半 就是三角形任 2 边中点连出来的中位线就是第三边长的一半! 出题几率:多产生于 2 条平行线造成的相似三角形
等于浅紫色三角形是“嵌入”在大三角形 ABC里面,注意,鸟头定理用的是乘积比!不是
单独的线段比 ~
记忆上用 夹角 2 边
最好记,这里等于
E
D
A 对顶角
D E
A
B
C
B
C
D 互补角 A
E
D
A
E
B
CB
C
鸟头定理的证明,写出来是因为很多题目的解题过程,都需要补这么一条辅助线来过度连

几何的五大模型

几何的五大模型

几何的五大模型一、等积变换模型1、等底等高的两个三角形面积相等。

2、两个相等,面积比等于它们的底之比。

3、两个三角形底相等,面积比等于它的的高之比。

二、共角定理模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。

三、蝴蝶定理模型(说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的。

)四、相似三角形模型相似三角形:是形状相同,但大小不同的三角形叫相似三角形。

相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。

相似三角形的面积比等于它们相似比的平方。

五、燕尾定理模型在右图中,平行四边形ABCD的边BC长10厘米,直角三角形ECB的直角边EC长8厘米。

已知阴影部分的总面积比三角形EFG的面积大10厘米2,求平行四边形ABCD的面积。

解析:因为阴影部分比三角形EFG 的面积大10厘米2,都加上梯形FGCB 后,根据差不变性质,所得的两个新图形的面积差不变,即平行四边行ABCD 比直角三角形ECB 的面积大10厘米2,所以平行四边形ABCD 的面积等于10×8÷2+10=50厘米2 。

解析:利用燕尾定理,连接FC ,BFD 面积 /BFC 面积=DE/EC=1/2,如果BFD 面积为1份的话,BFC 为2份;又DF=FG ,所以BFG 面积与BFD 面积相等也是1份,故FGC 面积是2-1=1份,那么BG=GC ;再利用燕尾定理,DFC 的面积与DFB 相等也是1份,BDC 的面积是4份=6,故一份面积是6/4=,阴影部分是1+2/3=5/3份,面积是×5/3=解析: 如图,长方形ABCD 的面积是12,CE = 2DE ,F 是DG 的中点,那么图中阴影部分面积是________。

如下图,在梯形中,与平行,且,点、分别是和的中点,已知阴影四边形的面积是54平方厘米,则梯形的面积是 平方厘米.如图所示,设上底为a,则下底为2a,梯形的高为h,则EF=(a+2a)=,所以,。

人教版六年级下册数学小升初奥数:几何五大模型模型(课件)

人教版六年级下册数学小升初奥数:几何五大模型模型(课件)

02 三角形:燕尾模型
A
O
B
D
A
F
E O
B D
S△ABD:S△ACD=BD:CD S△OBD:S△OC?B:D?:CD
C
S△ABO:S△CBO=AE:CE S△ACO:S△BCO=AF:BF S△ABO:S△ACO=BD:CD
C
02 三角形:燕尾模型
(1)
例、如图,已知 BD=DC,EC=2AE,三角形 是 30,求阴影部分面积?
01 长方形:一半模型(犬齿模型)
(1)
1 S阴影 2 S长方形
例 、(长郡系)如图,ABFE 和 CDEF 都是矩形,AB 的长是 4 厘米, BC 的长是 3 厘米,那么图中阴影部分的面积是多少平方厘米。
解题思路: 将大长方形分成若干个小长方形;
每个阴影面积都=对应长方形的一半; 全部阴影面积=长方形ABCD的一半; S阴影=3×4÷2=6cm2;
几何五大模型
二、鸟头(共角)定理模型
1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形; 2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。
如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点
则有:S△ABC:S△ADE=(AB×AC):(AD×AE)
ABC
的面积
1 G①
③ ②
③ ⑥③
解题思路: 构建完整燕尾模型,利用份数思维;
AE:CE=1:2
BD:CD=1:1
2
AE:CE=1:2
设S△AEF为1份,则S△CEF为2份 S△ABF:S△ACF=1:1,S△ABF为3份 S△ABF:S△CBF=1:2,S△CBF为6份

1数学几何五大模型

1数学几何五大模型

数 学 几 何 五 大 模 型一、等积变换模型⑴等底等高的两个三角形面积相等;其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。

如上图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;反之,如果ACDBCD S S =△△,则可知直线AB 平行于CD 。

⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半; 二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△1S 2S 1S 2S ab图1 图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):(1) 1243::S S S S =或者1324S S S S ⨯=⨯(2)()()1243::AO OC S S S S =++ 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

梯形中比例关系(“梯形蝴蝶定理”)(1)2213::S S a b =(2)221324::::::S S S S a b ab ab =;(3)梯形S 的对应份数为()2a b +。

四、相似模型相似三角形性质:金字塔模型 沙漏模型(1)AD AE DE AFAB AC BC AG===; (2)22::ADE ABCS S AF AG =△△。

所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方。

几何五大模型

几何五大模型

⑴等底等高的两个三角形面积相等;其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。

如上图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。

⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;五大模型1S 2S两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

梯形中比例关系(“梯形蝴蝶定理”)①2213::S S a b =②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2a b +。

相似三角形性质:金字塔模型 沙漏模型 ①AD AE DE AFAB AC BC AG===; ②22::ADE ABC S S AF AG =△△。

所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方。

几何的五大模型

几何的五大模型
解析:
利用燕尾定理,连接FC,BFD面积/BFC面积=DE/EC=1/2,如果BFD面积为1份的话,BFC为2份;又DF=FG,所以BFG面积与BFD面积相等也是1份,故FGC面积是2-1=1份,那么BG=GC;再利用燕尾定理,DFC的面积与DFB相等也是1份,BDC的面积是4份=6,故一份面积是6/4=1.5,阴影部分是1+2/3=5/3份,面积是1.5×5/3=2关系是一样的。)
四、相似三角形模型
相似三角形:是形状相同,但大小不同的三角形叫相似三角形。
相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。
相似三角形的面积比等于它们相似比的平方。
五、燕尾定理模型
解析:
因为阴影部分比三角形EFG的面积大10厘米2,都加上梯形FGCB后,根据差不变性质,所得的两个新图形的面积差不变,即平行四边行ABCD比直角三角形ECB的面积大10厘米2,所以平行四边形ABCD的面积等于10×8÷2+10=50厘米2。
几何的五大模型
一、等积变换模型
1、等底等高的两个三角形面积相等。
2、两个三角形高相等,面积比等于它们的底之比。
3、两个三角形底相等,面积比等于它的的高之比。
二、共角定理模型
两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。
三、蝴蝶定理模型
显然,最大的三角形的面积为21公顷.
解析:
如图所示,设上底为a,则下底为2a,梯形的高为h,则EF= (a+2a)= ,所以,
。所以
阴影部分
= 即 ,梯形 ABCD的面积=
如下图所示,为了方便叙述,将某些点标上字母.

几何的五大模型

几何的五大模型

几何的五大模型一、等积变换模型(1)等底等高的两个三角形面积相等⑵两个三角形高相等,面积比等于它们的底之比⑶两个三角形底相等,面积比等于它们的高之比如左图S1: S2=a:b(4)夹在一组平行线之间的等积变形,如右上图,S AABC= S △BAD反之,如果S\ABC= S ABCD,则可知直线AB平行于CD (AB// CD二、鸟头定理(共角定理)模型(1)两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

(2)共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

如图在△ ABC中, D, E分别是AB, AC上的点如图.(或D在BA的延长线上, E在AC上),贝卩S AABC: S AD E=(AB X AC):(AD X AE)推理过程连接BE再利用等积变换模型即可。

证明:图(1)中设:过顶点D做底边AE的高为H1;过顶点B做底边AC的高为H2△ ABE中SA ADE SA ABE=A:AB同理SA ADE SA ABE=H1 H2 AD : AB= H1: H2 L又因SAADE=AE*H1*1/2S △ ABC=AC*H2*1/2 得出SA ADE SA ABC=AE*H1 AC*H2所以SA ADE SA ABC=(AX AC):(AD X AE)图(2)中设过顶点D作底边AE的高为H1,过顶点B做底边AC的高为H2△ DBE中,SA ADE SA ABE二AD ABS A ADE SA ABE= H1 H2 AD : AB= HI: H2又因SAADE=AE*H1*1/2S A ABC=AC*H2*1/2 得出SA ADE SA ABC=AE*H1 AC*H2所以SA ADE SA ABC=(AB< AC):(AD X AE)三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”)①S1:S2=S4:S3 或者S1 X S3=S2X S4②AO:OC=(S1+S2):(S4+S3)证明(1):在A ABD中, S1 : S2=DO:OB在A DCB中, S4: S3二DO OB 得至U S1:S2=S4:S3 或者S1 X S3=S2X S4(十字相乘法)证明(2):设过D点作底边AC的高为H1,过B点作底边AC的高为H2(S1+S2):(S4+S3)= (AO*H1*1/2+AO*H2*1/2): ( OC*H1*1/2+ OC*H2*1/2) 约分得到:(S1+S2):(S4+S3)=AO : OC蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。

国庆专题几何--3、4五大模型与构造思想课件资料

国庆专题几何--3、4五大模型与构造思想课件资料

第三、四讲 几何——五大模型与构造思小升初必考知识点——五大模型随着小升初考察难度的增加,几何问题变得越来越难,一方面,几何问题仍是中学考察的重点,各个学校都更喜欢几何思维好的学生,这样更有利于小学和初中的衔接;另一方面,几何问题由于类型众多,很多知识点需要提前学,这就加快了学生知识的综合运用,而这恰恰是重点中学所期望的.几何问题是小升初考试的重要内容,分值一般在12~14分(包含1道大题和2道左右的小题).尤其重要的就是平面图形中的面积计算.几何从内容方面,可以简单的分为直线形面积(三角形、四边形为主)、圆的面积以及二者的综合.其中直线形面积所涉及的五大模型近年来考的比较多,值得我们重点学习.模型一、三角形的等积变化我们已经知道三角形面积的计算公式:三角形面积=底⨯高2÷从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小); 在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如左图12::S S a b =baS 2S 1 DC BA③夹在一组平行线之间的等积变形,如右上图错误!嵌入对象无效。

;反之,如果错误!嵌入对象无效。

,则可知直线错误!嵌入对象无效。

平行于错误!嵌入对象无效。

. ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.等积变化拓展——鸟头模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△EDCBAEDCB A图⑴ 图⑵知识点拨例题精讲【例 1】 (四中考题)如右图,AD DB =,AE EF FC ==,已知阴影部分面积为5平方厘米,ABC ∆的面积是 平方厘米.A【巩固】 图中三角形ABC 的面积是180平方厘米,D 是BC 的中点,AD 的长是AE 长的3倍,EF 的长是BF 长的3倍.那么三角形AEF 的面积是多少平方厘米?B【巩固】 如图,在长方形ABCD 中,Y 是BD 的中点,Z 是DY 的中点,如果24AB =厘米,8BC =厘米,求三角形ZCY 的面积.ABC DZ Y【巩固】 如图,在三角形ABC 中,8BC =厘米,高是6厘米,E 、F 分别为AB 和AC 的中点,那么三角形EBF 的面积是多少平方厘米?FE CBA【例 2】 (第七届”希望杯”二试六年级)如图,在三角形ABC 中,已知三角形ADE 、三角形DCE 、三角形BCD 的面积分别是89,28,26.那么三角形DBE 的面积是 .【例 3】 如右图,正方形ABCD 的面积是20,正三角形BPC ∆的面积是15,求阴影BPD ∆的面积.BA【巩固】 在长方形ABCD 内部有一点O ,形成等腰AOB ∆的面积为16,等腰DOC ∆的面积占长方形面积的18%,那么阴影AOC ∆的面积是多少?D【例 4】 如图,四边形EFGH 的面积是66平方米,EA AB =,CB BF =,DC CG =,HD DA =,求四边形ABCD 的面积.H GFED CB A【巩固】 如图,将四边形ABCD 的四条边AB 、CB 、CD 、AD 分别延长两倍至点E 、F 、G 、H ,若四边形ABCD 的面积为5,则四边形EFGH 的面积是 .A B CD EF G【例 5】 如图,在ABC △中,延长AB 至D ,使BD AB =,延长BC 至E ,使12CE BC =,F 是AC 的中点,若ABC △的面积是2,则DEF △的面积是多少?A BCDEF模型二、任意四边形模型任意四边形中的比例关系(“蝴蝶定理”):S 4S 3S 2S 1O DCBA①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.【例 6】 (人大附中考题)如图,边长为1的正方形ABCD 中,2BE EC =,CF FD =,求三角形AEG 的面积.ABCDEFG【例 7】 如图,已知正方形ABCD 的边长为10厘米,E 为AD 中点,F 为CE 中点,G 为BF 中点,求三角形BDG 的面积.AB【例 8】 (清华附中入学测试题)如图相邻两个格点间的距离是1,则图中阴影三角形的面积为 .BD【例 9】 如图,在ABC ∆中,已知M 、N 分别在边AC 、BC 上,BM 与AN 相交于O ,若AOM ∆、ABO ∆和BON ∆的面积分别是3、2、1,则MNC ∆的面积是 .NM OCBA模型三、相似三角形(一)金字塔模型 (二) 沙漏模型GF E ABCDAB CDEF G①AD AE DE AFAB AC BC AG ===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半.相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.【例 10】 在图中的正方形中,A ,B ,C 分别是所在边的中点,CDO 的面积是ABO 面积的几倍?ABCDO【例 11】 (”华罗庚金杯”少年数学精英邀请赛)如图,四边形ABCD 和EFGH 都是平行四边形,四边形ABCD 的面积是16,:3:1BG GC =,则四边形EFGH 的面积=________.G ECBA【例 12】 图中的大小正方形的边长均为整数(厘米),它们的面积之和等于52平方厘米,则阴影部分的面积是 .H A【例 13】 正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF的面积是 平方厘米.H GFEDC BA模型四、梯形中比例关系(“梯形蝴蝶定理”):A BCD O ba S 3S 2S 1S 4①2213::S S a b =②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.梯形蝴蝶定理给我们提供了解决梯形面积与上、下底之间关系互相转换的渠道,通过构造模型,直接应用结论,往往在题目中有事半功倍的效果.(具体的推理过程我们可以用将在第九讲所要讲的相似模型进行说明)【例 14】 如下图,一个长方形被一些直线分成了若干个小块,已知三角形ADG 的面积是11,三角形BCH 的面积是23,求四边形EGFH 的面积.HG FEDCB A【巩固】如图,长方形中,若三角形1的面积与三角形3的面积比为4比5,四边形2的面积为36,则三角形1的面积为________.321【例 15】 已知ABCD 是平行四边形,:3:2BC CE =,三角形ODE 的面积为6平方厘米.则阴影部分的面积是 平方厘米.B【巩固】 右图中ABCD 是梯形,ABED 是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是 平方厘米.B【例 16】 如图,在正方形ABCD 中,E 、F 分别在BC 与CD 上,且2CE BE =,2CF DF =,连接BF 、DE ,相交于点G ,过G 作MN 、PQ 得到两个正方形MGQA 和PCNG ,设正方形MGQA 的面积为1S ,正方形PCNG 的面积为2S ,则12:S S =___________.QPNMABCD E FG【例 17】 如下图,在梯形ABCD 中,AB 与CD 平行,且2CD AB =,点E 、F 分别是AD 和BC 的中点,已知阴影四边形EMFN 的面积是54平方厘米,则梯形ABCD 的面积是 平方厘米.D模型五、燕尾定理在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,那么::ABO ACO S S BD DC ∆∆=.OFE DCBA上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径. 通过一道例题证明一下燕尾定理:如右图,D 是BC 上任意一点,请你说明:1423:::S S S S BD DC ==S 3S 1S 4S 2EDCBA【解析】 三角形BED 与三角形CED 同高,分别以BD 、DC 为底,所以有14::S S BD DC =;三角形ABE 与三角形EBD 同高,12::S S ED EA =;三角形ACE 与三角形CED 同高,43::S S ED EA =,所以1423::S S S S =;综上可得1423:::S S S S BD DC ==.【例 18】 如图,四边形ABCD 是矩形,E 、F 分别是AB 、BC 上的点,且13AE AB =,14CF BC =,AF 与CE 相交于G ,若矩形ABCD 的面积为120,则AEG ∆与CGF ∆的面积之和为 .BE【例 19】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______.I HGFEDCBA【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI 的面积是1,求三角形ABC 的面积.【巩固】 如图,ABC ∆中2BD D A =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.BC【巩固】 如图在ABC △中,12DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. IHG FEDCBA【巩固】 如右图,三角形ABC 中,:::4:3AF FB BD DC CE AE ===,且三角形ABC 的面积是74,求角形GHI 的面积.IH G FEDCBA【例 20】 三角形ABC 的面积为15平方厘米,D 为AB 中点,E 为AC 中点,F 为BC 中点,求阴影部分的面积.F B【例 21】 如右图,ABC △中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米?N M GA BCD EF【巩固】 如图,ABC ∆中,点D 是边AC 的中点,点E 、F 是边BC 的三等分点,若ABC ∆的面积为1,那么四边形CDMF 的面积是_________.FABCDEMN【例 22】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?GFE D CBA【巩固】如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少?K JI HABC D EF G练习1. 如图,三角形ABC 的面积是24,D 、E 和F 分别是BC 、AC 和AD 的中点.求三角形DEF 的面积.FE DCBA练习2. 如图,平行四边形ABCD ,BE AB =,2CF CB =,3GD DC =,4HA AD =,平行四边形ABCD的面积是2, 求平行四边形ABCD 与四边形EFGH 的面积比.HGAB CD EF练习3. 如图,每个小方格的边长都是1,求三角形ABC 的面积.课后作业D练习4. 如图,ABC ∆中,14AE AB =,14AD AC =,ED 与BC 平行,EOD ∆的面积是1平方厘米.那么AED ∆的面积是 平方厘米.A B CDEO练习5. 右图中ABCD 是梯形,ABED 是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是 平方厘米.B练习6. 如图在ABC △中,13DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. IHG FEDCBA。

小学数学几何必考五大模型优秀课件

小学数学几何必考五大模型优秀课件

8 典型例题
【例1】如图,正方形ABCD的边长为6,AE= 1.5,CF= 2.长方形EFGH的面积为?
H
H
A
D
A
D
E
E
G
G
B FC
B FC
【解析】连接DE,DF,则长方形EFGH的面积是三角形DEF面积的二倍. 三角形DEF的面积等于正方形的面积减去三个三角形的面积, ,所以长方形EFGH面积为33.
1
在学习小学数学的时候,几何模型算是比较新颖的一个模块,学生们熟 练掌握五大面积模型,并掌握五大面积模型的各种变形,
今天就为大家推荐一篇小学数学几何五大模型的内容。
2
3 一、等积模型
A
B
①等底等高的两个三角形面积相等;
②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;
38
39
40
41
42
43
44
45
46
47
48
49
50
证明:连接AG(我们通过△ABG把这两个长方形和正方形联系在一起)
∴ 正方形ABCD与长方形EFGB面积相等。长方形的宽=8 ×8÷10=6.4(厘米)
11 【例2】长方形ABCD的面积为36cm2,E 、F、G为各边中点,H为AD边上 任意一点,问阴影部分面积是多少?
【解析】解法一:寻找可利用的条件,连接BH ,HC ,如下图:
它们的高之比.
4
二、鸟头定理
两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.
A
D
D E
A E

几何原本的几何五大公设课件

几何原本的几何五大公设课件

斯維卡特(Schweikart, 1780~1859) 的宣言
• 他說:『應該承認有兩種幾何,一種是 歐氏幾何,另一種是建立在三角形內角 之和小於180o假設下的幾何。』
• 第二種幾何可稱為“星際幾何”
• 平行公設與歐氏其他公設無關
創立非歐幾何的英雄
• 德國的數學王子高斯(Gauss, 1777~1855) • 匈牙利的鮑耶(J. Bolyai, 1802~1860)
• 三角形的內角和小於兩直角
黎曼的貢獻
• 黎曼在1854年的論文《論幾何學的基本假設》, 提出了另類的非歐幾何學,稱為「黎曼幾何」 (即「橢圓幾何」)
• 在黎曼幾何的體系中,有以下特徵: (a) 直線不是無限而是有限且封閉的 (b) 不存在平行線 (c) 三角形內角和大於兩直角
黎曼(Riemann, 1826~1866)
• 以後陸續用俄文、法文、德文發表自 己的工作。直到去世後,高斯對他的 學說予以肯定, 他的思想才被普遍接 受
• 他在無窮級數論、積分學和概率論等 方面,也有出色的工作
• 著有《幾何學基礎》(1829)及《平行線 理論的幾何研究》(1840)
羅氏幾何的兩大特徵
• 通過直線AB以外的一點P,有不只一 條直線與 AB 平行
•當0時,L()並不趨向一個固定值,而是隨著 的減少而增長,這意味著海岸線的長度是不能精 確測量出來的!
科赫曲線(Koch Curve)
•科赫曲線是瑞典數學家科赫(Helge von Koch)於1904年提出的。
•按照Mandelbrot的說法,科赫曲線是 海岸線粗略但極好的模型
怎樣構造科赫曲線呢?
• 幾何基礎、解析幾何、非歐幾何、射影幾何、畫 法幾何
• 微分幾何(包括:張量分析、微分流形、黎曼流 形、大範圍微分幾何、複流形)

几何五大模型

几何五大模型

1.共边模型(等积变形)
·两个三角形,如果底边相等,高也相等,那么它们的面积相等。

·拓展:夹在一组平行线间的同底三角形面积相等。

·两个三角形,如果底相等,一个的高是另一个的n倍,那么它的面积也是另一个的n倍·两个三角形,如果高相等,一个的底是另一个的n倍,那么它的面积也是另一个的n倍
小结:边比=面积比,找等高最常见
2.共角模型(鸟头模型)
两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

如图,:=(AB AC):(AD AE)
3.蝴蝶模型(风筝模型)重点!!!
(②理解记忆(羊肉串1))
4.梯形蝴蝶模型
梯形中的比例关系:
①S₂=S₄
②S₁:S₃:S₂:S₄=a²+b²:ab:ab
5.燕尾模型
在三角形ABC中,AD,BE,CF相交同一点O,那么: = BD:DC
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。

几何五大模型

几何五大模型

时间:二O 二一年七月二十九日时间:二O 二一年七月二十九日之马矢奏春创作 一、等积变换模型其它罕见的面积相等的情况⑵两个三角形高相等,面积比即是它们的底之比;两个三角形底相等,面积比即是它们的高之比.如上图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .⑷正方形的面积即是对角线长度平方的一半;⑸三角形面积即是与它等底等高的平行四边形面积的一半;二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.共角三角形的面积比即是对应角(相等角或互补角)两夹边的乘积之比.如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以获得与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝴蝶定理”)①2213::S S a b =②221324::::::S S S S a b ab ab =;③梯形S 的对应份数为()2a b +.四、相似模型相似三角形性质:金字塔模型沙漏模型①AD AE DE AF AB AC BC AG===; ②22::ADE ABC S S AF AG =△△.所谓的相似三角形,就是形状相同,年夜小分歧的三角形(只要其形状不改变,不论年夜小怎样改变它们都相似),与相似三角形相关的经常使用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,而且这个比例即是它们的相似比;⑵相似三角形的面积比即是它们相似比的平方.五、燕尾定理模型S△ABG:S△AGC=S△BGE:S△EGC=BE:ECS△BGA:S△BGC=S△AGF:S△FGC=AF:FCS△AGC:S△BCG=S△ADG:S△DGB=AD:DB典范例题精讲例1一个长方形分成4个分歧的三角形,绿色三角形面积是长方形面积的0.15倍,黄色三角形的面积是21平方厘米.问:长方形的面积是__________平方厘米.1图例2如图,三角形田地中有两条小路AE和CF,交叉处为D,张年夜伯常走这两条小路,他知道DF=DC,且AD=2DE.则两块地ACF和CFB的面积比是__________.2图【举一反三】两条线段把三角形分为三个三角形和一个四边形,如图所示, 三个三角形的面积分别是3,7,7,则阴影四边形的面积是几多?一反三图【拓展】如图,已知长方形ADEF的面积16,三角形ADB的面积是3,三角形ACF的面积是4,那么三角形ABC的面积是几多?时间:二O 二一年七月二十九日时间:二O 二一年七月二十九日展图例3如图,将三角形ABC 的AB 边延长1倍到D,BC 边延长2倍到E,CA边延长3倍到F.如果三角形ABC 的面积即是1,那么三角形DEF 的面积是__________.3图【拓展】如图,在△ABC 中,延长AB 至D,使BD =AB,延长BC 至E,使12CE BC ,F 是AC 的中点,若△ABC 的面积是2,则△DEF 的面积是几多?展图例4如图,在△ABC 中,已知M 、N 分别在边AC 、BC 上,BM 与AN 相交于O,若△AOM、△ABO 和△BON 的面积分别是3、2、1,则△MNC 的面积是__________.4图【秒杀题】四边形ABCD 的对角线AC 与BD 交于点O (如图所示).如果三角形ABD 的面积即是三角形BCD 的面积的13,且AO =2,DO =3,那么CO 的长度是DO 的长度的__________倍. 杀题图例5如图,四边形EFGH 的面积是66平方米,EA =AB,CB =BF,DC =CG,HD =DA,求四边形ABCD 的面积.5图例6如右图长方形ABCD中,EF=16,F=9,求AG的长.6图【铺垫】图中四边形 ABCD是边长为12cm的正方形,从 G到正方形极点C、D连成一个三角形,已知这个三角形在 AB上截得的 EF长度为4cm,那么三角形GDC的面积是几多?垫图例7如图,长方形ABCD中,E为AD中点,AF与BE、BD分别交于G、H,已知AH=5cm,HF=3cm,求AG.例7图例8如右图,三角形ABC中,BD∶DC=4∶9,CE∶EA=4∶3,求AF∶FB.8图【拓展】如图,三角形ABC的面积是1,BD=DE=EC, CF=FG=GA,三角形ABC被分成9部份,请写出这9部份的面积各是几多?展图例9如右图,△ABC中,G是AC的中点,D、E、F是BC边上的四等分点,AD与BG交于M,AF与BG交于N,已知△ABM的面积比四边形FCGN的面积年夜7.2平方厘米,则△ABC的面积是几多平方厘米?时间:二O二一年七月二十九日9图例10如图,在正方形ABCD中,E、F分别在BC与CD上,且CE=2BE,CF =2DF,连接BF,DE,相交于点G,过G作MN,PQ获得两个正方形MGQA和正方形PCNG,设正方形MGQA的面积为S1,正方形PCNG的面积为S2,则S1:S2=______.时间:二O二一年七月二十九日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9
例题:燕尾定理模型
例题4:如图E在AD上,AD⊥BC,AD=12cm,DE=3cm,求SΔABC是
SΔEBC的几倍?
A
分析: 根据燕尾定理模型,S翅膀:S尾巴=AE:ED
SΔABC= S翅膀+S尾巴
B
SΔEBC= S尾巴 SΔEBC÷ SΔEBC= 12÷3=4
翅E 膀
尾巴
C D
例题5:如图,A、B、C都是正方形边的中点, ΔCOD比ΔAOB大15平方厘米的面积, ΔAOB的面积是多少平方厘米。
11
例题:鸟头(共角)模型
例题4:如图,已知三角形ABC面积为1,延长至D,使BD=AB,延长BC 至E,使CE=2BC,延长至F,使AF=3AC,求三角形DEF的面积
分析: 1、想想?∠ACB与∠FCE、 ∠CAB与∠FAD、
∠ABC与∠DBC是什么关系
F 2、互补。在共角模型中,共角三角形的面
2)翅膀面积之和:尾巴面积=翅骨:尾骨
(SΔABG+ SΔACG): SΔBGC=AG:GE
3) BECFAD1 CE AF BD
6
例题:等积变换
例题1:一个长方形分成4个不同的三角形,绿色三角形面积占长方形 面积的15%,黄色三角形面积是21cm2。问:长方形的面积是 多少平方厘米?
分析:SΔ黄+SΔ绿=S长方形÷2(=宽×长÷2)
分析: 正方形的各条边边长相等,都为12,E、F、G为
三等分点,想想?可采用什么模型
A
6
HD
从图可知,存在等积等高,那试试等积变换模型 怎么变换呢?先画几条符合该模型的辅助线
5
1G
2
E
43
BLeabharlann CF想想?ΔHBE与ΔHAB、 ΔHBF与ΔHBC、 ΔHDG与ΔHCD之间的比例关系
都存在1:3的关系
所以:S阴影是S正的三分之一,即S阴影=12×12÷3=48
思考:怎样用等积变换模型来证明这个模型
3
概念
3、蝴蝶定理模型(任意四边形中的比例关系)
1)不规则四边形
a A
S1
S2 O
D S4
S1:S2=S4:S3 AO:OC=(S1+S2):(S3+S4)
S3
B b
C
1)梯形
A
a
D
S1
S1:S3=a2:b2
S2
S4 O
S1:S3:S2:S4=S3=a2:b2:ab:ab
分析: 1、连接AE、BD,作两条平行线
2、PD//BC ,根据等积变换模型 S ΔPBD= S ΔPCD AB//ED ,根据等积变换模型S ΔAEP= S ΔPDB
F
E
APD
B
C
3、根据如此等积变换,阴影部分面积与三角形ADE相等,即: S阴影=SADEF÷2=3.18
思考:几何问题经常要用到添加辅助线,这比较关键。
黄色三角形面积21cm2,占长方形面积比例

50%-15%=35% 因此,长方形面积=21÷35%=60cm2


绿
7
例题:等积变换
例题2:图中ABCD是个直角梯形,以AD为一边向外作长方形ADEF, 其面积为6.36平方厘米,连接BE交AD于P,再连接PC,则图 中阴影部分的面积是多少平方厘米?
分析: ΔABD 的高是ΔCBD的一半,而底边相同 SΔCOD-SΔAOB=SΔCBD -SΔABD= SΔABD =15cm2 SΔAOB= SΔABD ÷2=7.5cm2
C
A
O
E
B
D 10
例题:等积变换模型
例题4:图中的E、F、G分别是正方形ABCD三条边的三等分点,如果正 方形的边长是12,那么阴影部分的面积是多少?
AB
S1 S2
a
b
CD
图1
图2
2
概念
2、鸟头定理(共角定理)模型
1)两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形
2)共角三角形的面积比等于对应交(相等或互补角)两夹边的乘积之比
D
E
A
D
A
A
E D
BC
E
B
CB
C
如图,在ΔABC中,D、E分别是AB、AC上的点,或D是BA延长线上, E在AC上,则有SΔABC : SΔADE=(AB×AC):(AD×AE)
几何问题 --五大模型
风子编辑
1
概念
1、等积变换模型
1)等底等高的两个三角形面积相等 2)两个三角形高相等,面积比等于它们的底之比
两个三角形底相等,面积比等于它们的高之比 如图1 S1:S2=a:b 3)夹在一组平行线之间的等积变形,如图2 SΔACD= SΔBCD 反之,如果SΔACD= SΔBCD,则有直线AB//CD
8
例题:一半模型
例题3:如图ABFE和CDEF都是矩形,AB的长是4厘米,BC的长是3厘 米,那么图中阴影部分的面积是多少平方厘米。
分析:阴影部分是一个个三角形,矩形CDEF中阴影 A
B
部分的三角形底边长度为矩形的长,高与矩 E
F
形宽相等,根据面积公式可知S阴影=SEDCF÷2
D
C
思考:一半模型是什么意思?
例题4:如图,面积为12平方厘米的正方形ABCD中,E、F是DC边上的
三等分点,求阴影部分的面积。 分析: 1、看下图形,回忆下梯形蝴蝶定理模型
A
a
B
S1
2、S2=S4,S1:S3=a2:b2
O
S2 S4
S1:S3:S2:S4=S3=a2:b2:ab:ab
S3
3、蝴蝶定理模型,把梯形肢解模块化,我们
S3
B b
S梯形的对应份数为(a+b)2
C
4
概念
4、相似模型
A
D
FE
B
G
C
金字塔模型
E FD A
B
G
C
沙漏模型
1)相似三角形线段关系 2)相似三角形面积关系
AD:AB=AE:AC=DE:BC=AF:AG SΔADE : SΔABC=AF2:AG2
5
概念:
5、燕尾定理模型
A
D
F
G
B
E
C
1)翅膀之比等于尾巴之比 SΔABG: SΔACG= SΔBGE: SΔCGE =BE:CE SΔBGA: SΔBGC= SΔGAF: SΔGCF =AF:CF SΔAGC: SΔBGC= SΔAGD: SΔBGD =AD:BD
积比等于对应交(相等或互补角)两夹边 的乘积之比
AC
E
B
3、SΔABC: SΔFCE=BC×CA:CE×AF
D
SΔFCE=8 SΔABC=8
同理可知: SΔFAD=6,SΔDBE=3
所以: SΔFDE=18
思考?共角模型可以用等积变换模型推导出来,请用等积变换模型试试 关键点:添加辅助线
12
例题:梯形蝴蝶定理模型
D
EbF
C
可以假设最小的三角形面积为1份。想想?其它各部分所占的份数
4、 ∵ a:b=3:1,∴S2=S4=3份,S1=9份
5、 想想?正方形ABCD中,还有哪些没有包块进去,及与份数之间的关系
6、SΔADE =S2+S3,S ΔBCF =S4+S3 想想?为什么,用了什么模型
相关文档
最新文档